FFT_BUENA

Dependencies:   FastAnalogIn HSI2RGBW_PWM NVIC_set_all_priorities mbed-dsp mbed

Fork of KL25Z_FFT_Demo by Frank Vannieuwkerke

Committer:
oscarmtzman
Date:
Wed Nov 26 22:51:15 2014 +0000
Revision:
4:a6130c61c228
Parent:
3:f826669fc0a8
Child:
5:6caecff3094d
FF_COMPLETA_2;

Who changed what in which revision?

UserRevisionLine numberNew contents of line
frankvnk 0:0c037aff5039 1 #include "mbed.h"
frankvnk 0:0c037aff5039 2 #include "NVIC_set_all_priorities.h"
frankvnk 0:0c037aff5039 3 #include <ctype.h>
frankvnk 0:0c037aff5039 4 #include "arm_math.h"
frankvnk 2:035d551759a5 5 #include "arm_const_structs.h"
frankvnk 0:0c037aff5039 6 #include "hsi2rgbw_pwm.h"
frankvnk 1:736b34e0f484 7 #include "FastAnalogIn.h"
frankvnk 0:0c037aff5039 8
frankvnk 0:0c037aff5039 9 Serial pc(USBTX, USBRX);
frankvnk 0:0c037aff5039 10
oscarmtzman 4:a6130c61c228 11 float pulso=83;
oscarmtzman 4:a6130c61c228 12 float pulsocalculado=0;
frankvnk 0:0c037aff5039 13
oscarmtzman 4:a6130c61c228 14 float qrs2[512]= {0};
oscarmtzman 4:a6130c61c228 15 float fs=102.4;
oscarmtzman 4:a6130c61c228 16 float ts=1/fs;
oscarmtzman 4:a6130c61c228 17 int tiempo=5;
oscarmtzman 4:a6130c61c228 18 float pi=3.1416;
oscarmtzman 4:a6130c61c228 19 float l=30/pulso;
oscarmtzman 4:a6130c61c228 20 float a=1.6;
oscarmtzman 4:a6130c61c228 21 float b=(2*l)/0.11;
oscarmtzman 4:a6130c61c228 22 int n=100;
oscarmtzman 4:a6130c61c228 23 float qrs1=(a/(2*b))*(2-b);
frankvnk 0:0c037aff5039 24
frankvnk 0:0c037aff5039 25 #ifndef RGBW_ext
frankvnk 0:0c037aff5039 26 // HSI to RGB conversion with direct output to PWM channels - on-board RGB LED
frankvnk 0:0c037aff5039 27 hsi2rgbw_pwm led(LED_RED, LED_GREEN, LED_BLUE);
frankvnk 0:0c037aff5039 28 #else
frankvnk 0:0c037aff5039 29 // HSI to RGBW conversion with direct output to external PWM channels - RGBW LED
frankvnk 0:0c037aff5039 30 hsi2rgbw_pwm led(PTD4, PTA12, PTA4, PTA5); //Red, Green, Blue, White
frankvnk 0:0c037aff5039 31 #endif
frankvnk 0:0c037aff5039 32
frankvnk 0:0c037aff5039 33 // Dummy ISR for disabling NMI on PTA4 - !! DO NOT REMOVE THIS !!
frankvnk 0:0c037aff5039 34 // More info at https://mbed.org/questions/1387/How-can-I-access-the-FTFA_FOPT-register-/
oscarmtzman 4:a6130c61c228 35 extern "C" void NMI_Handler()
oscarmtzman 4:a6130c61c228 36 {
frankvnk 0:0c037aff5039 37 DigitalIn test(PTA4);
frankvnk 0:0c037aff5039 38 }
frankvnk 0:0c037aff5039 39
frankvnk 0:0c037aff5039 40
frankvnk 0:0c037aff5039 41 ////////////////////////////////////////////////////////////////////////////////
frankvnk 0:0c037aff5039 42 // CONFIGURATION
frankvnk 0:0c037aff5039 43 // These values can be changed to alter the behavior of the spectrum display.
frankvnk 0:0c037aff5039 44 // KL25Z limitations
frankvnk 0:0c037aff5039 45 // -----------------
frankvnk 0:0c037aff5039 46 // - When used with the Spectrogram python script :
frankvnk 0:0c037aff5039 47 // There is a substantial time lag between the music and the screen output.
frankvnk 2:035d551759a5 48 // Max allowed SAMPLE_RATE_HZ is 40000
frankvnk 2:035d551759a5 49 // Max allowed FFT_SIZE is 64
frankvnk 0:0c037aff5039 50 ////////////////////////////////////////////////////////////////////////////////
frankvnk 0:0c037aff5039 51
frankvnk 2:035d551759a5 52 int SLOWDOWN = 4; // Create an optical delay in spectrumLoop - useful when only one RGB led is used.
oscarmtzman 4:a6130c61c228 53 // Only active when nonzero.
oscarmtzman 4:a6130c61c228 54 // A value >= 1000 and <= 1000 + PIXEL_COUNT fixes the output to a single frequency
oscarmtzman 4:a6130c61c228 55 // window = a single color.
frankvnk 0:0c037aff5039 56 int SAMPLE_RATE_HZ = 40000; // Sample rate of the audio in hertz.
frankvnk 2:035d551759a5 57 float SPECTRUM_MIN_DB = 30.0; // Audio intensity (in decibels) that maps to low LED brightness.
frankvnk 1:736b34e0f484 58 float SPECTRUM_MAX_DB = 80.0; // Audio intensity (in decibels) that maps to high LED brightness.
frankvnk 0:0c037aff5039 59 int LEDS_ENABLED = 1; // Control if the LED's should display the spectrum or not. 1 is true, 0 is false.
oscarmtzman 4:a6130c61c228 60 // Useful for turning the LED display on and off with commands from the serial port.
oscarmtzman 4:a6130c61c228 61 const int FFT_SIZE = 512; // Size of the FFT.
frankvnk 1:736b34e0f484 62 const int PIXEL_COUNT = 32; // Number of pixels. You should be able to increase this without
oscarmtzman 4:a6130c61c228 63 // any other changes to the program.
frankvnk 0:0c037aff5039 64 const int MAX_CHARS = 65; // Max size of the input command buffer
frankvnk 0:0c037aff5039 65
frankvnk 0:0c037aff5039 66 ////////////////////////////////////////////////////////////////////////////////
frankvnk 0:0c037aff5039 67 // INTERNAL STATE
frankvnk 0:0c037aff5039 68 // These shouldn't be modified unless you know what you're doing.
frankvnk 0:0c037aff5039 69 ////////////////////////////////////////////////////////////////////////////////
frankvnk 2:035d551759a5 70 const static arm_cfft_instance_f32 *S;
frankvnk 0:0c037aff5039 71 Ticker samplingTimer;
frankvnk 0:0c037aff5039 72 float samples[FFT_SIZE*2];
frankvnk 0:0c037aff5039 73 float magnitudes[FFT_SIZE];
frankvnk 0:0c037aff5039 74 int sampleCounter = 0;
frankvnk 0:0c037aff5039 75 char commandBuffer[MAX_CHARS];
frankvnk 0:0c037aff5039 76 float frequencyWindow[PIXEL_COUNT+1];
frankvnk 0:0c037aff5039 77 float hues[PIXEL_COUNT];
frankvnk 0:0c037aff5039 78 bool commandRecv = 0;
frankvnk 0:0c037aff5039 79 ////////////////////////////////////////////////////////////////////////////////
frankvnk 0:0c037aff5039 80 // UTILITY FUNCTIONS
frankvnk 0:0c037aff5039 81 ////////////////////////////////////////////////////////////////////////////////
frankvnk 0:0c037aff5039 82
oscarmtzman 4:a6130c61c228 83 void rxisr()
oscarmtzman 4:a6130c61c228 84 {
frankvnk 0:0c037aff5039 85 char c = pc.getc();
frankvnk 0:0c037aff5039 86 // Add any characters that aren't the end of a command (semicolon) to the input buffer.
frankvnk 0:0c037aff5039 87 if (c != ';') {
frankvnk 0:0c037aff5039 88 c = toupper(c);
frankvnk 0:0c037aff5039 89 strncat(commandBuffer, &c, 1);
frankvnk 0:0c037aff5039 90 } else {
frankvnk 0:0c037aff5039 91 // Parse the command because an end of command token was encountered.
frankvnk 0:0c037aff5039 92 commandRecv = 1;
frankvnk 0:0c037aff5039 93 }
frankvnk 0:0c037aff5039 94 }
frankvnk 0:0c037aff5039 95
frankvnk 0:0c037aff5039 96 // Compute the average magnitude of a target frequency window vs. all other frequencies.
frankvnk 0:0c037aff5039 97 void windowMean(float* magnitudes, int lowBin, int highBin, float* windowMean, float* otherMean)
frankvnk 0:0c037aff5039 98 {
frankvnk 0:0c037aff5039 99 *windowMean = 0;
frankvnk 0:0c037aff5039 100 *otherMean = 0;
frankvnk 0:0c037aff5039 101 // Notice the first magnitude bin is skipped because it represents the
frankvnk 0:0c037aff5039 102 // average power of the signal.
frankvnk 0:0c037aff5039 103 for (int i = 1; i < FFT_SIZE/2; ++i) {
frankvnk 0:0c037aff5039 104 if (i >= lowBin && i <= highBin) {
frankvnk 0:0c037aff5039 105 *windowMean += magnitudes[i];
frankvnk 0:0c037aff5039 106 } else {
frankvnk 0:0c037aff5039 107 *otherMean += magnitudes[i];
frankvnk 0:0c037aff5039 108 }
frankvnk 0:0c037aff5039 109 }
frankvnk 0:0c037aff5039 110 *windowMean /= (highBin - lowBin) + 1;
frankvnk 0:0c037aff5039 111 *otherMean /= (FFT_SIZE / 2 - (highBin - lowBin));
frankvnk 0:0c037aff5039 112 }
frankvnk 0:0c037aff5039 113
frankvnk 0:0c037aff5039 114 // Convert a frequency to the appropriate FFT bin it will fall within.
frankvnk 0:0c037aff5039 115 int frequencyToBin(float frequency)
frankvnk 0:0c037aff5039 116 {
frankvnk 0:0c037aff5039 117 float binFrequency = float(SAMPLE_RATE_HZ) / float(FFT_SIZE);
frankvnk 0:0c037aff5039 118 return int(frequency / binFrequency);
frankvnk 0:0c037aff5039 119 }
frankvnk 0:0c037aff5039 120
frankvnk 0:0c037aff5039 121
frankvnk 0:0c037aff5039 122 ////////////////////////////////////////////////////////////////////////////////
frankvnk 0:0c037aff5039 123 // SPECTRUM DISPLAY FUNCTIONS
frankvnk 0:0c037aff5039 124 ///////////////////////////////////////////////////////////////////////////////
frankvnk 0:0c037aff5039 125
frankvnk 0:0c037aff5039 126 void spectrumSetup()
frankvnk 0:0c037aff5039 127 {
frankvnk 0:0c037aff5039 128 // Set the frequency window values by evenly dividing the possible frequency
frankvnk 0:0c037aff5039 129 // spectrum across the number of neo pixels.
frankvnk 0:0c037aff5039 130 float windowSize = (SAMPLE_RATE_HZ / 2.0) / float(PIXEL_COUNT);
frankvnk 0:0c037aff5039 131 for (int i = 0; i < PIXEL_COUNT+1; ++i) {
frankvnk 0:0c037aff5039 132 frequencyWindow[i] = i*windowSize;
frankvnk 0:0c037aff5039 133 }
frankvnk 0:0c037aff5039 134 // Evenly spread hues across all pixels.
frankvnk 0:0c037aff5039 135 for (int i = 0; i < PIXEL_COUNT; ++i) {
frankvnk 0:0c037aff5039 136 hues[i] = 360.0*(float(i)/float(PIXEL_COUNT-1));
frankvnk 0:0c037aff5039 137 }
frankvnk 0:0c037aff5039 138 }
frankvnk 0:0c037aff5039 139
frankvnk 0:0c037aff5039 140 void spectrumLoop()
frankvnk 0:0c037aff5039 141 {
frankvnk 0:0c037aff5039 142 // Update each LED based on the intensity of the audio
frankvnk 0:0c037aff5039 143 // in the associated frequency window.
frankvnk 0:0c037aff5039 144 static int SLrpt = 0, SLpixcnt = 0;
frankvnk 0:0c037aff5039 145 int SLpixend = 0;
frankvnk 0:0c037aff5039 146 float intensity, otherMean;
oscarmtzman 4:a6130c61c228 147 if(SLOWDOWN != 0) {
oscarmtzman 4:a6130c61c228 148 if(SLOWDOWN >= 1000) {
oscarmtzman 4:a6130c61c228 149 if(SLOWDOWN <= (1000 + PIXEL_COUNT-1)) {
frankvnk 0:0c037aff5039 150 SLpixcnt = SLOWDOWN - 1000;
frankvnk 0:0c037aff5039 151 SLrpt = 0;
frankvnk 0:0c037aff5039 152 SLpixend = SLpixcnt + 1;
oscarmtzman 4:a6130c61c228 153 } else
frankvnk 0:0c037aff5039 154 SLOWDOWN = 0;
oscarmtzman 4:a6130c61c228 155 } else {
frankvnk 0:0c037aff5039 156 SLrpt++;
oscarmtzman 4:a6130c61c228 157 if (SLrpt >= SLOWDOWN) {
frankvnk 0:0c037aff5039 158 SLrpt = 0;
frankvnk 0:0c037aff5039 159 SLpixcnt = SLpixcnt < PIXEL_COUNT-1 ? ++SLpixcnt : 0;
frankvnk 0:0c037aff5039 160 }
frankvnk 0:0c037aff5039 161 SLpixend = SLpixcnt + 1;
frankvnk 0:0c037aff5039 162 }
oscarmtzman 4:a6130c61c228 163 } else {
frankvnk 0:0c037aff5039 164 SLpixcnt = 0;
frankvnk 0:0c037aff5039 165 SLrpt = 0;
frankvnk 0:0c037aff5039 166 SLpixend = PIXEL_COUNT;
frankvnk 0:0c037aff5039 167 }
frankvnk 0:0c037aff5039 168 for (int i = SLpixcnt; i < SLpixend; ++i) {
frankvnk 0:0c037aff5039 169 windowMean(magnitudes,
frankvnk 0:0c037aff5039 170 frequencyToBin(frequencyWindow[i]),
frankvnk 0:0c037aff5039 171 frequencyToBin(frequencyWindow[i+1]),
frankvnk 0:0c037aff5039 172 &intensity,
frankvnk 0:0c037aff5039 173 &otherMean);
frankvnk 0:0c037aff5039 174 // Convert intensity to decibels.
oscarmtzman 3:f826669fc0a8 175 intensity = 20.0*log10(intensity); //Modificar
frankvnk 0:0c037aff5039 176 // Scale the intensity and clamp between 0 and 1.0.
frankvnk 0:0c037aff5039 177 intensity -= SPECTRUM_MIN_DB;
frankvnk 0:0c037aff5039 178 intensity = intensity < 0.0 ? 0.0 : intensity;
frankvnk 0:0c037aff5039 179 intensity /= (SPECTRUM_MAX_DB-SPECTRUM_MIN_DB);
frankvnk 0:0c037aff5039 180 intensity = intensity > 1.0 ? 1.0 : intensity;
frankvnk 0:0c037aff5039 181 led.hsi2rgbw(hues[i], 1.0, intensity);
frankvnk 0:0c037aff5039 182 }
frankvnk 0:0c037aff5039 183 }
frankvnk 0:0c037aff5039 184
frankvnk 0:0c037aff5039 185
frankvnk 0:0c037aff5039 186 ////////////////////////////////////////////////////////////////////////////////
frankvnk 0:0c037aff5039 187 // SAMPLING FUNCTIONS
frankvnk 0:0c037aff5039 188 ////////////////////////////////////////////////////////////////////////////////
frankvnk 0:0c037aff5039 189
frankvnk 0:0c037aff5039 190 void samplingCallback()
frankvnk 0:0c037aff5039 191 {
frankvnk 0:0c037aff5039 192 // Read from the ADC and store the sample data
oscarmtzman 4:a6130c61c228 193 samples[sampleCounter] = qrs1+qrs2[(sampleCounter+1)/2];
frankvnk 0:0c037aff5039 194 // Complex FFT functions require a coefficient for the imaginary part of the input.
frankvnk 0:0c037aff5039 195 // Since we only have real data, set this coefficient to zero.
frankvnk 0:0c037aff5039 196 samples[sampleCounter+1] = 0.0;
frankvnk 0:0c037aff5039 197 // Update sample buffer position and stop after the buffer is filled
frankvnk 0:0c037aff5039 198 sampleCounter += 2;
frankvnk 0:0c037aff5039 199 if (sampleCounter >= FFT_SIZE*2) {
frankvnk 0:0c037aff5039 200 samplingTimer.detach();
frankvnk 0:0c037aff5039 201 }
frankvnk 0:0c037aff5039 202 }
frankvnk 0:0c037aff5039 203
frankvnk 0:0c037aff5039 204 void samplingBegin()
frankvnk 0:0c037aff5039 205 {
frankvnk 0:0c037aff5039 206 // Reset sample buffer position and start callback at necessary rate.
frankvnk 0:0c037aff5039 207 sampleCounter = 0;
frankvnk 0:0c037aff5039 208 samplingTimer.attach_us(&samplingCallback, 1000000/SAMPLE_RATE_HZ);
frankvnk 0:0c037aff5039 209 }
frankvnk 0:0c037aff5039 210
frankvnk 0:0c037aff5039 211 bool samplingIsDone()
frankvnk 0:0c037aff5039 212 {
frankvnk 0:0c037aff5039 213 return sampleCounter >= FFT_SIZE*2;
frankvnk 0:0c037aff5039 214 }
frankvnk 0:0c037aff5039 215
frankvnk 0:0c037aff5039 216
frankvnk 0:0c037aff5039 217 ////////////////////////////////////////////////////////////////////////////////
frankvnk 0:0c037aff5039 218 // COMMAND PARSING FUNCTIONS
frankvnk 0:0c037aff5039 219 // These functions allow parsing simple commands input on the serial port.
frankvnk 0:0c037aff5039 220 // Commands allow reading and writing variables that control the device.
frankvnk 0:0c037aff5039 221 //
frankvnk 0:0c037aff5039 222 // All commands must end with a semicolon character.
frankvnk 0:0c037aff5039 223 //
frankvnk 0:0c037aff5039 224 // Example commands are:
frankvnk 0:0c037aff5039 225 // GET SAMPLE_RATE_HZ;
frankvnk 0:0c037aff5039 226 // - Get the sample rate of the device.
frankvnk 0:0c037aff5039 227 // SET SAMPLE_RATE_HZ 400;
frankvnk 0:0c037aff5039 228 // - Set the sample rate of the device to 400 hertz.
frankvnk 0:0c037aff5039 229 //
frankvnk 0:0c037aff5039 230 ////////////////////////////////////////////////////////////////////////////////
frankvnk 0:0c037aff5039 231
frankvnk 0:0c037aff5039 232 void parseCommand(char* command)
frankvnk 0:0c037aff5039 233 {
frankvnk 0:0c037aff5039 234 if (strcmp(command, "GET MAGNITUDES") == 0) {
frankvnk 0:0c037aff5039 235 for (int i = 0; i < FFT_SIZE; ++i) {
frankvnk 0:0c037aff5039 236 printf("%f\r\n", magnitudes[i]);
frankvnk 0:0c037aff5039 237 }
frankvnk 0:0c037aff5039 238 } else if (strcmp(command, "GET SAMPLES") == 0) {
frankvnk 0:0c037aff5039 239 for (int i = 0; i < FFT_SIZE*2; i+=2) {
frankvnk 0:0c037aff5039 240 printf("%f\r\n", samples[i]);
frankvnk 0:0c037aff5039 241 }
frankvnk 0:0c037aff5039 242 } else if (strcmp(command, "GET FFT_SIZE") == 0) {
frankvnk 0:0c037aff5039 243 printf("%d\r\n", FFT_SIZE);
frankvnk 0:0c037aff5039 244 } else if (strcmp(command, "GET SAMPLE_RATE_HZ") == 0) {
frankvnk 0:0c037aff5039 245 printf("%d\r\n", SAMPLE_RATE_HZ);
frankvnk 0:0c037aff5039 246 } else if (strstr(command, "SET SAMPLE_RATE_HZ") != NULL) {
frankvnk 0:0c037aff5039 247 SAMPLE_RATE_HZ = (typeof(SAMPLE_RATE_HZ)) atof(command+(sizeof("SET SAMPLE_RATE_HZ")-1));
frankvnk 0:0c037aff5039 248 } else if (strcmp(command, "GET LEDS_ENABLED") == 0) {
frankvnk 0:0c037aff5039 249 printf("%d\r\n", LEDS_ENABLED);
frankvnk 0:0c037aff5039 250 } else if (strstr(command, "SET LEDS_ENABLED") != NULL) {
frankvnk 0:0c037aff5039 251 LEDS_ENABLED = (typeof(LEDS_ENABLED)) atof(command+(sizeof("SET LEDS_ENABLED")-1));
frankvnk 0:0c037aff5039 252 } else if (strcmp(command, "GET SPECTRUM_MIN_DB") == 0) {
frankvnk 0:0c037aff5039 253 printf("%f\r\n", SPECTRUM_MIN_DB);
frankvnk 0:0c037aff5039 254 } else if (strstr(command, "SET SPECTRUM_MIN_DB") != NULL) {
frankvnk 0:0c037aff5039 255 SPECTRUM_MIN_DB = (typeof(SPECTRUM_MIN_DB)) atof(command+(sizeof("SET SPECTRUM_MIN_DB")-1));
frankvnk 0:0c037aff5039 256 } else if (strcmp(command, "GET SPECTRUM_MAX_DB") == 0) {
frankvnk 0:0c037aff5039 257 printf("%f\r\n", SPECTRUM_MAX_DB);
frankvnk 0:0c037aff5039 258 } else if (strstr(command, "SET SPECTRUM_MAX_DB") != NULL) {
frankvnk 0:0c037aff5039 259 SPECTRUM_MAX_DB = (typeof(SPECTRUM_MAX_DB)) atof(command+(sizeof("SET SPECTRUM_MAX_DB")-1));
frankvnk 0:0c037aff5039 260 } else if (strcmp(command, "GET SLOWDOWN") == 0) {
frankvnk 0:0c037aff5039 261 printf("%d\r\n", SLOWDOWN);
frankvnk 0:0c037aff5039 262 } else if (strstr(command, "SET SLOWDOWN") != NULL) {
frankvnk 0:0c037aff5039 263 SLOWDOWN = (typeof(SLOWDOWN)) atoi(command+(sizeof("SET SLOWDOWN")-1));
frankvnk 0:0c037aff5039 264 }
frankvnk 0:0c037aff5039 265
frankvnk 0:0c037aff5039 266 // Update spectrum display values if sample rate was changed.
frankvnk 0:0c037aff5039 267 if (strstr(command, "SET SAMPLE_RATE_HZ ") != NULL) {
frankvnk 0:0c037aff5039 268 spectrumSetup();
frankvnk 0:0c037aff5039 269 }
frankvnk 0:0c037aff5039 270
frankvnk 0:0c037aff5039 271 // Turn off the LEDs if the state changed.
frankvnk 0:0c037aff5039 272 if (LEDS_ENABLED == 0) {
frankvnk 0:0c037aff5039 273 }
frankvnk 0:0c037aff5039 274 }
frankvnk 0:0c037aff5039 275
frankvnk 0:0c037aff5039 276 void parserLoop()
frankvnk 0:0c037aff5039 277 {
frankvnk 0:0c037aff5039 278 // Process any incoming characters from the serial port
frankvnk 0:0c037aff5039 279 while (pc.readable()) {
frankvnk 0:0c037aff5039 280 char c = pc.getc();
frankvnk 0:0c037aff5039 281 // Add any characters that aren't the end of a command (semicolon) to the input buffer.
frankvnk 0:0c037aff5039 282 if (c != ';') {
frankvnk 0:0c037aff5039 283 c = toupper(c);
frankvnk 0:0c037aff5039 284 strncat(commandBuffer, &c, 1);
frankvnk 0:0c037aff5039 285 } else {
frankvnk 0:0c037aff5039 286 // Parse the command because an end of command token was encountered.
frankvnk 0:0c037aff5039 287 parseCommand(commandBuffer);
frankvnk 0:0c037aff5039 288 // Clear the input buffer
frankvnk 0:0c037aff5039 289 memset(commandBuffer, 0, sizeof(commandBuffer));
frankvnk 0:0c037aff5039 290 }
frankvnk 0:0c037aff5039 291 }
frankvnk 0:0c037aff5039 292 }
frankvnk 0:0c037aff5039 293
frankvnk 0:0c037aff5039 294 ////////////////////////////////////////////////////////////////////////////////
frankvnk 0:0c037aff5039 295 // MAIN FUNCTION
frankvnk 0:0c037aff5039 296 ////////////////////////////////////////////////////////////////////////////////
frankvnk 0:0c037aff5039 297
frankvnk 0:0c037aff5039 298 int main()
frankvnk 0:0c037aff5039 299 {
frankvnk 0:0c037aff5039 300 NVIC_set_all_irq_priorities(1);
frankvnk 0:0c037aff5039 301 NVIC_SetPriority(UART0_IRQn, 0);
frankvnk 0:0c037aff5039 302 // Set up serial port.
oscarmtzman 3:f826669fc0a8 303 pc.baud (9600);
frankvnk 0:0c037aff5039 304 pc.attach(&rxisr);
oscarmtzman 4:a6130c61c228 305
oscarmtzman 4:a6130c61c228 306 float harm[512];
oscarmtzman 4:a6130c61c228 307 int inmax=0,max=0;
oscarmtzman 4:a6130c61c228 308
oscarmtzman 4:a6130c61c228 309
oscarmtzman 4:a6130c61c228 310 for(int i=1; i<=n; i=i+1) {
oscarmtzman 4:a6130c61c228 311 for(int j=0; j<512; j=j+1) {
oscarmtzman 4:a6130c61c228 312 harm[j]=(((2*b*a)/(i*i*pi*pi))*(1-cos((i*pi)/b)))*cos((i*pi*(j+1)*ts)/l);
oscarmtzman 4:a6130c61c228 313 }
oscarmtzman 4:a6130c61c228 314 for(int k=0; k<512; k=k+1) {
oscarmtzman 4:a6130c61c228 315 qrs2[k]=qrs2[k]+harm[k];
oscarmtzman 4:a6130c61c228 316 }
oscarmtzman 4:a6130c61c228 317 }
oscarmtzman 4:a6130c61c228 318
oscarmtzman 4:a6130c61c228 319
oscarmtzman 4:a6130c61c228 320
oscarmtzman 4:a6130c61c228 321
oscarmtzman 4:a6130c61c228 322
oscarmtzman 4:a6130c61c228 323
oscarmtzman 4:a6130c61c228 324
frankvnk 0:0c037aff5039 325 #ifndef RGBW_ext
frankvnk 0:0c037aff5039 326 led.invertpwm(1); //On-board KL25Z RGB LED uses common anode.
oscarmtzman 4:a6130c61c228 327 #endif
frankvnk 0:0c037aff5039 328 // Clear the input command buffer
frankvnk 0:0c037aff5039 329 memset(commandBuffer, 0, sizeof(commandBuffer));
frankvnk 0:0c037aff5039 330
frankvnk 0:0c037aff5039 331 // Initialize spectrum display
frankvnk 0:0c037aff5039 332 spectrumSetup();
frankvnk 0:0c037aff5039 333
frankvnk 0:0c037aff5039 334 // Begin sampling audio
frankvnk 0:0c037aff5039 335 samplingBegin();
frankvnk 0:0c037aff5039 336
frankvnk 2:035d551759a5 337 // Init arm_ccft_32
oscarmtzman 4:a6130c61c228 338 switch (FFT_SIZE) {
oscarmtzman 4:a6130c61c228 339 case 16:
oscarmtzman 4:a6130c61c228 340 S = & arm_cfft_sR_f32_len16;
oscarmtzman 4:a6130c61c228 341 break;
oscarmtzman 4:a6130c61c228 342 case 32:
oscarmtzman 4:a6130c61c228 343 S = & arm_cfft_sR_f32_len32;
oscarmtzman 4:a6130c61c228 344 break;
oscarmtzman 4:a6130c61c228 345 case 64:
oscarmtzman 4:a6130c61c228 346 S = & arm_cfft_sR_f32_len64;
oscarmtzman 4:a6130c61c228 347 break;
oscarmtzman 4:a6130c61c228 348 case 128:
oscarmtzman 4:a6130c61c228 349 S = & arm_cfft_sR_f32_len128;
oscarmtzman 4:a6130c61c228 350 break;
oscarmtzman 4:a6130c61c228 351 case 256:
oscarmtzman 4:a6130c61c228 352 S = & arm_cfft_sR_f32_len256;
oscarmtzman 4:a6130c61c228 353 break;
oscarmtzman 4:a6130c61c228 354 case 512:
oscarmtzman 4:a6130c61c228 355 S = & arm_cfft_sR_f32_len512;
oscarmtzman 4:a6130c61c228 356 break;
oscarmtzman 4:a6130c61c228 357 case 1024:
oscarmtzman 4:a6130c61c228 358 S = & arm_cfft_sR_f32_len1024;
oscarmtzman 4:a6130c61c228 359 break;
oscarmtzman 4:a6130c61c228 360 case 2048:
oscarmtzman 4:a6130c61c228 361 S = & arm_cfft_sR_f32_len2048;
oscarmtzman 4:a6130c61c228 362 break;
oscarmtzman 4:a6130c61c228 363 case 4096:
oscarmtzman 4:a6130c61c228 364 S = & arm_cfft_sR_f32_len4096;
oscarmtzman 4:a6130c61c228 365 break;
frankvnk 2:035d551759a5 366 }
frankvnk 2:035d551759a5 367
frankvnk 0:0c037aff5039 368 while(1) {
frankvnk 0:0c037aff5039 369 // Calculate FFT if a full sample is available.
frankvnk 0:0c037aff5039 370 if (samplingIsDone()) {
oscarmtzman 4:a6130c61c228 371
oscarmtzman 4:a6130c61c228 372
frankvnk 0:0c037aff5039 373 // Run FFT on sample data.
frankvnk 2:035d551759a5 374 // Run FFT on sample data.
frankvnk 2:035d551759a5 375 arm_cfft_f32(S, samples, 0, 1);
frankvnk 0:0c037aff5039 376 // Calculate magnitude of complex numbers output by the FFT.
frankvnk 0:0c037aff5039 377 arm_cmplx_mag_f32(samples, magnitudes, FFT_SIZE);
oscarmtzman 4:a6130c61c228 378
oscarmtzman 4:a6130c61c228 379
oscarmtzman 4:a6130c61c228 380 /*for(int i=0; i<512; i=i+1) {
oscarmtzman 4:a6130c61c228 381 pc.printf("%d\t%f\n",i,magnitudes[i]);
oscarmtzman 4:a6130c61c228 382 }*/
oscarmtzman 4:a6130c61c228 383 for(int i=1; i<FFT_SIZE/2; i=i+1) {
oscarmtzman 4:a6130c61c228 384 if(magnitudes[i]>max) {
oscarmtzman 4:a6130c61c228 385 max=magnitudes[i];
oscarmtzman 4:a6130c61c228 386 inmax=i;
oscarmtzman 4:a6130c61c228 387 }
oscarmtzman 4:a6130c61c228 388 }
oscarmtzman 4:a6130c61c228 389
oscarmtzman 4:a6130c61c228 390 pulsocalculado=fs/(FFT_SIZE-1)*inmax*60;
oscarmtzman 4:a6130c61c228 391 pc.printf("%f\n",pulsocalculado);
oscarmtzman 3:f826669fc0a8 392
oscarmtzman 4:a6130c61c228 393 inmax=0;
frankvnk 0:0c037aff5039 394
frankvnk 0:0c037aff5039 395 if (LEDS_ENABLED == 1) {
frankvnk 0:0c037aff5039 396 spectrumLoop();
frankvnk 0:0c037aff5039 397 }
frankvnk 0:0c037aff5039 398
frankvnk 0:0c037aff5039 399 // Restart audio sampling.
frankvnk 0:0c037aff5039 400 samplingBegin();
frankvnk 0:0c037aff5039 401 }
frankvnk 0:0c037aff5039 402
frankvnk 0:0c037aff5039 403 // Parse any pending commands.
frankvnk 0:0c037aff5039 404 if(commandRecv) {
frankvnk 0:0c037aff5039 405 // pc.attach(NULL);
frankvnk 0:0c037aff5039 406 parseCommand(commandBuffer);
frankvnk 0:0c037aff5039 407 commandRecv = 0;
frankvnk 0:0c037aff5039 408 // Clear the input buffer
frankvnk 0:0c037aff5039 409 memset(commandBuffer, 0, sizeof(commandBuffer));
frankvnk 0:0c037aff5039 410 // pc.attach(&rxisr);
frankvnk 0:0c037aff5039 411 }
frankvnk 0:0c037aff5039 412 }
frankvnk 0:0c037aff5039 413 }