Dependents:   controller_with_backup

Revision:
0:d23cb6fd82b7
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/MPU6050.h	Tue May 30 06:54:27 2017 +0000
@@ -0,0 +1,907 @@
+#ifndef MPU6050_H
+#define MPU6050_H
+
+#include "math.h"
+#include "mbed.h"
+
+// Define registers per MPU6050, Register Map and Descriptions, Rev 4.2,
+// 08/19/2013 6 DOF Motion sensor fusion device
+// Invensense Inc., www.invensense.com
+// See also MPU-6050 Register Map and Descriptions, Revision 4.0,
+// RM-MPU-6050A-00, 9/12/2012 for registers not listed in
+// above document; the MPU6050 and MPU 9150 are virtually identical but the
+// latter has an on-board magnetic sensor
+//
+#define XGOFFS_TC                                                             \
+  0x00 // Bit 7 PWR_MODE, bits 6:1 XG_OFFS_TC, bit 0 OTP_BNK_VLD
+#define YGOFFS_TC 0x01
+#define ZGOFFS_TC 0x02
+#define X_FINE_GAIN 0x03 // [7:0] fine gain
+#define Y_FINE_GAIN 0x04
+#define Z_FINE_GAIN 0x05
+#define XA_OFFSET_H 0x06 // User-defined trim values for accelerometer
+#define XA_OFFSET_L_TC 0x07
+#define YA_OFFSET_H 0x08
+#define YA_OFFSET_L_TC 0x09
+#define ZA_OFFSET_H 0x0A
+#define ZA_OFFSET_L_TC 0x0B
+#define SELF_TEST_X 0x0D
+#define SELF_TEST_Y 0x0E
+#define SELF_TEST_Z 0x0F
+#define SELF_TEST_A 0x10
+#define XG_OFFS_USRH                                                          \
+  0x13 // User-defined trim values for gyroscope; supported in MPU-6050?
+#define XG_OFFS_USRL 0x14
+#define YG_OFFS_USRH 0x15
+#define YG_OFFS_USRL 0x16
+#define ZG_OFFS_USRH 0x17
+#define ZG_OFFS_USRL 0x18
+#define SMPLRT_DIV 0x19
+#define CONFIG 0x1A
+#define GYRO_CONFIG 0x1B
+#define ACCEL_CONFIG 0x1C
+#define FF_THR 0x1D  // Free-fall
+#define FF_DUR 0x1E  // Free-fall
+#define MOT_THR 0x1F // Motion detection threshold bits [7:0]
+#define MOT_DUR                                                               \
+  0x20 // Duration counter threshold for motion interrupt generation, 1 kHz
+       // rate, LSB = 1 ms
+#define ZMOT_THR 0x21 // Zero-motion detection threshold bits [7:0]
+#define ZRMOT_DUR                                                             \
+  0x22 // Duration counter threshold for zero motion interrupt generation, 16
+       // Hz rate, LSB = 64 ms
+#define FIFO_EN 0x23
+#define I2C_MST_CTRL 0x24
+#define I2C_SLV0_ADDR 0x25
+#define I2C_SLV0_REG 0x26
+#define I2C_SLV0_CTRL 0x27
+#define I2C_SLV1_ADDR 0x28
+#define I2C_SLV1_REG 0x29
+#define I2C_SLV1_CTRL 0x2A
+#define I2C_SLV2_ADDR 0x2B
+#define I2C_SLV2_REG 0x2C
+#define I2C_SLV2_CTRL 0x2D
+#define I2C_SLV3_ADDR 0x2E
+#define I2C_SLV3_REG 0x2F
+#define I2C_SLV3_CTRL 0x30
+#define I2C_SLV4_ADDR 0x31
+#define I2C_SLV4_REG 0x32
+#define I2C_SLV4_DO 0x33
+#define I2C_SLV4_CTRL 0x34
+#define I2C_SLV4_DI 0x35
+#define I2C_MST_STATUS 0x36
+#define INT_PIN_CFG 0x37
+#define INT_ENABLE 0x38
+#define DMP_INT_STATUS 0x39 // Check DMP interrupt
+#define INT_STATUS 0x3A
+#define ACCEL_XOUT_H 0x3B
+#define ACCEL_XOUT_L 0x3C
+#define ACCEL_YOUT_H 0x3D
+#define ACCEL_YOUT_L 0x3E
+#define ACCEL_ZOUT_H 0x3F
+#define ACCEL_ZOUT_L 0x40
+#define TEMP_OUT_H 0x41
+#define TEMP_OUT_L 0x42
+#define GYRO_XOUT_H 0x43
+#define GYRO_XOUT_L 0x44
+#define GYRO_YOUT_H 0x45
+#define GYRO_YOUT_L 0x46
+#define GYRO_ZOUT_H 0x47
+#define GYRO_ZOUT_L 0x48
+#define EXT_SENS_DATA_00 0x49
+#define EXT_SENS_DATA_01 0x4A
+#define EXT_SENS_DATA_02 0x4B
+#define EXT_SENS_DATA_03 0x4C
+#define EXT_SENS_DATA_04 0x4D
+#define EXT_SENS_DATA_05 0x4E
+#define EXT_SENS_DATA_06 0x4F
+#define EXT_SENS_DATA_07 0x50
+#define EXT_SENS_DATA_08 0x51
+#define EXT_SENS_DATA_09 0x52
+#define EXT_SENS_DATA_10 0x53
+#define EXT_SENS_DATA_11 0x54
+#define EXT_SENS_DATA_12 0x55
+#define EXT_SENS_DATA_13 0x56
+#define EXT_SENS_DATA_14 0x57
+#define EXT_SENS_DATA_15 0x58
+#define EXT_SENS_DATA_16 0x59
+#define EXT_SENS_DATA_17 0x5A
+#define EXT_SENS_DATA_18 0x5B
+#define EXT_SENS_DATA_19 0x5C
+#define EXT_SENS_DATA_20 0x5D
+#define EXT_SENS_DATA_21 0x5E
+#define EXT_SENS_DATA_22 0x5F
+#define EXT_SENS_DATA_23 0x60
+#define MOT_DETECT_STATUS 0x61
+#define I2C_SLV0_DO 0x63
+#define I2C_SLV1_DO 0x64
+#define I2C_SLV2_DO 0x65
+#define I2C_SLV3_DO 0x66
+#define I2C_MST_DELAY_CTRL 0x67
+#define SIGNAL_PATH_RESET 0x68
+#define MOT_DETECT_CTRL 0x69
+#define USER_CTRL 0x6A  // Bit 7 enable DMP, bit 3 reset DMP
+#define PWR_MGMT_1 0x6B // Device defaults to the SLEEP mode
+#define PWR_MGMT_2 0x6C
+#define DMP_BANK 0x6D // Activates a specific bank in the DMP
+#define DMP_RW_PNT                                                            \
+  0x6E // Set read/write pointer to a specific start address in specified DMP
+       // bank
+#define DMP_REG 0x6F // Register in DMP from which to read or to which to write
+#define DMP_REG_1 0x70
+#define DMP_REG_2 0x71
+#define FIFO_COUNTH 0x72
+#define FIFO_COUNTL 0x73
+#define FIFO_R_W 0x74
+#define WHO_AM_I_MPU6050 0x75 // Should return 0x68
+
+// Using the GY-521 breakout board, I set ADO to 0 by grounding through a 4k7
+// resistor
+// Seven-bit device address is 110100 for ADO = 0 and 110101 for ADO = 1
+#define ADO 0
+#if ADO
+#define MPU6050_ADDRESS 0x69 << 1 // Device address when ADO = 1
+#else
+#define MPU6050_ADDRESS 0x68 << 1 // Device address when ADO = 0
+#endif
+
+// Set initial input parameters
+enum Ascale
+{
+  AFS_2G = 0,
+  AFS_4G,
+  AFS_8G,
+  AFS_16G
+};
+
+enum Gscale
+{
+  GFS_250DPS = 0,
+  GFS_500DPS,
+  GFS_1000DPS,
+  GFS_2000DPS
+};
+
+// Specify sensor full scale
+int Gscale = GFS_250DPS;
+int Ascale = AFS_2G;
+
+// Set up I2C, (SDA,SCL)
+#define MPU_SDA p9
+#define MPU_SCL p10
+I2C i2c (MPU_SDA, MPU_SCL);
+
+// DigitalOut myled(LED1);
+
+float aRes, gRes; // scale resolutions per LSB for the sensors
+
+// Pin definitions
+int intPin = 12; // These can be changed, 2 and 3 are the Arduinos ext int pins
+
+int16_t accelCount[3]; // Stores the 16-bit signed accelerometer sensor output
+float ax, ay, az;      // Stores the real accel value in g's
+int16_t gyroCount[3];  // Stores the 16-bit signed gyro sensor output
+float gx, gy, gz;      // Stores the real gyro value in degrees per seconds
+float gyroBias[3] = { 0, 0, 0 },
+      accelBias[3]
+      = { 0, 0, 0 }; // Bias corrections for gyro and accelerometer
+int16_t
+    tempCount; // Stores the real internal chip temperature in degrees Celsius
+float temperature;
+float SelfTest[6];
+
+int delt_t = 0; // used to control display output rate
+int count = 0;  // used to control display output rate
+
+// parameters for 6 DoF sensor fusion calculations
+float PI = 3.14159265358979323846f;
+float GyroMeasError = PI * (60.0f / 180.0f); // gyroscope measurement error in
+                                             // rads/s (start at 60 deg/s),
+                                             // then reduce after ~10 s to 3
+float beta = sqrt (3.0f / 4.0f) * GyroMeasError; // compute beta
+float GyroMeasDrift = PI * (1.0f / 180.0f); // gyroscope measurement drift in
+                                            // rad/s/s (start at 0.0 deg/s/s)
+float zeta = sqrt (3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the other
+                                                 // free parameter in the
+                                                 // Madgwick scheme usually set
+                                                 // to a small or zero value
+float pitch, yaw, roll;
+float deltat = 0.0f; // integration interval for both filter schemes
+int lastUpdate = 0, firstUpdate = 0,
+    Now = 0; // used to calculate integration interval
+             // // used to calculate integration interval
+float q[4] = { 1.0f, 0.0f, 0.0f, 0.0f }; // vector to hold quaternion
+
+class MPU6050
+{
+
+protected:
+public:
+  //===================================================================================================================
+  //====== Set of useful function to access acceleratio, gyroscope, and
+  // temperature data
+  //===================================================================================================================
+
+  void
+  writeByte (uint8_t address, uint8_t subAddress, uint8_t data)
+  {
+    char data_write[2];
+    data_write[0] = subAddress;
+    data_write[1] = data;
+    i2c.write (address, data_write, 2, 0);
+  }
+
+  char
+  readByte (uint8_t address, uint8_t subAddress)
+  {
+    char data[1]; // `data` will store the register data
+    char data_write[1];
+    data_write[0] = subAddress;
+    i2c.write (address, data_write, 1, 1); // no stop
+    i2c.read (address, data, 1, 0);
+    return data[0];
+  }
+
+  void
+  readBytes (uint8_t address, uint8_t subAddress, uint8_t count, uint8_t *dest)
+  {
+    char data[14];
+    char data_write[1];
+    data_write[0] = subAddress;
+    i2c.write (address, data_write, 1, 1); // no stop
+    i2c.read (address, data, count, 0);
+    for (int ii = 0; ii < count; ii++)
+      {
+        dest[ii] = data[ii];
+      }
+  }
+
+  void
+  getGres ()
+  {
+    switch (Gscale)
+      {
+      // Possible gyro scales (and their register bit settings) are:
+      // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS  (11).
+      // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that
+      // 2-bit value:
+      case GFS_250DPS:
+        gRes = 250.0 / 32768.0;
+        break;
+      case GFS_500DPS:
+        gRes = 500.0 / 32768.0;
+        break;
+      case GFS_1000DPS:
+        gRes = 1000.0 / 32768.0;
+        break;
+      case GFS_2000DPS:
+        gRes = 2000.0 / 32768.0;
+        break;
+      }
+  }
+
+  void
+  getAres ()
+  {
+    switch (Ascale)
+      {
+      // Possible accelerometer scales (and their register bit settings) are:
+      // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs  (11).
+      // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that
+      // 2-bit value:
+      case AFS_2G:
+        aRes = 2.0 / 32768.0;
+        break;
+      case AFS_4G:
+        aRes = 4.0 / 32768.0;
+        break;
+      case AFS_8G:
+        aRes = 8.0 / 32768.0;
+        break;
+      case AFS_16G:
+        aRes = 16.0 / 32768.0;
+        break;
+      }
+  }
+
+  void
+  readAccelData (int16_t *destination)
+  {
+    uint8_t rawData[6]; // x/y/z accel register data stored here
+    readBytes (MPU6050_ADDRESS, ACCEL_XOUT_H, 6,
+               &rawData[0]); // Read the six raw data registers into data array
+    destination[0] = (int16_t) (
+        ((int16_t)rawData[0] << 8)
+        | rawData[1]); // Turn the MSB and LSB into a signed 16-bit value
+    destination[1] = (int16_t) (((int16_t)rawData[2] << 8) | rawData[3]);
+    destination[2] = (int16_t) (((int16_t)rawData[4] << 8) | rawData[5]);
+  }
+
+  void
+  readGyroData (int16_t *destination)
+  {
+    uint8_t rawData[6]; // x/y/z gyro register data stored here
+    readBytes (MPU6050_ADDRESS, GYRO_XOUT_H, 6,
+               &rawData[0]); // Read the six raw data registers sequentially
+                             // into data array
+    destination[0] = (int16_t) (
+        ((int16_t)rawData[0] << 8)
+        | rawData[1]); // Turn the MSB and LSB into a signed 16-bit value
+    destination[1] = (int16_t) (((int16_t)rawData[2] << 8) | rawData[3]);
+    destination[2] = (int16_t) (((int16_t)rawData[4] << 8) | rawData[5]);
+  }
+
+  int16_t
+  readTempData ()
+  {
+    uint8_t rawData[2]; // x/y/z gyro register data stored here
+    readBytes (MPU6050_ADDRESS, TEMP_OUT_H, 2,
+               &rawData[0]); // Read the two raw data registers sequentially
+                             // into data array
+    return (int16_t) (
+        ((int16_t)rawData[0]) << 8
+        | rawData[1]); // Turn the MSB and LSB into a 16-bit value
+  }
+
+  // Configure the motion detection control for low power accelerometer mode
+  void
+  LowPowerAccelOnly ()
+  {
+
+    // The sensor has a high-pass filter necessary to invoke to allow the
+    // sensor motion detection algorithms work properly
+    // Motion detection occurs on free-fall (acceleration below a threshold for
+    // some time for all axes), motion (acceleration
+    // above a threshold for some time on at least one axis), and zero-motion
+    // toggle (acceleration on each axis less than a
+    // threshold for some time sets this flag, motion above the threshold turns
+    // it off). The high-pass filter takes gravity out
+    // consideration for these threshold evaluations; otherwise, the flags
+    // would be set all the time!
+
+    uint8_t c = readByte (MPU6050_ADDRESS, PWR_MGMT_1);
+    writeByte (MPU6050_ADDRESS, PWR_MGMT_1,
+               c & ~0x30); // Clear sleep and cycle bits [5:6]
+    writeByte (MPU6050_ADDRESS, PWR_MGMT_1,
+               c | 0x30); // Set sleep and cycle bits [5:6] to zero to make
+                          // sure accelerometer is running
+
+    c = readByte (MPU6050_ADDRESS, PWR_MGMT_2);
+    writeByte (MPU6050_ADDRESS, PWR_MGMT_2,
+               c & ~0x38); // Clear standby XA, YA, and ZA bits [3:5]
+    writeByte (MPU6050_ADDRESS, PWR_MGMT_2,
+               c | 0x00); // Set XA, YA, and ZA bits [3:5] to zero to make sure
+                          // accelerometer is running
+
+    c = readByte (MPU6050_ADDRESS, ACCEL_CONFIG);
+    writeByte (MPU6050_ADDRESS, ACCEL_CONFIG,
+               c & ~0x07); // Clear high-pass filter bits [2:0]
+    // Set high-pass filter to 0) reset (disable), 1) 5 Hz, 2) 2.5 Hz, 3) 1.25
+    // Hz, 4) 0.63 Hz, or 7) Hold
+    writeByte (
+        MPU6050_ADDRESS, ACCEL_CONFIG,
+        c | 0x00); // Set ACCEL_HPF to 0; reset mode disbaling high-pass filter
+
+    c = readByte (MPU6050_ADDRESS, CONFIG);
+    writeByte (MPU6050_ADDRESS, CONFIG,
+               c & ~0x07); // Clear low-pass filter bits [2:0]
+    writeByte (MPU6050_ADDRESS, CONFIG,
+               c | 0x00); // Set DLPD_CFG to 0; 260 Hz bandwidth, 1 kHz rate
+
+    c = readByte (MPU6050_ADDRESS, INT_ENABLE);
+    writeByte (MPU6050_ADDRESS, INT_ENABLE, c & ~0xFF); // Clear all interrupts
+    writeByte (MPU6050_ADDRESS, INT_ENABLE,
+               0x40); // Enable motion threshold (bits 5) interrupt only
+
+    // Motion detection interrupt requires the absolute value of any axis to
+    // lie above the detection threshold
+    // for at least the counter duration
+    writeByte (MPU6050_ADDRESS, MOT_THR,
+               0x80); // Set motion detection to 0.256 g; LSB = 2 mg
+    writeByte (
+        MPU6050_ADDRESS, MOT_DUR,
+        0x01); // Set motion detect duration to 1  ms; LSB is 1 ms @ 1 kHz rate
+
+    wait (0.1); // Add delay for accumulation of samples
+
+    c = readByte (MPU6050_ADDRESS, ACCEL_CONFIG);
+    writeByte (MPU6050_ADDRESS, ACCEL_CONFIG,
+               c & ~0x07); // Clear high-pass filter bits [2:0]
+    writeByte (MPU6050_ADDRESS, ACCEL_CONFIG, c | 0x07); // Set ACCEL_HPF to 7;
+                                                         // hold the initial
+                                                         // accleration value
+                                                         // as a referance
+
+    c = readByte (MPU6050_ADDRESS, PWR_MGMT_2);
+    writeByte (MPU6050_ADDRESS, PWR_MGMT_2,
+               c & ~0xC7); // Clear standby XA, YA, and ZA bits [3:5] and
+                           // LP_WAKE_CTRL bits [6:7]
+    writeByte (MPU6050_ADDRESS, PWR_MGMT_2, c | 0x47); // Set wakeup frequency
+                                                       // to 5 Hz, and disable
+                                                       // XG, YG, and ZG gyros
+                                                       // (bits [0:2])
+
+    c = readByte (MPU6050_ADDRESS, PWR_MGMT_1);
+    writeByte (MPU6050_ADDRESS, PWR_MGMT_1,
+               c & ~0x20); // Clear sleep and cycle bit 5
+    writeByte (MPU6050_ADDRESS, PWR_MGMT_1, c | 0x20); // Set cycle bit 5 to
+                                                       // begin low power
+                                                       // accelerometer motion
+                                                       // interrupts
+  }
+
+  void
+  resetMPU6050 ()
+  {
+    // reset device
+    writeByte (MPU6050_ADDRESS, PWR_MGMT_1,
+               0x80); // Write a one to bit 7 reset bit; toggle reset device
+    wait (0.1);
+  }
+
+  void
+  initMPU6050 ()
+  {
+    // Initialize MPU6050 device
+    // wake up device
+    writeByte (MPU6050_ADDRESS, PWR_MGMT_1,
+               0x00); // Clear sleep mode bit (6), enable all sensors
+    wait (0.1); // Delay 100 ms for PLL to get established on x-axis gyro;
+                // should check for PLL ready interrupt
+
+    // get stable time source
+    writeByte (MPU6050_ADDRESS, PWR_MGMT_1, 0x01); // Set clock source to be
+                                                   // PLL with x-axis gyroscope
+                                                   // reference, bits 2:0 = 001
+
+    // Configure Gyro and Accelerometer
+    // Disable FSYNC and set accelerometer and gyro bandwidth to 44 and 42 Hz,
+    // respectively;
+    // DLPF_CFG = bits 2:0 = 010; this sets the sample rate at 1 kHz for both
+    // Maximum delay is 4.9 ms which is just over a 200 Hz maximum rate
+    writeByte (MPU6050_ADDRESS, CONFIG, 0x03);
+
+    // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV)
+    writeByte (MPU6050_ADDRESS, SMPLRT_DIV,
+               0x04); // Use a 200 Hz rate; the same rate set in CONFIG above
+
+    // Set gyroscope full scale range
+    // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are
+    // left-shifted into positions 4:3
+    uint8_t c = readByte (MPU6050_ADDRESS, GYRO_CONFIG);
+    writeByte (MPU6050_ADDRESS, GYRO_CONFIG,
+               c & ~0xE0); // Clear self-test bits [7:5]
+    writeByte (MPU6050_ADDRESS, GYRO_CONFIG,
+               c & ~0x18); // Clear AFS bits [4:3]
+    writeByte (MPU6050_ADDRESS, GYRO_CONFIG,
+               c | Gscale << 3); // Set full scale range for the gyro
+
+    // Set accelerometer configuration
+    c = readByte (MPU6050_ADDRESS, ACCEL_CONFIG);
+    writeByte (MPU6050_ADDRESS, ACCEL_CONFIG,
+               c & ~0xE0); // Clear self-test bits [7:5]
+    writeByte (MPU6050_ADDRESS, ACCEL_CONFIG,
+               c & ~0x18); // Clear AFS bits [4:3]
+    writeByte (MPU6050_ADDRESS, ACCEL_CONFIG,
+               c | Ascale << 3); // Set full scale range for the accelerometer
+
+    // Configure Interrupts and Bypass Enable
+    // Set interrupt pin active high, push-pull, and clear on read of
+    // INT_STATUS, enable I2C_BYPASS_EN so additional chips
+    // can join the I2C bus and all can be controlled by the Arduino as master
+    writeByte (MPU6050_ADDRESS, INT_PIN_CFG, 0x22);
+    writeByte (MPU6050_ADDRESS, INT_ENABLE,
+               0x01); // Enable data ready (bit 0) interrupt
+  }
+
+  // Function which accumulates gyro and accelerometer data after device
+  // initialization. It calculates the average
+  // of the at-rest readings and then loads the resulting offsets into
+  // accelerometer and gyro bias registers.
+  void
+  calibrateMPU6050 (float *dest1, float *dest2)
+  {
+    uint8_t
+        data[12]; // data array to hold accelerometer and gyro x, y, z, data
+    uint16_t ii, packet_count, fifo_count;
+    int32_t gyro_bias[3] = { 0, 0, 0 }, accel_bias[3] = { 0, 0, 0 };
+
+    // reset device, reset all registers, clear gyro and accelerometer bias
+    // registers
+    writeByte (MPU6050_ADDRESS, PWR_MGMT_1,
+               0x80); // Write a one to bit 7 reset bit; toggle reset device
+    wait (0.1);
+
+    // get stable time source
+    // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 =
+    // 001
+    writeByte (MPU6050_ADDRESS, PWR_MGMT_1, 0x01);
+    writeByte (MPU6050_ADDRESS, PWR_MGMT_2, 0x00);
+    wait (0.2);
+
+    // Configure device for bias calculation
+    writeByte (MPU6050_ADDRESS, INT_ENABLE, 0x00); // Disable all interrupts
+    writeByte (MPU6050_ADDRESS, FIFO_EN, 0x00);    // Disable FIFO
+    writeByte (MPU6050_ADDRESS, PWR_MGMT_1,
+               0x00); // Turn on internal clock source
+    writeByte (MPU6050_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master
+    writeByte (MPU6050_ADDRESS, USER_CTRL,
+               0x00); // Disable FIFO and I2C master modes
+    writeByte (MPU6050_ADDRESS, USER_CTRL, 0x0C); // Reset FIFO and DMP
+    wait (0.015);
+
+    // Configure MPU6050 gyro and accelerometer for bias calculation
+    writeByte (MPU6050_ADDRESS, CONFIG, 0x01); // Set low-pass filter to 188 Hz
+    writeByte (MPU6050_ADDRESS, SMPLRT_DIV, 0x00);  // Set sample rate to 1 kHz
+    writeByte (MPU6050_ADDRESS, GYRO_CONFIG, 0x00); // Set gyro full-scale to
+                                                    // 250 degrees per second,
+                                                    // maximum sensitivity
+    writeByte (
+        MPU6050_ADDRESS, ACCEL_CONFIG,
+        0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity
+
+    uint16_t gyrosensitivity = 131;    // = 131 LSB/degrees/sec
+    uint16_t accelsensitivity = 16384; // = 16384 LSB/g
+
+    // Configure FIFO to capture accelerometer and gyro data for bias
+    // calculation
+    writeByte (MPU6050_ADDRESS, USER_CTRL, 0x40); // Enable FIFO
+    writeByte (MPU6050_ADDRESS, FIFO_EN, 0x78);   // Enable gyro and
+                                                  // accelerometer sensors for
+                                                  // FIFO  (max size 1024 bytes
+                                                  // in MPU-6050)
+    wait (0.08); // accumulate 80 samples in 80 milliseconds = 960 bytes
+
+    // At end of sample accumulation, turn off FIFO sensor read
+    writeByte (MPU6050_ADDRESS, FIFO_EN,
+               0x00); // Disable gyro and accelerometer sensors for FIFO
+    readBytes (MPU6050_ADDRESS, FIFO_COUNTH, 2,
+               &data[0]); // read FIFO sample count
+    fifo_count = ((uint16_t)data[0] << 8) | data[1];
+    packet_count = fifo_count / 12; // How many sets of full gyro and
+                                    // accelerometer data for averaging
+
+    for (ii = 0; ii < packet_count; ii++)
+      {
+        int16_t accel_temp[3] = { 0, 0, 0 }, gyro_temp[3] = { 0, 0, 0 };
+        readBytes (MPU6050_ADDRESS, FIFO_R_W, 12,
+                   &data[0]); // read data for averaging
+        accel_temp[0] = (int16_t) (
+            ((int16_t)data[0] << 8)
+            | data[1]); // Form signed 16-bit integer for each sample in FIFO
+        accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3]);
+        accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5]);
+        gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7]);
+        gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9]);
+        gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]);
+
+        accel_bias[0] += (int32_t)accel_temp[0]; // Sum individual signed
+                                                 // 16-bit biases to get
+                                                 // accumulated signed 32-bit
+                                                 // biases
+        accel_bias[1] += (int32_t)accel_temp[1];
+        accel_bias[2] += (int32_t)accel_temp[2];
+        gyro_bias[0] += (int32_t)gyro_temp[0];
+        gyro_bias[1] += (int32_t)gyro_temp[1];
+        gyro_bias[2] += (int32_t)gyro_temp[2];
+      }
+    accel_bias[0]
+        /= (int32_t)packet_count; // Normalize sums to get average count biases
+    accel_bias[1] /= (int32_t)packet_count;
+    accel_bias[2] /= (int32_t)packet_count;
+    gyro_bias[0] /= (int32_t)packet_count;
+    gyro_bias[1] /= (int32_t)packet_count;
+    gyro_bias[2] /= (int32_t)packet_count;
+
+    if (accel_bias[2] > 0L)
+      {
+        accel_bias[2] -= (int32_t)accelsensitivity;
+      } // Remove gravity from the z-axis accelerometer bias calculation
+    else
+      {
+        accel_bias[2] += (int32_t)accelsensitivity;
+      }
+
+    // Construct the gyro biases for push to the hardware gyro bias registers,
+    // which are reset to zero upon device startup
+    data[0] = (-gyro_bias[0] / 4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB
+                                               // per deg/s to conform to
+                                               // expected bias input format
+    data[1] = (-gyro_bias[0] / 4) & 0xFF; // Biases are additive, so change
+                                          // sign on calculated average gyro
+                                          // biases
+    data[2] = (-gyro_bias[1] / 4 >> 8) & 0xFF;
+    data[3] = (-gyro_bias[1] / 4) & 0xFF;
+    data[4] = (-gyro_bias[2] / 4 >> 8) & 0xFF;
+    data[5] = (-gyro_bias[2] / 4) & 0xFF;
+
+    // Push gyro biases to hardware registers
+    writeByte (MPU6050_ADDRESS, XG_OFFS_USRH, data[0]);
+    writeByte (MPU6050_ADDRESS, XG_OFFS_USRL, data[1]);
+    writeByte (MPU6050_ADDRESS, YG_OFFS_USRH, data[2]);
+    writeByte (MPU6050_ADDRESS, YG_OFFS_USRL, data[3]);
+    writeByte (MPU6050_ADDRESS, ZG_OFFS_USRH, data[4]);
+    writeByte (MPU6050_ADDRESS, ZG_OFFS_USRL, data[5]);
+
+    dest1[0] = (float)gyro_bias[0]
+               / (float)gyrosensitivity; // construct gyro bias in deg/s for
+                                         // later manual subtraction
+    dest1[1] = (float)gyro_bias[1] / (float)gyrosensitivity;
+    dest1[2] = (float)gyro_bias[2] / (float)gyrosensitivity;
+
+    // Construct the accelerometer biases for push to the hardware
+    // accelerometer bias registers. These registers contain
+    // factory trim values which must be added to the calculated accelerometer
+    // biases; on boot up these registers will hold
+    // non-zero values. In addition, bit 0 of the lower byte must be preserved
+    // since it is used for temperature
+    // compensation calculations. Accelerometer bias registers expect bias
+    // input as 2048 LSB per g, so that
+    // the accelerometer biases calculated above must be divided by 8.
+
+    int32_t accel_bias_reg[3]
+        = { 0, 0, 0 }; // A place to hold the factory accelerometer trim biases
+    readBytes (MPU6050_ADDRESS, XA_OFFSET_H, 2,
+               &data[0]); // Read factory accelerometer trim values
+    accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1];
+    readBytes (MPU6050_ADDRESS, YA_OFFSET_H, 2, &data[0]);
+    accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1];
+    readBytes (MPU6050_ADDRESS, ZA_OFFSET_H, 2, &data[0]);
+    accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1];
+
+    uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of
+                         // lower byte of accelerometer bias registers
+    uint8_t mask_bit[3] = {
+      0, 0, 0
+    }; // Define array to hold mask bit for each accelerometer bias axis
+
+    for (ii = 0; ii < 3; ii++)
+      {
+        if (accel_bias_reg[ii] & mask)
+          mask_bit[ii] = 0x01; // If temperature compensation bit is set,
+                               // record that fact in mask_bit
+      }
+
+    // Construct total accelerometer bias, including calculated average
+    // accelerometer bias from above
+    accel_bias_reg[0] -= (accel_bias[0] / 8); // Subtract calculated averaged
+                                              // accelerometer bias scaled to
+                                              // 2048 LSB/g (16 g full scale)
+    accel_bias_reg[1] -= (accel_bias[1] / 8);
+    accel_bias_reg[2] -= (accel_bias[2] / 8);
+
+    data[0] = (accel_bias_reg[0] >> 8) & 0xFF;
+    data[1] = (accel_bias_reg[0]) & 0xFF;
+    data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit
+                                     // when writing back to accelerometer bias
+                                     // registers
+    data[2] = (accel_bias_reg[1] >> 8) & 0xFF;
+    data[3] = (accel_bias_reg[1]) & 0xFF;
+    data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit
+                                     // when writing back to accelerometer bias
+                                     // registers
+    data[4] = (accel_bias_reg[2] >> 8) & 0xFF;
+    data[5] = (accel_bias_reg[2]) & 0xFF;
+    data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit
+                                     // when writing back to accelerometer bias
+                                     // registers
+
+    // Push accelerometer biases to hardware registers
+    //  writeByte(MPU6050_ADDRESS, XA_OFFSET_H, data[0]);
+    //  writeByte(MPU6050_ADDRESS, XA_OFFSET_L_TC, data[1]);
+    //  writeByte(MPU6050_ADDRESS, YA_OFFSET_H, data[2]);
+    //  writeByte(MPU6050_ADDRESS, YA_OFFSET_L_TC, data[3]);
+    //  writeByte(MPU6050_ADDRESS, ZA_OFFSET_H, data[4]);
+    //  writeByte(MPU6050_ADDRESS, ZA_OFFSET_L_TC, data[5]);
+
+    // Output scaled accelerometer biases for manual subtraction in the main
+    // program
+    dest2[0] = (float)accel_bias[0] / (float)accelsensitivity;
+    dest2[1] = (float)accel_bias[1] / (float)accelsensitivity;
+    dest2[2] = (float)accel_bias[2] / (float)accelsensitivity;
+  }
+
+  // Accelerometer and gyroscope self test; check calibration wrt factory
+  // settings
+  void MPU6050SelfTest (float *destination) // Should return percent deviation
+                                            // from factory trim values, +/- 14
+                                            // or less deviation is a pass
+  {
+    uint8_t rawData[4] = { 0, 0, 0, 0 };
+    uint8_t selfTest[6];
+    float factoryTrim[6];
+
+    // Configure the accelerometer for self-test
+    writeByte (MPU6050_ADDRESS, ACCEL_CONFIG, 0xF0); // Enable self test on all
+                                                     // three axes and set
+                                                     // accelerometer range to
+                                                     // +/- 8 g
+    writeByte (MPU6050_ADDRESS, GYRO_CONFIG, 0xE0);  // Enable self test on all
+                                                     // three axes and set gyro
+                                                     // range to +/- 250
+                                                     // degrees/s
+    wait (0.25); // Delay a while to let the device execute the self-test
+    // rawData[0]
+    //     = readByte (MPU6050_ADDRESS, SELF_TEST_X); // X-axis self-test
+    //     results
+    // rawData[1]
+    //     = readByte (MPU6050_ADDRESS, SELF_TEST_Y); // Y-axis self-test
+    //     results
+    // rawData[2]
+    //     = readByte (MPU6050_ADDRESS, SELF_TEST_Z); // Z-axis self-test
+    //     results
+    // rawData[3] = readByte (MPU6050_ADDRESS,
+    //                        SELF_TEST_A);
+    // Mixed-axis self-test results
+    // Extract the acceleration test results first
+    selfTest[0] = (rawData[0] >> 3)
+                  | (rawData[3] & 0x30)
+                        >> 4; // XA_TEST result is a five-bit unsigned integer
+    selfTest[1] = (rawData[1] >> 3)
+                  | (rawData[3] & 0x0C)
+                        >> 4; // YA_TEST result is a five-bit unsigned integer
+    selfTest[2] = (rawData[2] >> 3)
+                  | (rawData[3] & 0x03)
+                        >> 4; // ZA_TEST result is a five-bit unsigned integer
+    // Extract the gyration test results first
+    selfTest[3]
+        = rawData[0] & 0x1F; // XG_TEST result is a five-bit unsigned integer
+    selfTest[4]
+        = rawData[1] & 0x1F; // YG_TEST result is a five-bit unsigned integer
+    selfTest[5]
+        = rawData[2] & 0x1F; // ZG_TEST result is a five-bit unsigned integer
+    // Process results to allow final comparison with factory set values
+    factoryTrim[0] = (4096.0f * 0.34f)
+                     * (pow ((0.92f / 0.34f),
+                             ((selfTest[0] - 1.0f)
+                              / 30.0f))); // FT[Xa] factory trim calculation
+    factoryTrim[1] = (4096.0f * 0.34f)
+                     * (pow ((0.92f / 0.34f),
+                             ((selfTest[1] - 1.0f)
+                              / 30.0f))); // FT[Ya] factory trim calculation
+    factoryTrim[2] = (4096.0f * 0.34f)
+                     * (pow ((0.92f / 0.34f),
+                             ((selfTest[2] - 1.0f)
+                              / 30.0f))); // FT[Za] factory trim calculation
+    factoryTrim[3]
+        = (25.0f * 131.0f)
+          * (pow (1.046f,
+                  (selfTest[3] - 1.0f))); // FT[Xg] factory trim calculation
+    factoryTrim[4]
+        = (-25.0f * 131.0f)
+          * (pow (1.046f,
+                  (selfTest[4] - 1.0f))); // FT[Yg] factory trim calculation
+    factoryTrim[5]
+        = (25.0f * 131.0f)
+          * (pow (1.046f,
+                  (selfTest[5] - 1.0f))); // FT[Zg] factory trim calculation
+
+    //  Output self-test results and factory trim calculation if desired
+    //  Serial.println(selfTest[0]); Serial.println(selfTest[1]);
+    //  Serial.println(selfTest[2]);
+    //  Serial.println(selfTest[3]); Serial.println(selfTest[4]);
+    //  Serial.println(selfTest[5]);
+    //  Serial.println(factoryTrim[0]); Serial.println(factoryTrim[1]);
+    //  Serial.println(factoryTrim[2]);
+    //  Serial.println(factoryTrim[3]); Serial.println(factoryTrim[4]);
+    //  Serial.println(factoryTrim[5]);
+
+    // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim
+    // of the Self-Test Response
+    // To get to percent, must multiply by 100 and subtract result from 100
+    for (int i = 0; i < 6; i++)
+      {
+        destination[i] = 100.0f
+                         + 100.0f * (selfTest[i] - factoryTrim[i])
+                               / factoryTrim[i]; // Report percent differences
+      }
+  }
+
+  // Implementation of Sebastian Madgwick's "...efficient orientation filter
+  // for... inertial/magnetic sensor arrays"
+  // (see http://www.x-io.co.uk/category/open-source/ for examples and more
+  // details)
+  // which fuses acceleration and rotation rate to produce a quaternion-based
+  // estimate of relative
+  // device orientation -- which can be converted to yaw, pitch, and roll.
+  // Useful for stabilizing quadcopters, etc.
+  // The performance of the orientation filter is at least as good as
+  // conventional Kalman-based filtering algorithms
+  // but is much less computationally intensive---it can be performed on a 3.3
+  // V Pro Mini operating at 8 MHz!
+  void
+  MadgwickQuaternionUpdate (float ax, float ay, float az, float gx, float gy,
+                            float gz)
+  {
+    float q1 = q[0], q2 = q[1], q3 = q[2],
+          q4 = q[3];  // short name local variable for readability
+    float norm;       // vector norm
+    float f1, f2, f3; // objective funcyion elements
+    float J_11or24, J_12or23, J_13or22, J_14or21, J_32,
+        J_33; // objective function Jacobian elements
+    float qDot1, qDot2, qDot3, qDot4;
+    float hatDot1, hatDot2, hatDot3, hatDot4;
+    float gerrx, gerry, gerrz, gbiasx, gbiasy, gbiasz; // gyro bias error
+
+    // Auxiliary variables to avoid repeated arithmetic
+    float _halfq1 = 0.5f * q1;
+    float _halfq2 = 0.5f * q2;
+    float _halfq3 = 0.5f * q3;
+    float _halfq4 = 0.5f * q4;
+    float _2q1 = 2.0f * q1;
+    float _2q2 = 2.0f * q2;
+    float _2q3 = 2.0f * q3;
+    float _2q4 = 2.0f * q4;
+    //            float _2q1q3 = 2.0f * q1 * q3;
+    //            float _2q3q4 = 2.0f * q3 * q4;
+
+    // Normalise accelerometer measurement
+    norm = sqrt (ax * ax + ay * ay + az * az);
+    if (norm == 0.0f)
+      return; // handle NaN
+    norm = 1.0f / norm;
+    ax *= norm;
+    ay *= norm;
+    az *= norm;
+
+    // Compute the objective function and Jacobian
+    f1 = _2q2 * q4 - _2q1 * q3 - ax;
+    f2 = _2q1 * q2 + _2q3 * q4 - ay;
+    f3 = 1.0f - _2q2 * q2 - _2q3 * q3 - az;
+    J_11or24 = _2q3;
+    J_12or23 = _2q4;
+    J_13or22 = _2q1;
+    J_14or21 = _2q2;
+    J_32 = 2.0f * J_14or21;
+    J_33 = 2.0f * J_11or24;
+
+    // Compute the gradient (matrix multiplication)
+    hatDot1 = J_14or21 * f2 - J_11or24 * f1;
+    hatDot2 = J_12or23 * f1 + J_13or22 * f2 - J_32 * f3;
+    hatDot3 = J_12or23 * f2 - J_33 * f3 - J_13or22 * f1;
+    hatDot4 = J_14or21 * f1 + J_11or24 * f2;
+
+    // Normalize the gradient
+    norm = sqrt (hatDot1 * hatDot1 + hatDot2 * hatDot2 + hatDot3 * hatDot3
+                 + hatDot4 * hatDot4);
+    hatDot1 /= norm;
+    hatDot2 /= norm;
+    hatDot3 /= norm;
+    hatDot4 /= norm;
+
+    // Compute estimated gyroscope biases
+    gerrx = _2q1 * hatDot2 - _2q2 * hatDot1 - _2q3 * hatDot4 + _2q4 * hatDot3;
+    gerry = _2q1 * hatDot3 + _2q2 * hatDot4 - _2q3 * hatDot1 - _2q4 * hatDot2;
+    gerrz = _2q1 * hatDot4 - _2q2 * hatDot3 + _2q3 * hatDot2 - _2q4 * hatDot1;
+
+    // Compute and remove gyroscope biases
+    gbiasx += gerrx * deltat * zeta;
+    gbiasy += gerry * deltat * zeta;
+    gbiasz += gerrz * deltat * zeta;
+    //           gx -= gbiasx;
+    //           gy -= gbiasy;
+    //           gz -= gbiasz;
+
+    // Compute the quaternion derivative
+    qDot1 = -_halfq2 * gx - _halfq3 * gy - _halfq4 * gz;
+    qDot2 = _halfq1 * gx + _halfq3 * gz - _halfq4 * gy;
+    qDot3 = _halfq1 * gy - _halfq2 * gz + _halfq4 * gx;
+    qDot4 = _halfq1 * gz + _halfq2 * gy - _halfq3 * gx;
+
+    // Compute then integrate estimated quaternion derivative
+    q1 += (qDot1 - (beta * hatDot1)) * deltat;
+    q2 += (qDot2 - (beta * hatDot2)) * deltat;
+    q3 += (qDot3 - (beta * hatDot3)) * deltat;
+    q4 += (qDot4 - (beta * hatDot4)) * deltat;
+
+    // Normalize the quaternion
+    norm
+        = sqrt (q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); // normalise quaternion
+    norm = 1.0f / norm;
+    q[0] = q1 * norm;
+    q[1] = q2 * norm;
+    q[2] = q3 * norm;
+    q[3] = q4 * norm;
+  }
+};
+#endif
\ No newline at end of file