Dependents:   controller_with_backup

MPU6050.h

Committer:
yxyang
Date:
2017-05-30
Revision:
0:d23cb6fd82b7

File content as of revision 0:d23cb6fd82b7:

#ifndef MPU6050_H
#define MPU6050_H

#include "math.h"
#include "mbed.h"

// Define registers per MPU6050, Register Map and Descriptions, Rev 4.2,
// 08/19/2013 6 DOF Motion sensor fusion device
// Invensense Inc., www.invensense.com
// See also MPU-6050 Register Map and Descriptions, Revision 4.0,
// RM-MPU-6050A-00, 9/12/2012 for registers not listed in
// above document; the MPU6050 and MPU 9150 are virtually identical but the
// latter has an on-board magnetic sensor
//
#define XGOFFS_TC                                                             \
  0x00 // Bit 7 PWR_MODE, bits 6:1 XG_OFFS_TC, bit 0 OTP_BNK_VLD
#define YGOFFS_TC 0x01
#define ZGOFFS_TC 0x02
#define X_FINE_GAIN 0x03 // [7:0] fine gain
#define Y_FINE_GAIN 0x04
#define Z_FINE_GAIN 0x05
#define XA_OFFSET_H 0x06 // User-defined trim values for accelerometer
#define XA_OFFSET_L_TC 0x07
#define YA_OFFSET_H 0x08
#define YA_OFFSET_L_TC 0x09
#define ZA_OFFSET_H 0x0A
#define ZA_OFFSET_L_TC 0x0B
#define SELF_TEST_X 0x0D
#define SELF_TEST_Y 0x0E
#define SELF_TEST_Z 0x0F
#define SELF_TEST_A 0x10
#define XG_OFFS_USRH                                                          \
  0x13 // User-defined trim values for gyroscope; supported in MPU-6050?
#define XG_OFFS_USRL 0x14
#define YG_OFFS_USRH 0x15
#define YG_OFFS_USRL 0x16
#define ZG_OFFS_USRH 0x17
#define ZG_OFFS_USRL 0x18
#define SMPLRT_DIV 0x19
#define CONFIG 0x1A
#define GYRO_CONFIG 0x1B
#define ACCEL_CONFIG 0x1C
#define FF_THR 0x1D  // Free-fall
#define FF_DUR 0x1E  // Free-fall
#define MOT_THR 0x1F // Motion detection threshold bits [7:0]
#define MOT_DUR                                                               \
  0x20 // Duration counter threshold for motion interrupt generation, 1 kHz
       // rate, LSB = 1 ms
#define ZMOT_THR 0x21 // Zero-motion detection threshold bits [7:0]
#define ZRMOT_DUR                                                             \
  0x22 // Duration counter threshold for zero motion interrupt generation, 16
       // Hz rate, LSB = 64 ms
#define FIFO_EN 0x23
#define I2C_MST_CTRL 0x24
#define I2C_SLV0_ADDR 0x25
#define I2C_SLV0_REG 0x26
#define I2C_SLV0_CTRL 0x27
#define I2C_SLV1_ADDR 0x28
#define I2C_SLV1_REG 0x29
#define I2C_SLV1_CTRL 0x2A
#define I2C_SLV2_ADDR 0x2B
#define I2C_SLV2_REG 0x2C
#define I2C_SLV2_CTRL 0x2D
#define I2C_SLV3_ADDR 0x2E
#define I2C_SLV3_REG 0x2F
#define I2C_SLV3_CTRL 0x30
#define I2C_SLV4_ADDR 0x31
#define I2C_SLV4_REG 0x32
#define I2C_SLV4_DO 0x33
#define I2C_SLV4_CTRL 0x34
#define I2C_SLV4_DI 0x35
#define I2C_MST_STATUS 0x36
#define INT_PIN_CFG 0x37
#define INT_ENABLE 0x38
#define DMP_INT_STATUS 0x39 // Check DMP interrupt
#define INT_STATUS 0x3A
#define ACCEL_XOUT_H 0x3B
#define ACCEL_XOUT_L 0x3C
#define ACCEL_YOUT_H 0x3D
#define ACCEL_YOUT_L 0x3E
#define ACCEL_ZOUT_H 0x3F
#define ACCEL_ZOUT_L 0x40
#define TEMP_OUT_H 0x41
#define TEMP_OUT_L 0x42
#define GYRO_XOUT_H 0x43
#define GYRO_XOUT_L 0x44
#define GYRO_YOUT_H 0x45
#define GYRO_YOUT_L 0x46
#define GYRO_ZOUT_H 0x47
#define GYRO_ZOUT_L 0x48
#define EXT_SENS_DATA_00 0x49
#define EXT_SENS_DATA_01 0x4A
#define EXT_SENS_DATA_02 0x4B
#define EXT_SENS_DATA_03 0x4C
#define EXT_SENS_DATA_04 0x4D
#define EXT_SENS_DATA_05 0x4E
#define EXT_SENS_DATA_06 0x4F
#define EXT_SENS_DATA_07 0x50
#define EXT_SENS_DATA_08 0x51
#define EXT_SENS_DATA_09 0x52
#define EXT_SENS_DATA_10 0x53
#define EXT_SENS_DATA_11 0x54
#define EXT_SENS_DATA_12 0x55
#define EXT_SENS_DATA_13 0x56
#define EXT_SENS_DATA_14 0x57
#define EXT_SENS_DATA_15 0x58
#define EXT_SENS_DATA_16 0x59
#define EXT_SENS_DATA_17 0x5A
#define EXT_SENS_DATA_18 0x5B
#define EXT_SENS_DATA_19 0x5C
#define EXT_SENS_DATA_20 0x5D
#define EXT_SENS_DATA_21 0x5E
#define EXT_SENS_DATA_22 0x5F
#define EXT_SENS_DATA_23 0x60
#define MOT_DETECT_STATUS 0x61
#define I2C_SLV0_DO 0x63
#define I2C_SLV1_DO 0x64
#define I2C_SLV2_DO 0x65
#define I2C_SLV3_DO 0x66
#define I2C_MST_DELAY_CTRL 0x67
#define SIGNAL_PATH_RESET 0x68
#define MOT_DETECT_CTRL 0x69
#define USER_CTRL 0x6A  // Bit 7 enable DMP, bit 3 reset DMP
#define PWR_MGMT_1 0x6B // Device defaults to the SLEEP mode
#define PWR_MGMT_2 0x6C
#define DMP_BANK 0x6D // Activates a specific bank in the DMP
#define DMP_RW_PNT                                                            \
  0x6E // Set read/write pointer to a specific start address in specified DMP
       // bank
#define DMP_REG 0x6F // Register in DMP from which to read or to which to write
#define DMP_REG_1 0x70
#define DMP_REG_2 0x71
#define FIFO_COUNTH 0x72
#define FIFO_COUNTL 0x73
#define FIFO_R_W 0x74
#define WHO_AM_I_MPU6050 0x75 // Should return 0x68

// Using the GY-521 breakout board, I set ADO to 0 by grounding through a 4k7
// resistor
// Seven-bit device address is 110100 for ADO = 0 and 110101 for ADO = 1
#define ADO 0
#if ADO
#define MPU6050_ADDRESS 0x69 << 1 // Device address when ADO = 1
#else
#define MPU6050_ADDRESS 0x68 << 1 // Device address when ADO = 0
#endif

// Set initial input parameters
enum Ascale
{
  AFS_2G = 0,
  AFS_4G,
  AFS_8G,
  AFS_16G
};

enum Gscale
{
  GFS_250DPS = 0,
  GFS_500DPS,
  GFS_1000DPS,
  GFS_2000DPS
};

// Specify sensor full scale
int Gscale = GFS_250DPS;
int Ascale = AFS_2G;

// Set up I2C, (SDA,SCL)
#define MPU_SDA p9
#define MPU_SCL p10
I2C i2c (MPU_SDA, MPU_SCL);

// DigitalOut myled(LED1);

float aRes, gRes; // scale resolutions per LSB for the sensors

// Pin definitions
int intPin = 12; // These can be changed, 2 and 3 are the Arduinos ext int pins

int16_t accelCount[3]; // Stores the 16-bit signed accelerometer sensor output
float ax, ay, az;      // Stores the real accel value in g's
int16_t gyroCount[3];  // Stores the 16-bit signed gyro sensor output
float gx, gy, gz;      // Stores the real gyro value in degrees per seconds
float gyroBias[3] = { 0, 0, 0 },
      accelBias[3]
      = { 0, 0, 0 }; // Bias corrections for gyro and accelerometer
int16_t
    tempCount; // Stores the real internal chip temperature in degrees Celsius
float temperature;
float SelfTest[6];

int delt_t = 0; // used to control display output rate
int count = 0;  // used to control display output rate

// parameters for 6 DoF sensor fusion calculations
float PI = 3.14159265358979323846f;
float GyroMeasError = PI * (60.0f / 180.0f); // gyroscope measurement error in
                                             // rads/s (start at 60 deg/s),
                                             // then reduce after ~10 s to 3
float beta = sqrt (3.0f / 4.0f) * GyroMeasError; // compute beta
float GyroMeasDrift = PI * (1.0f / 180.0f); // gyroscope measurement drift in
                                            // rad/s/s (start at 0.0 deg/s/s)
float zeta = sqrt (3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the other
                                                 // free parameter in the
                                                 // Madgwick scheme usually set
                                                 // to a small or zero value
float pitch, yaw, roll;
float deltat = 0.0f; // integration interval for both filter schemes
int lastUpdate = 0, firstUpdate = 0,
    Now = 0; // used to calculate integration interval
             // // used to calculate integration interval
float q[4] = { 1.0f, 0.0f, 0.0f, 0.0f }; // vector to hold quaternion

class MPU6050
{

protected:
public:
  //===================================================================================================================
  //====== Set of useful function to access acceleratio, gyroscope, and
  // temperature data
  //===================================================================================================================

  void
  writeByte (uint8_t address, uint8_t subAddress, uint8_t data)
  {
    char data_write[2];
    data_write[0] = subAddress;
    data_write[1] = data;
    i2c.write (address, data_write, 2, 0);
  }

  char
  readByte (uint8_t address, uint8_t subAddress)
  {
    char data[1]; // `data` will store the register data
    char data_write[1];
    data_write[0] = subAddress;
    i2c.write (address, data_write, 1, 1); // no stop
    i2c.read (address, data, 1, 0);
    return data[0];
  }

  void
  readBytes (uint8_t address, uint8_t subAddress, uint8_t count, uint8_t *dest)
  {
    char data[14];
    char data_write[1];
    data_write[0] = subAddress;
    i2c.write (address, data_write, 1, 1); // no stop
    i2c.read (address, data, count, 0);
    for (int ii = 0; ii < count; ii++)
      {
        dest[ii] = data[ii];
      }
  }

  void
  getGres ()
  {
    switch (Gscale)
      {
      // Possible gyro scales (and their register bit settings) are:
      // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS  (11).
      // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that
      // 2-bit value:
      case GFS_250DPS:
        gRes = 250.0 / 32768.0;
        break;
      case GFS_500DPS:
        gRes = 500.0 / 32768.0;
        break;
      case GFS_1000DPS:
        gRes = 1000.0 / 32768.0;
        break;
      case GFS_2000DPS:
        gRes = 2000.0 / 32768.0;
        break;
      }
  }

  void
  getAres ()
  {
    switch (Ascale)
      {
      // Possible accelerometer scales (and their register bit settings) are:
      // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs  (11).
      // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that
      // 2-bit value:
      case AFS_2G:
        aRes = 2.0 / 32768.0;
        break;
      case AFS_4G:
        aRes = 4.0 / 32768.0;
        break;
      case AFS_8G:
        aRes = 8.0 / 32768.0;
        break;
      case AFS_16G:
        aRes = 16.0 / 32768.0;
        break;
      }
  }

  void
  readAccelData (int16_t *destination)
  {
    uint8_t rawData[6]; // x/y/z accel register data stored here
    readBytes (MPU6050_ADDRESS, ACCEL_XOUT_H, 6,
               &rawData[0]); // Read the six raw data registers into data array
    destination[0] = (int16_t) (
        ((int16_t)rawData[0] << 8)
        | rawData[1]); // Turn the MSB and LSB into a signed 16-bit value
    destination[1] = (int16_t) (((int16_t)rawData[2] << 8) | rawData[3]);
    destination[2] = (int16_t) (((int16_t)rawData[4] << 8) | rawData[5]);
  }

  void
  readGyroData (int16_t *destination)
  {
    uint8_t rawData[6]; // x/y/z gyro register data stored here
    readBytes (MPU6050_ADDRESS, GYRO_XOUT_H, 6,
               &rawData[0]); // Read the six raw data registers sequentially
                             // into data array
    destination[0] = (int16_t) (
        ((int16_t)rawData[0] << 8)
        | rawData[1]); // Turn the MSB and LSB into a signed 16-bit value
    destination[1] = (int16_t) (((int16_t)rawData[2] << 8) | rawData[3]);
    destination[2] = (int16_t) (((int16_t)rawData[4] << 8) | rawData[5]);
  }

  int16_t
  readTempData ()
  {
    uint8_t rawData[2]; // x/y/z gyro register data stored here
    readBytes (MPU6050_ADDRESS, TEMP_OUT_H, 2,
               &rawData[0]); // Read the two raw data registers sequentially
                             // into data array
    return (int16_t) (
        ((int16_t)rawData[0]) << 8
        | rawData[1]); // Turn the MSB and LSB into a 16-bit value
  }

  // Configure the motion detection control for low power accelerometer mode
  void
  LowPowerAccelOnly ()
  {

    // The sensor has a high-pass filter necessary to invoke to allow the
    // sensor motion detection algorithms work properly
    // Motion detection occurs on free-fall (acceleration below a threshold for
    // some time for all axes), motion (acceleration
    // above a threshold for some time on at least one axis), and zero-motion
    // toggle (acceleration on each axis less than a
    // threshold for some time sets this flag, motion above the threshold turns
    // it off). The high-pass filter takes gravity out
    // consideration for these threshold evaluations; otherwise, the flags
    // would be set all the time!

    uint8_t c = readByte (MPU6050_ADDRESS, PWR_MGMT_1);
    writeByte (MPU6050_ADDRESS, PWR_MGMT_1,
               c & ~0x30); // Clear sleep and cycle bits [5:6]
    writeByte (MPU6050_ADDRESS, PWR_MGMT_1,
               c | 0x30); // Set sleep and cycle bits [5:6] to zero to make
                          // sure accelerometer is running

    c = readByte (MPU6050_ADDRESS, PWR_MGMT_2);
    writeByte (MPU6050_ADDRESS, PWR_MGMT_2,
               c & ~0x38); // Clear standby XA, YA, and ZA bits [3:5]
    writeByte (MPU6050_ADDRESS, PWR_MGMT_2,
               c | 0x00); // Set XA, YA, and ZA bits [3:5] to zero to make sure
                          // accelerometer is running

    c = readByte (MPU6050_ADDRESS, ACCEL_CONFIG);
    writeByte (MPU6050_ADDRESS, ACCEL_CONFIG,
               c & ~0x07); // Clear high-pass filter bits [2:0]
    // Set high-pass filter to 0) reset (disable), 1) 5 Hz, 2) 2.5 Hz, 3) 1.25
    // Hz, 4) 0.63 Hz, or 7) Hold
    writeByte (
        MPU6050_ADDRESS, ACCEL_CONFIG,
        c | 0x00); // Set ACCEL_HPF to 0; reset mode disbaling high-pass filter

    c = readByte (MPU6050_ADDRESS, CONFIG);
    writeByte (MPU6050_ADDRESS, CONFIG,
               c & ~0x07); // Clear low-pass filter bits [2:0]
    writeByte (MPU6050_ADDRESS, CONFIG,
               c | 0x00); // Set DLPD_CFG to 0; 260 Hz bandwidth, 1 kHz rate

    c = readByte (MPU6050_ADDRESS, INT_ENABLE);
    writeByte (MPU6050_ADDRESS, INT_ENABLE, c & ~0xFF); // Clear all interrupts
    writeByte (MPU6050_ADDRESS, INT_ENABLE,
               0x40); // Enable motion threshold (bits 5) interrupt only

    // Motion detection interrupt requires the absolute value of any axis to
    // lie above the detection threshold
    // for at least the counter duration
    writeByte (MPU6050_ADDRESS, MOT_THR,
               0x80); // Set motion detection to 0.256 g; LSB = 2 mg
    writeByte (
        MPU6050_ADDRESS, MOT_DUR,
        0x01); // Set motion detect duration to 1  ms; LSB is 1 ms @ 1 kHz rate

    wait (0.1); // Add delay for accumulation of samples

    c = readByte (MPU6050_ADDRESS, ACCEL_CONFIG);
    writeByte (MPU6050_ADDRESS, ACCEL_CONFIG,
               c & ~0x07); // Clear high-pass filter bits [2:0]
    writeByte (MPU6050_ADDRESS, ACCEL_CONFIG, c | 0x07); // Set ACCEL_HPF to 7;
                                                         // hold the initial
                                                         // accleration value
                                                         // as a referance

    c = readByte (MPU6050_ADDRESS, PWR_MGMT_2);
    writeByte (MPU6050_ADDRESS, PWR_MGMT_2,
               c & ~0xC7); // Clear standby XA, YA, and ZA bits [3:5] and
                           // LP_WAKE_CTRL bits [6:7]
    writeByte (MPU6050_ADDRESS, PWR_MGMT_2, c | 0x47); // Set wakeup frequency
                                                       // to 5 Hz, and disable
                                                       // XG, YG, and ZG gyros
                                                       // (bits [0:2])

    c = readByte (MPU6050_ADDRESS, PWR_MGMT_1);
    writeByte (MPU6050_ADDRESS, PWR_MGMT_1,
               c & ~0x20); // Clear sleep and cycle bit 5
    writeByte (MPU6050_ADDRESS, PWR_MGMT_1, c | 0x20); // Set cycle bit 5 to
                                                       // begin low power
                                                       // accelerometer motion
                                                       // interrupts
  }

  void
  resetMPU6050 ()
  {
    // reset device
    writeByte (MPU6050_ADDRESS, PWR_MGMT_1,
               0x80); // Write a one to bit 7 reset bit; toggle reset device
    wait (0.1);
  }

  void
  initMPU6050 ()
  {
    // Initialize MPU6050 device
    // wake up device
    writeByte (MPU6050_ADDRESS, PWR_MGMT_1,
               0x00); // Clear sleep mode bit (6), enable all sensors
    wait (0.1); // Delay 100 ms for PLL to get established on x-axis gyro;
                // should check for PLL ready interrupt

    // get stable time source
    writeByte (MPU6050_ADDRESS, PWR_MGMT_1, 0x01); // Set clock source to be
                                                   // PLL with x-axis gyroscope
                                                   // reference, bits 2:0 = 001

    // Configure Gyro and Accelerometer
    // Disable FSYNC and set accelerometer and gyro bandwidth to 44 and 42 Hz,
    // respectively;
    // DLPF_CFG = bits 2:0 = 010; this sets the sample rate at 1 kHz for both
    // Maximum delay is 4.9 ms which is just over a 200 Hz maximum rate
    writeByte (MPU6050_ADDRESS, CONFIG, 0x03);

    // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV)
    writeByte (MPU6050_ADDRESS, SMPLRT_DIV,
               0x04); // Use a 200 Hz rate; the same rate set in CONFIG above

    // Set gyroscope full scale range
    // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are
    // left-shifted into positions 4:3
    uint8_t c = readByte (MPU6050_ADDRESS, GYRO_CONFIG);
    writeByte (MPU6050_ADDRESS, GYRO_CONFIG,
               c & ~0xE0); // Clear self-test bits [7:5]
    writeByte (MPU6050_ADDRESS, GYRO_CONFIG,
               c & ~0x18); // Clear AFS bits [4:3]
    writeByte (MPU6050_ADDRESS, GYRO_CONFIG,
               c | Gscale << 3); // Set full scale range for the gyro

    // Set accelerometer configuration
    c = readByte (MPU6050_ADDRESS, ACCEL_CONFIG);
    writeByte (MPU6050_ADDRESS, ACCEL_CONFIG,
               c & ~0xE0); // Clear self-test bits [7:5]
    writeByte (MPU6050_ADDRESS, ACCEL_CONFIG,
               c & ~0x18); // Clear AFS bits [4:3]
    writeByte (MPU6050_ADDRESS, ACCEL_CONFIG,
               c | Ascale << 3); // Set full scale range for the accelerometer

    // Configure Interrupts and Bypass Enable
    // Set interrupt pin active high, push-pull, and clear on read of
    // INT_STATUS, enable I2C_BYPASS_EN so additional chips
    // can join the I2C bus and all can be controlled by the Arduino as master
    writeByte (MPU6050_ADDRESS, INT_PIN_CFG, 0x22);
    writeByte (MPU6050_ADDRESS, INT_ENABLE,
               0x01); // Enable data ready (bit 0) interrupt
  }

  // Function which accumulates gyro and accelerometer data after device
  // initialization. It calculates the average
  // of the at-rest readings and then loads the resulting offsets into
  // accelerometer and gyro bias registers.
  void
  calibrateMPU6050 (float *dest1, float *dest2)
  {
    uint8_t
        data[12]; // data array to hold accelerometer and gyro x, y, z, data
    uint16_t ii, packet_count, fifo_count;
    int32_t gyro_bias[3] = { 0, 0, 0 }, accel_bias[3] = { 0, 0, 0 };

    // reset device, reset all registers, clear gyro and accelerometer bias
    // registers
    writeByte (MPU6050_ADDRESS, PWR_MGMT_1,
               0x80); // Write a one to bit 7 reset bit; toggle reset device
    wait (0.1);

    // get stable time source
    // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 =
    // 001
    writeByte (MPU6050_ADDRESS, PWR_MGMT_1, 0x01);
    writeByte (MPU6050_ADDRESS, PWR_MGMT_2, 0x00);
    wait (0.2);

    // Configure device for bias calculation
    writeByte (MPU6050_ADDRESS, INT_ENABLE, 0x00); // Disable all interrupts
    writeByte (MPU6050_ADDRESS, FIFO_EN, 0x00);    // Disable FIFO
    writeByte (MPU6050_ADDRESS, PWR_MGMT_1,
               0x00); // Turn on internal clock source
    writeByte (MPU6050_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master
    writeByte (MPU6050_ADDRESS, USER_CTRL,
               0x00); // Disable FIFO and I2C master modes
    writeByte (MPU6050_ADDRESS, USER_CTRL, 0x0C); // Reset FIFO and DMP
    wait (0.015);

    // Configure MPU6050 gyro and accelerometer for bias calculation
    writeByte (MPU6050_ADDRESS, CONFIG, 0x01); // Set low-pass filter to 188 Hz
    writeByte (MPU6050_ADDRESS, SMPLRT_DIV, 0x00);  // Set sample rate to 1 kHz
    writeByte (MPU6050_ADDRESS, GYRO_CONFIG, 0x00); // Set gyro full-scale to
                                                    // 250 degrees per second,
                                                    // maximum sensitivity
    writeByte (
        MPU6050_ADDRESS, ACCEL_CONFIG,
        0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity

    uint16_t gyrosensitivity = 131;    // = 131 LSB/degrees/sec
    uint16_t accelsensitivity = 16384; // = 16384 LSB/g

    // Configure FIFO to capture accelerometer and gyro data for bias
    // calculation
    writeByte (MPU6050_ADDRESS, USER_CTRL, 0x40); // Enable FIFO
    writeByte (MPU6050_ADDRESS, FIFO_EN, 0x78);   // Enable gyro and
                                                  // accelerometer sensors for
                                                  // FIFO  (max size 1024 bytes
                                                  // in MPU-6050)
    wait (0.08); // accumulate 80 samples in 80 milliseconds = 960 bytes

    // At end of sample accumulation, turn off FIFO sensor read
    writeByte (MPU6050_ADDRESS, FIFO_EN,
               0x00); // Disable gyro and accelerometer sensors for FIFO
    readBytes (MPU6050_ADDRESS, FIFO_COUNTH, 2,
               &data[0]); // read FIFO sample count
    fifo_count = ((uint16_t)data[0] << 8) | data[1];
    packet_count = fifo_count / 12; // How many sets of full gyro and
                                    // accelerometer data for averaging

    for (ii = 0; ii < packet_count; ii++)
      {
        int16_t accel_temp[3] = { 0, 0, 0 }, gyro_temp[3] = { 0, 0, 0 };
        readBytes (MPU6050_ADDRESS, FIFO_R_W, 12,
                   &data[0]); // read data for averaging
        accel_temp[0] = (int16_t) (
            ((int16_t)data[0] << 8)
            | data[1]); // Form signed 16-bit integer for each sample in FIFO
        accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3]);
        accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5]);
        gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7]);
        gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9]);
        gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]);

        accel_bias[0] += (int32_t)accel_temp[0]; // Sum individual signed
                                                 // 16-bit biases to get
                                                 // accumulated signed 32-bit
                                                 // biases
        accel_bias[1] += (int32_t)accel_temp[1];
        accel_bias[2] += (int32_t)accel_temp[2];
        gyro_bias[0] += (int32_t)gyro_temp[0];
        gyro_bias[1] += (int32_t)gyro_temp[1];
        gyro_bias[2] += (int32_t)gyro_temp[2];
      }
    accel_bias[0]
        /= (int32_t)packet_count; // Normalize sums to get average count biases
    accel_bias[1] /= (int32_t)packet_count;
    accel_bias[2] /= (int32_t)packet_count;
    gyro_bias[0] /= (int32_t)packet_count;
    gyro_bias[1] /= (int32_t)packet_count;
    gyro_bias[2] /= (int32_t)packet_count;

    if (accel_bias[2] > 0L)
      {
        accel_bias[2] -= (int32_t)accelsensitivity;
      } // Remove gravity from the z-axis accelerometer bias calculation
    else
      {
        accel_bias[2] += (int32_t)accelsensitivity;
      }

    // Construct the gyro biases for push to the hardware gyro bias registers,
    // which are reset to zero upon device startup
    data[0] = (-gyro_bias[0] / 4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB
                                               // per deg/s to conform to
                                               // expected bias input format
    data[1] = (-gyro_bias[0] / 4) & 0xFF; // Biases are additive, so change
                                          // sign on calculated average gyro
                                          // biases
    data[2] = (-gyro_bias[1] / 4 >> 8) & 0xFF;
    data[3] = (-gyro_bias[1] / 4) & 0xFF;
    data[4] = (-gyro_bias[2] / 4 >> 8) & 0xFF;
    data[5] = (-gyro_bias[2] / 4) & 0xFF;

    // Push gyro biases to hardware registers
    writeByte (MPU6050_ADDRESS, XG_OFFS_USRH, data[0]);
    writeByte (MPU6050_ADDRESS, XG_OFFS_USRL, data[1]);
    writeByte (MPU6050_ADDRESS, YG_OFFS_USRH, data[2]);
    writeByte (MPU6050_ADDRESS, YG_OFFS_USRL, data[3]);
    writeByte (MPU6050_ADDRESS, ZG_OFFS_USRH, data[4]);
    writeByte (MPU6050_ADDRESS, ZG_OFFS_USRL, data[5]);

    dest1[0] = (float)gyro_bias[0]
               / (float)gyrosensitivity; // construct gyro bias in deg/s for
                                         // later manual subtraction
    dest1[1] = (float)gyro_bias[1] / (float)gyrosensitivity;
    dest1[2] = (float)gyro_bias[2] / (float)gyrosensitivity;

    // Construct the accelerometer biases for push to the hardware
    // accelerometer bias registers. These registers contain
    // factory trim values which must be added to the calculated accelerometer
    // biases; on boot up these registers will hold
    // non-zero values. In addition, bit 0 of the lower byte must be preserved
    // since it is used for temperature
    // compensation calculations. Accelerometer bias registers expect bias
    // input as 2048 LSB per g, so that
    // the accelerometer biases calculated above must be divided by 8.

    int32_t accel_bias_reg[3]
        = { 0, 0, 0 }; // A place to hold the factory accelerometer trim biases
    readBytes (MPU6050_ADDRESS, XA_OFFSET_H, 2,
               &data[0]); // Read factory accelerometer trim values
    accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1];
    readBytes (MPU6050_ADDRESS, YA_OFFSET_H, 2, &data[0]);
    accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1];
    readBytes (MPU6050_ADDRESS, ZA_OFFSET_H, 2, &data[0]);
    accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1];

    uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of
                         // lower byte of accelerometer bias registers
    uint8_t mask_bit[3] = {
      0, 0, 0
    }; // Define array to hold mask bit for each accelerometer bias axis

    for (ii = 0; ii < 3; ii++)
      {
        if (accel_bias_reg[ii] & mask)
          mask_bit[ii] = 0x01; // If temperature compensation bit is set,
                               // record that fact in mask_bit
      }

    // Construct total accelerometer bias, including calculated average
    // accelerometer bias from above
    accel_bias_reg[0] -= (accel_bias[0] / 8); // Subtract calculated averaged
                                              // accelerometer bias scaled to
                                              // 2048 LSB/g (16 g full scale)
    accel_bias_reg[1] -= (accel_bias[1] / 8);
    accel_bias_reg[2] -= (accel_bias[2] / 8);

    data[0] = (accel_bias_reg[0] >> 8) & 0xFF;
    data[1] = (accel_bias_reg[0]) & 0xFF;
    data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit
                                     // when writing back to accelerometer bias
                                     // registers
    data[2] = (accel_bias_reg[1] >> 8) & 0xFF;
    data[3] = (accel_bias_reg[1]) & 0xFF;
    data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit
                                     // when writing back to accelerometer bias
                                     // registers
    data[4] = (accel_bias_reg[2] >> 8) & 0xFF;
    data[5] = (accel_bias_reg[2]) & 0xFF;
    data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit
                                     // when writing back to accelerometer bias
                                     // registers

    // Push accelerometer biases to hardware registers
    //  writeByte(MPU6050_ADDRESS, XA_OFFSET_H, data[0]);
    //  writeByte(MPU6050_ADDRESS, XA_OFFSET_L_TC, data[1]);
    //  writeByte(MPU6050_ADDRESS, YA_OFFSET_H, data[2]);
    //  writeByte(MPU6050_ADDRESS, YA_OFFSET_L_TC, data[3]);
    //  writeByte(MPU6050_ADDRESS, ZA_OFFSET_H, data[4]);
    //  writeByte(MPU6050_ADDRESS, ZA_OFFSET_L_TC, data[5]);

    // Output scaled accelerometer biases for manual subtraction in the main
    // program
    dest2[0] = (float)accel_bias[0] / (float)accelsensitivity;
    dest2[1] = (float)accel_bias[1] / (float)accelsensitivity;
    dest2[2] = (float)accel_bias[2] / (float)accelsensitivity;
  }

  // Accelerometer and gyroscope self test; check calibration wrt factory
  // settings
  void MPU6050SelfTest (float *destination) // Should return percent deviation
                                            // from factory trim values, +/- 14
                                            // or less deviation is a pass
  {
    uint8_t rawData[4] = { 0, 0, 0, 0 };
    uint8_t selfTest[6];
    float factoryTrim[6];

    // Configure the accelerometer for self-test
    writeByte (MPU6050_ADDRESS, ACCEL_CONFIG, 0xF0); // Enable self test on all
                                                     // three axes and set
                                                     // accelerometer range to
                                                     // +/- 8 g
    writeByte (MPU6050_ADDRESS, GYRO_CONFIG, 0xE0);  // Enable self test on all
                                                     // three axes and set gyro
                                                     // range to +/- 250
                                                     // degrees/s
    wait (0.25); // Delay a while to let the device execute the self-test
    // rawData[0]
    //     = readByte (MPU6050_ADDRESS, SELF_TEST_X); // X-axis self-test
    //     results
    // rawData[1]
    //     = readByte (MPU6050_ADDRESS, SELF_TEST_Y); // Y-axis self-test
    //     results
    // rawData[2]
    //     = readByte (MPU6050_ADDRESS, SELF_TEST_Z); // Z-axis self-test
    //     results
    // rawData[3] = readByte (MPU6050_ADDRESS,
    //                        SELF_TEST_A);
    // Mixed-axis self-test results
    // Extract the acceleration test results first
    selfTest[0] = (rawData[0] >> 3)
                  | (rawData[3] & 0x30)
                        >> 4; // XA_TEST result is a five-bit unsigned integer
    selfTest[1] = (rawData[1] >> 3)
                  | (rawData[3] & 0x0C)
                        >> 4; // YA_TEST result is a five-bit unsigned integer
    selfTest[2] = (rawData[2] >> 3)
                  | (rawData[3] & 0x03)
                        >> 4; // ZA_TEST result is a five-bit unsigned integer
    // Extract the gyration test results first
    selfTest[3]
        = rawData[0] & 0x1F; // XG_TEST result is a five-bit unsigned integer
    selfTest[4]
        = rawData[1] & 0x1F; // YG_TEST result is a five-bit unsigned integer
    selfTest[5]
        = rawData[2] & 0x1F; // ZG_TEST result is a five-bit unsigned integer
    // Process results to allow final comparison with factory set values
    factoryTrim[0] = (4096.0f * 0.34f)
                     * (pow ((0.92f / 0.34f),
                             ((selfTest[0] - 1.0f)
                              / 30.0f))); // FT[Xa] factory trim calculation
    factoryTrim[1] = (4096.0f * 0.34f)
                     * (pow ((0.92f / 0.34f),
                             ((selfTest[1] - 1.0f)
                              / 30.0f))); // FT[Ya] factory trim calculation
    factoryTrim[2] = (4096.0f * 0.34f)
                     * (pow ((0.92f / 0.34f),
                             ((selfTest[2] - 1.0f)
                              / 30.0f))); // FT[Za] factory trim calculation
    factoryTrim[3]
        = (25.0f * 131.0f)
          * (pow (1.046f,
                  (selfTest[3] - 1.0f))); // FT[Xg] factory trim calculation
    factoryTrim[4]
        = (-25.0f * 131.0f)
          * (pow (1.046f,
                  (selfTest[4] - 1.0f))); // FT[Yg] factory trim calculation
    factoryTrim[5]
        = (25.0f * 131.0f)
          * (pow (1.046f,
                  (selfTest[5] - 1.0f))); // FT[Zg] factory trim calculation

    //  Output self-test results and factory trim calculation if desired
    //  Serial.println(selfTest[0]); Serial.println(selfTest[1]);
    //  Serial.println(selfTest[2]);
    //  Serial.println(selfTest[3]); Serial.println(selfTest[4]);
    //  Serial.println(selfTest[5]);
    //  Serial.println(factoryTrim[0]); Serial.println(factoryTrim[1]);
    //  Serial.println(factoryTrim[2]);
    //  Serial.println(factoryTrim[3]); Serial.println(factoryTrim[4]);
    //  Serial.println(factoryTrim[5]);

    // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim
    // of the Self-Test Response
    // To get to percent, must multiply by 100 and subtract result from 100
    for (int i = 0; i < 6; i++)
      {
        destination[i] = 100.0f
                         + 100.0f * (selfTest[i] - factoryTrim[i])
                               / factoryTrim[i]; // Report percent differences
      }
  }

  // Implementation of Sebastian Madgwick's "...efficient orientation filter
  // for... inertial/magnetic sensor arrays"
  // (see http://www.x-io.co.uk/category/open-source/ for examples and more
  // details)
  // which fuses acceleration and rotation rate to produce a quaternion-based
  // estimate of relative
  // device orientation -- which can be converted to yaw, pitch, and roll.
  // Useful for stabilizing quadcopters, etc.
  // The performance of the orientation filter is at least as good as
  // conventional Kalman-based filtering algorithms
  // but is much less computationally intensive---it can be performed on a 3.3
  // V Pro Mini operating at 8 MHz!
  void
  MadgwickQuaternionUpdate (float ax, float ay, float az, float gx, float gy,
                            float gz)
  {
    float q1 = q[0], q2 = q[1], q3 = q[2],
          q4 = q[3];  // short name local variable for readability
    float norm;       // vector norm
    float f1, f2, f3; // objective funcyion elements
    float J_11or24, J_12or23, J_13or22, J_14or21, J_32,
        J_33; // objective function Jacobian elements
    float qDot1, qDot2, qDot3, qDot4;
    float hatDot1, hatDot2, hatDot3, hatDot4;
    float gerrx, gerry, gerrz, gbiasx, gbiasy, gbiasz; // gyro bias error

    // Auxiliary variables to avoid repeated arithmetic
    float _halfq1 = 0.5f * q1;
    float _halfq2 = 0.5f * q2;
    float _halfq3 = 0.5f * q3;
    float _halfq4 = 0.5f * q4;
    float _2q1 = 2.0f * q1;
    float _2q2 = 2.0f * q2;
    float _2q3 = 2.0f * q3;
    float _2q4 = 2.0f * q4;
    //            float _2q1q3 = 2.0f * q1 * q3;
    //            float _2q3q4 = 2.0f * q3 * q4;

    // Normalise accelerometer measurement
    norm = sqrt (ax * ax + ay * ay + az * az);
    if (norm == 0.0f)
      return; // handle NaN
    norm = 1.0f / norm;
    ax *= norm;
    ay *= norm;
    az *= norm;

    // Compute the objective function and Jacobian
    f1 = _2q2 * q4 - _2q1 * q3 - ax;
    f2 = _2q1 * q2 + _2q3 * q4 - ay;
    f3 = 1.0f - _2q2 * q2 - _2q3 * q3 - az;
    J_11or24 = _2q3;
    J_12or23 = _2q4;
    J_13or22 = _2q1;
    J_14or21 = _2q2;
    J_32 = 2.0f * J_14or21;
    J_33 = 2.0f * J_11or24;

    // Compute the gradient (matrix multiplication)
    hatDot1 = J_14or21 * f2 - J_11or24 * f1;
    hatDot2 = J_12or23 * f1 + J_13or22 * f2 - J_32 * f3;
    hatDot3 = J_12or23 * f2 - J_33 * f3 - J_13or22 * f1;
    hatDot4 = J_14or21 * f1 + J_11or24 * f2;

    // Normalize the gradient
    norm = sqrt (hatDot1 * hatDot1 + hatDot2 * hatDot2 + hatDot3 * hatDot3
                 + hatDot4 * hatDot4);
    hatDot1 /= norm;
    hatDot2 /= norm;
    hatDot3 /= norm;
    hatDot4 /= norm;

    // Compute estimated gyroscope biases
    gerrx = _2q1 * hatDot2 - _2q2 * hatDot1 - _2q3 * hatDot4 + _2q4 * hatDot3;
    gerry = _2q1 * hatDot3 + _2q2 * hatDot4 - _2q3 * hatDot1 - _2q4 * hatDot2;
    gerrz = _2q1 * hatDot4 - _2q2 * hatDot3 + _2q3 * hatDot2 - _2q4 * hatDot1;

    // Compute and remove gyroscope biases
    gbiasx += gerrx * deltat * zeta;
    gbiasy += gerry * deltat * zeta;
    gbiasz += gerrz * deltat * zeta;
    //           gx -= gbiasx;
    //           gy -= gbiasy;
    //           gz -= gbiasz;

    // Compute the quaternion derivative
    qDot1 = -_halfq2 * gx - _halfq3 * gy - _halfq4 * gz;
    qDot2 = _halfq1 * gx + _halfq3 * gz - _halfq4 * gy;
    qDot3 = _halfq1 * gy - _halfq2 * gz + _halfq4 * gx;
    qDot4 = _halfq1 * gz + _halfq2 * gy - _halfq3 * gx;

    // Compute then integrate estimated quaternion derivative
    q1 += (qDot1 - (beta * hatDot1)) * deltat;
    q2 += (qDot2 - (beta * hatDot2)) * deltat;
    q3 += (qDot3 - (beta * hatDot3)) * deltat;
    q4 += (qDot4 - (beta * hatDot4)) * deltat;

    // Normalize the quaternion
    norm
        = sqrt (q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); // normalise quaternion
    norm = 1.0f / norm;
    q[0] = q1 * norm;
    q[1] = q2 * norm;
    q[2] = q3 * norm;
    q[3] = q4 * norm;
  }
};
#endif