FFT_BUENA

Dependencies:   FastAnalogIn HSI2RGBW_PWM NVIC_set_all_priorities mbed-dsp mbed

Fork of KL25Z_FFT_Demo by Frank Vannieuwkerke

Committer:
oscarmtzman
Date:
Mon Dec 01 07:43:56 2014 +0000
Revision:
6:17a42dc976bb
Parent:
5:6caecff3094d
Child:
7:18e9a56bef9a
j

Who changed what in which revision?

UserRevisionLine numberNew contents of line
frankvnk 0:0c037aff5039 1 #include "mbed.h"
frankvnk 0:0c037aff5039 2 #include "NVIC_set_all_priorities.h"
frankvnk 0:0c037aff5039 3 #include <ctype.h>
frankvnk 0:0c037aff5039 4 #include "arm_math.h"
frankvnk 2:035d551759a5 5 #include "arm_const_structs.h"
frankvnk 0:0c037aff5039 6 #include "hsi2rgbw_pwm.h"
frankvnk 1:736b34e0f484 7 #include "FastAnalogIn.h"
frankvnk 0:0c037aff5039 8
oscarmtzman 5:6caecff3094d 9 DigitalOut led1(PTC7);
oscarmtzman 5:6caecff3094d 10 DigitalOut led2(PTC0);
oscarmtzman 5:6caecff3094d 11 DigitalOut led3(PTC3);
oscarmtzman 5:6caecff3094d 12 DigitalOut led4(PTC4);
oscarmtzman 5:6caecff3094d 13 DigitalOut led5(PTC5);
oscarmtzman 5:6caecff3094d 14 DigitalOut led6(PTC6);
oscarmtzman 5:6caecff3094d 15 DigitalOut led7(PTC10);
oscarmtzman 5:6caecff3094d 16 DigitalOut led8(PTC11);
oscarmtzman 6:17a42dc976bb 17 AnalogIn pot(A0);
oscarmtzman 5:6caecff3094d 18
oscarmtzman 6:17a42dc976bb 19 float pulso=0;
oscarmtzman 6:17a42dc976bb 20 int fmin=50;
oscarmtzman 5:6caecff3094d 21 int fmax=120;
oscarmtzman 5:6caecff3094d 22 float sum=(fmax-fmin)/8;
oscarmtzman 5:6caecff3094d 23
frankvnk 0:0c037aff5039 24 Serial pc(USBTX, USBRX);
frankvnk 0:0c037aff5039 25
oscarmtzman 4:a6130c61c228 26 float pulsocalculado=0;
frankvnk 0:0c037aff5039 27
oscarmtzman 4:a6130c61c228 28 float qrs2[512]= {0};
oscarmtzman 4:a6130c61c228 29 float fs=102.4;
oscarmtzman 4:a6130c61c228 30 float ts=1/fs;
oscarmtzman 4:a6130c61c228 31 int tiempo=5;
oscarmtzman 4:a6130c61c228 32 float pi=3.1416;
oscarmtzman 6:17a42dc976bb 33 float l=0;
oscarmtzman 6:17a42dc976bb 34 float b=0;
oscarmtzman 4:a6130c61c228 35 float a=1.6;
oscarmtzman 4:a6130c61c228 36 int n=100;
oscarmtzman 6:17a42dc976bb 37 float qrs1=0;
oscarmtzman 6:17a42dc976bb 38
frankvnk 0:0c037aff5039 39
frankvnk 0:0c037aff5039 40 #ifndef RGBW_ext
frankvnk 0:0c037aff5039 41 // HSI to RGB conversion with direct output to PWM channels - on-board RGB LED
frankvnk 0:0c037aff5039 42 hsi2rgbw_pwm led(LED_RED, LED_GREEN, LED_BLUE);
frankvnk 0:0c037aff5039 43 #else
frankvnk 0:0c037aff5039 44 // HSI to RGBW conversion with direct output to external PWM channels - RGBW LED
frankvnk 0:0c037aff5039 45 hsi2rgbw_pwm led(PTD4, PTA12, PTA4, PTA5); //Red, Green, Blue, White
frankvnk 0:0c037aff5039 46 #endif
frankvnk 0:0c037aff5039 47
frankvnk 0:0c037aff5039 48 // Dummy ISR for disabling NMI on PTA4 - !! DO NOT REMOVE THIS !!
frankvnk 0:0c037aff5039 49 // More info at https://mbed.org/questions/1387/How-can-I-access-the-FTFA_FOPT-register-/
oscarmtzman 4:a6130c61c228 50 extern "C" void NMI_Handler()
oscarmtzman 4:a6130c61c228 51 {
frankvnk 0:0c037aff5039 52 DigitalIn test(PTA4);
frankvnk 0:0c037aff5039 53 }
frankvnk 0:0c037aff5039 54
frankvnk 0:0c037aff5039 55
frankvnk 0:0c037aff5039 56 ////////////////////////////////////////////////////////////////////////////////
frankvnk 0:0c037aff5039 57 // CONFIGURATION
frankvnk 0:0c037aff5039 58 // These values can be changed to alter the behavior of the spectrum display.
frankvnk 0:0c037aff5039 59 // KL25Z limitations
frankvnk 0:0c037aff5039 60 // -----------------
frankvnk 0:0c037aff5039 61 // - When used with the Spectrogram python script :
frankvnk 0:0c037aff5039 62 // There is a substantial time lag between the music and the screen output.
frankvnk 2:035d551759a5 63 // Max allowed SAMPLE_RATE_HZ is 40000
frankvnk 2:035d551759a5 64 // Max allowed FFT_SIZE is 64
frankvnk 0:0c037aff5039 65 ////////////////////////////////////////////////////////////////////////////////
frankvnk 0:0c037aff5039 66
frankvnk 2:035d551759a5 67 int SLOWDOWN = 4; // Create an optical delay in spectrumLoop - useful when only one RGB led is used.
oscarmtzman 4:a6130c61c228 68 // Only active when nonzero.
oscarmtzman 4:a6130c61c228 69 // A value >= 1000 and <= 1000 + PIXEL_COUNT fixes the output to a single frequency
oscarmtzman 4:a6130c61c228 70 // window = a single color.
frankvnk 0:0c037aff5039 71 int SAMPLE_RATE_HZ = 40000; // Sample rate of the audio in hertz.
frankvnk 2:035d551759a5 72 float SPECTRUM_MIN_DB = 30.0; // Audio intensity (in decibels) that maps to low LED brightness.
frankvnk 1:736b34e0f484 73 float SPECTRUM_MAX_DB = 80.0; // Audio intensity (in decibels) that maps to high LED brightness.
frankvnk 0:0c037aff5039 74 int LEDS_ENABLED = 1; // Control if the LED's should display the spectrum or not. 1 is true, 0 is false.
oscarmtzman 4:a6130c61c228 75 // Useful for turning the LED display on and off with commands from the serial port.
oscarmtzman 4:a6130c61c228 76 const int FFT_SIZE = 512; // Size of the FFT.
frankvnk 1:736b34e0f484 77 const int PIXEL_COUNT = 32; // Number of pixels. You should be able to increase this without
oscarmtzman 4:a6130c61c228 78 // any other changes to the program.
frankvnk 0:0c037aff5039 79 const int MAX_CHARS = 65; // Max size of the input command buffer
frankvnk 0:0c037aff5039 80
frankvnk 0:0c037aff5039 81 ////////////////////////////////////////////////////////////////////////////////
frankvnk 0:0c037aff5039 82 // INTERNAL STATE
frankvnk 0:0c037aff5039 83 // These shouldn't be modified unless you know what you're doing.
frankvnk 0:0c037aff5039 84 ////////////////////////////////////////////////////////////////////////////////
frankvnk 2:035d551759a5 85 const static arm_cfft_instance_f32 *S;
frankvnk 0:0c037aff5039 86 Ticker samplingTimer;
frankvnk 0:0c037aff5039 87 float samples[FFT_SIZE*2];
frankvnk 0:0c037aff5039 88 float magnitudes[FFT_SIZE];
frankvnk 0:0c037aff5039 89 int sampleCounter = 0;
frankvnk 0:0c037aff5039 90 char commandBuffer[MAX_CHARS];
frankvnk 0:0c037aff5039 91 float frequencyWindow[PIXEL_COUNT+1];
frankvnk 0:0c037aff5039 92 float hues[PIXEL_COUNT];
frankvnk 0:0c037aff5039 93 bool commandRecv = 0;
frankvnk 0:0c037aff5039 94 ////////////////////////////////////////////////////////////////////////////////
frankvnk 0:0c037aff5039 95 // UTILITY FUNCTIONS
frankvnk 0:0c037aff5039 96 ////////////////////////////////////////////////////////////////////////////////
frankvnk 0:0c037aff5039 97
oscarmtzman 4:a6130c61c228 98 void rxisr()
oscarmtzman 4:a6130c61c228 99 {
frankvnk 0:0c037aff5039 100 char c = pc.getc();
frankvnk 0:0c037aff5039 101 // Add any characters that aren't the end of a command (semicolon) to the input buffer.
frankvnk 0:0c037aff5039 102 if (c != ';') {
frankvnk 0:0c037aff5039 103 c = toupper(c);
frankvnk 0:0c037aff5039 104 strncat(commandBuffer, &c, 1);
frankvnk 0:0c037aff5039 105 } else {
frankvnk 0:0c037aff5039 106 // Parse the command because an end of command token was encountered.
frankvnk 0:0c037aff5039 107 commandRecv = 1;
frankvnk 0:0c037aff5039 108 }
frankvnk 0:0c037aff5039 109 }
frankvnk 0:0c037aff5039 110
frankvnk 0:0c037aff5039 111 // Compute the average magnitude of a target frequency window vs. all other frequencies.
frankvnk 0:0c037aff5039 112 void windowMean(float* magnitudes, int lowBin, int highBin, float* windowMean, float* otherMean)
frankvnk 0:0c037aff5039 113 {
frankvnk 0:0c037aff5039 114 *windowMean = 0;
frankvnk 0:0c037aff5039 115 *otherMean = 0;
frankvnk 0:0c037aff5039 116 // Notice the first magnitude bin is skipped because it represents the
frankvnk 0:0c037aff5039 117 // average power of the signal.
frankvnk 0:0c037aff5039 118 for (int i = 1; i < FFT_SIZE/2; ++i) {
frankvnk 0:0c037aff5039 119 if (i >= lowBin && i <= highBin) {
frankvnk 0:0c037aff5039 120 *windowMean += magnitudes[i];
frankvnk 0:0c037aff5039 121 } else {
frankvnk 0:0c037aff5039 122 *otherMean += magnitudes[i];
frankvnk 0:0c037aff5039 123 }
frankvnk 0:0c037aff5039 124 }
frankvnk 0:0c037aff5039 125 *windowMean /= (highBin - lowBin) + 1;
frankvnk 0:0c037aff5039 126 *otherMean /= (FFT_SIZE / 2 - (highBin - lowBin));
frankvnk 0:0c037aff5039 127 }
frankvnk 0:0c037aff5039 128
frankvnk 0:0c037aff5039 129 // Convert a frequency to the appropriate FFT bin it will fall within.
frankvnk 0:0c037aff5039 130 int frequencyToBin(float frequency)
frankvnk 0:0c037aff5039 131 {
frankvnk 0:0c037aff5039 132 float binFrequency = float(SAMPLE_RATE_HZ) / float(FFT_SIZE);
frankvnk 0:0c037aff5039 133 return int(frequency / binFrequency);
frankvnk 0:0c037aff5039 134 }
frankvnk 0:0c037aff5039 135
frankvnk 0:0c037aff5039 136
frankvnk 0:0c037aff5039 137 ////////////////////////////////////////////////////////////////////////////////
frankvnk 0:0c037aff5039 138 // SPECTRUM DISPLAY FUNCTIONS
frankvnk 0:0c037aff5039 139 ///////////////////////////////////////////////////////////////////////////////
frankvnk 0:0c037aff5039 140
frankvnk 0:0c037aff5039 141 void spectrumSetup()
frankvnk 0:0c037aff5039 142 {
frankvnk 0:0c037aff5039 143 // Set the frequency window values by evenly dividing the possible frequency
frankvnk 0:0c037aff5039 144 // spectrum across the number of neo pixels.
frankvnk 0:0c037aff5039 145 float windowSize = (SAMPLE_RATE_HZ / 2.0) / float(PIXEL_COUNT);
frankvnk 0:0c037aff5039 146 for (int i = 0; i < PIXEL_COUNT+1; ++i) {
frankvnk 0:0c037aff5039 147 frequencyWindow[i] = i*windowSize;
frankvnk 0:0c037aff5039 148 }
frankvnk 0:0c037aff5039 149 // Evenly spread hues across all pixels.
frankvnk 0:0c037aff5039 150 for (int i = 0; i < PIXEL_COUNT; ++i) {
frankvnk 0:0c037aff5039 151 hues[i] = 360.0*(float(i)/float(PIXEL_COUNT-1));
frankvnk 0:0c037aff5039 152 }
frankvnk 0:0c037aff5039 153 }
frankvnk 0:0c037aff5039 154
frankvnk 0:0c037aff5039 155 void spectrumLoop()
frankvnk 0:0c037aff5039 156 {
frankvnk 0:0c037aff5039 157 // Update each LED based on the intensity of the audio
frankvnk 0:0c037aff5039 158 // in the associated frequency window.
frankvnk 0:0c037aff5039 159 static int SLrpt = 0, SLpixcnt = 0;
frankvnk 0:0c037aff5039 160 int SLpixend = 0;
frankvnk 0:0c037aff5039 161 float intensity, otherMean;
oscarmtzman 4:a6130c61c228 162 if(SLOWDOWN != 0) {
oscarmtzman 4:a6130c61c228 163 if(SLOWDOWN >= 1000) {
oscarmtzman 4:a6130c61c228 164 if(SLOWDOWN <= (1000 + PIXEL_COUNT-1)) {
frankvnk 0:0c037aff5039 165 SLpixcnt = SLOWDOWN - 1000;
frankvnk 0:0c037aff5039 166 SLrpt = 0;
frankvnk 0:0c037aff5039 167 SLpixend = SLpixcnt + 1;
oscarmtzman 4:a6130c61c228 168 } else
frankvnk 0:0c037aff5039 169 SLOWDOWN = 0;
oscarmtzman 4:a6130c61c228 170 } else {
frankvnk 0:0c037aff5039 171 SLrpt++;
oscarmtzman 4:a6130c61c228 172 if (SLrpt >= SLOWDOWN) {
frankvnk 0:0c037aff5039 173 SLrpt = 0;
frankvnk 0:0c037aff5039 174 SLpixcnt = SLpixcnt < PIXEL_COUNT-1 ? ++SLpixcnt : 0;
frankvnk 0:0c037aff5039 175 }
frankvnk 0:0c037aff5039 176 SLpixend = SLpixcnt + 1;
frankvnk 0:0c037aff5039 177 }
oscarmtzman 4:a6130c61c228 178 } else {
frankvnk 0:0c037aff5039 179 SLpixcnt = 0;
frankvnk 0:0c037aff5039 180 SLrpt = 0;
frankvnk 0:0c037aff5039 181 SLpixend = PIXEL_COUNT;
frankvnk 0:0c037aff5039 182 }
frankvnk 0:0c037aff5039 183 for (int i = SLpixcnt; i < SLpixend; ++i) {
frankvnk 0:0c037aff5039 184 windowMean(magnitudes,
frankvnk 0:0c037aff5039 185 frequencyToBin(frequencyWindow[i]),
frankvnk 0:0c037aff5039 186 frequencyToBin(frequencyWindow[i+1]),
frankvnk 0:0c037aff5039 187 &intensity,
frankvnk 0:0c037aff5039 188 &otherMean);
frankvnk 0:0c037aff5039 189 // Convert intensity to decibels.
oscarmtzman 3:f826669fc0a8 190 intensity = 20.0*log10(intensity); //Modificar
frankvnk 0:0c037aff5039 191 // Scale the intensity and clamp between 0 and 1.0.
frankvnk 0:0c037aff5039 192 intensity -= SPECTRUM_MIN_DB;
frankvnk 0:0c037aff5039 193 intensity = intensity < 0.0 ? 0.0 : intensity;
frankvnk 0:0c037aff5039 194 intensity /= (SPECTRUM_MAX_DB-SPECTRUM_MIN_DB);
frankvnk 0:0c037aff5039 195 intensity = intensity > 1.0 ? 1.0 : intensity;
frankvnk 0:0c037aff5039 196 led.hsi2rgbw(hues[i], 1.0, intensity);
frankvnk 0:0c037aff5039 197 }
frankvnk 0:0c037aff5039 198 }
frankvnk 0:0c037aff5039 199
frankvnk 0:0c037aff5039 200
frankvnk 0:0c037aff5039 201 ////////////////////////////////////////////////////////////////////////////////
frankvnk 0:0c037aff5039 202 // SAMPLING FUNCTIONS
frankvnk 0:0c037aff5039 203 ////////////////////////////////////////////////////////////////////////////////
frankvnk 0:0c037aff5039 204
frankvnk 0:0c037aff5039 205 void samplingCallback()
frankvnk 0:0c037aff5039 206 {
frankvnk 0:0c037aff5039 207 // Read from the ADC and store the sample data
oscarmtzman 4:a6130c61c228 208 samples[sampleCounter] = qrs1+qrs2[(sampleCounter+1)/2];
frankvnk 0:0c037aff5039 209 // Complex FFT functions require a coefficient for the imaginary part of the input.
frankvnk 0:0c037aff5039 210 // Since we only have real data, set this coefficient to zero.
frankvnk 0:0c037aff5039 211 samples[sampleCounter+1] = 0.0;
frankvnk 0:0c037aff5039 212 // Update sample buffer position and stop after the buffer is filled
frankvnk 0:0c037aff5039 213 sampleCounter += 2;
frankvnk 0:0c037aff5039 214 if (sampleCounter >= FFT_SIZE*2) {
frankvnk 0:0c037aff5039 215 samplingTimer.detach();
frankvnk 0:0c037aff5039 216 }
frankvnk 0:0c037aff5039 217 }
frankvnk 0:0c037aff5039 218
frankvnk 0:0c037aff5039 219 void samplingBegin()
frankvnk 0:0c037aff5039 220 {
frankvnk 0:0c037aff5039 221 // Reset sample buffer position and start callback at necessary rate.
frankvnk 0:0c037aff5039 222 sampleCounter = 0;
frankvnk 0:0c037aff5039 223 samplingTimer.attach_us(&samplingCallback, 1000000/SAMPLE_RATE_HZ);
frankvnk 0:0c037aff5039 224 }
frankvnk 0:0c037aff5039 225
frankvnk 0:0c037aff5039 226 bool samplingIsDone()
frankvnk 0:0c037aff5039 227 {
frankvnk 0:0c037aff5039 228 return sampleCounter >= FFT_SIZE*2;
frankvnk 0:0c037aff5039 229 }
frankvnk 0:0c037aff5039 230
frankvnk 0:0c037aff5039 231
frankvnk 0:0c037aff5039 232 ////////////////////////////////////////////////////////////////////////////////
frankvnk 0:0c037aff5039 233 // COMMAND PARSING FUNCTIONS
frankvnk 0:0c037aff5039 234 // These functions allow parsing simple commands input on the serial port.
frankvnk 0:0c037aff5039 235 // Commands allow reading and writing variables that control the device.
frankvnk 0:0c037aff5039 236 //
frankvnk 0:0c037aff5039 237 // All commands must end with a semicolon character.
frankvnk 0:0c037aff5039 238 //
frankvnk 0:0c037aff5039 239 // Example commands are:
frankvnk 0:0c037aff5039 240 // GET SAMPLE_RATE_HZ;
frankvnk 0:0c037aff5039 241 // - Get the sample rate of the device.
frankvnk 0:0c037aff5039 242 // SET SAMPLE_RATE_HZ 400;
frankvnk 0:0c037aff5039 243 // - Set the sample rate of the device to 400 hertz.
frankvnk 0:0c037aff5039 244 //
frankvnk 0:0c037aff5039 245 ////////////////////////////////////////////////////////////////////////////////
frankvnk 0:0c037aff5039 246
frankvnk 0:0c037aff5039 247 void parseCommand(char* command)
frankvnk 0:0c037aff5039 248 {
frankvnk 0:0c037aff5039 249 if (strcmp(command, "GET MAGNITUDES") == 0) {
frankvnk 0:0c037aff5039 250 for (int i = 0; i < FFT_SIZE; ++i) {
frankvnk 0:0c037aff5039 251 printf("%f\r\n", magnitudes[i]);
frankvnk 0:0c037aff5039 252 }
frankvnk 0:0c037aff5039 253 } else if (strcmp(command, "GET SAMPLES") == 0) {
frankvnk 0:0c037aff5039 254 for (int i = 0; i < FFT_SIZE*2; i+=2) {
frankvnk 0:0c037aff5039 255 printf("%f\r\n", samples[i]);
frankvnk 0:0c037aff5039 256 }
frankvnk 0:0c037aff5039 257 } else if (strcmp(command, "GET FFT_SIZE") == 0) {
frankvnk 0:0c037aff5039 258 printf("%d\r\n", FFT_SIZE);
frankvnk 0:0c037aff5039 259 } else if (strcmp(command, "GET SAMPLE_RATE_HZ") == 0) {
frankvnk 0:0c037aff5039 260 printf("%d\r\n", SAMPLE_RATE_HZ);
frankvnk 0:0c037aff5039 261 } else if (strstr(command, "SET SAMPLE_RATE_HZ") != NULL) {
frankvnk 0:0c037aff5039 262 SAMPLE_RATE_HZ = (typeof(SAMPLE_RATE_HZ)) atof(command+(sizeof("SET SAMPLE_RATE_HZ")-1));
frankvnk 0:0c037aff5039 263 } else if (strcmp(command, "GET LEDS_ENABLED") == 0) {
frankvnk 0:0c037aff5039 264 printf("%d\r\n", LEDS_ENABLED);
frankvnk 0:0c037aff5039 265 } else if (strstr(command, "SET LEDS_ENABLED") != NULL) {
frankvnk 0:0c037aff5039 266 LEDS_ENABLED = (typeof(LEDS_ENABLED)) atof(command+(sizeof("SET LEDS_ENABLED")-1));
frankvnk 0:0c037aff5039 267 } else if (strcmp(command, "GET SPECTRUM_MIN_DB") == 0) {
frankvnk 0:0c037aff5039 268 printf("%f\r\n", SPECTRUM_MIN_DB);
frankvnk 0:0c037aff5039 269 } else if (strstr(command, "SET SPECTRUM_MIN_DB") != NULL) {
frankvnk 0:0c037aff5039 270 SPECTRUM_MIN_DB = (typeof(SPECTRUM_MIN_DB)) atof(command+(sizeof("SET SPECTRUM_MIN_DB")-1));
frankvnk 0:0c037aff5039 271 } else if (strcmp(command, "GET SPECTRUM_MAX_DB") == 0) {
frankvnk 0:0c037aff5039 272 printf("%f\r\n", SPECTRUM_MAX_DB);
frankvnk 0:0c037aff5039 273 } else if (strstr(command, "SET SPECTRUM_MAX_DB") != NULL) {
frankvnk 0:0c037aff5039 274 SPECTRUM_MAX_DB = (typeof(SPECTRUM_MAX_DB)) atof(command+(sizeof("SET SPECTRUM_MAX_DB")-1));
frankvnk 0:0c037aff5039 275 } else if (strcmp(command, "GET SLOWDOWN") == 0) {
frankvnk 0:0c037aff5039 276 printf("%d\r\n", SLOWDOWN);
frankvnk 0:0c037aff5039 277 } else if (strstr(command, "SET SLOWDOWN") != NULL) {
frankvnk 0:0c037aff5039 278 SLOWDOWN = (typeof(SLOWDOWN)) atoi(command+(sizeof("SET SLOWDOWN")-1));
frankvnk 0:0c037aff5039 279 }
frankvnk 0:0c037aff5039 280
frankvnk 0:0c037aff5039 281 // Update spectrum display values if sample rate was changed.
frankvnk 0:0c037aff5039 282 if (strstr(command, "SET SAMPLE_RATE_HZ ") != NULL) {
frankvnk 0:0c037aff5039 283 spectrumSetup();
frankvnk 0:0c037aff5039 284 }
frankvnk 0:0c037aff5039 285
frankvnk 0:0c037aff5039 286 // Turn off the LEDs if the state changed.
frankvnk 0:0c037aff5039 287 if (LEDS_ENABLED == 0) {
frankvnk 0:0c037aff5039 288 }
frankvnk 0:0c037aff5039 289 }
frankvnk 0:0c037aff5039 290
frankvnk 0:0c037aff5039 291 void parserLoop()
frankvnk 0:0c037aff5039 292 {
frankvnk 0:0c037aff5039 293 // Process any incoming characters from the serial port
frankvnk 0:0c037aff5039 294 while (pc.readable()) {
frankvnk 0:0c037aff5039 295 char c = pc.getc();
frankvnk 0:0c037aff5039 296 // Add any characters that aren't the end of a command (semicolon) to the input buffer.
frankvnk 0:0c037aff5039 297 if (c != ';') {
frankvnk 0:0c037aff5039 298 c = toupper(c);
frankvnk 0:0c037aff5039 299 strncat(commandBuffer, &c, 1);
frankvnk 0:0c037aff5039 300 } else {
frankvnk 0:0c037aff5039 301 // Parse the command because an end of command token was encountered.
frankvnk 0:0c037aff5039 302 parseCommand(commandBuffer);
frankvnk 0:0c037aff5039 303 // Clear the input buffer
frankvnk 0:0c037aff5039 304 memset(commandBuffer, 0, sizeof(commandBuffer));
frankvnk 0:0c037aff5039 305 }
frankvnk 0:0c037aff5039 306 }
frankvnk 0:0c037aff5039 307 }
frankvnk 0:0c037aff5039 308
frankvnk 0:0c037aff5039 309 ////////////////////////////////////////////////////////////////////////////////
frankvnk 0:0c037aff5039 310 // MAIN FUNCTION
frankvnk 0:0c037aff5039 311 ////////////////////////////////////////////////////////////////////////////////
frankvnk 0:0c037aff5039 312
frankvnk 0:0c037aff5039 313 int main()
frankvnk 0:0c037aff5039 314 {
frankvnk 0:0c037aff5039 315 NVIC_set_all_irq_priorities(1);
frankvnk 0:0c037aff5039 316 NVIC_SetPriority(UART0_IRQn, 0);
frankvnk 0:0c037aff5039 317 // Set up serial port.
oscarmtzman 3:f826669fc0a8 318 pc.baud (9600);
frankvnk 0:0c037aff5039 319 pc.attach(&rxisr);
oscarmtzman 4:a6130c61c228 320
oscarmtzman 4:a6130c61c228 321 float harm[512];
oscarmtzman 4:a6130c61c228 322 int inmax=0,max=0;
oscarmtzman 6:17a42dc976bb 323 pulso=fmin+(fmax-fmin)*pot.read();
oscarmtzman 6:17a42dc976bb 324 pc.printf("%f\n\n\n",pulso);
oscarmtzman 6:17a42dc976bb 325 l=30/pulso;
oscarmtzman 6:17a42dc976bb 326 b=(2*l)/0.11;
oscarmtzman 6:17a42dc976bb 327 qrs1=(a/(2*b))*(2-b);
oscarmtzman 6:17a42dc976bb 328
oscarmtzman 4:a6130c61c228 329
oscarmtzman 4:a6130c61c228 330
oscarmtzman 4:a6130c61c228 331 for(int i=1; i<=n; i=i+1) {
oscarmtzman 4:a6130c61c228 332 for(int j=0; j<512; j=j+1) {
oscarmtzman 4:a6130c61c228 333 harm[j]=(((2*b*a)/(i*i*pi*pi))*(1-cos((i*pi)/b)))*cos((i*pi*(j+1)*ts)/l);
oscarmtzman 4:a6130c61c228 334 }
oscarmtzman 4:a6130c61c228 335 for(int k=0; k<512; k=k+1) {
oscarmtzman 4:a6130c61c228 336 qrs2[k]=qrs2[k]+harm[k];
oscarmtzman 4:a6130c61c228 337 }
oscarmtzman 4:a6130c61c228 338 }
oscarmtzman 4:a6130c61c228 339
oscarmtzman 4:a6130c61c228 340
oscarmtzman 4:a6130c61c228 341
oscarmtzman 4:a6130c61c228 342
oscarmtzman 4:a6130c61c228 343
oscarmtzman 4:a6130c61c228 344
oscarmtzman 4:a6130c61c228 345
frankvnk 0:0c037aff5039 346 #ifndef RGBW_ext
frankvnk 0:0c037aff5039 347 led.invertpwm(1); //On-board KL25Z RGB LED uses common anode.
oscarmtzman 4:a6130c61c228 348 #endif
frankvnk 0:0c037aff5039 349 // Clear the input command buffer
frankvnk 0:0c037aff5039 350 memset(commandBuffer, 0, sizeof(commandBuffer));
frankvnk 0:0c037aff5039 351
frankvnk 0:0c037aff5039 352 // Initialize spectrum display
frankvnk 0:0c037aff5039 353 spectrumSetup();
frankvnk 0:0c037aff5039 354
frankvnk 0:0c037aff5039 355 // Begin sampling audio
frankvnk 0:0c037aff5039 356 samplingBegin();
frankvnk 0:0c037aff5039 357
frankvnk 2:035d551759a5 358 // Init arm_ccft_32
oscarmtzman 4:a6130c61c228 359 switch (FFT_SIZE) {
oscarmtzman 4:a6130c61c228 360 case 16:
oscarmtzman 4:a6130c61c228 361 S = & arm_cfft_sR_f32_len16;
oscarmtzman 4:a6130c61c228 362 break;
oscarmtzman 4:a6130c61c228 363 case 32:
oscarmtzman 4:a6130c61c228 364 S = & arm_cfft_sR_f32_len32;
oscarmtzman 4:a6130c61c228 365 break;
oscarmtzman 4:a6130c61c228 366 case 64:
oscarmtzman 4:a6130c61c228 367 S = & arm_cfft_sR_f32_len64;
oscarmtzman 4:a6130c61c228 368 break;
oscarmtzman 4:a6130c61c228 369 case 128:
oscarmtzman 4:a6130c61c228 370 S = & arm_cfft_sR_f32_len128;
oscarmtzman 4:a6130c61c228 371 break;
oscarmtzman 4:a6130c61c228 372 case 256:
oscarmtzman 4:a6130c61c228 373 S = & arm_cfft_sR_f32_len256;
oscarmtzman 4:a6130c61c228 374 break;
oscarmtzman 4:a6130c61c228 375 case 512:
oscarmtzman 4:a6130c61c228 376 S = & arm_cfft_sR_f32_len512;
oscarmtzman 4:a6130c61c228 377 break;
oscarmtzman 4:a6130c61c228 378 case 1024:
oscarmtzman 4:a6130c61c228 379 S = & arm_cfft_sR_f32_len1024;
oscarmtzman 4:a6130c61c228 380 break;
oscarmtzman 4:a6130c61c228 381 case 2048:
oscarmtzman 4:a6130c61c228 382 S = & arm_cfft_sR_f32_len2048;
oscarmtzman 4:a6130c61c228 383 break;
oscarmtzman 4:a6130c61c228 384 case 4096:
oscarmtzman 4:a6130c61c228 385 S = & arm_cfft_sR_f32_len4096;
oscarmtzman 4:a6130c61c228 386 break;
frankvnk 2:035d551759a5 387 }
frankvnk 2:035d551759a5 388
frankvnk 0:0c037aff5039 389 while(1) {
frankvnk 0:0c037aff5039 390 // Calculate FFT if a full sample is available.
frankvnk 0:0c037aff5039 391 if (samplingIsDone()) {
oscarmtzman 4:a6130c61c228 392
oscarmtzman 4:a6130c61c228 393
frankvnk 0:0c037aff5039 394 // Run FFT on sample data.
frankvnk 2:035d551759a5 395 // Run FFT on sample data.
frankvnk 2:035d551759a5 396 arm_cfft_f32(S, samples, 0, 1);
frankvnk 0:0c037aff5039 397 // Calculate magnitude of complex numbers output by the FFT.
frankvnk 0:0c037aff5039 398 arm_cmplx_mag_f32(samples, magnitudes, FFT_SIZE);
oscarmtzman 4:a6130c61c228 399
oscarmtzman 4:a6130c61c228 400
oscarmtzman 4:a6130c61c228 401 /*for(int i=0; i<512; i=i+1) {
oscarmtzman 4:a6130c61c228 402 pc.printf("%d\t%f\n",i,magnitudes[i]);
oscarmtzman 4:a6130c61c228 403 }*/
oscarmtzman 4:a6130c61c228 404 for(int i=1; i<FFT_SIZE/2; i=i+1) {
oscarmtzman 6:17a42dc976bb 405 if(magnitudes[i]>max&&abs(fs/(FFT_SIZE-1)*i*60-pulso)<10) {
oscarmtzman 4:a6130c61c228 406 max=magnitudes[i];
oscarmtzman 4:a6130c61c228 407 inmax=i;
oscarmtzman 4:a6130c61c228 408 }
oscarmtzman 4:a6130c61c228 409 }
oscarmtzman 4:a6130c61c228 410
oscarmtzman 4:a6130c61c228 411 pulsocalculado=fs/(FFT_SIZE-1)*inmax*60;
oscarmtzman 4:a6130c61c228 412 pc.printf("%f\n",pulsocalculado);
oscarmtzman 3:f826669fc0a8 413
oscarmtzman 6:17a42dc976bb 414 if (pulsocalculado<(fmin+sum)){
oscarmtzman 5:6caecff3094d 415 led1=1;
oscarmtzman 5:6caecff3094d 416 led2=0;
oscarmtzman 5:6caecff3094d 417 led3=0;
oscarmtzman 5:6caecff3094d 418 led4=0;
oscarmtzman 5:6caecff3094d 419 led5=0;
oscarmtzman 5:6caecff3094d 420 led6=0;
oscarmtzman 5:6caecff3094d 421 led7=0;
oscarmtzman 5:6caecff3094d 422 led8=0;
oscarmtzman 5:6caecff3094d 423 }
oscarmtzman 5:6caecff3094d 424 if (pulsocalculado>=(fmin+sum)&&pulsocalculado<(fmin+2*sum)){
oscarmtzman 5:6caecff3094d 425 led1=1;
oscarmtzman 5:6caecff3094d 426 led2=1;
oscarmtzman 5:6caecff3094d 427 led3=0;
oscarmtzman 5:6caecff3094d 428 led4=0;
oscarmtzman 5:6caecff3094d 429 led5=0;
oscarmtzman 5:6caecff3094d 430 led6=0;
oscarmtzman 5:6caecff3094d 431 led7=0;
oscarmtzman 5:6caecff3094d 432 led8=0;
oscarmtzman 5:6caecff3094d 433 }
oscarmtzman 5:6caecff3094d 434 if (pulsocalculado>=(fmin+2*sum)&&pulsocalculado<(fmin+3*sum)){
oscarmtzman 5:6caecff3094d 435 led1=1;
oscarmtzman 5:6caecff3094d 436 led2=1;
oscarmtzman 5:6caecff3094d 437 led3=1;
oscarmtzman 5:6caecff3094d 438 led4=0;
oscarmtzman 5:6caecff3094d 439 led5=0;
oscarmtzman 5:6caecff3094d 440 led6=0;
oscarmtzman 5:6caecff3094d 441 led7=0;
oscarmtzman 5:6caecff3094d 442 led8=0;
oscarmtzman 5:6caecff3094d 443 }
oscarmtzman 5:6caecff3094d 444 if (pulsocalculado>=(fmin+3*sum)&&pulsocalculado<(fmin+4*sum)){
oscarmtzman 5:6caecff3094d 445 led1=1;
oscarmtzman 5:6caecff3094d 446 led2=1;
oscarmtzman 5:6caecff3094d 447 led3=1;
oscarmtzman 5:6caecff3094d 448 led4=1;
oscarmtzman 5:6caecff3094d 449 led5=0;
oscarmtzman 5:6caecff3094d 450 led6=0;
oscarmtzman 5:6caecff3094d 451 led7=0;
oscarmtzman 5:6caecff3094d 452 led8=0;
oscarmtzman 5:6caecff3094d 453 }
oscarmtzman 5:6caecff3094d 454 if (pulsocalculado>=(fmin+4*sum)&&pulsocalculado<(fmin+5*sum)){
oscarmtzman 5:6caecff3094d 455 led1=1;
oscarmtzman 5:6caecff3094d 456 led2=1;
oscarmtzman 5:6caecff3094d 457 led3=1;
oscarmtzman 5:6caecff3094d 458 led4=1;
oscarmtzman 5:6caecff3094d 459 led5=1;
oscarmtzman 5:6caecff3094d 460 led6=0;
oscarmtzman 5:6caecff3094d 461 led7=0;
oscarmtzman 5:6caecff3094d 462 led8=0;
oscarmtzman 5:6caecff3094d 463 }
oscarmtzman 5:6caecff3094d 464 if (pulsocalculado>=(fmin+5*sum)&&pulsocalculado<(fmin+6*sum)){
oscarmtzman 5:6caecff3094d 465 led1=1;
oscarmtzman 5:6caecff3094d 466 led2=1;
oscarmtzman 5:6caecff3094d 467 led3=1;
oscarmtzman 5:6caecff3094d 468 led4=1;
oscarmtzman 5:6caecff3094d 469 led5=1;
oscarmtzman 5:6caecff3094d 470 led6=1;
oscarmtzman 5:6caecff3094d 471 led7=0;
oscarmtzman 5:6caecff3094d 472 led8=0;
oscarmtzman 5:6caecff3094d 473 }
oscarmtzman 5:6caecff3094d 474 if (pulsocalculado>=(fmin+6*sum)&&pulsocalculado<(fmin+7*sum)){
oscarmtzman 5:6caecff3094d 475 led1=1;
oscarmtzman 5:6caecff3094d 476 led2=1;
oscarmtzman 5:6caecff3094d 477 led3=1;
oscarmtzman 5:6caecff3094d 478 led4=1;
oscarmtzman 5:6caecff3094d 479 led5=1;
oscarmtzman 5:6caecff3094d 480 led6=1;
oscarmtzman 5:6caecff3094d 481 led7=1;
oscarmtzman 5:6caecff3094d 482 led8=0;
oscarmtzman 5:6caecff3094d 483 }
oscarmtzman 6:17a42dc976bb 484 if (pulsocalculado>=(fmin+7*sum)){
oscarmtzman 5:6caecff3094d 485 led1=1;
oscarmtzman 5:6caecff3094d 486 led2=1;
oscarmtzman 5:6caecff3094d 487 led3=1;
oscarmtzman 5:6caecff3094d 488 led4=1;
oscarmtzman 5:6caecff3094d 489 led5=1;
oscarmtzman 5:6caecff3094d 490 led6=1;
oscarmtzman 5:6caecff3094d 491 led7=1;
oscarmtzman 5:6caecff3094d 492 led8=1;
oscarmtzman 5:6caecff3094d 493 }
oscarmtzman 5:6caecff3094d 494
oscarmtzman 4:a6130c61c228 495 inmax=0;
frankvnk 0:0c037aff5039 496
frankvnk 0:0c037aff5039 497 if (LEDS_ENABLED == 1) {
frankvnk 0:0c037aff5039 498 spectrumLoop();
frankvnk 0:0c037aff5039 499 }
frankvnk 0:0c037aff5039 500
frankvnk 0:0c037aff5039 501 // Restart audio sampling.
frankvnk 0:0c037aff5039 502 samplingBegin();
frankvnk 0:0c037aff5039 503 }
frankvnk 0:0c037aff5039 504
frankvnk 0:0c037aff5039 505 // Parse any pending commands.
frankvnk 0:0c037aff5039 506 if(commandRecv) {
frankvnk 0:0c037aff5039 507 // pc.attach(NULL);
frankvnk 0:0c037aff5039 508 parseCommand(commandBuffer);
frankvnk 0:0c037aff5039 509 commandRecv = 0;
frankvnk 0:0c037aff5039 510 // Clear the input buffer
frankvnk 0:0c037aff5039 511 memset(commandBuffer, 0, sizeof(commandBuffer));
frankvnk 0:0c037aff5039 512 // pc.attach(&rxisr);
frankvnk 0:0c037aff5039 513 }
frankvnk 0:0c037aff5039 514 }
frankvnk 0:0c037aff5039 515 }