The official Mbed 2 C/C++ SDK provides the software platform and libraries to build your applications.

Dependents:   hello SerialTestv11 SerialTestv12 Sierpinski ... more

mbed 2

This is the mbed 2 library. If you'd like to learn about Mbed OS please see the mbed-os docs.

Committer:
<>
Date:
Tue Mar 14 16:20:51 2017 +0000
Revision:
138:093f2bd7b9eb
Parent:
115:87f2f5183dfb
Child:
145:64910690c574
Release 138 of the mbed library

Ports for Upcoming Targets


Fixes and Changes

3716: fix for issue #3715: correction in startup files for ARM and IAR, alignment of system_stm32f429xx.c files https://github.com/ARMmbed/mbed-os/pull/3716
3741: STM32 remove warning in hal_tick_32b.c file https://github.com/ARMmbed/mbed-os/pull/3741
3780: STM32L4 : Fix GPIO G port compatibility https://github.com/ARMmbed/mbed-os/pull/3780
3831: NCS36510: SPISLAVE enabled (Conflict resolved) https://github.com/ARMmbed/mbed-os/pull/3831
3836: Allow to redefine nRF's PSTORAGE_NUM_OF_PAGES outside of the mbed-os https://github.com/ARMmbed/mbed-os/pull/3836
3840: STM32: gpio SPEED - always set High Speed by default https://github.com/ARMmbed/mbed-os/pull/3840
3844: STM32 GPIO: Typo correction. Update comment (GPIO_IP_WITHOUT_BRR) https://github.com/ARMmbed/mbed-os/pull/3844
3850: STM32: change spi error to debug warning https://github.com/ARMmbed/mbed-os/pull/3850
3860: Define GPIO_IP_WITHOUT_BRR for xDot platform https://github.com/ARMmbed/mbed-os/pull/3860
3880: DISCO_F469NI: allow the use of CAN2 instance when CAN1 is not activated https://github.com/ARMmbed/mbed-os/pull/3880
3795: Fix pwm period calc https://github.com/ARMmbed/mbed-os/pull/3795
3828: STM32 CAN API: correct format and type https://github.com/ARMmbed/mbed-os/pull/3828
3842: TARGET_NRF: corrected spi_init() to properly handle re-initialization https://github.com/ARMmbed/mbed-os/pull/3842
3843: STM32L476xG: set APB2 clock to 80MHz (instead of 40MHz) https://github.com/ARMmbed/mbed-os/pull/3843
3879: NUCLEO_F446ZE: Add missing AnalogIn pins on PF_3, PF_5 and PF_10. https://github.com/ARMmbed/mbed-os/pull/3879
3902: Fix heap and stack size for NUCLEO_F746ZG https://github.com/ARMmbed/mbed-os/pull/3902
3829: can_write(): return error code when no tx mailboxes are available https://github.com/ARMmbed/mbed-os/pull/3829

Who changed what in which revision?

UserRevisionLine numberNew contents of line
Kojto 115:87f2f5183dfb 1 /* ----------------------------------------------------------------------
Kojto 115:87f2f5183dfb 2 * Copyright (C) 2010-2015 ARM Limited. All rights reserved.
Kojto 115:87f2f5183dfb 3 *
Kojto 115:87f2f5183dfb 4 * $Date: 19. March 2015
Kojto 115:87f2f5183dfb 5 * $Revision: V.1.4.5
Kojto 115:87f2f5183dfb 6 *
Kojto 115:87f2f5183dfb 7 * Project: CMSIS DSP Library
Kojto 115:87f2f5183dfb 8 * Title: arm_math.h
Kojto 115:87f2f5183dfb 9 *
Kojto 115:87f2f5183dfb 10 * Description: Public header file for CMSIS DSP Library
Kojto 115:87f2f5183dfb 11 *
Kojto 115:87f2f5183dfb 12 * Target Processor: Cortex-M7/Cortex-M4/Cortex-M3/Cortex-M0
Kojto 115:87f2f5183dfb 13 *
Kojto 115:87f2f5183dfb 14 * Redistribution and use in source and binary forms, with or without
Kojto 115:87f2f5183dfb 15 * modification, are permitted provided that the following conditions
Kojto 115:87f2f5183dfb 16 * are met:
Kojto 115:87f2f5183dfb 17 * - Redistributions of source code must retain the above copyright
Kojto 115:87f2f5183dfb 18 * notice, this list of conditions and the following disclaimer.
Kojto 115:87f2f5183dfb 19 * - Redistributions in binary form must reproduce the above copyright
Kojto 115:87f2f5183dfb 20 * notice, this list of conditions and the following disclaimer in
Kojto 115:87f2f5183dfb 21 * the documentation and/or other materials provided with the
Kojto 115:87f2f5183dfb 22 * distribution.
Kojto 115:87f2f5183dfb 23 * - Neither the name of ARM LIMITED nor the names of its contributors
Kojto 115:87f2f5183dfb 24 * may be used to endorse or promote products derived from this
Kojto 115:87f2f5183dfb 25 * software without specific prior written permission.
Kojto 115:87f2f5183dfb 26 *
Kojto 115:87f2f5183dfb 27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
Kojto 115:87f2f5183dfb 28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
Kojto 115:87f2f5183dfb 29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
Kojto 115:87f2f5183dfb 30 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
Kojto 115:87f2f5183dfb 31 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
Kojto 115:87f2f5183dfb 32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
Kojto 115:87f2f5183dfb 33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
Kojto 115:87f2f5183dfb 34 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
Kojto 115:87f2f5183dfb 35 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
Kojto 115:87f2f5183dfb 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
Kojto 115:87f2f5183dfb 37 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
Kojto 115:87f2f5183dfb 38 * POSSIBILITY OF SUCH DAMAGE.
Kojto 115:87f2f5183dfb 39 * -------------------------------------------------------------------- */
Kojto 115:87f2f5183dfb 40
Kojto 115:87f2f5183dfb 41 /**
Kojto 115:87f2f5183dfb 42 \mainpage CMSIS DSP Software Library
Kojto 115:87f2f5183dfb 43 *
Kojto 115:87f2f5183dfb 44 * Introduction
Kojto 115:87f2f5183dfb 45 * ------------
Kojto 115:87f2f5183dfb 46 *
Kojto 115:87f2f5183dfb 47 * This user manual describes the CMSIS DSP software library,
Kojto 115:87f2f5183dfb 48 * a suite of common signal processing functions for use on Cortex-M processor based devices.
Kojto 115:87f2f5183dfb 49 *
Kojto 115:87f2f5183dfb 50 * The library is divided into a number of functions each covering a specific category:
Kojto 115:87f2f5183dfb 51 * - Basic math functions
Kojto 115:87f2f5183dfb 52 * - Fast math functions
Kojto 115:87f2f5183dfb 53 * - Complex math functions
Kojto 115:87f2f5183dfb 54 * - Filters
Kojto 115:87f2f5183dfb 55 * - Matrix functions
Kojto 115:87f2f5183dfb 56 * - Transforms
Kojto 115:87f2f5183dfb 57 * - Motor control functions
Kojto 115:87f2f5183dfb 58 * - Statistical functions
Kojto 115:87f2f5183dfb 59 * - Support functions
Kojto 115:87f2f5183dfb 60 * - Interpolation functions
Kojto 115:87f2f5183dfb 61 *
Kojto 115:87f2f5183dfb 62 * The library has separate functions for operating on 8-bit integers, 16-bit integers,
Kojto 115:87f2f5183dfb 63 * 32-bit integer and 32-bit floating-point values.
Kojto 115:87f2f5183dfb 64 *
Kojto 115:87f2f5183dfb 65 * Using the Library
Kojto 115:87f2f5183dfb 66 * ------------
Kojto 115:87f2f5183dfb 67 *
Kojto 115:87f2f5183dfb 68 * The library installer contains prebuilt versions of the libraries in the <code>Lib</code> folder.
Kojto 115:87f2f5183dfb 69 * - arm_cortexM7lfdp_math.lib (Little endian and Double Precision Floating Point Unit on Cortex-M7)
Kojto 115:87f2f5183dfb 70 * - arm_cortexM7bfdp_math.lib (Big endian and Double Precision Floating Point Unit on Cortex-M7)
Kojto 115:87f2f5183dfb 71 * - arm_cortexM7lfsp_math.lib (Little endian and Single Precision Floating Point Unit on Cortex-M7)
Kojto 115:87f2f5183dfb 72 * - arm_cortexM7bfsp_math.lib (Big endian and Single Precision Floating Point Unit on Cortex-M7)
Kojto 115:87f2f5183dfb 73 * - arm_cortexM7l_math.lib (Little endian on Cortex-M7)
Kojto 115:87f2f5183dfb 74 * - arm_cortexM7b_math.lib (Big endian on Cortex-M7)
Kojto 115:87f2f5183dfb 75 * - arm_cortexM4lf_math.lib (Little endian and Floating Point Unit on Cortex-M4)
Kojto 115:87f2f5183dfb 76 * - arm_cortexM4bf_math.lib (Big endian and Floating Point Unit on Cortex-M4)
Kojto 115:87f2f5183dfb 77 * - arm_cortexM4l_math.lib (Little endian on Cortex-M4)
Kojto 115:87f2f5183dfb 78 * - arm_cortexM4b_math.lib (Big endian on Cortex-M4)
Kojto 115:87f2f5183dfb 79 * - arm_cortexM3l_math.lib (Little endian on Cortex-M3)
Kojto 115:87f2f5183dfb 80 * - arm_cortexM3b_math.lib (Big endian on Cortex-M3)
Kojto 115:87f2f5183dfb 81 * - arm_cortexM0l_math.lib (Little endian on Cortex-M0 / CortexM0+)
Kojto 115:87f2f5183dfb 82 * - arm_cortexM0b_math.lib (Big endian on Cortex-M0 / CortexM0+)
Kojto 115:87f2f5183dfb 83 *
Kojto 115:87f2f5183dfb 84 * The library functions are declared in the public file <code>arm_math.h</code> which is placed in the <code>Include</code> folder.
Kojto 115:87f2f5183dfb 85 * Simply include this file and link the appropriate library in the application and begin calling the library functions. The Library supports single
Kojto 115:87f2f5183dfb 86 * public header file <code> arm_math.h</code> for Cortex-M7/M4/M3/M0/M0+ with little endian and big endian. Same header file will be used for floating point unit(FPU) variants.
Kojto 115:87f2f5183dfb 87 * Define the appropriate pre processor MACRO ARM_MATH_CM7 or ARM_MATH_CM4 or ARM_MATH_CM3 or
Kojto 115:87f2f5183dfb 88 * ARM_MATH_CM0 or ARM_MATH_CM0PLUS depending on the target processor in the application.
Kojto 115:87f2f5183dfb 89 *
Kojto 115:87f2f5183dfb 90 * Examples
Kojto 115:87f2f5183dfb 91 * --------
Kojto 115:87f2f5183dfb 92 *
Kojto 115:87f2f5183dfb 93 * The library ships with a number of examples which demonstrate how to use the library functions.
Kojto 115:87f2f5183dfb 94 *
Kojto 115:87f2f5183dfb 95 * Toolchain Support
Kojto 115:87f2f5183dfb 96 * ------------
Kojto 115:87f2f5183dfb 97 *
Kojto 115:87f2f5183dfb 98 * The library has been developed and tested with MDK-ARM version 5.14.0.0
Kojto 115:87f2f5183dfb 99 * The library is being tested in GCC and IAR toolchains and updates on this activity will be made available shortly.
Kojto 115:87f2f5183dfb 100 *
Kojto 115:87f2f5183dfb 101 * Building the Library
Kojto 115:87f2f5183dfb 102 * ------------
Kojto 115:87f2f5183dfb 103 *
Kojto 115:87f2f5183dfb 104 * The library installer contains a project file to re build libraries on MDK-ARM Tool chain in the <code>CMSIS\\DSP_Lib\\Source\\ARM</code> folder.
Kojto 115:87f2f5183dfb 105 * - arm_cortexM_math.uvprojx
Kojto 115:87f2f5183dfb 106 *
Kojto 115:87f2f5183dfb 107 *
Kojto 115:87f2f5183dfb 108 * The libraries can be built by opening the arm_cortexM_math.uvprojx project in MDK-ARM, selecting a specific target, and defining the optional pre processor MACROs detailed above.
Kojto 115:87f2f5183dfb 109 *
Kojto 115:87f2f5183dfb 110 * Pre-processor Macros
Kojto 115:87f2f5183dfb 111 * ------------
Kojto 115:87f2f5183dfb 112 *
Kojto 115:87f2f5183dfb 113 * Each library project have differant pre-processor macros.
Kojto 115:87f2f5183dfb 114 *
Kojto 115:87f2f5183dfb 115 * - UNALIGNED_SUPPORT_DISABLE:
Kojto 115:87f2f5183dfb 116 *
Kojto 115:87f2f5183dfb 117 * Define macro UNALIGNED_SUPPORT_DISABLE, If the silicon does not support unaligned memory access
Kojto 115:87f2f5183dfb 118 *
Kojto 115:87f2f5183dfb 119 * - ARM_MATH_BIG_ENDIAN:
Kojto 115:87f2f5183dfb 120 *
Kojto 115:87f2f5183dfb 121 * Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets.
Kojto 115:87f2f5183dfb 122 *
Kojto 115:87f2f5183dfb 123 * - ARM_MATH_MATRIX_CHECK:
Kojto 115:87f2f5183dfb 124 *
Kojto 115:87f2f5183dfb 125 * Define macro ARM_MATH_MATRIX_CHECK for checking on the input and output sizes of matrices
Kojto 115:87f2f5183dfb 126 *
Kojto 115:87f2f5183dfb 127 * - ARM_MATH_ROUNDING:
Kojto 115:87f2f5183dfb 128 *
Kojto 115:87f2f5183dfb 129 * Define macro ARM_MATH_ROUNDING for rounding on support functions
Kojto 115:87f2f5183dfb 130 *
Kojto 115:87f2f5183dfb 131 * - ARM_MATH_CMx:
Kojto 115:87f2f5183dfb 132 *
Kojto 115:87f2f5183dfb 133 * Define macro ARM_MATH_CM4 for building the library on Cortex-M4 target, ARM_MATH_CM3 for building library on Cortex-M3 target
Kojto 115:87f2f5183dfb 134 * and ARM_MATH_CM0 for building library on Cortex-M0 target, ARM_MATH_CM0PLUS for building library on Cortex-M0+ target, and
Kojto 115:87f2f5183dfb 135 * ARM_MATH_CM7 for building the library on cortex-M7.
Kojto 115:87f2f5183dfb 136 *
Kojto 115:87f2f5183dfb 137 * - __FPU_PRESENT:
Kojto 115:87f2f5183dfb 138 *
Kojto 115:87f2f5183dfb 139 * Initialize macro __FPU_PRESENT = 1 when building on FPU supported Targets. Enable this macro for M4bf and M4lf libraries
Kojto 115:87f2f5183dfb 140 *
Kojto 115:87f2f5183dfb 141 * <hr>
Kojto 115:87f2f5183dfb 142 * CMSIS-DSP in ARM::CMSIS Pack
Kojto 115:87f2f5183dfb 143 * -----------------------------
Kojto 115:87f2f5183dfb 144 *
Kojto 115:87f2f5183dfb 145 * The following files relevant to CMSIS-DSP are present in the <b>ARM::CMSIS</b> Pack directories:
Kojto 115:87f2f5183dfb 146 * |File/Folder |Content |
Kojto 115:87f2f5183dfb 147 * |------------------------------|------------------------------------------------------------------------|
Kojto 115:87f2f5183dfb 148 * |\b CMSIS\\Documentation\\DSP | This documentation |
Kojto 115:87f2f5183dfb 149 * |\b CMSIS\\DSP_Lib | Software license agreement (license.txt) |
Kojto 115:87f2f5183dfb 150 * |\b CMSIS\\DSP_Lib\\Examples | Example projects demonstrating the usage of the library functions |
Kojto 115:87f2f5183dfb 151 * |\b CMSIS\\DSP_Lib\\Source | Source files for rebuilding the library |
Kojto 115:87f2f5183dfb 152 *
Kojto 115:87f2f5183dfb 153 * <hr>
Kojto 115:87f2f5183dfb 154 * Revision History of CMSIS-DSP
Kojto 115:87f2f5183dfb 155 * ------------
Kojto 115:87f2f5183dfb 156 * Please refer to \ref ChangeLog_pg.
Kojto 115:87f2f5183dfb 157 *
Kojto 115:87f2f5183dfb 158 * Copyright Notice
Kojto 115:87f2f5183dfb 159 * ------------
Kojto 115:87f2f5183dfb 160 *
Kojto 115:87f2f5183dfb 161 * Copyright (C) 2010-2015 ARM Limited. All rights reserved.
Kojto 115:87f2f5183dfb 162 */
Kojto 115:87f2f5183dfb 163
Kojto 115:87f2f5183dfb 164
Kojto 115:87f2f5183dfb 165 /**
Kojto 115:87f2f5183dfb 166 * @defgroup groupMath Basic Math Functions
Kojto 115:87f2f5183dfb 167 */
Kojto 115:87f2f5183dfb 168
Kojto 115:87f2f5183dfb 169 /**
Kojto 115:87f2f5183dfb 170 * @defgroup groupFastMath Fast Math Functions
Kojto 115:87f2f5183dfb 171 * This set of functions provides a fast approximation to sine, cosine, and square root.
Kojto 115:87f2f5183dfb 172 * As compared to most of the other functions in the CMSIS math library, the fast math functions
Kojto 115:87f2f5183dfb 173 * operate on individual values and not arrays.
Kojto 115:87f2f5183dfb 174 * There are separate functions for Q15, Q31, and floating-point data.
Kojto 115:87f2f5183dfb 175 *
Kojto 115:87f2f5183dfb 176 */
Kojto 115:87f2f5183dfb 177
Kojto 115:87f2f5183dfb 178 /**
Kojto 115:87f2f5183dfb 179 * @defgroup groupCmplxMath Complex Math Functions
Kojto 115:87f2f5183dfb 180 * This set of functions operates on complex data vectors.
Kojto 115:87f2f5183dfb 181 * The data in the complex arrays is stored in an interleaved fashion
Kojto 115:87f2f5183dfb 182 * (real, imag, real, imag, ...).
Kojto 115:87f2f5183dfb 183 * In the API functions, the number of samples in a complex array refers
Kojto 115:87f2f5183dfb 184 * to the number of complex values; the array contains twice this number of
Kojto 115:87f2f5183dfb 185 * real values.
Kojto 115:87f2f5183dfb 186 */
Kojto 115:87f2f5183dfb 187
Kojto 115:87f2f5183dfb 188 /**
Kojto 115:87f2f5183dfb 189 * @defgroup groupFilters Filtering Functions
Kojto 115:87f2f5183dfb 190 */
Kojto 115:87f2f5183dfb 191
Kojto 115:87f2f5183dfb 192 /**
Kojto 115:87f2f5183dfb 193 * @defgroup groupMatrix Matrix Functions
Kojto 115:87f2f5183dfb 194 *
Kojto 115:87f2f5183dfb 195 * This set of functions provides basic matrix math operations.
Kojto 115:87f2f5183dfb 196 * The functions operate on matrix data structures. For example,
Kojto 115:87f2f5183dfb 197 * the type
Kojto 115:87f2f5183dfb 198 * definition for the floating-point matrix structure is shown
Kojto 115:87f2f5183dfb 199 * below:
Kojto 115:87f2f5183dfb 200 * <pre>
Kojto 115:87f2f5183dfb 201 * typedef struct
Kojto 115:87f2f5183dfb 202 * {
Kojto 115:87f2f5183dfb 203 * uint16_t numRows; // number of rows of the matrix.
Kojto 115:87f2f5183dfb 204 * uint16_t numCols; // number of columns of the matrix.
Kojto 115:87f2f5183dfb 205 * float32_t *pData; // points to the data of the matrix.
Kojto 115:87f2f5183dfb 206 * } arm_matrix_instance_f32;
Kojto 115:87f2f5183dfb 207 * </pre>
Kojto 115:87f2f5183dfb 208 * There are similar definitions for Q15 and Q31 data types.
Kojto 115:87f2f5183dfb 209 *
Kojto 115:87f2f5183dfb 210 * The structure specifies the size of the matrix and then points to
Kojto 115:87f2f5183dfb 211 * an array of data. The array is of size <code>numRows X numCols</code>
Kojto 115:87f2f5183dfb 212 * and the values are arranged in row order. That is, the
Kojto 115:87f2f5183dfb 213 * matrix element (i, j) is stored at:
Kojto 115:87f2f5183dfb 214 * <pre>
Kojto 115:87f2f5183dfb 215 * pData[i*numCols + j]
Kojto 115:87f2f5183dfb 216 * </pre>
Kojto 115:87f2f5183dfb 217 *
Kojto 115:87f2f5183dfb 218 * \par Init Functions
Kojto 115:87f2f5183dfb 219 * There is an associated initialization function for each type of matrix
Kojto 115:87f2f5183dfb 220 * data structure.
Kojto 115:87f2f5183dfb 221 * The initialization function sets the values of the internal structure fields.
Kojto 115:87f2f5183dfb 222 * Refer to the function <code>arm_mat_init_f32()</code>, <code>arm_mat_init_q31()</code>
Kojto 115:87f2f5183dfb 223 * and <code>arm_mat_init_q15()</code> for floating-point, Q31 and Q15 types, respectively.
Kojto 115:87f2f5183dfb 224 *
Kojto 115:87f2f5183dfb 225 * \par
Kojto 115:87f2f5183dfb 226 * Use of the initialization function is optional. However, if initialization function is used
Kojto 115:87f2f5183dfb 227 * then the instance structure cannot be placed into a const data section.
Kojto 115:87f2f5183dfb 228 * To place the instance structure in a const data
Kojto 115:87f2f5183dfb 229 * section, manually initialize the data structure. For example:
Kojto 115:87f2f5183dfb 230 * <pre>
Kojto 115:87f2f5183dfb 231 * <code>arm_matrix_instance_f32 S = {nRows, nColumns, pData};</code>
Kojto 115:87f2f5183dfb 232 * <code>arm_matrix_instance_q31 S = {nRows, nColumns, pData};</code>
Kojto 115:87f2f5183dfb 233 * <code>arm_matrix_instance_q15 S = {nRows, nColumns, pData};</code>
Kojto 115:87f2f5183dfb 234 * </pre>
Kojto 115:87f2f5183dfb 235 * where <code>nRows</code> specifies the number of rows, <code>nColumns</code>
Kojto 115:87f2f5183dfb 236 * specifies the number of columns, and <code>pData</code> points to the
Kojto 115:87f2f5183dfb 237 * data array.
Kojto 115:87f2f5183dfb 238 *
Kojto 115:87f2f5183dfb 239 * \par Size Checking
Kojto 115:87f2f5183dfb 240 * By default all of the matrix functions perform size checking on the input and
Kojto 115:87f2f5183dfb 241 * output matrices. For example, the matrix addition function verifies that the
Kojto 115:87f2f5183dfb 242 * two input matrices and the output matrix all have the same number of rows and
Kojto 115:87f2f5183dfb 243 * columns. If the size check fails the functions return:
Kojto 115:87f2f5183dfb 244 * <pre>
Kojto 115:87f2f5183dfb 245 * ARM_MATH_SIZE_MISMATCH
Kojto 115:87f2f5183dfb 246 * </pre>
Kojto 115:87f2f5183dfb 247 * Otherwise the functions return
Kojto 115:87f2f5183dfb 248 * <pre>
Kojto 115:87f2f5183dfb 249 * ARM_MATH_SUCCESS
Kojto 115:87f2f5183dfb 250 * </pre>
Kojto 115:87f2f5183dfb 251 * There is some overhead associated with this matrix size checking.
Kojto 115:87f2f5183dfb 252 * The matrix size checking is enabled via the \#define
Kojto 115:87f2f5183dfb 253 * <pre>
Kojto 115:87f2f5183dfb 254 * ARM_MATH_MATRIX_CHECK
Kojto 115:87f2f5183dfb 255 * </pre>
Kojto 115:87f2f5183dfb 256 * within the library project settings. By default this macro is defined
Kojto 115:87f2f5183dfb 257 * and size checking is enabled. By changing the project settings and
Kojto 115:87f2f5183dfb 258 * undefining this macro size checking is eliminated and the functions
Kojto 115:87f2f5183dfb 259 * run a bit faster. With size checking disabled the functions always
Kojto 115:87f2f5183dfb 260 * return <code>ARM_MATH_SUCCESS</code>.
Kojto 115:87f2f5183dfb 261 */
Kojto 115:87f2f5183dfb 262
Kojto 115:87f2f5183dfb 263 /**
Kojto 115:87f2f5183dfb 264 * @defgroup groupTransforms Transform Functions
Kojto 115:87f2f5183dfb 265 */
Kojto 115:87f2f5183dfb 266
Kojto 115:87f2f5183dfb 267 /**
Kojto 115:87f2f5183dfb 268 * @defgroup groupController Controller Functions
Kojto 115:87f2f5183dfb 269 */
Kojto 115:87f2f5183dfb 270
Kojto 115:87f2f5183dfb 271 /**
Kojto 115:87f2f5183dfb 272 * @defgroup groupStats Statistics Functions
Kojto 115:87f2f5183dfb 273 */
Kojto 115:87f2f5183dfb 274 /**
Kojto 115:87f2f5183dfb 275 * @defgroup groupSupport Support Functions
Kojto 115:87f2f5183dfb 276 */
Kojto 115:87f2f5183dfb 277
Kojto 115:87f2f5183dfb 278 /**
Kojto 115:87f2f5183dfb 279 * @defgroup groupInterpolation Interpolation Functions
Kojto 115:87f2f5183dfb 280 * These functions perform 1- and 2-dimensional interpolation of data.
Kojto 115:87f2f5183dfb 281 * Linear interpolation is used for 1-dimensional data and
Kojto 115:87f2f5183dfb 282 * bilinear interpolation is used for 2-dimensional data.
Kojto 115:87f2f5183dfb 283 */
Kojto 115:87f2f5183dfb 284
Kojto 115:87f2f5183dfb 285 /**
Kojto 115:87f2f5183dfb 286 * @defgroup groupExamples Examples
Kojto 115:87f2f5183dfb 287 */
Kojto 115:87f2f5183dfb 288 #ifndef _ARM_MATH_H
Kojto 115:87f2f5183dfb 289 #define _ARM_MATH_H
Kojto 115:87f2f5183dfb 290
Kojto 115:87f2f5183dfb 291 #define __CMSIS_GENERIC /* disable NVIC and Systick functions */
Kojto 115:87f2f5183dfb 292
Kojto 115:87f2f5183dfb 293 #if defined(ARM_MATH_CM7)
Kojto 115:87f2f5183dfb 294 #include "core_cm7.h"
Kojto 115:87f2f5183dfb 295 #elif defined (ARM_MATH_CM4)
Kojto 115:87f2f5183dfb 296 #include "core_cm4.h"
Kojto 115:87f2f5183dfb 297 #elif defined (ARM_MATH_CM3)
Kojto 115:87f2f5183dfb 298 #include "core_cm3.h"
Kojto 115:87f2f5183dfb 299 #elif defined (ARM_MATH_CM0)
Kojto 115:87f2f5183dfb 300 #include "core_cm0.h"
Kojto 115:87f2f5183dfb 301 #define ARM_MATH_CM0_FAMILY
Kojto 115:87f2f5183dfb 302 #elif defined (ARM_MATH_CM0PLUS)
Kojto 115:87f2f5183dfb 303 #include "core_cm0plus.h"
Kojto 115:87f2f5183dfb 304 #define ARM_MATH_CM0_FAMILY
Kojto 115:87f2f5183dfb 305 #else
Kojto 115:87f2f5183dfb 306 #error "Define according the used Cortex core ARM_MATH_CM7, ARM_MATH_CM4, ARM_MATH_CM3, ARM_MATH_CM0PLUS or ARM_MATH_CM0"
Kojto 115:87f2f5183dfb 307 #endif
Kojto 115:87f2f5183dfb 308
Kojto 115:87f2f5183dfb 309 #undef __CMSIS_GENERIC /* enable NVIC and Systick functions */
Kojto 115:87f2f5183dfb 310 #include "string.h"
Kojto 115:87f2f5183dfb 311 #include "math.h"
Kojto 115:87f2f5183dfb 312 #ifdef __cplusplus
Kojto 115:87f2f5183dfb 313 extern "C"
Kojto 115:87f2f5183dfb 314 {
Kojto 115:87f2f5183dfb 315 #endif
Kojto 115:87f2f5183dfb 316
Kojto 115:87f2f5183dfb 317
Kojto 115:87f2f5183dfb 318 /**
Kojto 115:87f2f5183dfb 319 * @brief Macros required for reciprocal calculation in Normalized LMS
Kojto 115:87f2f5183dfb 320 */
Kojto 115:87f2f5183dfb 321
Kojto 115:87f2f5183dfb 322 #define DELTA_Q31 (0x100)
Kojto 115:87f2f5183dfb 323 #define DELTA_Q15 0x5
Kojto 115:87f2f5183dfb 324 #define INDEX_MASK 0x0000003F
Kojto 115:87f2f5183dfb 325 #ifndef PI
Kojto 115:87f2f5183dfb 326 #define PI 3.14159265358979f
Kojto 115:87f2f5183dfb 327 #endif
Kojto 115:87f2f5183dfb 328
Kojto 115:87f2f5183dfb 329 /**
Kojto 115:87f2f5183dfb 330 * @brief Macros required for SINE and COSINE Fast math approximations
Kojto 115:87f2f5183dfb 331 */
Kojto 115:87f2f5183dfb 332
Kojto 115:87f2f5183dfb 333 #define FAST_MATH_TABLE_SIZE 512
Kojto 115:87f2f5183dfb 334 #define FAST_MATH_Q31_SHIFT (32 - 10)
Kojto 115:87f2f5183dfb 335 #define FAST_MATH_Q15_SHIFT (16 - 10)
Kojto 115:87f2f5183dfb 336 #define CONTROLLER_Q31_SHIFT (32 - 9)
Kojto 115:87f2f5183dfb 337 #define TABLE_SIZE 256
Kojto 115:87f2f5183dfb 338 #define TABLE_SPACING_Q31 0x400000
Kojto 115:87f2f5183dfb 339 #define TABLE_SPACING_Q15 0x80
Kojto 115:87f2f5183dfb 340
Kojto 115:87f2f5183dfb 341 /**
Kojto 115:87f2f5183dfb 342 * @brief Macros required for SINE and COSINE Controller functions
Kojto 115:87f2f5183dfb 343 */
Kojto 115:87f2f5183dfb 344 /* 1.31(q31) Fixed value of 2/360 */
Kojto 115:87f2f5183dfb 345 /* -1 to +1 is divided into 360 values so total spacing is (2/360) */
Kojto 115:87f2f5183dfb 346 #define INPUT_SPACING 0xB60B61
Kojto 115:87f2f5183dfb 347
Kojto 115:87f2f5183dfb 348 /**
Kojto 115:87f2f5183dfb 349 * @brief Macro for Unaligned Support
Kojto 115:87f2f5183dfb 350 */
Kojto 115:87f2f5183dfb 351 #ifndef UNALIGNED_SUPPORT_DISABLE
Kojto 115:87f2f5183dfb 352 #define ALIGN4
Kojto 115:87f2f5183dfb 353 #else
Kojto 115:87f2f5183dfb 354 #if defined (__GNUC__)
Kojto 115:87f2f5183dfb 355 #define ALIGN4 __attribute__((aligned(4)))
Kojto 115:87f2f5183dfb 356 #else
Kojto 115:87f2f5183dfb 357 #define ALIGN4 __align(4)
Kojto 115:87f2f5183dfb 358 #endif
Kojto 115:87f2f5183dfb 359 #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
Kojto 115:87f2f5183dfb 360
Kojto 115:87f2f5183dfb 361 /**
Kojto 115:87f2f5183dfb 362 * @brief Error status returned by some functions in the library.
Kojto 115:87f2f5183dfb 363 */
Kojto 115:87f2f5183dfb 364
Kojto 115:87f2f5183dfb 365 typedef enum
Kojto 115:87f2f5183dfb 366 {
Kojto 115:87f2f5183dfb 367 ARM_MATH_SUCCESS = 0, /**< No error */
Kojto 115:87f2f5183dfb 368 ARM_MATH_ARGUMENT_ERROR = -1, /**< One or more arguments are incorrect */
Kojto 115:87f2f5183dfb 369 ARM_MATH_LENGTH_ERROR = -2, /**< Length of data buffer is incorrect */
Kojto 115:87f2f5183dfb 370 ARM_MATH_SIZE_MISMATCH = -3, /**< Size of matrices is not compatible with the operation. */
Kojto 115:87f2f5183dfb 371 ARM_MATH_NANINF = -4, /**< Not-a-number (NaN) or infinity is generated */
Kojto 115:87f2f5183dfb 372 ARM_MATH_SINGULAR = -5, /**< Generated by matrix inversion if the input matrix is singular and cannot be inverted. */
Kojto 115:87f2f5183dfb 373 ARM_MATH_TEST_FAILURE = -6 /**< Test Failed */
Kojto 115:87f2f5183dfb 374 } arm_status;
Kojto 115:87f2f5183dfb 375
Kojto 115:87f2f5183dfb 376 /**
Kojto 115:87f2f5183dfb 377 * @brief 8-bit fractional data type in 1.7 format.
Kojto 115:87f2f5183dfb 378 */
Kojto 115:87f2f5183dfb 379 typedef int8_t q7_t;
Kojto 115:87f2f5183dfb 380
Kojto 115:87f2f5183dfb 381 /**
Kojto 115:87f2f5183dfb 382 * @brief 16-bit fractional data type in 1.15 format.
Kojto 115:87f2f5183dfb 383 */
Kojto 115:87f2f5183dfb 384 typedef int16_t q15_t;
Kojto 115:87f2f5183dfb 385
Kojto 115:87f2f5183dfb 386 /**
Kojto 115:87f2f5183dfb 387 * @brief 32-bit fractional data type in 1.31 format.
Kojto 115:87f2f5183dfb 388 */
Kojto 115:87f2f5183dfb 389 typedef int32_t q31_t;
Kojto 115:87f2f5183dfb 390
Kojto 115:87f2f5183dfb 391 /**
Kojto 115:87f2f5183dfb 392 * @brief 64-bit fractional data type in 1.63 format.
Kojto 115:87f2f5183dfb 393 */
Kojto 115:87f2f5183dfb 394 typedef int64_t q63_t;
Kojto 115:87f2f5183dfb 395
Kojto 115:87f2f5183dfb 396 /**
Kojto 115:87f2f5183dfb 397 * @brief 32-bit floating-point type definition.
Kojto 115:87f2f5183dfb 398 */
Kojto 115:87f2f5183dfb 399 typedef float float32_t;
Kojto 115:87f2f5183dfb 400
Kojto 115:87f2f5183dfb 401 /**
Kojto 115:87f2f5183dfb 402 * @brief 64-bit floating-point type definition.
Kojto 115:87f2f5183dfb 403 */
Kojto 115:87f2f5183dfb 404 typedef double float64_t;
Kojto 115:87f2f5183dfb 405
Kojto 115:87f2f5183dfb 406 /**
Kojto 115:87f2f5183dfb 407 * @brief definition to read/write two 16 bit values.
Kojto 115:87f2f5183dfb 408 */
Kojto 115:87f2f5183dfb 409 #if defined __CC_ARM
Kojto 115:87f2f5183dfb 410 #define __SIMD32_TYPE int32_t __packed
Kojto 115:87f2f5183dfb 411 #define CMSIS_UNUSED __attribute__((unused))
Kojto 115:87f2f5183dfb 412 #elif defined __ICCARM__
Kojto 115:87f2f5183dfb 413 #define __SIMD32_TYPE int32_t __packed
Kojto 115:87f2f5183dfb 414 #define CMSIS_UNUSED
Kojto 115:87f2f5183dfb 415 #elif defined __GNUC__
Kojto 115:87f2f5183dfb 416 #define __SIMD32_TYPE int32_t
Kojto 115:87f2f5183dfb 417 #define CMSIS_UNUSED __attribute__((unused))
Kojto 115:87f2f5183dfb 418 #elif defined __CSMC__ /* Cosmic */
Kojto 115:87f2f5183dfb 419 #define __SIMD32_TYPE int32_t
Kojto 115:87f2f5183dfb 420 #define CMSIS_UNUSED
Kojto 115:87f2f5183dfb 421 #elif defined __TASKING__
Kojto 115:87f2f5183dfb 422 #define __SIMD32_TYPE __unaligned int32_t
Kojto 115:87f2f5183dfb 423 #define CMSIS_UNUSED
Kojto 115:87f2f5183dfb 424 #else
Kojto 115:87f2f5183dfb 425 #error Unknown compiler
Kojto 115:87f2f5183dfb 426 #endif
Kojto 115:87f2f5183dfb 427
Kojto 115:87f2f5183dfb 428 #define __SIMD32(addr) (*(__SIMD32_TYPE **) & (addr))
Kojto 115:87f2f5183dfb 429 #define __SIMD32_CONST(addr) ((__SIMD32_TYPE *)(addr))
Kojto 115:87f2f5183dfb 430
Kojto 115:87f2f5183dfb 431 #define _SIMD32_OFFSET(addr) (*(__SIMD32_TYPE *) (addr))
Kojto 115:87f2f5183dfb 432
Kojto 115:87f2f5183dfb 433 #define __SIMD64(addr) (*(int64_t **) & (addr))
Kojto 115:87f2f5183dfb 434
Kojto 115:87f2f5183dfb 435 #if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY)
Kojto 115:87f2f5183dfb 436 /**
Kojto 115:87f2f5183dfb 437 * @brief definition to pack two 16 bit values.
Kojto 115:87f2f5183dfb 438 */
Kojto 115:87f2f5183dfb 439 #define __PKHBT(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0x0000FFFF) | \
Kojto 115:87f2f5183dfb 440 (((int32_t)(ARG2) << ARG3) & (int32_t)0xFFFF0000) )
Kojto 115:87f2f5183dfb 441 #define __PKHTB(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0xFFFF0000) | \
Kojto 115:87f2f5183dfb 442 (((int32_t)(ARG2) >> ARG3) & (int32_t)0x0000FFFF) )
Kojto 115:87f2f5183dfb 443
Kojto 115:87f2f5183dfb 444 #endif
Kojto 115:87f2f5183dfb 445
Kojto 115:87f2f5183dfb 446
Kojto 115:87f2f5183dfb 447 /**
Kojto 115:87f2f5183dfb 448 * @brief definition to pack four 8 bit values.
Kojto 115:87f2f5183dfb 449 */
Kojto 115:87f2f5183dfb 450 #ifndef ARM_MATH_BIG_ENDIAN
Kojto 115:87f2f5183dfb 451
Kojto 115:87f2f5183dfb 452 #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) << 0) & (int32_t)0x000000FF) | \
Kojto 115:87f2f5183dfb 453 (((int32_t)(v1) << 8) & (int32_t)0x0000FF00) | \
Kojto 115:87f2f5183dfb 454 (((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | \
Kojto 115:87f2f5183dfb 455 (((int32_t)(v3) << 24) & (int32_t)0xFF000000) )
Kojto 115:87f2f5183dfb 456 #else
Kojto 115:87f2f5183dfb 457
Kojto 115:87f2f5183dfb 458 #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) << 0) & (int32_t)0x000000FF) | \
Kojto 115:87f2f5183dfb 459 (((int32_t)(v2) << 8) & (int32_t)0x0000FF00) | \
Kojto 115:87f2f5183dfb 460 (((int32_t)(v1) << 16) & (int32_t)0x00FF0000) | \
Kojto 115:87f2f5183dfb 461 (((int32_t)(v0) << 24) & (int32_t)0xFF000000) )
Kojto 115:87f2f5183dfb 462
Kojto 115:87f2f5183dfb 463 #endif
Kojto 115:87f2f5183dfb 464
Kojto 115:87f2f5183dfb 465
Kojto 115:87f2f5183dfb 466 /**
Kojto 115:87f2f5183dfb 467 * @brief Clips Q63 to Q31 values.
Kojto 115:87f2f5183dfb 468 */
Kojto 115:87f2f5183dfb 469 static __INLINE q31_t clip_q63_to_q31(
Kojto 115:87f2f5183dfb 470 q63_t x)
Kojto 115:87f2f5183dfb 471 {
Kojto 115:87f2f5183dfb 472 return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
Kojto 115:87f2f5183dfb 473 ((0x7FFFFFFF ^ ((q31_t) (x >> 63)))) : (q31_t) x;
Kojto 115:87f2f5183dfb 474 }
Kojto 115:87f2f5183dfb 475
Kojto 115:87f2f5183dfb 476 /**
Kojto 115:87f2f5183dfb 477 * @brief Clips Q63 to Q15 values.
Kojto 115:87f2f5183dfb 478 */
Kojto 115:87f2f5183dfb 479 static __INLINE q15_t clip_q63_to_q15(
Kojto 115:87f2f5183dfb 480 q63_t x)
Kojto 115:87f2f5183dfb 481 {
Kojto 115:87f2f5183dfb 482 return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
Kojto 115:87f2f5183dfb 483 ((0x7FFF ^ ((q15_t) (x >> 63)))) : (q15_t) (x >> 15);
Kojto 115:87f2f5183dfb 484 }
Kojto 115:87f2f5183dfb 485
Kojto 115:87f2f5183dfb 486 /**
Kojto 115:87f2f5183dfb 487 * @brief Clips Q31 to Q7 values.
Kojto 115:87f2f5183dfb 488 */
Kojto 115:87f2f5183dfb 489 static __INLINE q7_t clip_q31_to_q7(
Kojto 115:87f2f5183dfb 490 q31_t x)
Kojto 115:87f2f5183dfb 491 {
Kojto 115:87f2f5183dfb 492 return ((q31_t) (x >> 24) != ((q31_t) x >> 23)) ?
Kojto 115:87f2f5183dfb 493 ((0x7F ^ ((q7_t) (x >> 31)))) : (q7_t) x;
Kojto 115:87f2f5183dfb 494 }
Kojto 115:87f2f5183dfb 495
Kojto 115:87f2f5183dfb 496 /**
Kojto 115:87f2f5183dfb 497 * @brief Clips Q31 to Q15 values.
Kojto 115:87f2f5183dfb 498 */
Kojto 115:87f2f5183dfb 499 static __INLINE q15_t clip_q31_to_q15(
Kojto 115:87f2f5183dfb 500 q31_t x)
Kojto 115:87f2f5183dfb 501 {
Kojto 115:87f2f5183dfb 502 return ((q31_t) (x >> 16) != ((q31_t) x >> 15)) ?
Kojto 115:87f2f5183dfb 503 ((0x7FFF ^ ((q15_t) (x >> 31)))) : (q15_t) x;
Kojto 115:87f2f5183dfb 504 }
Kojto 115:87f2f5183dfb 505
Kojto 115:87f2f5183dfb 506 /**
Kojto 115:87f2f5183dfb 507 * @brief Multiplies 32 X 64 and returns 32 bit result in 2.30 format.
Kojto 115:87f2f5183dfb 508 */
Kojto 115:87f2f5183dfb 509
Kojto 115:87f2f5183dfb 510 static __INLINE q63_t mult32x64(
Kojto 115:87f2f5183dfb 511 q63_t x,
Kojto 115:87f2f5183dfb 512 q31_t y)
Kojto 115:87f2f5183dfb 513 {
Kojto 115:87f2f5183dfb 514 return ((((q63_t) (x & 0x00000000FFFFFFFF) * y) >> 32) +
Kojto 115:87f2f5183dfb 515 (((q63_t) (x >> 32) * y)));
Kojto 115:87f2f5183dfb 516 }
Kojto 115:87f2f5183dfb 517
Kojto 115:87f2f5183dfb 518
Kojto 115:87f2f5183dfb 519 //#if defined (ARM_MATH_CM0_FAMILY) && defined ( __CC_ARM )
Kojto 115:87f2f5183dfb 520 //#define __CLZ __clz
Kojto 115:87f2f5183dfb 521 //#endif
Kojto 115:87f2f5183dfb 522
Kojto 115:87f2f5183dfb 523 //note: function can be removed when all toolchain support __CLZ for Cortex-M0
Kojto 115:87f2f5183dfb 524 #if defined (ARM_MATH_CM0_FAMILY) && ((defined (__ICCARM__)) )
Kojto 115:87f2f5183dfb 525
Kojto 115:87f2f5183dfb 526 static __INLINE uint32_t __CLZ(
Kojto 115:87f2f5183dfb 527 q31_t data);
Kojto 115:87f2f5183dfb 528
Kojto 115:87f2f5183dfb 529
Kojto 115:87f2f5183dfb 530 static __INLINE uint32_t __CLZ(
Kojto 115:87f2f5183dfb 531 q31_t data)
Kojto 115:87f2f5183dfb 532 {
Kojto 115:87f2f5183dfb 533 uint32_t count = 0;
Kojto 115:87f2f5183dfb 534 uint32_t mask = 0x80000000;
Kojto 115:87f2f5183dfb 535
Kojto 115:87f2f5183dfb 536 while((data & mask) == 0)
Kojto 115:87f2f5183dfb 537 {
Kojto 115:87f2f5183dfb 538 count += 1u;
Kojto 115:87f2f5183dfb 539 mask = mask >> 1u;
Kojto 115:87f2f5183dfb 540 }
Kojto 115:87f2f5183dfb 541
Kojto 115:87f2f5183dfb 542 return (count);
Kojto 115:87f2f5183dfb 543
Kojto 115:87f2f5183dfb 544 }
Kojto 115:87f2f5183dfb 545
Kojto 115:87f2f5183dfb 546 #endif
Kojto 115:87f2f5183dfb 547
Kojto 115:87f2f5183dfb 548 /**
Kojto 115:87f2f5183dfb 549 * @brief Function to Calculates 1/in (reciprocal) value of Q31 Data type.
Kojto 115:87f2f5183dfb 550 */
Kojto 115:87f2f5183dfb 551
Kojto 115:87f2f5183dfb 552 static __INLINE uint32_t arm_recip_q31(
Kojto 115:87f2f5183dfb 553 q31_t in,
Kojto 115:87f2f5183dfb 554 q31_t * dst,
Kojto 115:87f2f5183dfb 555 q31_t * pRecipTable)
Kojto 115:87f2f5183dfb 556 {
Kojto 115:87f2f5183dfb 557
Kojto 115:87f2f5183dfb 558 uint32_t out, tempVal;
Kojto 115:87f2f5183dfb 559 uint32_t index, i;
Kojto 115:87f2f5183dfb 560 uint32_t signBits;
Kojto 115:87f2f5183dfb 561
Kojto 115:87f2f5183dfb 562 if(in > 0)
Kojto 115:87f2f5183dfb 563 {
Kojto 115:87f2f5183dfb 564 signBits = __CLZ(in) - 1;
Kojto 115:87f2f5183dfb 565 }
Kojto 115:87f2f5183dfb 566 else
Kojto 115:87f2f5183dfb 567 {
Kojto 115:87f2f5183dfb 568 signBits = __CLZ(-in) - 1;
Kojto 115:87f2f5183dfb 569 }
Kojto 115:87f2f5183dfb 570
Kojto 115:87f2f5183dfb 571 /* Convert input sample to 1.31 format */
Kojto 115:87f2f5183dfb 572 in = in << signBits;
Kojto 115:87f2f5183dfb 573
Kojto 115:87f2f5183dfb 574 /* calculation of index for initial approximated Val */
Kojto 115:87f2f5183dfb 575 index = (uint32_t) (in >> 24u);
Kojto 115:87f2f5183dfb 576 index = (index & INDEX_MASK);
Kojto 115:87f2f5183dfb 577
Kojto 115:87f2f5183dfb 578 /* 1.31 with exp 1 */
Kojto 115:87f2f5183dfb 579 out = pRecipTable[index];
Kojto 115:87f2f5183dfb 580
Kojto 115:87f2f5183dfb 581 /* calculation of reciprocal value */
Kojto 115:87f2f5183dfb 582 /* running approximation for two iterations */
Kojto 115:87f2f5183dfb 583 for (i = 0u; i < 2u; i++)
Kojto 115:87f2f5183dfb 584 {
Kojto 115:87f2f5183dfb 585 tempVal = (q31_t) (((q63_t) in * out) >> 31u);
Kojto 115:87f2f5183dfb 586 tempVal = 0x7FFFFFFF - tempVal;
Kojto 115:87f2f5183dfb 587 /* 1.31 with exp 1 */
Kojto 115:87f2f5183dfb 588 //out = (q31_t) (((q63_t) out * tempVal) >> 30u);
Kojto 115:87f2f5183dfb 589 out = (q31_t) clip_q63_to_q31(((q63_t) out * tempVal) >> 30u);
Kojto 115:87f2f5183dfb 590 }
Kojto 115:87f2f5183dfb 591
Kojto 115:87f2f5183dfb 592 /* write output */
Kojto 115:87f2f5183dfb 593 *dst = out;
Kojto 115:87f2f5183dfb 594
Kojto 115:87f2f5183dfb 595 /* return num of signbits of out = 1/in value */
Kojto 115:87f2f5183dfb 596 return (signBits + 1u);
Kojto 115:87f2f5183dfb 597
Kojto 115:87f2f5183dfb 598 }
Kojto 115:87f2f5183dfb 599
Kojto 115:87f2f5183dfb 600 /**
Kojto 115:87f2f5183dfb 601 * @brief Function to Calculates 1/in (reciprocal) value of Q15 Data type.
Kojto 115:87f2f5183dfb 602 */
Kojto 115:87f2f5183dfb 603 static __INLINE uint32_t arm_recip_q15(
Kojto 115:87f2f5183dfb 604 q15_t in,
Kojto 115:87f2f5183dfb 605 q15_t * dst,
Kojto 115:87f2f5183dfb 606 q15_t * pRecipTable)
Kojto 115:87f2f5183dfb 607 {
Kojto 115:87f2f5183dfb 608
Kojto 115:87f2f5183dfb 609 uint32_t out = 0, tempVal = 0;
Kojto 115:87f2f5183dfb 610 uint32_t index = 0, i = 0;
Kojto 115:87f2f5183dfb 611 uint32_t signBits = 0;
Kojto 115:87f2f5183dfb 612
Kojto 115:87f2f5183dfb 613 if(in > 0)
Kojto 115:87f2f5183dfb 614 {
Kojto 115:87f2f5183dfb 615 signBits = __CLZ(in) - 17;
Kojto 115:87f2f5183dfb 616 }
Kojto 115:87f2f5183dfb 617 else
Kojto 115:87f2f5183dfb 618 {
Kojto 115:87f2f5183dfb 619 signBits = __CLZ(-in) - 17;
Kojto 115:87f2f5183dfb 620 }
Kojto 115:87f2f5183dfb 621
Kojto 115:87f2f5183dfb 622 /* Convert input sample to 1.15 format */
Kojto 115:87f2f5183dfb 623 in = in << signBits;
Kojto 115:87f2f5183dfb 624
Kojto 115:87f2f5183dfb 625 /* calculation of index for initial approximated Val */
Kojto 115:87f2f5183dfb 626 index = in >> 8;
Kojto 115:87f2f5183dfb 627 index = (index & INDEX_MASK);
Kojto 115:87f2f5183dfb 628
Kojto 115:87f2f5183dfb 629 /* 1.15 with exp 1 */
Kojto 115:87f2f5183dfb 630 out = pRecipTable[index];
Kojto 115:87f2f5183dfb 631
Kojto 115:87f2f5183dfb 632 /* calculation of reciprocal value */
Kojto 115:87f2f5183dfb 633 /* running approximation for two iterations */
Kojto 115:87f2f5183dfb 634 for (i = 0; i < 2; i++)
Kojto 115:87f2f5183dfb 635 {
Kojto 115:87f2f5183dfb 636 tempVal = (q15_t) (((q31_t) in * out) >> 15);
Kojto 115:87f2f5183dfb 637 tempVal = 0x7FFF - tempVal;
Kojto 115:87f2f5183dfb 638 /* 1.15 with exp 1 */
Kojto 115:87f2f5183dfb 639 out = (q15_t) (((q31_t) out * tempVal) >> 14);
Kojto 115:87f2f5183dfb 640 }
Kojto 115:87f2f5183dfb 641
Kojto 115:87f2f5183dfb 642 /* write output */
Kojto 115:87f2f5183dfb 643 *dst = out;
Kojto 115:87f2f5183dfb 644
Kojto 115:87f2f5183dfb 645 /* return num of signbits of out = 1/in value */
Kojto 115:87f2f5183dfb 646 return (signBits + 1);
Kojto 115:87f2f5183dfb 647
Kojto 115:87f2f5183dfb 648 }
Kojto 115:87f2f5183dfb 649
Kojto 115:87f2f5183dfb 650
Kojto 115:87f2f5183dfb 651 /*
Kojto 115:87f2f5183dfb 652 * @brief C custom defined intrinisic function for only M0 processors
Kojto 115:87f2f5183dfb 653 */
Kojto 115:87f2f5183dfb 654 #if defined(ARM_MATH_CM0_FAMILY)
Kojto 115:87f2f5183dfb 655
Kojto 115:87f2f5183dfb 656 static __INLINE q31_t __SSAT(
Kojto 115:87f2f5183dfb 657 q31_t x,
Kojto 115:87f2f5183dfb 658 uint32_t y)
Kojto 115:87f2f5183dfb 659 {
Kojto 115:87f2f5183dfb 660 int32_t posMax, negMin;
Kojto 115:87f2f5183dfb 661 uint32_t i;
Kojto 115:87f2f5183dfb 662
Kojto 115:87f2f5183dfb 663 posMax = 1;
Kojto 115:87f2f5183dfb 664 for (i = 0; i < (y - 1); i++)
Kojto 115:87f2f5183dfb 665 {
Kojto 115:87f2f5183dfb 666 posMax = posMax * 2;
Kojto 115:87f2f5183dfb 667 }
Kojto 115:87f2f5183dfb 668
Kojto 115:87f2f5183dfb 669 if(x > 0)
Kojto 115:87f2f5183dfb 670 {
Kojto 115:87f2f5183dfb 671 posMax = (posMax - 1);
Kojto 115:87f2f5183dfb 672
Kojto 115:87f2f5183dfb 673 if(x > posMax)
Kojto 115:87f2f5183dfb 674 {
Kojto 115:87f2f5183dfb 675 x = posMax;
Kojto 115:87f2f5183dfb 676 }
Kojto 115:87f2f5183dfb 677 }
Kojto 115:87f2f5183dfb 678 else
Kojto 115:87f2f5183dfb 679 {
Kojto 115:87f2f5183dfb 680 negMin = -posMax;
Kojto 115:87f2f5183dfb 681
Kojto 115:87f2f5183dfb 682 if(x < negMin)
Kojto 115:87f2f5183dfb 683 {
Kojto 115:87f2f5183dfb 684 x = negMin;
Kojto 115:87f2f5183dfb 685 }
Kojto 115:87f2f5183dfb 686 }
Kojto 115:87f2f5183dfb 687 return (x);
Kojto 115:87f2f5183dfb 688
Kojto 115:87f2f5183dfb 689
Kojto 115:87f2f5183dfb 690 }
Kojto 115:87f2f5183dfb 691
Kojto 115:87f2f5183dfb 692 #endif /* end of ARM_MATH_CM0_FAMILY */
Kojto 115:87f2f5183dfb 693
Kojto 115:87f2f5183dfb 694
Kojto 115:87f2f5183dfb 695
Kojto 115:87f2f5183dfb 696 /*
Kojto 115:87f2f5183dfb 697 * @brief C custom defined intrinsic function for M3 and M0 processors
Kojto 115:87f2f5183dfb 698 */
Kojto 115:87f2f5183dfb 699 #if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY)
Kojto 115:87f2f5183dfb 700
Kojto 115:87f2f5183dfb 701 /*
Kojto 115:87f2f5183dfb 702 * @brief C custom defined QADD8 for M3 and M0 processors
Kojto 115:87f2f5183dfb 703 */
Kojto 115:87f2f5183dfb 704 static __INLINE q31_t __QADD8(
Kojto 115:87f2f5183dfb 705 q31_t x,
Kojto 115:87f2f5183dfb 706 q31_t y)
Kojto 115:87f2f5183dfb 707 {
Kojto 115:87f2f5183dfb 708
Kojto 115:87f2f5183dfb 709 q31_t sum;
Kojto 115:87f2f5183dfb 710 q7_t r, s, t, u;
Kojto 115:87f2f5183dfb 711
Kojto 115:87f2f5183dfb 712 r = (q7_t) x;
Kojto 115:87f2f5183dfb 713 s = (q7_t) y;
Kojto 115:87f2f5183dfb 714
Kojto 115:87f2f5183dfb 715 r = __SSAT((q31_t) (r + s), 8);
Kojto 115:87f2f5183dfb 716 s = __SSAT(((q31_t) (((x << 16) >> 24) + ((y << 16) >> 24))), 8);
Kojto 115:87f2f5183dfb 717 t = __SSAT(((q31_t) (((x << 8) >> 24) + ((y << 8) >> 24))), 8);
Kojto 115:87f2f5183dfb 718 u = __SSAT(((q31_t) ((x >> 24) + (y >> 24))), 8);
Kojto 115:87f2f5183dfb 719
Kojto 115:87f2f5183dfb 720 sum =
Kojto 115:87f2f5183dfb 721 (((q31_t) u << 24) & 0xFF000000) | (((q31_t) t << 16) & 0x00FF0000) |
Kojto 115:87f2f5183dfb 722 (((q31_t) s << 8) & 0x0000FF00) | (r & 0x000000FF);
Kojto 115:87f2f5183dfb 723
Kojto 115:87f2f5183dfb 724 return sum;
Kojto 115:87f2f5183dfb 725
Kojto 115:87f2f5183dfb 726 }
Kojto 115:87f2f5183dfb 727
Kojto 115:87f2f5183dfb 728 /*
Kojto 115:87f2f5183dfb 729 * @brief C custom defined QSUB8 for M3 and M0 processors
Kojto 115:87f2f5183dfb 730 */
Kojto 115:87f2f5183dfb 731 static __INLINE q31_t __QSUB8(
Kojto 115:87f2f5183dfb 732 q31_t x,
Kojto 115:87f2f5183dfb 733 q31_t y)
Kojto 115:87f2f5183dfb 734 {
Kojto 115:87f2f5183dfb 735
Kojto 115:87f2f5183dfb 736 q31_t sum;
Kojto 115:87f2f5183dfb 737 q31_t r, s, t, u;
Kojto 115:87f2f5183dfb 738
Kojto 115:87f2f5183dfb 739 r = (q7_t) x;
Kojto 115:87f2f5183dfb 740 s = (q7_t) y;
Kojto 115:87f2f5183dfb 741
Kojto 115:87f2f5183dfb 742 r = __SSAT((r - s), 8);
Kojto 115:87f2f5183dfb 743 s = __SSAT(((q31_t) (((x << 16) >> 24) - ((y << 16) >> 24))), 8) << 8;
Kojto 115:87f2f5183dfb 744 t = __SSAT(((q31_t) (((x << 8) >> 24) - ((y << 8) >> 24))), 8) << 16;
Kojto 115:87f2f5183dfb 745 u = __SSAT(((q31_t) ((x >> 24) - (y >> 24))), 8) << 24;
Kojto 115:87f2f5183dfb 746
Kojto 115:87f2f5183dfb 747 sum =
Kojto 115:87f2f5183dfb 748 (u & 0xFF000000) | (t & 0x00FF0000) | (s & 0x0000FF00) | (r &
Kojto 115:87f2f5183dfb 749 0x000000FF);
Kojto 115:87f2f5183dfb 750
Kojto 115:87f2f5183dfb 751 return sum;
Kojto 115:87f2f5183dfb 752 }
Kojto 115:87f2f5183dfb 753
Kojto 115:87f2f5183dfb 754 /*
Kojto 115:87f2f5183dfb 755 * @brief C custom defined QADD16 for M3 and M0 processors
Kojto 115:87f2f5183dfb 756 */
Kojto 115:87f2f5183dfb 757
Kojto 115:87f2f5183dfb 758 /*
Kojto 115:87f2f5183dfb 759 * @brief C custom defined QADD16 for M3 and M0 processors
Kojto 115:87f2f5183dfb 760 */
Kojto 115:87f2f5183dfb 761 static __INLINE q31_t __QADD16(
Kojto 115:87f2f5183dfb 762 q31_t x,
Kojto 115:87f2f5183dfb 763 q31_t y)
Kojto 115:87f2f5183dfb 764 {
Kojto 115:87f2f5183dfb 765
Kojto 115:87f2f5183dfb 766 q31_t sum;
Kojto 115:87f2f5183dfb 767 q31_t r, s;
Kojto 115:87f2f5183dfb 768
Kojto 115:87f2f5183dfb 769 r = (q15_t) x;
Kojto 115:87f2f5183dfb 770 s = (q15_t) y;
Kojto 115:87f2f5183dfb 771
Kojto 115:87f2f5183dfb 772 r = __SSAT(r + s, 16);
Kojto 115:87f2f5183dfb 773 s = __SSAT(((q31_t) ((x >> 16) + (y >> 16))), 16) << 16;
Kojto 115:87f2f5183dfb 774
Kojto 115:87f2f5183dfb 775 sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
Kojto 115:87f2f5183dfb 776
Kojto 115:87f2f5183dfb 777 return sum;
Kojto 115:87f2f5183dfb 778
Kojto 115:87f2f5183dfb 779 }
Kojto 115:87f2f5183dfb 780
Kojto 115:87f2f5183dfb 781 /*
Kojto 115:87f2f5183dfb 782 * @brief C custom defined SHADD16 for M3 and M0 processors
Kojto 115:87f2f5183dfb 783 */
Kojto 115:87f2f5183dfb 784 static __INLINE q31_t __SHADD16(
Kojto 115:87f2f5183dfb 785 q31_t x,
Kojto 115:87f2f5183dfb 786 q31_t y)
Kojto 115:87f2f5183dfb 787 {
Kojto 115:87f2f5183dfb 788
Kojto 115:87f2f5183dfb 789 q31_t sum;
Kojto 115:87f2f5183dfb 790 q31_t r, s;
Kojto 115:87f2f5183dfb 791
Kojto 115:87f2f5183dfb 792 r = (q15_t) x;
Kojto 115:87f2f5183dfb 793 s = (q15_t) y;
Kojto 115:87f2f5183dfb 794
Kojto 115:87f2f5183dfb 795 r = ((r >> 1) + (s >> 1));
Kojto 115:87f2f5183dfb 796 s = ((q31_t) ((x >> 17) + (y >> 17))) << 16;
Kojto 115:87f2f5183dfb 797
Kojto 115:87f2f5183dfb 798 sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
Kojto 115:87f2f5183dfb 799
Kojto 115:87f2f5183dfb 800 return sum;
Kojto 115:87f2f5183dfb 801
Kojto 115:87f2f5183dfb 802 }
Kojto 115:87f2f5183dfb 803
Kojto 115:87f2f5183dfb 804 /*
Kojto 115:87f2f5183dfb 805 * @brief C custom defined QSUB16 for M3 and M0 processors
Kojto 115:87f2f5183dfb 806 */
Kojto 115:87f2f5183dfb 807 static __INLINE q31_t __QSUB16(
Kojto 115:87f2f5183dfb 808 q31_t x,
Kojto 115:87f2f5183dfb 809 q31_t y)
Kojto 115:87f2f5183dfb 810 {
Kojto 115:87f2f5183dfb 811
Kojto 115:87f2f5183dfb 812 q31_t sum;
Kojto 115:87f2f5183dfb 813 q31_t r, s;
Kojto 115:87f2f5183dfb 814
Kojto 115:87f2f5183dfb 815 r = (q15_t) x;
Kojto 115:87f2f5183dfb 816 s = (q15_t) y;
Kojto 115:87f2f5183dfb 817
Kojto 115:87f2f5183dfb 818 r = __SSAT(r - s, 16);
Kojto 115:87f2f5183dfb 819 s = __SSAT(((q31_t) ((x >> 16) - (y >> 16))), 16) << 16;
Kojto 115:87f2f5183dfb 820
Kojto 115:87f2f5183dfb 821 sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
Kojto 115:87f2f5183dfb 822
Kojto 115:87f2f5183dfb 823 return sum;
Kojto 115:87f2f5183dfb 824 }
Kojto 115:87f2f5183dfb 825
Kojto 115:87f2f5183dfb 826 /*
Kojto 115:87f2f5183dfb 827 * @brief C custom defined SHSUB16 for M3 and M0 processors
Kojto 115:87f2f5183dfb 828 */
Kojto 115:87f2f5183dfb 829 static __INLINE q31_t __SHSUB16(
Kojto 115:87f2f5183dfb 830 q31_t x,
Kojto 115:87f2f5183dfb 831 q31_t y)
Kojto 115:87f2f5183dfb 832 {
Kojto 115:87f2f5183dfb 833
Kojto 115:87f2f5183dfb 834 q31_t diff;
Kojto 115:87f2f5183dfb 835 q31_t r, s;
Kojto 115:87f2f5183dfb 836
Kojto 115:87f2f5183dfb 837 r = (q15_t) x;
Kojto 115:87f2f5183dfb 838 s = (q15_t) y;
Kojto 115:87f2f5183dfb 839
Kojto 115:87f2f5183dfb 840 r = ((r >> 1) - (s >> 1));
Kojto 115:87f2f5183dfb 841 s = (((x >> 17) - (y >> 17)) << 16);
Kojto 115:87f2f5183dfb 842
Kojto 115:87f2f5183dfb 843 diff = (s & 0xFFFF0000) | (r & 0x0000FFFF);
Kojto 115:87f2f5183dfb 844
Kojto 115:87f2f5183dfb 845 return diff;
Kojto 115:87f2f5183dfb 846 }
Kojto 115:87f2f5183dfb 847
Kojto 115:87f2f5183dfb 848 /*
Kojto 115:87f2f5183dfb 849 * @brief C custom defined QASX for M3 and M0 processors
Kojto 115:87f2f5183dfb 850 */
Kojto 115:87f2f5183dfb 851 static __INLINE q31_t __QASX(
Kojto 115:87f2f5183dfb 852 q31_t x,
Kojto 115:87f2f5183dfb 853 q31_t y)
Kojto 115:87f2f5183dfb 854 {
Kojto 115:87f2f5183dfb 855
Kojto 115:87f2f5183dfb 856 q31_t sum = 0;
Kojto 115:87f2f5183dfb 857
Kojto 115:87f2f5183dfb 858 sum =
Kojto 115:87f2f5183dfb 859 ((sum +
Kojto 115:87f2f5183dfb 860 clip_q31_to_q15((q31_t) ((q15_t) (x >> 16) + (q15_t) y))) << 16) +
Kojto 115:87f2f5183dfb 861 clip_q31_to_q15((q31_t) ((q15_t) x - (q15_t) (y >> 16)));
Kojto 115:87f2f5183dfb 862
Kojto 115:87f2f5183dfb 863 return sum;
Kojto 115:87f2f5183dfb 864 }
Kojto 115:87f2f5183dfb 865
Kojto 115:87f2f5183dfb 866 /*
Kojto 115:87f2f5183dfb 867 * @brief C custom defined SHASX for M3 and M0 processors
Kojto 115:87f2f5183dfb 868 */
Kojto 115:87f2f5183dfb 869 static __INLINE q31_t __SHASX(
Kojto 115:87f2f5183dfb 870 q31_t x,
Kojto 115:87f2f5183dfb 871 q31_t y)
Kojto 115:87f2f5183dfb 872 {
Kojto 115:87f2f5183dfb 873
Kojto 115:87f2f5183dfb 874 q31_t sum;
Kojto 115:87f2f5183dfb 875 q31_t r, s;
Kojto 115:87f2f5183dfb 876
Kojto 115:87f2f5183dfb 877 r = (q15_t) x;
Kojto 115:87f2f5183dfb 878 s = (q15_t) y;
Kojto 115:87f2f5183dfb 879
Kojto 115:87f2f5183dfb 880 r = ((r >> 1) - (y >> 17));
Kojto 115:87f2f5183dfb 881 s = (((x >> 17) + (s >> 1)) << 16);
Kojto 115:87f2f5183dfb 882
Kojto 115:87f2f5183dfb 883 sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
Kojto 115:87f2f5183dfb 884
Kojto 115:87f2f5183dfb 885 return sum;
Kojto 115:87f2f5183dfb 886 }
Kojto 115:87f2f5183dfb 887
Kojto 115:87f2f5183dfb 888
Kojto 115:87f2f5183dfb 889 /*
Kojto 115:87f2f5183dfb 890 * @brief C custom defined QSAX for M3 and M0 processors
Kojto 115:87f2f5183dfb 891 */
Kojto 115:87f2f5183dfb 892 static __INLINE q31_t __QSAX(
Kojto 115:87f2f5183dfb 893 q31_t x,
Kojto 115:87f2f5183dfb 894 q31_t y)
Kojto 115:87f2f5183dfb 895 {
Kojto 115:87f2f5183dfb 896
Kojto 115:87f2f5183dfb 897 q31_t sum = 0;
Kojto 115:87f2f5183dfb 898
Kojto 115:87f2f5183dfb 899 sum =
Kojto 115:87f2f5183dfb 900 ((sum +
Kojto 115:87f2f5183dfb 901 clip_q31_to_q15((q31_t) ((q15_t) (x >> 16) - (q15_t) y))) << 16) +
Kojto 115:87f2f5183dfb 902 clip_q31_to_q15((q31_t) ((q15_t) x + (q15_t) (y >> 16)));
Kojto 115:87f2f5183dfb 903
Kojto 115:87f2f5183dfb 904 return sum;
Kojto 115:87f2f5183dfb 905 }
Kojto 115:87f2f5183dfb 906
Kojto 115:87f2f5183dfb 907 /*
Kojto 115:87f2f5183dfb 908 * @brief C custom defined SHSAX for M3 and M0 processors
Kojto 115:87f2f5183dfb 909 */
Kojto 115:87f2f5183dfb 910 static __INLINE q31_t __SHSAX(
Kojto 115:87f2f5183dfb 911 q31_t x,
Kojto 115:87f2f5183dfb 912 q31_t y)
Kojto 115:87f2f5183dfb 913 {
Kojto 115:87f2f5183dfb 914
Kojto 115:87f2f5183dfb 915 q31_t sum;
Kojto 115:87f2f5183dfb 916 q31_t r, s;
Kojto 115:87f2f5183dfb 917
Kojto 115:87f2f5183dfb 918 r = (q15_t) x;
Kojto 115:87f2f5183dfb 919 s = (q15_t) y;
Kojto 115:87f2f5183dfb 920
Kojto 115:87f2f5183dfb 921 r = ((r >> 1) + (y >> 17));
Kojto 115:87f2f5183dfb 922 s = (((x >> 17) - (s >> 1)) << 16);
Kojto 115:87f2f5183dfb 923
Kojto 115:87f2f5183dfb 924 sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
Kojto 115:87f2f5183dfb 925
Kojto 115:87f2f5183dfb 926 return sum;
Kojto 115:87f2f5183dfb 927 }
Kojto 115:87f2f5183dfb 928
Kojto 115:87f2f5183dfb 929 /*
Kojto 115:87f2f5183dfb 930 * @brief C custom defined SMUSDX for M3 and M0 processors
Kojto 115:87f2f5183dfb 931 */
Kojto 115:87f2f5183dfb 932 static __INLINE q31_t __SMUSDX(
Kojto 115:87f2f5183dfb 933 q31_t x,
Kojto 115:87f2f5183dfb 934 q31_t y)
Kojto 115:87f2f5183dfb 935 {
Kojto 115:87f2f5183dfb 936
Kojto 115:87f2f5183dfb 937 return ((q31_t) (((q15_t) x * (q15_t) (y >> 16)) -
Kojto 115:87f2f5183dfb 938 ((q15_t) (x >> 16) * (q15_t) y)));
Kojto 115:87f2f5183dfb 939 }
Kojto 115:87f2f5183dfb 940
Kojto 115:87f2f5183dfb 941 /*
Kojto 115:87f2f5183dfb 942 * @brief C custom defined SMUADX for M3 and M0 processors
Kojto 115:87f2f5183dfb 943 */
Kojto 115:87f2f5183dfb 944 static __INLINE q31_t __SMUADX(
Kojto 115:87f2f5183dfb 945 q31_t x,
Kojto 115:87f2f5183dfb 946 q31_t y)
Kojto 115:87f2f5183dfb 947 {
Kojto 115:87f2f5183dfb 948
Kojto 115:87f2f5183dfb 949 return ((q31_t) (((q15_t) x * (q15_t) (y >> 16)) +
Kojto 115:87f2f5183dfb 950 ((q15_t) (x >> 16) * (q15_t) y)));
Kojto 115:87f2f5183dfb 951 }
Kojto 115:87f2f5183dfb 952
Kojto 115:87f2f5183dfb 953 /*
Kojto 115:87f2f5183dfb 954 * @brief C custom defined QADD for M3 and M0 processors
Kojto 115:87f2f5183dfb 955 */
Kojto 115:87f2f5183dfb 956 static __INLINE q31_t __QADD(
Kojto 115:87f2f5183dfb 957 q31_t x,
Kojto 115:87f2f5183dfb 958 q31_t y)
Kojto 115:87f2f5183dfb 959 {
Kojto 115:87f2f5183dfb 960 return clip_q63_to_q31((q63_t) x + y);
Kojto 115:87f2f5183dfb 961 }
Kojto 115:87f2f5183dfb 962
Kojto 115:87f2f5183dfb 963 /*
Kojto 115:87f2f5183dfb 964 * @brief C custom defined QSUB for M3 and M0 processors
Kojto 115:87f2f5183dfb 965 */
Kojto 115:87f2f5183dfb 966 static __INLINE q31_t __QSUB(
Kojto 115:87f2f5183dfb 967 q31_t x,
Kojto 115:87f2f5183dfb 968 q31_t y)
Kojto 115:87f2f5183dfb 969 {
Kojto 115:87f2f5183dfb 970 return clip_q63_to_q31((q63_t) x - y);
Kojto 115:87f2f5183dfb 971 }
Kojto 115:87f2f5183dfb 972
Kojto 115:87f2f5183dfb 973 /*
Kojto 115:87f2f5183dfb 974 * @brief C custom defined SMLAD for M3 and M0 processors
Kojto 115:87f2f5183dfb 975 */
Kojto 115:87f2f5183dfb 976 static __INLINE q31_t __SMLAD(
Kojto 115:87f2f5183dfb 977 q31_t x,
Kojto 115:87f2f5183dfb 978 q31_t y,
Kojto 115:87f2f5183dfb 979 q31_t sum)
Kojto 115:87f2f5183dfb 980 {
Kojto 115:87f2f5183dfb 981
Kojto 115:87f2f5183dfb 982 return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) +
Kojto 115:87f2f5183dfb 983 ((q15_t) x * (q15_t) y));
Kojto 115:87f2f5183dfb 984 }
Kojto 115:87f2f5183dfb 985
Kojto 115:87f2f5183dfb 986 /*
Kojto 115:87f2f5183dfb 987 * @brief C custom defined SMLADX for M3 and M0 processors
Kojto 115:87f2f5183dfb 988 */
Kojto 115:87f2f5183dfb 989 static __INLINE q31_t __SMLADX(
Kojto 115:87f2f5183dfb 990 q31_t x,
Kojto 115:87f2f5183dfb 991 q31_t y,
Kojto 115:87f2f5183dfb 992 q31_t sum)
Kojto 115:87f2f5183dfb 993 {
Kojto 115:87f2f5183dfb 994
Kojto 115:87f2f5183dfb 995 return (sum + ((q15_t) (x >> 16) * (q15_t) (y)) +
Kojto 115:87f2f5183dfb 996 ((q15_t) x * (q15_t) (y >> 16)));
Kojto 115:87f2f5183dfb 997 }
Kojto 115:87f2f5183dfb 998
Kojto 115:87f2f5183dfb 999 /*
Kojto 115:87f2f5183dfb 1000 * @brief C custom defined SMLSDX for M3 and M0 processors
Kojto 115:87f2f5183dfb 1001 */
Kojto 115:87f2f5183dfb 1002 static __INLINE q31_t __SMLSDX(
Kojto 115:87f2f5183dfb 1003 q31_t x,
Kojto 115:87f2f5183dfb 1004 q31_t y,
Kojto 115:87f2f5183dfb 1005 q31_t sum)
Kojto 115:87f2f5183dfb 1006 {
Kojto 115:87f2f5183dfb 1007
Kojto 115:87f2f5183dfb 1008 return (sum - ((q15_t) (x >> 16) * (q15_t) (y)) +
Kojto 115:87f2f5183dfb 1009 ((q15_t) x * (q15_t) (y >> 16)));
Kojto 115:87f2f5183dfb 1010 }
Kojto 115:87f2f5183dfb 1011
Kojto 115:87f2f5183dfb 1012 /*
Kojto 115:87f2f5183dfb 1013 * @brief C custom defined SMLALD for M3 and M0 processors
Kojto 115:87f2f5183dfb 1014 */
Kojto 115:87f2f5183dfb 1015 static __INLINE q63_t __SMLALD(
Kojto 115:87f2f5183dfb 1016 q31_t x,
Kojto 115:87f2f5183dfb 1017 q31_t y,
Kojto 115:87f2f5183dfb 1018 q63_t sum)
Kojto 115:87f2f5183dfb 1019 {
Kojto 115:87f2f5183dfb 1020
Kojto 115:87f2f5183dfb 1021 return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) +
Kojto 115:87f2f5183dfb 1022 ((q15_t) x * (q15_t) y));
Kojto 115:87f2f5183dfb 1023 }
Kojto 115:87f2f5183dfb 1024
Kojto 115:87f2f5183dfb 1025 /*
Kojto 115:87f2f5183dfb 1026 * @brief C custom defined SMLALDX for M3 and M0 processors
Kojto 115:87f2f5183dfb 1027 */
Kojto 115:87f2f5183dfb 1028 static __INLINE q63_t __SMLALDX(
Kojto 115:87f2f5183dfb 1029 q31_t x,
Kojto 115:87f2f5183dfb 1030 q31_t y,
Kojto 115:87f2f5183dfb 1031 q63_t sum)
Kojto 115:87f2f5183dfb 1032 {
Kojto 115:87f2f5183dfb 1033
Kojto 115:87f2f5183dfb 1034 return (sum + ((q15_t) (x >> 16) * (q15_t) y)) +
Kojto 115:87f2f5183dfb 1035 ((q15_t) x * (q15_t) (y >> 16));
Kojto 115:87f2f5183dfb 1036 }
Kojto 115:87f2f5183dfb 1037
Kojto 115:87f2f5183dfb 1038 /*
Kojto 115:87f2f5183dfb 1039 * @brief C custom defined SMUAD for M3 and M0 processors
Kojto 115:87f2f5183dfb 1040 */
Kojto 115:87f2f5183dfb 1041 static __INLINE q31_t __SMUAD(
Kojto 115:87f2f5183dfb 1042 q31_t x,
Kojto 115:87f2f5183dfb 1043 q31_t y)
Kojto 115:87f2f5183dfb 1044 {
Kojto 115:87f2f5183dfb 1045
Kojto 115:87f2f5183dfb 1046 return (((x >> 16) * (y >> 16)) +
Kojto 115:87f2f5183dfb 1047 (((x << 16) >> 16) * ((y << 16) >> 16)));
Kojto 115:87f2f5183dfb 1048 }
Kojto 115:87f2f5183dfb 1049
Kojto 115:87f2f5183dfb 1050 /*
Kojto 115:87f2f5183dfb 1051 * @brief C custom defined SMUSD for M3 and M0 processors
Kojto 115:87f2f5183dfb 1052 */
Kojto 115:87f2f5183dfb 1053 static __INLINE q31_t __SMUSD(
Kojto 115:87f2f5183dfb 1054 q31_t x,
Kojto 115:87f2f5183dfb 1055 q31_t y)
Kojto 115:87f2f5183dfb 1056 {
Kojto 115:87f2f5183dfb 1057
Kojto 115:87f2f5183dfb 1058 return (-((x >> 16) * (y >> 16)) +
Kojto 115:87f2f5183dfb 1059 (((x << 16) >> 16) * ((y << 16) >> 16)));
Kojto 115:87f2f5183dfb 1060 }
Kojto 115:87f2f5183dfb 1061
Kojto 115:87f2f5183dfb 1062
Kojto 115:87f2f5183dfb 1063 /*
Kojto 115:87f2f5183dfb 1064 * @brief C custom defined SXTB16 for M3 and M0 processors
Kojto 115:87f2f5183dfb 1065 */
Kojto 115:87f2f5183dfb 1066 static __INLINE q31_t __SXTB16(
Kojto 115:87f2f5183dfb 1067 q31_t x)
Kojto 115:87f2f5183dfb 1068 {
Kojto 115:87f2f5183dfb 1069
Kojto 115:87f2f5183dfb 1070 return ((((x << 24) >> 24) & 0x0000FFFF) |
Kojto 115:87f2f5183dfb 1071 (((x << 8) >> 8) & 0xFFFF0000));
Kojto 115:87f2f5183dfb 1072 }
Kojto 115:87f2f5183dfb 1073
Kojto 115:87f2f5183dfb 1074
Kojto 115:87f2f5183dfb 1075 #endif /* defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) */
Kojto 115:87f2f5183dfb 1076
Kojto 115:87f2f5183dfb 1077
Kojto 115:87f2f5183dfb 1078 /**
Kojto 115:87f2f5183dfb 1079 * @brief Instance structure for the Q7 FIR filter.
Kojto 115:87f2f5183dfb 1080 */
Kojto 115:87f2f5183dfb 1081 typedef struct
Kojto 115:87f2f5183dfb 1082 {
Kojto 115:87f2f5183dfb 1083 uint16_t numTaps; /**< number of filter coefficients in the filter. */
Kojto 115:87f2f5183dfb 1084 q7_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
Kojto 115:87f2f5183dfb 1085 q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
Kojto 115:87f2f5183dfb 1086 } arm_fir_instance_q7;
Kojto 115:87f2f5183dfb 1087
Kojto 115:87f2f5183dfb 1088 /**
Kojto 115:87f2f5183dfb 1089 * @brief Instance structure for the Q15 FIR filter.
Kojto 115:87f2f5183dfb 1090 */
Kojto 115:87f2f5183dfb 1091 typedef struct
Kojto 115:87f2f5183dfb 1092 {
Kojto 115:87f2f5183dfb 1093 uint16_t numTaps; /**< number of filter coefficients in the filter. */
Kojto 115:87f2f5183dfb 1094 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
Kojto 115:87f2f5183dfb 1095 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
Kojto 115:87f2f5183dfb 1096 } arm_fir_instance_q15;
Kojto 115:87f2f5183dfb 1097
Kojto 115:87f2f5183dfb 1098 /**
Kojto 115:87f2f5183dfb 1099 * @brief Instance structure for the Q31 FIR filter.
Kojto 115:87f2f5183dfb 1100 */
Kojto 115:87f2f5183dfb 1101 typedef struct
Kojto 115:87f2f5183dfb 1102 {
Kojto 115:87f2f5183dfb 1103 uint16_t numTaps; /**< number of filter coefficients in the filter. */
Kojto 115:87f2f5183dfb 1104 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
Kojto 115:87f2f5183dfb 1105 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
Kojto 115:87f2f5183dfb 1106 } arm_fir_instance_q31;
Kojto 115:87f2f5183dfb 1107
Kojto 115:87f2f5183dfb 1108 /**
Kojto 115:87f2f5183dfb 1109 * @brief Instance structure for the floating-point FIR filter.
Kojto 115:87f2f5183dfb 1110 */
Kojto 115:87f2f5183dfb 1111 typedef struct
Kojto 115:87f2f5183dfb 1112 {
Kojto 115:87f2f5183dfb 1113 uint16_t numTaps; /**< number of filter coefficients in the filter. */
Kojto 115:87f2f5183dfb 1114 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
Kojto 115:87f2f5183dfb 1115 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
Kojto 115:87f2f5183dfb 1116 } arm_fir_instance_f32;
Kojto 115:87f2f5183dfb 1117
Kojto 115:87f2f5183dfb 1118
Kojto 115:87f2f5183dfb 1119 /**
Kojto 115:87f2f5183dfb 1120 * @brief Processing function for the Q7 FIR filter.
Kojto 115:87f2f5183dfb 1121 * @param[in] *S points to an instance of the Q7 FIR filter structure.
Kojto 115:87f2f5183dfb 1122 * @param[in] *pSrc points to the block of input data.
Kojto 115:87f2f5183dfb 1123 * @param[out] *pDst points to the block of output data.
Kojto 115:87f2f5183dfb 1124 * @param[in] blockSize number of samples to process.
Kojto 115:87f2f5183dfb 1125 * @return none.
Kojto 115:87f2f5183dfb 1126 */
Kojto 115:87f2f5183dfb 1127 void arm_fir_q7(
Kojto 115:87f2f5183dfb 1128 const arm_fir_instance_q7 * S,
Kojto 115:87f2f5183dfb 1129 q7_t * pSrc,
Kojto 115:87f2f5183dfb 1130 q7_t * pDst,
Kojto 115:87f2f5183dfb 1131 uint32_t blockSize);
Kojto 115:87f2f5183dfb 1132
Kojto 115:87f2f5183dfb 1133
Kojto 115:87f2f5183dfb 1134 /**
Kojto 115:87f2f5183dfb 1135 * @brief Initialization function for the Q7 FIR filter.
Kojto 115:87f2f5183dfb 1136 * @param[in,out] *S points to an instance of the Q7 FIR structure.
Kojto 115:87f2f5183dfb 1137 * @param[in] numTaps Number of filter coefficients in the filter.
Kojto 115:87f2f5183dfb 1138 * @param[in] *pCoeffs points to the filter coefficients.
Kojto 115:87f2f5183dfb 1139 * @param[in] *pState points to the state buffer.
Kojto 115:87f2f5183dfb 1140 * @param[in] blockSize number of samples that are processed.
Kojto 115:87f2f5183dfb 1141 * @return none
Kojto 115:87f2f5183dfb 1142 */
Kojto 115:87f2f5183dfb 1143 void arm_fir_init_q7(
Kojto 115:87f2f5183dfb 1144 arm_fir_instance_q7 * S,
Kojto 115:87f2f5183dfb 1145 uint16_t numTaps,
Kojto 115:87f2f5183dfb 1146 q7_t * pCoeffs,
Kojto 115:87f2f5183dfb 1147 q7_t * pState,
Kojto 115:87f2f5183dfb 1148 uint32_t blockSize);
Kojto 115:87f2f5183dfb 1149
Kojto 115:87f2f5183dfb 1150
Kojto 115:87f2f5183dfb 1151 /**
Kojto 115:87f2f5183dfb 1152 * @brief Processing function for the Q15 FIR filter.
Kojto 115:87f2f5183dfb 1153 * @param[in] *S points to an instance of the Q15 FIR structure.
Kojto 115:87f2f5183dfb 1154 * @param[in] *pSrc points to the block of input data.
Kojto 115:87f2f5183dfb 1155 * @param[out] *pDst points to the block of output data.
Kojto 115:87f2f5183dfb 1156 * @param[in] blockSize number of samples to process.
Kojto 115:87f2f5183dfb 1157 * @return none.
Kojto 115:87f2f5183dfb 1158 */
Kojto 115:87f2f5183dfb 1159 void arm_fir_q15(
Kojto 115:87f2f5183dfb 1160 const arm_fir_instance_q15 * S,
Kojto 115:87f2f5183dfb 1161 q15_t * pSrc,
Kojto 115:87f2f5183dfb 1162 q15_t * pDst,
Kojto 115:87f2f5183dfb 1163 uint32_t blockSize);
Kojto 115:87f2f5183dfb 1164
Kojto 115:87f2f5183dfb 1165 /**
Kojto 115:87f2f5183dfb 1166 * @brief Processing function for the fast Q15 FIR filter for Cortex-M3 and Cortex-M4.
Kojto 115:87f2f5183dfb 1167 * @param[in] *S points to an instance of the Q15 FIR filter structure.
Kojto 115:87f2f5183dfb 1168 * @param[in] *pSrc points to the block of input data.
Kojto 115:87f2f5183dfb 1169 * @param[out] *pDst points to the block of output data.
Kojto 115:87f2f5183dfb 1170 * @param[in] blockSize number of samples to process.
Kojto 115:87f2f5183dfb 1171 * @return none.
Kojto 115:87f2f5183dfb 1172 */
Kojto 115:87f2f5183dfb 1173 void arm_fir_fast_q15(
Kojto 115:87f2f5183dfb 1174 const arm_fir_instance_q15 * S,
Kojto 115:87f2f5183dfb 1175 q15_t * pSrc,
Kojto 115:87f2f5183dfb 1176 q15_t * pDst,
Kojto 115:87f2f5183dfb 1177 uint32_t blockSize);
Kojto 115:87f2f5183dfb 1178
Kojto 115:87f2f5183dfb 1179 /**
Kojto 115:87f2f5183dfb 1180 * @brief Initialization function for the Q15 FIR filter.
Kojto 115:87f2f5183dfb 1181 * @param[in,out] *S points to an instance of the Q15 FIR filter structure.
Kojto 115:87f2f5183dfb 1182 * @param[in] numTaps Number of filter coefficients in the filter. Must be even and greater than or equal to 4.
Kojto 115:87f2f5183dfb 1183 * @param[in] *pCoeffs points to the filter coefficients.
Kojto 115:87f2f5183dfb 1184 * @param[in] *pState points to the state buffer.
Kojto 115:87f2f5183dfb 1185 * @param[in] blockSize number of samples that are processed at a time.
Kojto 115:87f2f5183dfb 1186 * @return The function returns ARM_MATH_SUCCESS if initialization was successful or ARM_MATH_ARGUMENT_ERROR if
Kojto 115:87f2f5183dfb 1187 * <code>numTaps</code> is not a supported value.
Kojto 115:87f2f5183dfb 1188 */
Kojto 115:87f2f5183dfb 1189
Kojto 115:87f2f5183dfb 1190 arm_status arm_fir_init_q15(
Kojto 115:87f2f5183dfb 1191 arm_fir_instance_q15 * S,
Kojto 115:87f2f5183dfb 1192 uint16_t numTaps,
Kojto 115:87f2f5183dfb 1193 q15_t * pCoeffs,
Kojto 115:87f2f5183dfb 1194 q15_t * pState,
Kojto 115:87f2f5183dfb 1195 uint32_t blockSize);
Kojto 115:87f2f5183dfb 1196
Kojto 115:87f2f5183dfb 1197 /**
Kojto 115:87f2f5183dfb 1198 * @brief Processing function for the Q31 FIR filter.
Kojto 115:87f2f5183dfb 1199 * @param[in] *S points to an instance of the Q31 FIR filter structure.
Kojto 115:87f2f5183dfb 1200 * @param[in] *pSrc points to the block of input data.
Kojto 115:87f2f5183dfb 1201 * @param[out] *pDst points to the block of output data.
Kojto 115:87f2f5183dfb 1202 * @param[in] blockSize number of samples to process.
Kojto 115:87f2f5183dfb 1203 * @return none.
Kojto 115:87f2f5183dfb 1204 */
Kojto 115:87f2f5183dfb 1205 void arm_fir_q31(
Kojto 115:87f2f5183dfb 1206 const arm_fir_instance_q31 * S,
Kojto 115:87f2f5183dfb 1207 q31_t * pSrc,
Kojto 115:87f2f5183dfb 1208 q31_t * pDst,
Kojto 115:87f2f5183dfb 1209 uint32_t blockSize);
Kojto 115:87f2f5183dfb 1210
Kojto 115:87f2f5183dfb 1211 /**
Kojto 115:87f2f5183dfb 1212 * @brief Processing function for the fast Q31 FIR filter for Cortex-M3 and Cortex-M4.
Kojto 115:87f2f5183dfb 1213 * @param[in] *S points to an instance of the Q31 FIR structure.
Kojto 115:87f2f5183dfb 1214 * @param[in] *pSrc points to the block of input data.
Kojto 115:87f2f5183dfb 1215 * @param[out] *pDst points to the block of output data.
Kojto 115:87f2f5183dfb 1216 * @param[in] blockSize number of samples to process.
Kojto 115:87f2f5183dfb 1217 * @return none.
Kojto 115:87f2f5183dfb 1218 */
Kojto 115:87f2f5183dfb 1219 void arm_fir_fast_q31(
Kojto 115:87f2f5183dfb 1220 const arm_fir_instance_q31 * S,
Kojto 115:87f2f5183dfb 1221 q31_t * pSrc,
Kojto 115:87f2f5183dfb 1222 q31_t * pDst,
Kojto 115:87f2f5183dfb 1223 uint32_t blockSize);
Kojto 115:87f2f5183dfb 1224
Kojto 115:87f2f5183dfb 1225 /**
Kojto 115:87f2f5183dfb 1226 * @brief Initialization function for the Q31 FIR filter.
Kojto 115:87f2f5183dfb 1227 * @param[in,out] *S points to an instance of the Q31 FIR structure.
Kojto 115:87f2f5183dfb 1228 * @param[in] numTaps Number of filter coefficients in the filter.
Kojto 115:87f2f5183dfb 1229 * @param[in] *pCoeffs points to the filter coefficients.
Kojto 115:87f2f5183dfb 1230 * @param[in] *pState points to the state buffer.
Kojto 115:87f2f5183dfb 1231 * @param[in] blockSize number of samples that are processed at a time.
Kojto 115:87f2f5183dfb 1232 * @return none.
Kojto 115:87f2f5183dfb 1233 */
Kojto 115:87f2f5183dfb 1234 void arm_fir_init_q31(
Kojto 115:87f2f5183dfb 1235 arm_fir_instance_q31 * S,
Kojto 115:87f2f5183dfb 1236 uint16_t numTaps,
Kojto 115:87f2f5183dfb 1237 q31_t * pCoeffs,
Kojto 115:87f2f5183dfb 1238 q31_t * pState,
Kojto 115:87f2f5183dfb 1239 uint32_t blockSize);
Kojto 115:87f2f5183dfb 1240
Kojto 115:87f2f5183dfb 1241 /**
Kojto 115:87f2f5183dfb 1242 * @brief Processing function for the floating-point FIR filter.
Kojto 115:87f2f5183dfb 1243 * @param[in] *S points to an instance of the floating-point FIR structure.
Kojto 115:87f2f5183dfb 1244 * @param[in] *pSrc points to the block of input data.
Kojto 115:87f2f5183dfb 1245 * @param[out] *pDst points to the block of output data.
Kojto 115:87f2f5183dfb 1246 * @param[in] blockSize number of samples to process.
Kojto 115:87f2f5183dfb 1247 * @return none.
Kojto 115:87f2f5183dfb 1248 */
Kojto 115:87f2f5183dfb 1249 void arm_fir_f32(
Kojto 115:87f2f5183dfb 1250 const arm_fir_instance_f32 * S,
Kojto 115:87f2f5183dfb 1251 float32_t * pSrc,
Kojto 115:87f2f5183dfb 1252 float32_t * pDst,
Kojto 115:87f2f5183dfb 1253 uint32_t blockSize);
Kojto 115:87f2f5183dfb 1254
Kojto 115:87f2f5183dfb 1255 /**
Kojto 115:87f2f5183dfb 1256 * @brief Initialization function for the floating-point FIR filter.
Kojto 115:87f2f5183dfb 1257 * @param[in,out] *S points to an instance of the floating-point FIR filter structure.
Kojto 115:87f2f5183dfb 1258 * @param[in] numTaps Number of filter coefficients in the filter.
Kojto 115:87f2f5183dfb 1259 * @param[in] *pCoeffs points to the filter coefficients.
Kojto 115:87f2f5183dfb 1260 * @param[in] *pState points to the state buffer.
Kojto 115:87f2f5183dfb 1261 * @param[in] blockSize number of samples that are processed at a time.
Kojto 115:87f2f5183dfb 1262 * @return none.
Kojto 115:87f2f5183dfb 1263 */
Kojto 115:87f2f5183dfb 1264 void arm_fir_init_f32(
Kojto 115:87f2f5183dfb 1265 arm_fir_instance_f32 * S,
Kojto 115:87f2f5183dfb 1266 uint16_t numTaps,
Kojto 115:87f2f5183dfb 1267 float32_t * pCoeffs,
Kojto 115:87f2f5183dfb 1268 float32_t * pState,
Kojto 115:87f2f5183dfb 1269 uint32_t blockSize);
Kojto 115:87f2f5183dfb 1270
Kojto 115:87f2f5183dfb 1271
Kojto 115:87f2f5183dfb 1272 /**
Kojto 115:87f2f5183dfb 1273 * @brief Instance structure for the Q15 Biquad cascade filter.
Kojto 115:87f2f5183dfb 1274 */
Kojto 115:87f2f5183dfb 1275 typedef struct
Kojto 115:87f2f5183dfb 1276 {
Kojto 115:87f2f5183dfb 1277 int8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
Kojto 115:87f2f5183dfb 1278 q15_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
Kojto 115:87f2f5183dfb 1279 q15_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
Kojto 115:87f2f5183dfb 1280 int8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
Kojto 115:87f2f5183dfb 1281
Kojto 115:87f2f5183dfb 1282 } arm_biquad_casd_df1_inst_q15;
Kojto 115:87f2f5183dfb 1283
Kojto 115:87f2f5183dfb 1284
Kojto 115:87f2f5183dfb 1285 /**
Kojto 115:87f2f5183dfb 1286 * @brief Instance structure for the Q31 Biquad cascade filter.
Kojto 115:87f2f5183dfb 1287 */
Kojto 115:87f2f5183dfb 1288 typedef struct
Kojto 115:87f2f5183dfb 1289 {
Kojto 115:87f2f5183dfb 1290 uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
Kojto 115:87f2f5183dfb 1291 q31_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
Kojto 115:87f2f5183dfb 1292 q31_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
Kojto 115:87f2f5183dfb 1293 uint8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
Kojto 115:87f2f5183dfb 1294
Kojto 115:87f2f5183dfb 1295 } arm_biquad_casd_df1_inst_q31;
Kojto 115:87f2f5183dfb 1296
Kojto 115:87f2f5183dfb 1297 /**
Kojto 115:87f2f5183dfb 1298 * @brief Instance structure for the floating-point Biquad cascade filter.
Kojto 115:87f2f5183dfb 1299 */
Kojto 115:87f2f5183dfb 1300 typedef struct
Kojto 115:87f2f5183dfb 1301 {
Kojto 115:87f2f5183dfb 1302 uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
Kojto 115:87f2f5183dfb 1303 float32_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
Kojto 115:87f2f5183dfb 1304 float32_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
Kojto 115:87f2f5183dfb 1305
Kojto 115:87f2f5183dfb 1306
Kojto 115:87f2f5183dfb 1307 } arm_biquad_casd_df1_inst_f32;
Kojto 115:87f2f5183dfb 1308
Kojto 115:87f2f5183dfb 1309
Kojto 115:87f2f5183dfb 1310
Kojto 115:87f2f5183dfb 1311 /**
Kojto 115:87f2f5183dfb 1312 * @brief Processing function for the Q15 Biquad cascade filter.
Kojto 115:87f2f5183dfb 1313 * @param[in] *S points to an instance of the Q15 Biquad cascade structure.
Kojto 115:87f2f5183dfb 1314 * @param[in] *pSrc points to the block of input data.
Kojto 115:87f2f5183dfb 1315 * @param[out] *pDst points to the block of output data.
Kojto 115:87f2f5183dfb 1316 * @param[in] blockSize number of samples to process.
Kojto 115:87f2f5183dfb 1317 * @return none.
Kojto 115:87f2f5183dfb 1318 */
Kojto 115:87f2f5183dfb 1319
Kojto 115:87f2f5183dfb 1320 void arm_biquad_cascade_df1_q15(
Kojto 115:87f2f5183dfb 1321 const arm_biquad_casd_df1_inst_q15 * S,
Kojto 115:87f2f5183dfb 1322 q15_t * pSrc,
Kojto 115:87f2f5183dfb 1323 q15_t * pDst,
Kojto 115:87f2f5183dfb 1324 uint32_t blockSize);
Kojto 115:87f2f5183dfb 1325
Kojto 115:87f2f5183dfb 1326 /**
Kojto 115:87f2f5183dfb 1327 * @brief Initialization function for the Q15 Biquad cascade filter.
Kojto 115:87f2f5183dfb 1328 * @param[in,out] *S points to an instance of the Q15 Biquad cascade structure.
Kojto 115:87f2f5183dfb 1329 * @param[in] numStages number of 2nd order stages in the filter.
Kojto 115:87f2f5183dfb 1330 * @param[in] *pCoeffs points to the filter coefficients.
Kojto 115:87f2f5183dfb 1331 * @param[in] *pState points to the state buffer.
Kojto 115:87f2f5183dfb 1332 * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
Kojto 115:87f2f5183dfb 1333 * @return none
Kojto 115:87f2f5183dfb 1334 */
Kojto 115:87f2f5183dfb 1335
Kojto 115:87f2f5183dfb 1336 void arm_biquad_cascade_df1_init_q15(
Kojto 115:87f2f5183dfb 1337 arm_biquad_casd_df1_inst_q15 * S,
Kojto 115:87f2f5183dfb 1338 uint8_t numStages,
Kojto 115:87f2f5183dfb 1339 q15_t * pCoeffs,
Kojto 115:87f2f5183dfb 1340 q15_t * pState,
Kojto 115:87f2f5183dfb 1341 int8_t postShift);
Kojto 115:87f2f5183dfb 1342
Kojto 115:87f2f5183dfb 1343
Kojto 115:87f2f5183dfb 1344 /**
Kojto 115:87f2f5183dfb 1345 * @brief Fast but less precise processing function for the Q15 Biquad cascade filter for Cortex-M3 and Cortex-M4.
Kojto 115:87f2f5183dfb 1346 * @param[in] *S points to an instance of the Q15 Biquad cascade structure.
Kojto 115:87f2f5183dfb 1347 * @param[in] *pSrc points to the block of input data.
Kojto 115:87f2f5183dfb 1348 * @param[out] *pDst points to the block of output data.
Kojto 115:87f2f5183dfb 1349 * @param[in] blockSize number of samples to process.
Kojto 115:87f2f5183dfb 1350 * @return none.
Kojto 115:87f2f5183dfb 1351 */
Kojto 115:87f2f5183dfb 1352
Kojto 115:87f2f5183dfb 1353 void arm_biquad_cascade_df1_fast_q15(
Kojto 115:87f2f5183dfb 1354 const arm_biquad_casd_df1_inst_q15 * S,
Kojto 115:87f2f5183dfb 1355 q15_t * pSrc,
Kojto 115:87f2f5183dfb 1356 q15_t * pDst,
Kojto 115:87f2f5183dfb 1357 uint32_t blockSize);
Kojto 115:87f2f5183dfb 1358
Kojto 115:87f2f5183dfb 1359
Kojto 115:87f2f5183dfb 1360 /**
Kojto 115:87f2f5183dfb 1361 * @brief Processing function for the Q31 Biquad cascade filter
Kojto 115:87f2f5183dfb 1362 * @param[in] *S points to an instance of the Q31 Biquad cascade structure.
Kojto 115:87f2f5183dfb 1363 * @param[in] *pSrc points to the block of input data.
Kojto 115:87f2f5183dfb 1364 * @param[out] *pDst points to the block of output data.
Kojto 115:87f2f5183dfb 1365 * @param[in] blockSize number of samples to process.
Kojto 115:87f2f5183dfb 1366 * @return none.
Kojto 115:87f2f5183dfb 1367 */
Kojto 115:87f2f5183dfb 1368
Kojto 115:87f2f5183dfb 1369 void arm_biquad_cascade_df1_q31(
Kojto 115:87f2f5183dfb 1370 const arm_biquad_casd_df1_inst_q31 * S,
Kojto 115:87f2f5183dfb 1371 q31_t * pSrc,
Kojto 115:87f2f5183dfb 1372 q31_t * pDst,
Kojto 115:87f2f5183dfb 1373 uint32_t blockSize);
Kojto 115:87f2f5183dfb 1374
Kojto 115:87f2f5183dfb 1375 /**
Kojto 115:87f2f5183dfb 1376 * @brief Fast but less precise processing function for the Q31 Biquad cascade filter for Cortex-M3 and Cortex-M4.
Kojto 115:87f2f5183dfb 1377 * @param[in] *S points to an instance of the Q31 Biquad cascade structure.
Kojto 115:87f2f5183dfb 1378 * @param[in] *pSrc points to the block of input data.
Kojto 115:87f2f5183dfb 1379 * @param[out] *pDst points to the block of output data.
Kojto 115:87f2f5183dfb 1380 * @param[in] blockSize number of samples to process.
Kojto 115:87f2f5183dfb 1381 * @return none.
Kojto 115:87f2f5183dfb 1382 */
Kojto 115:87f2f5183dfb 1383
Kojto 115:87f2f5183dfb 1384 void arm_biquad_cascade_df1_fast_q31(
Kojto 115:87f2f5183dfb 1385 const arm_biquad_casd_df1_inst_q31 * S,
Kojto 115:87f2f5183dfb 1386 q31_t * pSrc,
Kojto 115:87f2f5183dfb 1387 q31_t * pDst,
Kojto 115:87f2f5183dfb 1388 uint32_t blockSize);
Kojto 115:87f2f5183dfb 1389
Kojto 115:87f2f5183dfb 1390 /**
Kojto 115:87f2f5183dfb 1391 * @brief Initialization function for the Q31 Biquad cascade filter.
Kojto 115:87f2f5183dfb 1392 * @param[in,out] *S points to an instance of the Q31 Biquad cascade structure.
Kojto 115:87f2f5183dfb 1393 * @param[in] numStages number of 2nd order stages in the filter.
Kojto 115:87f2f5183dfb 1394 * @param[in] *pCoeffs points to the filter coefficients.
Kojto 115:87f2f5183dfb 1395 * @param[in] *pState points to the state buffer.
Kojto 115:87f2f5183dfb 1396 * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
Kojto 115:87f2f5183dfb 1397 * @return none
Kojto 115:87f2f5183dfb 1398 */
Kojto 115:87f2f5183dfb 1399
Kojto 115:87f2f5183dfb 1400 void arm_biquad_cascade_df1_init_q31(
Kojto 115:87f2f5183dfb 1401 arm_biquad_casd_df1_inst_q31 * S,
Kojto 115:87f2f5183dfb 1402 uint8_t numStages,
Kojto 115:87f2f5183dfb 1403 q31_t * pCoeffs,
Kojto 115:87f2f5183dfb 1404 q31_t * pState,
Kojto 115:87f2f5183dfb 1405 int8_t postShift);
Kojto 115:87f2f5183dfb 1406
Kojto 115:87f2f5183dfb 1407 /**
Kojto 115:87f2f5183dfb 1408 * @brief Processing function for the floating-point Biquad cascade filter.
Kojto 115:87f2f5183dfb 1409 * @param[in] *S points to an instance of the floating-point Biquad cascade structure.
Kojto 115:87f2f5183dfb 1410 * @param[in] *pSrc points to the block of input data.
Kojto 115:87f2f5183dfb 1411 * @param[out] *pDst points to the block of output data.
Kojto 115:87f2f5183dfb 1412 * @param[in] blockSize number of samples to process.
Kojto 115:87f2f5183dfb 1413 * @return none.
Kojto 115:87f2f5183dfb 1414 */
Kojto 115:87f2f5183dfb 1415
Kojto 115:87f2f5183dfb 1416 void arm_biquad_cascade_df1_f32(
Kojto 115:87f2f5183dfb 1417 const arm_biquad_casd_df1_inst_f32 * S,
Kojto 115:87f2f5183dfb 1418 float32_t * pSrc,
Kojto 115:87f2f5183dfb 1419 float32_t * pDst,
Kojto 115:87f2f5183dfb 1420 uint32_t blockSize);
Kojto 115:87f2f5183dfb 1421
Kojto 115:87f2f5183dfb 1422 /**
Kojto 115:87f2f5183dfb 1423 * @brief Initialization function for the floating-point Biquad cascade filter.
Kojto 115:87f2f5183dfb 1424 * @param[in,out] *S points to an instance of the floating-point Biquad cascade structure.
Kojto 115:87f2f5183dfb 1425 * @param[in] numStages number of 2nd order stages in the filter.
Kojto 115:87f2f5183dfb 1426 * @param[in] *pCoeffs points to the filter coefficients.
Kojto 115:87f2f5183dfb 1427 * @param[in] *pState points to the state buffer.
Kojto 115:87f2f5183dfb 1428 * @return none
Kojto 115:87f2f5183dfb 1429 */
Kojto 115:87f2f5183dfb 1430
Kojto 115:87f2f5183dfb 1431 void arm_biquad_cascade_df1_init_f32(
Kojto 115:87f2f5183dfb 1432 arm_biquad_casd_df1_inst_f32 * S,
Kojto 115:87f2f5183dfb 1433 uint8_t numStages,
Kojto 115:87f2f5183dfb 1434 float32_t * pCoeffs,
Kojto 115:87f2f5183dfb 1435 float32_t * pState);
Kojto 115:87f2f5183dfb 1436
Kojto 115:87f2f5183dfb 1437
Kojto 115:87f2f5183dfb 1438 /**
Kojto 115:87f2f5183dfb 1439 * @brief Instance structure for the floating-point matrix structure.
Kojto 115:87f2f5183dfb 1440 */
Kojto 115:87f2f5183dfb 1441
Kojto 115:87f2f5183dfb 1442 typedef struct
Kojto 115:87f2f5183dfb 1443 {
Kojto 115:87f2f5183dfb 1444 uint16_t numRows; /**< number of rows of the matrix. */
Kojto 115:87f2f5183dfb 1445 uint16_t numCols; /**< number of columns of the matrix. */
Kojto 115:87f2f5183dfb 1446 float32_t *pData; /**< points to the data of the matrix. */
Kojto 115:87f2f5183dfb 1447 } arm_matrix_instance_f32;
Kojto 115:87f2f5183dfb 1448
Kojto 115:87f2f5183dfb 1449
Kojto 115:87f2f5183dfb 1450 /**
Kojto 115:87f2f5183dfb 1451 * @brief Instance structure for the floating-point matrix structure.
Kojto 115:87f2f5183dfb 1452 */
Kojto 115:87f2f5183dfb 1453
Kojto 115:87f2f5183dfb 1454 typedef struct
Kojto 115:87f2f5183dfb 1455 {
Kojto 115:87f2f5183dfb 1456 uint16_t numRows; /**< number of rows of the matrix. */
Kojto 115:87f2f5183dfb 1457 uint16_t numCols; /**< number of columns of the matrix. */
Kojto 115:87f2f5183dfb 1458 float64_t *pData; /**< points to the data of the matrix. */
Kojto 115:87f2f5183dfb 1459 } arm_matrix_instance_f64;
Kojto 115:87f2f5183dfb 1460
Kojto 115:87f2f5183dfb 1461 /**
Kojto 115:87f2f5183dfb 1462 * @brief Instance structure for the Q15 matrix structure.
Kojto 115:87f2f5183dfb 1463 */
Kojto 115:87f2f5183dfb 1464
Kojto 115:87f2f5183dfb 1465 typedef struct
Kojto 115:87f2f5183dfb 1466 {
Kojto 115:87f2f5183dfb 1467 uint16_t numRows; /**< number of rows of the matrix. */
Kojto 115:87f2f5183dfb 1468 uint16_t numCols; /**< number of columns of the matrix. */
Kojto 115:87f2f5183dfb 1469 q15_t *pData; /**< points to the data of the matrix. */
Kojto 115:87f2f5183dfb 1470
Kojto 115:87f2f5183dfb 1471 } arm_matrix_instance_q15;
Kojto 115:87f2f5183dfb 1472
Kojto 115:87f2f5183dfb 1473 /**
Kojto 115:87f2f5183dfb 1474 * @brief Instance structure for the Q31 matrix structure.
Kojto 115:87f2f5183dfb 1475 */
Kojto 115:87f2f5183dfb 1476
Kojto 115:87f2f5183dfb 1477 typedef struct
Kojto 115:87f2f5183dfb 1478 {
Kojto 115:87f2f5183dfb 1479 uint16_t numRows; /**< number of rows of the matrix. */
Kojto 115:87f2f5183dfb 1480 uint16_t numCols; /**< number of columns of the matrix. */
Kojto 115:87f2f5183dfb 1481 q31_t *pData; /**< points to the data of the matrix. */
Kojto 115:87f2f5183dfb 1482
Kojto 115:87f2f5183dfb 1483 } arm_matrix_instance_q31;
Kojto 115:87f2f5183dfb 1484
Kojto 115:87f2f5183dfb 1485
Kojto 115:87f2f5183dfb 1486
Kojto 115:87f2f5183dfb 1487 /**
Kojto 115:87f2f5183dfb 1488 * @brief Floating-point matrix addition.
Kojto 115:87f2f5183dfb 1489 * @param[in] *pSrcA points to the first input matrix structure
Kojto 115:87f2f5183dfb 1490 * @param[in] *pSrcB points to the second input matrix structure
Kojto 115:87f2f5183dfb 1491 * @param[out] *pDst points to output matrix structure
Kojto 115:87f2f5183dfb 1492 * @return The function returns either
Kojto 115:87f2f5183dfb 1493 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 115:87f2f5183dfb 1494 */
Kojto 115:87f2f5183dfb 1495
Kojto 115:87f2f5183dfb 1496 arm_status arm_mat_add_f32(
Kojto 115:87f2f5183dfb 1497 const arm_matrix_instance_f32 * pSrcA,
Kojto 115:87f2f5183dfb 1498 const arm_matrix_instance_f32 * pSrcB,
Kojto 115:87f2f5183dfb 1499 arm_matrix_instance_f32 * pDst);
Kojto 115:87f2f5183dfb 1500
Kojto 115:87f2f5183dfb 1501 /**
Kojto 115:87f2f5183dfb 1502 * @brief Q15 matrix addition.
Kojto 115:87f2f5183dfb 1503 * @param[in] *pSrcA points to the first input matrix structure
Kojto 115:87f2f5183dfb 1504 * @param[in] *pSrcB points to the second input matrix structure
Kojto 115:87f2f5183dfb 1505 * @param[out] *pDst points to output matrix structure
Kojto 115:87f2f5183dfb 1506 * @return The function returns either
Kojto 115:87f2f5183dfb 1507 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 115:87f2f5183dfb 1508 */
Kojto 115:87f2f5183dfb 1509
Kojto 115:87f2f5183dfb 1510 arm_status arm_mat_add_q15(
Kojto 115:87f2f5183dfb 1511 const arm_matrix_instance_q15 * pSrcA,
Kojto 115:87f2f5183dfb 1512 const arm_matrix_instance_q15 * pSrcB,
Kojto 115:87f2f5183dfb 1513 arm_matrix_instance_q15 * pDst);
Kojto 115:87f2f5183dfb 1514
Kojto 115:87f2f5183dfb 1515 /**
Kojto 115:87f2f5183dfb 1516 * @brief Q31 matrix addition.
Kojto 115:87f2f5183dfb 1517 * @param[in] *pSrcA points to the first input matrix structure
Kojto 115:87f2f5183dfb 1518 * @param[in] *pSrcB points to the second input matrix structure
Kojto 115:87f2f5183dfb 1519 * @param[out] *pDst points to output matrix structure
Kojto 115:87f2f5183dfb 1520 * @return The function returns either
Kojto 115:87f2f5183dfb 1521 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 115:87f2f5183dfb 1522 */
Kojto 115:87f2f5183dfb 1523
Kojto 115:87f2f5183dfb 1524 arm_status arm_mat_add_q31(
Kojto 115:87f2f5183dfb 1525 const arm_matrix_instance_q31 * pSrcA,
Kojto 115:87f2f5183dfb 1526 const arm_matrix_instance_q31 * pSrcB,
Kojto 115:87f2f5183dfb 1527 arm_matrix_instance_q31 * pDst);
Kojto 115:87f2f5183dfb 1528
Kojto 115:87f2f5183dfb 1529 /**
Kojto 115:87f2f5183dfb 1530 * @brief Floating-point, complex, matrix multiplication.
Kojto 115:87f2f5183dfb 1531 * @param[in] *pSrcA points to the first input matrix structure
Kojto 115:87f2f5183dfb 1532 * @param[in] *pSrcB points to the second input matrix structure
Kojto 115:87f2f5183dfb 1533 * @param[out] *pDst points to output matrix structure
Kojto 115:87f2f5183dfb 1534 * @return The function returns either
Kojto 115:87f2f5183dfb 1535 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 115:87f2f5183dfb 1536 */
Kojto 115:87f2f5183dfb 1537
Kojto 115:87f2f5183dfb 1538 arm_status arm_mat_cmplx_mult_f32(
Kojto 115:87f2f5183dfb 1539 const arm_matrix_instance_f32 * pSrcA,
Kojto 115:87f2f5183dfb 1540 const arm_matrix_instance_f32 * pSrcB,
Kojto 115:87f2f5183dfb 1541 arm_matrix_instance_f32 * pDst);
Kojto 115:87f2f5183dfb 1542
Kojto 115:87f2f5183dfb 1543 /**
Kojto 115:87f2f5183dfb 1544 * @brief Q15, complex, matrix multiplication.
Kojto 115:87f2f5183dfb 1545 * @param[in] *pSrcA points to the first input matrix structure
Kojto 115:87f2f5183dfb 1546 * @param[in] *pSrcB points to the second input matrix structure
Kojto 115:87f2f5183dfb 1547 * @param[out] *pDst points to output matrix structure
Kojto 115:87f2f5183dfb 1548 * @return The function returns either
Kojto 115:87f2f5183dfb 1549 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 115:87f2f5183dfb 1550 */
Kojto 115:87f2f5183dfb 1551
Kojto 115:87f2f5183dfb 1552 arm_status arm_mat_cmplx_mult_q15(
Kojto 115:87f2f5183dfb 1553 const arm_matrix_instance_q15 * pSrcA,
Kojto 115:87f2f5183dfb 1554 const arm_matrix_instance_q15 * pSrcB,
Kojto 115:87f2f5183dfb 1555 arm_matrix_instance_q15 * pDst,
Kojto 115:87f2f5183dfb 1556 q15_t * pScratch);
Kojto 115:87f2f5183dfb 1557
Kojto 115:87f2f5183dfb 1558 /**
Kojto 115:87f2f5183dfb 1559 * @brief Q31, complex, matrix multiplication.
Kojto 115:87f2f5183dfb 1560 * @param[in] *pSrcA points to the first input matrix structure
Kojto 115:87f2f5183dfb 1561 * @param[in] *pSrcB points to the second input matrix structure
Kojto 115:87f2f5183dfb 1562 * @param[out] *pDst points to output matrix structure
Kojto 115:87f2f5183dfb 1563 * @return The function returns either
Kojto 115:87f2f5183dfb 1564 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 115:87f2f5183dfb 1565 */
Kojto 115:87f2f5183dfb 1566
Kojto 115:87f2f5183dfb 1567 arm_status arm_mat_cmplx_mult_q31(
Kojto 115:87f2f5183dfb 1568 const arm_matrix_instance_q31 * pSrcA,
Kojto 115:87f2f5183dfb 1569 const arm_matrix_instance_q31 * pSrcB,
Kojto 115:87f2f5183dfb 1570 arm_matrix_instance_q31 * pDst);
Kojto 115:87f2f5183dfb 1571
Kojto 115:87f2f5183dfb 1572
Kojto 115:87f2f5183dfb 1573 /**
Kojto 115:87f2f5183dfb 1574 * @brief Floating-point matrix transpose.
Kojto 115:87f2f5183dfb 1575 * @param[in] *pSrc points to the input matrix
Kojto 115:87f2f5183dfb 1576 * @param[out] *pDst points to the output matrix
Kojto 115:87f2f5183dfb 1577 * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
Kojto 115:87f2f5183dfb 1578 * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 115:87f2f5183dfb 1579 */
Kojto 115:87f2f5183dfb 1580
Kojto 115:87f2f5183dfb 1581 arm_status arm_mat_trans_f32(
Kojto 115:87f2f5183dfb 1582 const arm_matrix_instance_f32 * pSrc,
Kojto 115:87f2f5183dfb 1583 arm_matrix_instance_f32 * pDst);
Kojto 115:87f2f5183dfb 1584
Kojto 115:87f2f5183dfb 1585
Kojto 115:87f2f5183dfb 1586 /**
Kojto 115:87f2f5183dfb 1587 * @brief Q15 matrix transpose.
Kojto 115:87f2f5183dfb 1588 * @param[in] *pSrc points to the input matrix
Kojto 115:87f2f5183dfb 1589 * @param[out] *pDst points to the output matrix
Kojto 115:87f2f5183dfb 1590 * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
Kojto 115:87f2f5183dfb 1591 * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 115:87f2f5183dfb 1592 */
Kojto 115:87f2f5183dfb 1593
Kojto 115:87f2f5183dfb 1594 arm_status arm_mat_trans_q15(
Kojto 115:87f2f5183dfb 1595 const arm_matrix_instance_q15 * pSrc,
Kojto 115:87f2f5183dfb 1596 arm_matrix_instance_q15 * pDst);
Kojto 115:87f2f5183dfb 1597
Kojto 115:87f2f5183dfb 1598 /**
Kojto 115:87f2f5183dfb 1599 * @brief Q31 matrix transpose.
Kojto 115:87f2f5183dfb 1600 * @param[in] *pSrc points to the input matrix
Kojto 115:87f2f5183dfb 1601 * @param[out] *pDst points to the output matrix
Kojto 115:87f2f5183dfb 1602 * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
Kojto 115:87f2f5183dfb 1603 * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 115:87f2f5183dfb 1604 */
Kojto 115:87f2f5183dfb 1605
Kojto 115:87f2f5183dfb 1606 arm_status arm_mat_trans_q31(
Kojto 115:87f2f5183dfb 1607 const arm_matrix_instance_q31 * pSrc,
Kojto 115:87f2f5183dfb 1608 arm_matrix_instance_q31 * pDst);
Kojto 115:87f2f5183dfb 1609
Kojto 115:87f2f5183dfb 1610
Kojto 115:87f2f5183dfb 1611 /**
Kojto 115:87f2f5183dfb 1612 * @brief Floating-point matrix multiplication
Kojto 115:87f2f5183dfb 1613 * @param[in] *pSrcA points to the first input matrix structure
Kojto 115:87f2f5183dfb 1614 * @param[in] *pSrcB points to the second input matrix structure
Kojto 115:87f2f5183dfb 1615 * @param[out] *pDst points to output matrix structure
Kojto 115:87f2f5183dfb 1616 * @return The function returns either
Kojto 115:87f2f5183dfb 1617 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 115:87f2f5183dfb 1618 */
Kojto 115:87f2f5183dfb 1619
Kojto 115:87f2f5183dfb 1620 arm_status arm_mat_mult_f32(
Kojto 115:87f2f5183dfb 1621 const arm_matrix_instance_f32 * pSrcA,
Kojto 115:87f2f5183dfb 1622 const arm_matrix_instance_f32 * pSrcB,
Kojto 115:87f2f5183dfb 1623 arm_matrix_instance_f32 * pDst);
Kojto 115:87f2f5183dfb 1624
Kojto 115:87f2f5183dfb 1625 /**
Kojto 115:87f2f5183dfb 1626 * @brief Q15 matrix multiplication
Kojto 115:87f2f5183dfb 1627 * @param[in] *pSrcA points to the first input matrix structure
Kojto 115:87f2f5183dfb 1628 * @param[in] *pSrcB points to the second input matrix structure
Kojto 115:87f2f5183dfb 1629 * @param[out] *pDst points to output matrix structure
Kojto 115:87f2f5183dfb 1630 * @param[in] *pState points to the array for storing intermediate results
Kojto 115:87f2f5183dfb 1631 * @return The function returns either
Kojto 115:87f2f5183dfb 1632 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 115:87f2f5183dfb 1633 */
Kojto 115:87f2f5183dfb 1634
Kojto 115:87f2f5183dfb 1635 arm_status arm_mat_mult_q15(
Kojto 115:87f2f5183dfb 1636 const arm_matrix_instance_q15 * pSrcA,
Kojto 115:87f2f5183dfb 1637 const arm_matrix_instance_q15 * pSrcB,
Kojto 115:87f2f5183dfb 1638 arm_matrix_instance_q15 * pDst,
Kojto 115:87f2f5183dfb 1639 q15_t * pState);
Kojto 115:87f2f5183dfb 1640
Kojto 115:87f2f5183dfb 1641 /**
Kojto 115:87f2f5183dfb 1642 * @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
Kojto 115:87f2f5183dfb 1643 * @param[in] *pSrcA points to the first input matrix structure
Kojto 115:87f2f5183dfb 1644 * @param[in] *pSrcB points to the second input matrix structure
Kojto 115:87f2f5183dfb 1645 * @param[out] *pDst points to output matrix structure
Kojto 115:87f2f5183dfb 1646 * @param[in] *pState points to the array for storing intermediate results
Kojto 115:87f2f5183dfb 1647 * @return The function returns either
Kojto 115:87f2f5183dfb 1648 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 115:87f2f5183dfb 1649 */
Kojto 115:87f2f5183dfb 1650
Kojto 115:87f2f5183dfb 1651 arm_status arm_mat_mult_fast_q15(
Kojto 115:87f2f5183dfb 1652 const arm_matrix_instance_q15 * pSrcA,
Kojto 115:87f2f5183dfb 1653 const arm_matrix_instance_q15 * pSrcB,
Kojto 115:87f2f5183dfb 1654 arm_matrix_instance_q15 * pDst,
Kojto 115:87f2f5183dfb 1655 q15_t * pState);
Kojto 115:87f2f5183dfb 1656
Kojto 115:87f2f5183dfb 1657 /**
Kojto 115:87f2f5183dfb 1658 * @brief Q31 matrix multiplication
Kojto 115:87f2f5183dfb 1659 * @param[in] *pSrcA points to the first input matrix structure
Kojto 115:87f2f5183dfb 1660 * @param[in] *pSrcB points to the second input matrix structure
Kojto 115:87f2f5183dfb 1661 * @param[out] *pDst points to output matrix structure
Kojto 115:87f2f5183dfb 1662 * @return The function returns either
Kojto 115:87f2f5183dfb 1663 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 115:87f2f5183dfb 1664 */
Kojto 115:87f2f5183dfb 1665
Kojto 115:87f2f5183dfb 1666 arm_status arm_mat_mult_q31(
Kojto 115:87f2f5183dfb 1667 const arm_matrix_instance_q31 * pSrcA,
Kojto 115:87f2f5183dfb 1668 const arm_matrix_instance_q31 * pSrcB,
Kojto 115:87f2f5183dfb 1669 arm_matrix_instance_q31 * pDst);
Kojto 115:87f2f5183dfb 1670
Kojto 115:87f2f5183dfb 1671 /**
Kojto 115:87f2f5183dfb 1672 * @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
Kojto 115:87f2f5183dfb 1673 * @param[in] *pSrcA points to the first input matrix structure
Kojto 115:87f2f5183dfb 1674 * @param[in] *pSrcB points to the second input matrix structure
Kojto 115:87f2f5183dfb 1675 * @param[out] *pDst points to output matrix structure
Kojto 115:87f2f5183dfb 1676 * @return The function returns either
Kojto 115:87f2f5183dfb 1677 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 115:87f2f5183dfb 1678 */
Kojto 115:87f2f5183dfb 1679
Kojto 115:87f2f5183dfb 1680 arm_status arm_mat_mult_fast_q31(
Kojto 115:87f2f5183dfb 1681 const arm_matrix_instance_q31 * pSrcA,
Kojto 115:87f2f5183dfb 1682 const arm_matrix_instance_q31 * pSrcB,
Kojto 115:87f2f5183dfb 1683 arm_matrix_instance_q31 * pDst);
Kojto 115:87f2f5183dfb 1684
Kojto 115:87f2f5183dfb 1685
Kojto 115:87f2f5183dfb 1686 /**
Kojto 115:87f2f5183dfb 1687 * @brief Floating-point matrix subtraction
Kojto 115:87f2f5183dfb 1688 * @param[in] *pSrcA points to the first input matrix structure
Kojto 115:87f2f5183dfb 1689 * @param[in] *pSrcB points to the second input matrix structure
Kojto 115:87f2f5183dfb 1690 * @param[out] *pDst points to output matrix structure
Kojto 115:87f2f5183dfb 1691 * @return The function returns either
Kojto 115:87f2f5183dfb 1692 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 115:87f2f5183dfb 1693 */
Kojto 115:87f2f5183dfb 1694
Kojto 115:87f2f5183dfb 1695 arm_status arm_mat_sub_f32(
Kojto 115:87f2f5183dfb 1696 const arm_matrix_instance_f32 * pSrcA,
Kojto 115:87f2f5183dfb 1697 const arm_matrix_instance_f32 * pSrcB,
Kojto 115:87f2f5183dfb 1698 arm_matrix_instance_f32 * pDst);
Kojto 115:87f2f5183dfb 1699
Kojto 115:87f2f5183dfb 1700 /**
Kojto 115:87f2f5183dfb 1701 * @brief Q15 matrix subtraction
Kojto 115:87f2f5183dfb 1702 * @param[in] *pSrcA points to the first input matrix structure
Kojto 115:87f2f5183dfb 1703 * @param[in] *pSrcB points to the second input matrix structure
Kojto 115:87f2f5183dfb 1704 * @param[out] *pDst points to output matrix structure
Kojto 115:87f2f5183dfb 1705 * @return The function returns either
Kojto 115:87f2f5183dfb 1706 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 115:87f2f5183dfb 1707 */
Kojto 115:87f2f5183dfb 1708
Kojto 115:87f2f5183dfb 1709 arm_status arm_mat_sub_q15(
Kojto 115:87f2f5183dfb 1710 const arm_matrix_instance_q15 * pSrcA,
Kojto 115:87f2f5183dfb 1711 const arm_matrix_instance_q15 * pSrcB,
Kojto 115:87f2f5183dfb 1712 arm_matrix_instance_q15 * pDst);
Kojto 115:87f2f5183dfb 1713
Kojto 115:87f2f5183dfb 1714 /**
Kojto 115:87f2f5183dfb 1715 * @brief Q31 matrix subtraction
Kojto 115:87f2f5183dfb 1716 * @param[in] *pSrcA points to the first input matrix structure
Kojto 115:87f2f5183dfb 1717 * @param[in] *pSrcB points to the second input matrix structure
Kojto 115:87f2f5183dfb 1718 * @param[out] *pDst points to output matrix structure
Kojto 115:87f2f5183dfb 1719 * @return The function returns either
Kojto 115:87f2f5183dfb 1720 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 115:87f2f5183dfb 1721 */
Kojto 115:87f2f5183dfb 1722
Kojto 115:87f2f5183dfb 1723 arm_status arm_mat_sub_q31(
Kojto 115:87f2f5183dfb 1724 const arm_matrix_instance_q31 * pSrcA,
Kojto 115:87f2f5183dfb 1725 const arm_matrix_instance_q31 * pSrcB,
Kojto 115:87f2f5183dfb 1726 arm_matrix_instance_q31 * pDst);
Kojto 115:87f2f5183dfb 1727
Kojto 115:87f2f5183dfb 1728 /**
Kojto 115:87f2f5183dfb 1729 * @brief Floating-point matrix scaling.
Kojto 115:87f2f5183dfb 1730 * @param[in] *pSrc points to the input matrix
Kojto 115:87f2f5183dfb 1731 * @param[in] scale scale factor
Kojto 115:87f2f5183dfb 1732 * @param[out] *pDst points to the output matrix
Kojto 115:87f2f5183dfb 1733 * @return The function returns either
Kojto 115:87f2f5183dfb 1734 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 115:87f2f5183dfb 1735 */
Kojto 115:87f2f5183dfb 1736
Kojto 115:87f2f5183dfb 1737 arm_status arm_mat_scale_f32(
Kojto 115:87f2f5183dfb 1738 const arm_matrix_instance_f32 * pSrc,
Kojto 115:87f2f5183dfb 1739 float32_t scale,
Kojto 115:87f2f5183dfb 1740 arm_matrix_instance_f32 * pDst);
Kojto 115:87f2f5183dfb 1741
Kojto 115:87f2f5183dfb 1742 /**
Kojto 115:87f2f5183dfb 1743 * @brief Q15 matrix scaling.
Kojto 115:87f2f5183dfb 1744 * @param[in] *pSrc points to input matrix
Kojto 115:87f2f5183dfb 1745 * @param[in] scaleFract fractional portion of the scale factor
Kojto 115:87f2f5183dfb 1746 * @param[in] shift number of bits to shift the result by
Kojto 115:87f2f5183dfb 1747 * @param[out] *pDst points to output matrix
Kojto 115:87f2f5183dfb 1748 * @return The function returns either
Kojto 115:87f2f5183dfb 1749 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 115:87f2f5183dfb 1750 */
Kojto 115:87f2f5183dfb 1751
Kojto 115:87f2f5183dfb 1752 arm_status arm_mat_scale_q15(
Kojto 115:87f2f5183dfb 1753 const arm_matrix_instance_q15 * pSrc,
Kojto 115:87f2f5183dfb 1754 q15_t scaleFract,
Kojto 115:87f2f5183dfb 1755 int32_t shift,
Kojto 115:87f2f5183dfb 1756 arm_matrix_instance_q15 * pDst);
Kojto 115:87f2f5183dfb 1757
Kojto 115:87f2f5183dfb 1758 /**
Kojto 115:87f2f5183dfb 1759 * @brief Q31 matrix scaling.
Kojto 115:87f2f5183dfb 1760 * @param[in] *pSrc points to input matrix
Kojto 115:87f2f5183dfb 1761 * @param[in] scaleFract fractional portion of the scale factor
Kojto 115:87f2f5183dfb 1762 * @param[in] shift number of bits to shift the result by
Kojto 115:87f2f5183dfb 1763 * @param[out] *pDst points to output matrix structure
Kojto 115:87f2f5183dfb 1764 * @return The function returns either
Kojto 115:87f2f5183dfb 1765 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 115:87f2f5183dfb 1766 */
Kojto 115:87f2f5183dfb 1767
Kojto 115:87f2f5183dfb 1768 arm_status arm_mat_scale_q31(
Kojto 115:87f2f5183dfb 1769 const arm_matrix_instance_q31 * pSrc,
Kojto 115:87f2f5183dfb 1770 q31_t scaleFract,
Kojto 115:87f2f5183dfb 1771 int32_t shift,
Kojto 115:87f2f5183dfb 1772 arm_matrix_instance_q31 * pDst);
Kojto 115:87f2f5183dfb 1773
Kojto 115:87f2f5183dfb 1774
Kojto 115:87f2f5183dfb 1775 /**
Kojto 115:87f2f5183dfb 1776 * @brief Q31 matrix initialization.
Kojto 115:87f2f5183dfb 1777 * @param[in,out] *S points to an instance of the floating-point matrix structure.
Kojto 115:87f2f5183dfb 1778 * @param[in] nRows number of rows in the matrix.
Kojto 115:87f2f5183dfb 1779 * @param[in] nColumns number of columns in the matrix.
Kojto 115:87f2f5183dfb 1780 * @param[in] *pData points to the matrix data array.
Kojto 115:87f2f5183dfb 1781 * @return none
Kojto 115:87f2f5183dfb 1782 */
Kojto 115:87f2f5183dfb 1783
Kojto 115:87f2f5183dfb 1784 void arm_mat_init_q31(
Kojto 115:87f2f5183dfb 1785 arm_matrix_instance_q31 * S,
Kojto 115:87f2f5183dfb 1786 uint16_t nRows,
Kojto 115:87f2f5183dfb 1787 uint16_t nColumns,
Kojto 115:87f2f5183dfb 1788 q31_t * pData);
Kojto 115:87f2f5183dfb 1789
Kojto 115:87f2f5183dfb 1790 /**
Kojto 115:87f2f5183dfb 1791 * @brief Q15 matrix initialization.
Kojto 115:87f2f5183dfb 1792 * @param[in,out] *S points to an instance of the floating-point matrix structure.
Kojto 115:87f2f5183dfb 1793 * @param[in] nRows number of rows in the matrix.
Kojto 115:87f2f5183dfb 1794 * @param[in] nColumns number of columns in the matrix.
Kojto 115:87f2f5183dfb 1795 * @param[in] *pData points to the matrix data array.
Kojto 115:87f2f5183dfb 1796 * @return none
Kojto 115:87f2f5183dfb 1797 */
Kojto 115:87f2f5183dfb 1798
Kojto 115:87f2f5183dfb 1799 void arm_mat_init_q15(
Kojto 115:87f2f5183dfb 1800 arm_matrix_instance_q15 * S,
Kojto 115:87f2f5183dfb 1801 uint16_t nRows,
Kojto 115:87f2f5183dfb 1802 uint16_t nColumns,
Kojto 115:87f2f5183dfb 1803 q15_t * pData);
Kojto 115:87f2f5183dfb 1804
Kojto 115:87f2f5183dfb 1805 /**
Kojto 115:87f2f5183dfb 1806 * @brief Floating-point matrix initialization.
Kojto 115:87f2f5183dfb 1807 * @param[in,out] *S points to an instance of the floating-point matrix structure.
Kojto 115:87f2f5183dfb 1808 * @param[in] nRows number of rows in the matrix.
Kojto 115:87f2f5183dfb 1809 * @param[in] nColumns number of columns in the matrix.
Kojto 115:87f2f5183dfb 1810 * @param[in] *pData points to the matrix data array.
Kojto 115:87f2f5183dfb 1811 * @return none
Kojto 115:87f2f5183dfb 1812 */
Kojto 115:87f2f5183dfb 1813
Kojto 115:87f2f5183dfb 1814 void arm_mat_init_f32(
Kojto 115:87f2f5183dfb 1815 arm_matrix_instance_f32 * S,
Kojto 115:87f2f5183dfb 1816 uint16_t nRows,
Kojto 115:87f2f5183dfb 1817 uint16_t nColumns,
Kojto 115:87f2f5183dfb 1818 float32_t * pData);
Kojto 115:87f2f5183dfb 1819
Kojto 115:87f2f5183dfb 1820
Kojto 115:87f2f5183dfb 1821
Kojto 115:87f2f5183dfb 1822 /**
Kojto 115:87f2f5183dfb 1823 * @brief Instance structure for the Q15 PID Control.
Kojto 115:87f2f5183dfb 1824 */
Kojto 115:87f2f5183dfb 1825 typedef struct
Kojto 115:87f2f5183dfb 1826 {
Kojto 115:87f2f5183dfb 1827 q15_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
Kojto 115:87f2f5183dfb 1828 #ifdef ARM_MATH_CM0_FAMILY
Kojto 115:87f2f5183dfb 1829 q15_t A1;
Kojto 115:87f2f5183dfb 1830 q15_t A2;
Kojto 115:87f2f5183dfb 1831 #else
Kojto 115:87f2f5183dfb 1832 q31_t A1; /**< The derived gain A1 = -Kp - 2Kd | Kd.*/
Kojto 115:87f2f5183dfb 1833 #endif
Kojto 115:87f2f5183dfb 1834 q15_t state[3]; /**< The state array of length 3. */
Kojto 115:87f2f5183dfb 1835 q15_t Kp; /**< The proportional gain. */
Kojto 115:87f2f5183dfb 1836 q15_t Ki; /**< The integral gain. */
Kojto 115:87f2f5183dfb 1837 q15_t Kd; /**< The derivative gain. */
Kojto 115:87f2f5183dfb 1838 } arm_pid_instance_q15;
Kojto 115:87f2f5183dfb 1839
Kojto 115:87f2f5183dfb 1840 /**
Kojto 115:87f2f5183dfb 1841 * @brief Instance structure for the Q31 PID Control.
Kojto 115:87f2f5183dfb 1842 */
Kojto 115:87f2f5183dfb 1843 typedef struct
Kojto 115:87f2f5183dfb 1844 {
Kojto 115:87f2f5183dfb 1845 q31_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
Kojto 115:87f2f5183dfb 1846 q31_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
Kojto 115:87f2f5183dfb 1847 q31_t A2; /**< The derived gain, A2 = Kd . */
Kojto 115:87f2f5183dfb 1848 q31_t state[3]; /**< The state array of length 3. */
Kojto 115:87f2f5183dfb 1849 q31_t Kp; /**< The proportional gain. */
Kojto 115:87f2f5183dfb 1850 q31_t Ki; /**< The integral gain. */
Kojto 115:87f2f5183dfb 1851 q31_t Kd; /**< The derivative gain. */
Kojto 115:87f2f5183dfb 1852
Kojto 115:87f2f5183dfb 1853 } arm_pid_instance_q31;
Kojto 115:87f2f5183dfb 1854
Kojto 115:87f2f5183dfb 1855 /**
Kojto 115:87f2f5183dfb 1856 * @brief Instance structure for the floating-point PID Control.
Kojto 115:87f2f5183dfb 1857 */
Kojto 115:87f2f5183dfb 1858 typedef struct
Kojto 115:87f2f5183dfb 1859 {
Kojto 115:87f2f5183dfb 1860 float32_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
Kojto 115:87f2f5183dfb 1861 float32_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
Kojto 115:87f2f5183dfb 1862 float32_t A2; /**< The derived gain, A2 = Kd . */
Kojto 115:87f2f5183dfb 1863 float32_t state[3]; /**< The state array of length 3. */
Kojto 115:87f2f5183dfb 1864 float32_t Kp; /**< The proportional gain. */
Kojto 115:87f2f5183dfb 1865 float32_t Ki; /**< The integral gain. */
Kojto 115:87f2f5183dfb 1866 float32_t Kd; /**< The derivative gain. */
Kojto 115:87f2f5183dfb 1867 } arm_pid_instance_f32;
Kojto 115:87f2f5183dfb 1868
Kojto 115:87f2f5183dfb 1869
Kojto 115:87f2f5183dfb 1870
Kojto 115:87f2f5183dfb 1871 /**
Kojto 115:87f2f5183dfb 1872 * @brief Initialization function for the floating-point PID Control.
Kojto 115:87f2f5183dfb 1873 * @param[in,out] *S points to an instance of the PID structure.
Kojto 115:87f2f5183dfb 1874 * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
Kojto 115:87f2f5183dfb 1875 * @return none.
Kojto 115:87f2f5183dfb 1876 */
Kojto 115:87f2f5183dfb 1877 void arm_pid_init_f32(
Kojto 115:87f2f5183dfb 1878 arm_pid_instance_f32 * S,
Kojto 115:87f2f5183dfb 1879 int32_t resetStateFlag);
Kojto 115:87f2f5183dfb 1880
Kojto 115:87f2f5183dfb 1881 /**
Kojto 115:87f2f5183dfb 1882 * @brief Reset function for the floating-point PID Control.
Kojto 115:87f2f5183dfb 1883 * @param[in,out] *S is an instance of the floating-point PID Control structure
Kojto 115:87f2f5183dfb 1884 * @return none
Kojto 115:87f2f5183dfb 1885 */
Kojto 115:87f2f5183dfb 1886 void arm_pid_reset_f32(
Kojto 115:87f2f5183dfb 1887 arm_pid_instance_f32 * S);
Kojto 115:87f2f5183dfb 1888
Kojto 115:87f2f5183dfb 1889
Kojto 115:87f2f5183dfb 1890 /**
Kojto 115:87f2f5183dfb 1891 * @brief Initialization function for the Q31 PID Control.
Kojto 115:87f2f5183dfb 1892 * @param[in,out] *S points to an instance of the Q15 PID structure.
Kojto 115:87f2f5183dfb 1893 * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
Kojto 115:87f2f5183dfb 1894 * @return none.
Kojto 115:87f2f5183dfb 1895 */
Kojto 115:87f2f5183dfb 1896 void arm_pid_init_q31(
Kojto 115:87f2f5183dfb 1897 arm_pid_instance_q31 * S,
Kojto 115:87f2f5183dfb 1898 int32_t resetStateFlag);
Kojto 115:87f2f5183dfb 1899
Kojto 115:87f2f5183dfb 1900
Kojto 115:87f2f5183dfb 1901 /**
Kojto 115:87f2f5183dfb 1902 * @brief Reset function for the Q31 PID Control.
Kojto 115:87f2f5183dfb 1903 * @param[in,out] *S points to an instance of the Q31 PID Control structure
Kojto 115:87f2f5183dfb 1904 * @return none
Kojto 115:87f2f5183dfb 1905 */
Kojto 115:87f2f5183dfb 1906
Kojto 115:87f2f5183dfb 1907 void arm_pid_reset_q31(
Kojto 115:87f2f5183dfb 1908 arm_pid_instance_q31 * S);
Kojto 115:87f2f5183dfb 1909
Kojto 115:87f2f5183dfb 1910 /**
Kojto 115:87f2f5183dfb 1911 * @brief Initialization function for the Q15 PID Control.
Kojto 115:87f2f5183dfb 1912 * @param[in,out] *S points to an instance of the Q15 PID structure.
Kojto 115:87f2f5183dfb 1913 * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
Kojto 115:87f2f5183dfb 1914 * @return none.
Kojto 115:87f2f5183dfb 1915 */
Kojto 115:87f2f5183dfb 1916 void arm_pid_init_q15(
Kojto 115:87f2f5183dfb 1917 arm_pid_instance_q15 * S,
Kojto 115:87f2f5183dfb 1918 int32_t resetStateFlag);
Kojto 115:87f2f5183dfb 1919
Kojto 115:87f2f5183dfb 1920 /**
Kojto 115:87f2f5183dfb 1921 * @brief Reset function for the Q15 PID Control.
Kojto 115:87f2f5183dfb 1922 * @param[in,out] *S points to an instance of the q15 PID Control structure
Kojto 115:87f2f5183dfb 1923 * @return none
Kojto 115:87f2f5183dfb 1924 */
Kojto 115:87f2f5183dfb 1925 void arm_pid_reset_q15(
Kojto 115:87f2f5183dfb 1926 arm_pid_instance_q15 * S);
Kojto 115:87f2f5183dfb 1927
Kojto 115:87f2f5183dfb 1928
Kojto 115:87f2f5183dfb 1929 /**
Kojto 115:87f2f5183dfb 1930 * @brief Instance structure for the floating-point Linear Interpolate function.
Kojto 115:87f2f5183dfb 1931 */
Kojto 115:87f2f5183dfb 1932 typedef struct
Kojto 115:87f2f5183dfb 1933 {
Kojto 115:87f2f5183dfb 1934 uint32_t nValues; /**< nValues */
Kojto 115:87f2f5183dfb 1935 float32_t x1; /**< x1 */
Kojto 115:87f2f5183dfb 1936 float32_t xSpacing; /**< xSpacing */
Kojto 115:87f2f5183dfb 1937 float32_t *pYData; /**< pointer to the table of Y values */
Kojto 115:87f2f5183dfb 1938 } arm_linear_interp_instance_f32;
Kojto 115:87f2f5183dfb 1939
Kojto 115:87f2f5183dfb 1940 /**
Kojto 115:87f2f5183dfb 1941 * @brief Instance structure for the floating-point bilinear interpolation function.
Kojto 115:87f2f5183dfb 1942 */
Kojto 115:87f2f5183dfb 1943
Kojto 115:87f2f5183dfb 1944 typedef struct
Kojto 115:87f2f5183dfb 1945 {
Kojto 115:87f2f5183dfb 1946 uint16_t numRows; /**< number of rows in the data table. */
Kojto 115:87f2f5183dfb 1947 uint16_t numCols; /**< number of columns in the data table. */
Kojto 115:87f2f5183dfb 1948 float32_t *pData; /**< points to the data table. */
Kojto 115:87f2f5183dfb 1949 } arm_bilinear_interp_instance_f32;
Kojto 115:87f2f5183dfb 1950
Kojto 115:87f2f5183dfb 1951 /**
Kojto 115:87f2f5183dfb 1952 * @brief Instance structure for the Q31 bilinear interpolation function.
Kojto 115:87f2f5183dfb 1953 */
Kojto 115:87f2f5183dfb 1954
Kojto 115:87f2f5183dfb 1955 typedef struct
Kojto 115:87f2f5183dfb 1956 {
Kojto 115:87f2f5183dfb 1957 uint16_t numRows; /**< number of rows in the data table. */
Kojto 115:87f2f5183dfb 1958 uint16_t numCols; /**< number of columns in the data table. */
Kojto 115:87f2f5183dfb 1959 q31_t *pData; /**< points to the data table. */
Kojto 115:87f2f5183dfb 1960 } arm_bilinear_interp_instance_q31;
Kojto 115:87f2f5183dfb 1961
Kojto 115:87f2f5183dfb 1962 /**
Kojto 115:87f2f5183dfb 1963 * @brief Instance structure for the Q15 bilinear interpolation function.
Kojto 115:87f2f5183dfb 1964 */
Kojto 115:87f2f5183dfb 1965
Kojto 115:87f2f5183dfb 1966 typedef struct
Kojto 115:87f2f5183dfb 1967 {
Kojto 115:87f2f5183dfb 1968 uint16_t numRows; /**< number of rows in the data table. */
Kojto 115:87f2f5183dfb 1969 uint16_t numCols; /**< number of columns in the data table. */
Kojto 115:87f2f5183dfb 1970 q15_t *pData; /**< points to the data table. */
Kojto 115:87f2f5183dfb 1971 } arm_bilinear_interp_instance_q15;
Kojto 115:87f2f5183dfb 1972
Kojto 115:87f2f5183dfb 1973 /**
Kojto 115:87f2f5183dfb 1974 * @brief Instance structure for the Q15 bilinear interpolation function.
Kojto 115:87f2f5183dfb 1975 */
Kojto 115:87f2f5183dfb 1976
Kojto 115:87f2f5183dfb 1977 typedef struct
Kojto 115:87f2f5183dfb 1978 {
Kojto 115:87f2f5183dfb 1979 uint16_t numRows; /**< number of rows in the data table. */
Kojto 115:87f2f5183dfb 1980 uint16_t numCols; /**< number of columns in the data table. */
Kojto 115:87f2f5183dfb 1981 q7_t *pData; /**< points to the data table. */
Kojto 115:87f2f5183dfb 1982 } arm_bilinear_interp_instance_q7;
Kojto 115:87f2f5183dfb 1983
Kojto 115:87f2f5183dfb 1984
Kojto 115:87f2f5183dfb 1985 /**
Kojto 115:87f2f5183dfb 1986 * @brief Q7 vector multiplication.
Kojto 115:87f2f5183dfb 1987 * @param[in] *pSrcA points to the first input vector
Kojto 115:87f2f5183dfb 1988 * @param[in] *pSrcB points to the second input vector
Kojto 115:87f2f5183dfb 1989 * @param[out] *pDst points to the output vector
Kojto 115:87f2f5183dfb 1990 * @param[in] blockSize number of samples in each vector
Kojto 115:87f2f5183dfb 1991 * @return none.
Kojto 115:87f2f5183dfb 1992 */
Kojto 115:87f2f5183dfb 1993
Kojto 115:87f2f5183dfb 1994 void arm_mult_q7(
Kojto 115:87f2f5183dfb 1995 q7_t * pSrcA,
Kojto 115:87f2f5183dfb 1996 q7_t * pSrcB,
Kojto 115:87f2f5183dfb 1997 q7_t * pDst,
Kojto 115:87f2f5183dfb 1998 uint32_t blockSize);
Kojto 115:87f2f5183dfb 1999
Kojto 115:87f2f5183dfb 2000 /**
Kojto 115:87f2f5183dfb 2001 * @brief Q15 vector multiplication.
Kojto 115:87f2f5183dfb 2002 * @param[in] *pSrcA points to the first input vector
Kojto 115:87f2f5183dfb 2003 * @param[in] *pSrcB points to the second input vector
Kojto 115:87f2f5183dfb 2004 * @param[out] *pDst points to the output vector
Kojto 115:87f2f5183dfb 2005 * @param[in] blockSize number of samples in each vector
Kojto 115:87f2f5183dfb 2006 * @return none.
Kojto 115:87f2f5183dfb 2007 */
Kojto 115:87f2f5183dfb 2008
Kojto 115:87f2f5183dfb 2009 void arm_mult_q15(
Kojto 115:87f2f5183dfb 2010 q15_t * pSrcA,
Kojto 115:87f2f5183dfb 2011 q15_t * pSrcB,
Kojto 115:87f2f5183dfb 2012 q15_t * pDst,
Kojto 115:87f2f5183dfb 2013 uint32_t blockSize);
Kojto 115:87f2f5183dfb 2014
Kojto 115:87f2f5183dfb 2015 /**
Kojto 115:87f2f5183dfb 2016 * @brief Q31 vector multiplication.
Kojto 115:87f2f5183dfb 2017 * @param[in] *pSrcA points to the first input vector
Kojto 115:87f2f5183dfb 2018 * @param[in] *pSrcB points to the second input vector
Kojto 115:87f2f5183dfb 2019 * @param[out] *pDst points to the output vector
Kojto 115:87f2f5183dfb 2020 * @param[in] blockSize number of samples in each vector
Kojto 115:87f2f5183dfb 2021 * @return none.
Kojto 115:87f2f5183dfb 2022 */
Kojto 115:87f2f5183dfb 2023
Kojto 115:87f2f5183dfb 2024 void arm_mult_q31(
Kojto 115:87f2f5183dfb 2025 q31_t * pSrcA,
Kojto 115:87f2f5183dfb 2026 q31_t * pSrcB,
Kojto 115:87f2f5183dfb 2027 q31_t * pDst,
Kojto 115:87f2f5183dfb 2028 uint32_t blockSize);
Kojto 115:87f2f5183dfb 2029
Kojto 115:87f2f5183dfb 2030 /**
Kojto 115:87f2f5183dfb 2031 * @brief Floating-point vector multiplication.
Kojto 115:87f2f5183dfb 2032 * @param[in] *pSrcA points to the first input vector
Kojto 115:87f2f5183dfb 2033 * @param[in] *pSrcB points to the second input vector
Kojto 115:87f2f5183dfb 2034 * @param[out] *pDst points to the output vector
Kojto 115:87f2f5183dfb 2035 * @param[in] blockSize number of samples in each vector
Kojto 115:87f2f5183dfb 2036 * @return none.
Kojto 115:87f2f5183dfb 2037 */
Kojto 115:87f2f5183dfb 2038
Kojto 115:87f2f5183dfb 2039 void arm_mult_f32(
Kojto 115:87f2f5183dfb 2040 float32_t * pSrcA,
Kojto 115:87f2f5183dfb 2041 float32_t * pSrcB,
Kojto 115:87f2f5183dfb 2042 float32_t * pDst,
Kojto 115:87f2f5183dfb 2043 uint32_t blockSize);
Kojto 115:87f2f5183dfb 2044
Kojto 115:87f2f5183dfb 2045
Kojto 115:87f2f5183dfb 2046
Kojto 115:87f2f5183dfb 2047
Kojto 115:87f2f5183dfb 2048
Kojto 115:87f2f5183dfb 2049
Kojto 115:87f2f5183dfb 2050 /**
Kojto 115:87f2f5183dfb 2051 * @brief Instance structure for the Q15 CFFT/CIFFT function.
Kojto 115:87f2f5183dfb 2052 */
Kojto 115:87f2f5183dfb 2053
Kojto 115:87f2f5183dfb 2054 typedef struct
Kojto 115:87f2f5183dfb 2055 {
Kojto 115:87f2f5183dfb 2056 uint16_t fftLen; /**< length of the FFT. */
Kojto 115:87f2f5183dfb 2057 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
Kojto 115:87f2f5183dfb 2058 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
Kojto 115:87f2f5183dfb 2059 q15_t *pTwiddle; /**< points to the Sin twiddle factor table. */
Kojto 115:87f2f5183dfb 2060 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
Kojto 115:87f2f5183dfb 2061 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
Kojto 115:87f2f5183dfb 2062 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
Kojto 115:87f2f5183dfb 2063 } arm_cfft_radix2_instance_q15;
Kojto 115:87f2f5183dfb 2064
Kojto 115:87f2f5183dfb 2065 /* Deprecated */
Kojto 115:87f2f5183dfb 2066 arm_status arm_cfft_radix2_init_q15(
Kojto 115:87f2f5183dfb 2067 arm_cfft_radix2_instance_q15 * S,
Kojto 115:87f2f5183dfb 2068 uint16_t fftLen,
Kojto 115:87f2f5183dfb 2069 uint8_t ifftFlag,
Kojto 115:87f2f5183dfb 2070 uint8_t bitReverseFlag);
Kojto 115:87f2f5183dfb 2071
Kojto 115:87f2f5183dfb 2072 /* Deprecated */
Kojto 115:87f2f5183dfb 2073 void arm_cfft_radix2_q15(
Kojto 115:87f2f5183dfb 2074 const arm_cfft_radix2_instance_q15 * S,
Kojto 115:87f2f5183dfb 2075 q15_t * pSrc);
Kojto 115:87f2f5183dfb 2076
Kojto 115:87f2f5183dfb 2077
Kojto 115:87f2f5183dfb 2078
Kojto 115:87f2f5183dfb 2079 /**
Kojto 115:87f2f5183dfb 2080 * @brief Instance structure for the Q15 CFFT/CIFFT function.
Kojto 115:87f2f5183dfb 2081 */
Kojto 115:87f2f5183dfb 2082
Kojto 115:87f2f5183dfb 2083 typedef struct
Kojto 115:87f2f5183dfb 2084 {
Kojto 115:87f2f5183dfb 2085 uint16_t fftLen; /**< length of the FFT. */
Kojto 115:87f2f5183dfb 2086 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
Kojto 115:87f2f5183dfb 2087 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
Kojto 115:87f2f5183dfb 2088 q15_t *pTwiddle; /**< points to the twiddle factor table. */
Kojto 115:87f2f5183dfb 2089 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
Kojto 115:87f2f5183dfb 2090 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
Kojto 115:87f2f5183dfb 2091 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
Kojto 115:87f2f5183dfb 2092 } arm_cfft_radix4_instance_q15;
Kojto 115:87f2f5183dfb 2093
Kojto 115:87f2f5183dfb 2094 /* Deprecated */
Kojto 115:87f2f5183dfb 2095 arm_status arm_cfft_radix4_init_q15(
Kojto 115:87f2f5183dfb 2096 arm_cfft_radix4_instance_q15 * S,
Kojto 115:87f2f5183dfb 2097 uint16_t fftLen,
Kojto 115:87f2f5183dfb 2098 uint8_t ifftFlag,
Kojto 115:87f2f5183dfb 2099 uint8_t bitReverseFlag);
Kojto 115:87f2f5183dfb 2100
Kojto 115:87f2f5183dfb 2101 /* Deprecated */
Kojto 115:87f2f5183dfb 2102 void arm_cfft_radix4_q15(
Kojto 115:87f2f5183dfb 2103 const arm_cfft_radix4_instance_q15 * S,
Kojto 115:87f2f5183dfb 2104 q15_t * pSrc);
Kojto 115:87f2f5183dfb 2105
Kojto 115:87f2f5183dfb 2106 /**
Kojto 115:87f2f5183dfb 2107 * @brief Instance structure for the Radix-2 Q31 CFFT/CIFFT function.
Kojto 115:87f2f5183dfb 2108 */
Kojto 115:87f2f5183dfb 2109
Kojto 115:87f2f5183dfb 2110 typedef struct
Kojto 115:87f2f5183dfb 2111 {
Kojto 115:87f2f5183dfb 2112 uint16_t fftLen; /**< length of the FFT. */
Kojto 115:87f2f5183dfb 2113 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
Kojto 115:87f2f5183dfb 2114 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
Kojto 115:87f2f5183dfb 2115 q31_t *pTwiddle; /**< points to the Twiddle factor table. */
Kojto 115:87f2f5183dfb 2116 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
Kojto 115:87f2f5183dfb 2117 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
Kojto 115:87f2f5183dfb 2118 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
Kojto 115:87f2f5183dfb 2119 } arm_cfft_radix2_instance_q31;
Kojto 115:87f2f5183dfb 2120
Kojto 115:87f2f5183dfb 2121 /* Deprecated */
Kojto 115:87f2f5183dfb 2122 arm_status arm_cfft_radix2_init_q31(
Kojto 115:87f2f5183dfb 2123 arm_cfft_radix2_instance_q31 * S,
Kojto 115:87f2f5183dfb 2124 uint16_t fftLen,
Kojto 115:87f2f5183dfb 2125 uint8_t ifftFlag,
Kojto 115:87f2f5183dfb 2126 uint8_t bitReverseFlag);
Kojto 115:87f2f5183dfb 2127
Kojto 115:87f2f5183dfb 2128 /* Deprecated */
Kojto 115:87f2f5183dfb 2129 void arm_cfft_radix2_q31(
Kojto 115:87f2f5183dfb 2130 const arm_cfft_radix2_instance_q31 * S,
Kojto 115:87f2f5183dfb 2131 q31_t * pSrc);
Kojto 115:87f2f5183dfb 2132
Kojto 115:87f2f5183dfb 2133 /**
Kojto 115:87f2f5183dfb 2134 * @brief Instance structure for the Q31 CFFT/CIFFT function.
Kojto 115:87f2f5183dfb 2135 */
Kojto 115:87f2f5183dfb 2136
Kojto 115:87f2f5183dfb 2137 typedef struct
Kojto 115:87f2f5183dfb 2138 {
Kojto 115:87f2f5183dfb 2139 uint16_t fftLen; /**< length of the FFT. */
Kojto 115:87f2f5183dfb 2140 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
Kojto 115:87f2f5183dfb 2141 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
Kojto 115:87f2f5183dfb 2142 q31_t *pTwiddle; /**< points to the twiddle factor table. */
Kojto 115:87f2f5183dfb 2143 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
Kojto 115:87f2f5183dfb 2144 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
Kojto 115:87f2f5183dfb 2145 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
Kojto 115:87f2f5183dfb 2146 } arm_cfft_radix4_instance_q31;
Kojto 115:87f2f5183dfb 2147
Kojto 115:87f2f5183dfb 2148 /* Deprecated */
Kojto 115:87f2f5183dfb 2149 void arm_cfft_radix4_q31(
Kojto 115:87f2f5183dfb 2150 const arm_cfft_radix4_instance_q31 * S,
Kojto 115:87f2f5183dfb 2151 q31_t * pSrc);
Kojto 115:87f2f5183dfb 2152
Kojto 115:87f2f5183dfb 2153 /* Deprecated */
Kojto 115:87f2f5183dfb 2154 arm_status arm_cfft_radix4_init_q31(
Kojto 115:87f2f5183dfb 2155 arm_cfft_radix4_instance_q31 * S,
Kojto 115:87f2f5183dfb 2156 uint16_t fftLen,
Kojto 115:87f2f5183dfb 2157 uint8_t ifftFlag,
Kojto 115:87f2f5183dfb 2158 uint8_t bitReverseFlag);
Kojto 115:87f2f5183dfb 2159
Kojto 115:87f2f5183dfb 2160 /**
Kojto 115:87f2f5183dfb 2161 * @brief Instance structure for the floating-point CFFT/CIFFT function.
Kojto 115:87f2f5183dfb 2162 */
Kojto 115:87f2f5183dfb 2163
Kojto 115:87f2f5183dfb 2164 typedef struct
Kojto 115:87f2f5183dfb 2165 {
Kojto 115:87f2f5183dfb 2166 uint16_t fftLen; /**< length of the FFT. */
Kojto 115:87f2f5183dfb 2167 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
Kojto 115:87f2f5183dfb 2168 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
Kojto 115:87f2f5183dfb 2169 float32_t *pTwiddle; /**< points to the Twiddle factor table. */
Kojto 115:87f2f5183dfb 2170 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
Kojto 115:87f2f5183dfb 2171 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
Kojto 115:87f2f5183dfb 2172 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
Kojto 115:87f2f5183dfb 2173 float32_t onebyfftLen; /**< value of 1/fftLen. */
Kojto 115:87f2f5183dfb 2174 } arm_cfft_radix2_instance_f32;
Kojto 115:87f2f5183dfb 2175
Kojto 115:87f2f5183dfb 2176 /* Deprecated */
Kojto 115:87f2f5183dfb 2177 arm_status arm_cfft_radix2_init_f32(
Kojto 115:87f2f5183dfb 2178 arm_cfft_radix2_instance_f32 * S,
Kojto 115:87f2f5183dfb 2179 uint16_t fftLen,
Kojto 115:87f2f5183dfb 2180 uint8_t ifftFlag,
Kojto 115:87f2f5183dfb 2181 uint8_t bitReverseFlag);
Kojto 115:87f2f5183dfb 2182
Kojto 115:87f2f5183dfb 2183 /* Deprecated */
Kojto 115:87f2f5183dfb 2184 void arm_cfft_radix2_f32(
Kojto 115:87f2f5183dfb 2185 const arm_cfft_radix2_instance_f32 * S,
Kojto 115:87f2f5183dfb 2186 float32_t * pSrc);
Kojto 115:87f2f5183dfb 2187
Kojto 115:87f2f5183dfb 2188 /**
Kojto 115:87f2f5183dfb 2189 * @brief Instance structure for the floating-point CFFT/CIFFT function.
Kojto 115:87f2f5183dfb 2190 */
Kojto 115:87f2f5183dfb 2191
Kojto 115:87f2f5183dfb 2192 typedef struct
Kojto 115:87f2f5183dfb 2193 {
Kojto 115:87f2f5183dfb 2194 uint16_t fftLen; /**< length of the FFT. */
Kojto 115:87f2f5183dfb 2195 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
Kojto 115:87f2f5183dfb 2196 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
Kojto 115:87f2f5183dfb 2197 float32_t *pTwiddle; /**< points to the Twiddle factor table. */
Kojto 115:87f2f5183dfb 2198 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
Kojto 115:87f2f5183dfb 2199 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
Kojto 115:87f2f5183dfb 2200 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
Kojto 115:87f2f5183dfb 2201 float32_t onebyfftLen; /**< value of 1/fftLen. */
Kojto 115:87f2f5183dfb 2202 } arm_cfft_radix4_instance_f32;
Kojto 115:87f2f5183dfb 2203
Kojto 115:87f2f5183dfb 2204 /* Deprecated */
Kojto 115:87f2f5183dfb 2205 arm_status arm_cfft_radix4_init_f32(
Kojto 115:87f2f5183dfb 2206 arm_cfft_radix4_instance_f32 * S,
Kojto 115:87f2f5183dfb 2207 uint16_t fftLen,
Kojto 115:87f2f5183dfb 2208 uint8_t ifftFlag,
Kojto 115:87f2f5183dfb 2209 uint8_t bitReverseFlag);
Kojto 115:87f2f5183dfb 2210
Kojto 115:87f2f5183dfb 2211 /* Deprecated */
Kojto 115:87f2f5183dfb 2212 void arm_cfft_radix4_f32(
Kojto 115:87f2f5183dfb 2213 const arm_cfft_radix4_instance_f32 * S,
Kojto 115:87f2f5183dfb 2214 float32_t * pSrc);
Kojto 115:87f2f5183dfb 2215
Kojto 115:87f2f5183dfb 2216 /**
Kojto 115:87f2f5183dfb 2217 * @brief Instance structure for the fixed-point CFFT/CIFFT function.
Kojto 115:87f2f5183dfb 2218 */
Kojto 115:87f2f5183dfb 2219
Kojto 115:87f2f5183dfb 2220 typedef struct
Kojto 115:87f2f5183dfb 2221 {
Kojto 115:87f2f5183dfb 2222 uint16_t fftLen; /**< length of the FFT. */
Kojto 115:87f2f5183dfb 2223 const q15_t *pTwiddle; /**< points to the Twiddle factor table. */
Kojto 115:87f2f5183dfb 2224 const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
Kojto 115:87f2f5183dfb 2225 uint16_t bitRevLength; /**< bit reversal table length. */
Kojto 115:87f2f5183dfb 2226 } arm_cfft_instance_q15;
Kojto 115:87f2f5183dfb 2227
Kojto 115:87f2f5183dfb 2228 void arm_cfft_q15(
Kojto 115:87f2f5183dfb 2229 const arm_cfft_instance_q15 * S,
Kojto 115:87f2f5183dfb 2230 q15_t * p1,
Kojto 115:87f2f5183dfb 2231 uint8_t ifftFlag,
Kojto 115:87f2f5183dfb 2232 uint8_t bitReverseFlag);
Kojto 115:87f2f5183dfb 2233
Kojto 115:87f2f5183dfb 2234 /**
Kojto 115:87f2f5183dfb 2235 * @brief Instance structure for the fixed-point CFFT/CIFFT function.
Kojto 115:87f2f5183dfb 2236 */
Kojto 115:87f2f5183dfb 2237
Kojto 115:87f2f5183dfb 2238 typedef struct
Kojto 115:87f2f5183dfb 2239 {
Kojto 115:87f2f5183dfb 2240 uint16_t fftLen; /**< length of the FFT. */
Kojto 115:87f2f5183dfb 2241 const q31_t *pTwiddle; /**< points to the Twiddle factor table. */
Kojto 115:87f2f5183dfb 2242 const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
Kojto 115:87f2f5183dfb 2243 uint16_t bitRevLength; /**< bit reversal table length. */
Kojto 115:87f2f5183dfb 2244 } arm_cfft_instance_q31;
Kojto 115:87f2f5183dfb 2245
Kojto 115:87f2f5183dfb 2246 void arm_cfft_q31(
Kojto 115:87f2f5183dfb 2247 const arm_cfft_instance_q31 * S,
Kojto 115:87f2f5183dfb 2248 q31_t * p1,
Kojto 115:87f2f5183dfb 2249 uint8_t ifftFlag,
Kojto 115:87f2f5183dfb 2250 uint8_t bitReverseFlag);
Kojto 115:87f2f5183dfb 2251
Kojto 115:87f2f5183dfb 2252 /**
Kojto 115:87f2f5183dfb 2253 * @brief Instance structure for the floating-point CFFT/CIFFT function.
Kojto 115:87f2f5183dfb 2254 */
Kojto 115:87f2f5183dfb 2255
Kojto 115:87f2f5183dfb 2256 typedef struct
Kojto 115:87f2f5183dfb 2257 {
Kojto 115:87f2f5183dfb 2258 uint16_t fftLen; /**< length of the FFT. */
Kojto 115:87f2f5183dfb 2259 const float32_t *pTwiddle; /**< points to the Twiddle factor table. */
Kojto 115:87f2f5183dfb 2260 const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
Kojto 115:87f2f5183dfb 2261 uint16_t bitRevLength; /**< bit reversal table length. */
Kojto 115:87f2f5183dfb 2262 } arm_cfft_instance_f32;
Kojto 115:87f2f5183dfb 2263
Kojto 115:87f2f5183dfb 2264 void arm_cfft_f32(
Kojto 115:87f2f5183dfb 2265 const arm_cfft_instance_f32 * S,
Kojto 115:87f2f5183dfb 2266 float32_t * p1,
Kojto 115:87f2f5183dfb 2267 uint8_t ifftFlag,
Kojto 115:87f2f5183dfb 2268 uint8_t bitReverseFlag);
Kojto 115:87f2f5183dfb 2269
Kojto 115:87f2f5183dfb 2270 /**
Kojto 115:87f2f5183dfb 2271 * @brief Instance structure for the Q15 RFFT/RIFFT function.
Kojto 115:87f2f5183dfb 2272 */
Kojto 115:87f2f5183dfb 2273
Kojto 115:87f2f5183dfb 2274 typedef struct
Kojto 115:87f2f5183dfb 2275 {
Kojto 115:87f2f5183dfb 2276 uint32_t fftLenReal; /**< length of the real FFT. */
Kojto 115:87f2f5183dfb 2277 uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
Kojto 115:87f2f5183dfb 2278 uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
Kojto 115:87f2f5183dfb 2279 uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
Kojto 115:87f2f5183dfb 2280 q15_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
Kojto 115:87f2f5183dfb 2281 q15_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
Kojto 115:87f2f5183dfb 2282 const arm_cfft_instance_q15 *pCfft; /**< points to the complex FFT instance. */
Kojto 115:87f2f5183dfb 2283 } arm_rfft_instance_q15;
Kojto 115:87f2f5183dfb 2284
Kojto 115:87f2f5183dfb 2285 arm_status arm_rfft_init_q15(
Kojto 115:87f2f5183dfb 2286 arm_rfft_instance_q15 * S,
Kojto 115:87f2f5183dfb 2287 uint32_t fftLenReal,
Kojto 115:87f2f5183dfb 2288 uint32_t ifftFlagR,
Kojto 115:87f2f5183dfb 2289 uint32_t bitReverseFlag);
Kojto 115:87f2f5183dfb 2290
Kojto 115:87f2f5183dfb 2291 void arm_rfft_q15(
Kojto 115:87f2f5183dfb 2292 const arm_rfft_instance_q15 * S,
Kojto 115:87f2f5183dfb 2293 q15_t * pSrc,
Kojto 115:87f2f5183dfb 2294 q15_t * pDst);
Kojto 115:87f2f5183dfb 2295
Kojto 115:87f2f5183dfb 2296 /**
Kojto 115:87f2f5183dfb 2297 * @brief Instance structure for the Q31 RFFT/RIFFT function.
Kojto 115:87f2f5183dfb 2298 */
Kojto 115:87f2f5183dfb 2299
Kojto 115:87f2f5183dfb 2300 typedef struct
Kojto 115:87f2f5183dfb 2301 {
Kojto 115:87f2f5183dfb 2302 uint32_t fftLenReal; /**< length of the real FFT. */
Kojto 115:87f2f5183dfb 2303 uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
Kojto 115:87f2f5183dfb 2304 uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
Kojto 115:87f2f5183dfb 2305 uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
Kojto 115:87f2f5183dfb 2306 q31_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
Kojto 115:87f2f5183dfb 2307 q31_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
Kojto 115:87f2f5183dfb 2308 const arm_cfft_instance_q31 *pCfft; /**< points to the complex FFT instance. */
Kojto 115:87f2f5183dfb 2309 } arm_rfft_instance_q31;
Kojto 115:87f2f5183dfb 2310
Kojto 115:87f2f5183dfb 2311 arm_status arm_rfft_init_q31(
Kojto 115:87f2f5183dfb 2312 arm_rfft_instance_q31 * S,
Kojto 115:87f2f5183dfb 2313 uint32_t fftLenReal,
Kojto 115:87f2f5183dfb 2314 uint32_t ifftFlagR,
Kojto 115:87f2f5183dfb 2315 uint32_t bitReverseFlag);
Kojto 115:87f2f5183dfb 2316
Kojto 115:87f2f5183dfb 2317 void arm_rfft_q31(
Kojto 115:87f2f5183dfb 2318 const arm_rfft_instance_q31 * S,
Kojto 115:87f2f5183dfb 2319 q31_t * pSrc,
Kojto 115:87f2f5183dfb 2320 q31_t * pDst);
Kojto 115:87f2f5183dfb 2321
Kojto 115:87f2f5183dfb 2322 /**
Kojto 115:87f2f5183dfb 2323 * @brief Instance structure for the floating-point RFFT/RIFFT function.
Kojto 115:87f2f5183dfb 2324 */
Kojto 115:87f2f5183dfb 2325
Kojto 115:87f2f5183dfb 2326 typedef struct
Kojto 115:87f2f5183dfb 2327 {
Kojto 115:87f2f5183dfb 2328 uint32_t fftLenReal; /**< length of the real FFT. */
Kojto 115:87f2f5183dfb 2329 uint16_t fftLenBy2; /**< length of the complex FFT. */
Kojto 115:87f2f5183dfb 2330 uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
Kojto 115:87f2f5183dfb 2331 uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
Kojto 115:87f2f5183dfb 2332 uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
Kojto 115:87f2f5183dfb 2333 float32_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
Kojto 115:87f2f5183dfb 2334 float32_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
Kojto 115:87f2f5183dfb 2335 arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
Kojto 115:87f2f5183dfb 2336 } arm_rfft_instance_f32;
Kojto 115:87f2f5183dfb 2337
Kojto 115:87f2f5183dfb 2338 arm_status arm_rfft_init_f32(
Kojto 115:87f2f5183dfb 2339 arm_rfft_instance_f32 * S,
Kojto 115:87f2f5183dfb 2340 arm_cfft_radix4_instance_f32 * S_CFFT,
Kojto 115:87f2f5183dfb 2341 uint32_t fftLenReal,
Kojto 115:87f2f5183dfb 2342 uint32_t ifftFlagR,
Kojto 115:87f2f5183dfb 2343 uint32_t bitReverseFlag);
Kojto 115:87f2f5183dfb 2344
Kojto 115:87f2f5183dfb 2345 void arm_rfft_f32(
Kojto 115:87f2f5183dfb 2346 const arm_rfft_instance_f32 * S,
Kojto 115:87f2f5183dfb 2347 float32_t * pSrc,
Kojto 115:87f2f5183dfb 2348 float32_t * pDst);
Kojto 115:87f2f5183dfb 2349
Kojto 115:87f2f5183dfb 2350 /**
Kojto 115:87f2f5183dfb 2351 * @brief Instance structure for the floating-point RFFT/RIFFT function.
Kojto 115:87f2f5183dfb 2352 */
Kojto 115:87f2f5183dfb 2353
Kojto 115:87f2f5183dfb 2354 typedef struct
Kojto 115:87f2f5183dfb 2355 {
Kojto 115:87f2f5183dfb 2356 arm_cfft_instance_f32 Sint; /**< Internal CFFT structure. */
Kojto 115:87f2f5183dfb 2357 uint16_t fftLenRFFT; /**< length of the real sequence */
Kojto 115:87f2f5183dfb 2358 float32_t * pTwiddleRFFT; /**< Twiddle factors real stage */
Kojto 115:87f2f5183dfb 2359 } arm_rfft_fast_instance_f32 ;
Kojto 115:87f2f5183dfb 2360
Kojto 115:87f2f5183dfb 2361 arm_status arm_rfft_fast_init_f32 (
Kojto 115:87f2f5183dfb 2362 arm_rfft_fast_instance_f32 * S,
Kojto 115:87f2f5183dfb 2363 uint16_t fftLen);
Kojto 115:87f2f5183dfb 2364
Kojto 115:87f2f5183dfb 2365 void arm_rfft_fast_f32(
Kojto 115:87f2f5183dfb 2366 arm_rfft_fast_instance_f32 * S,
Kojto 115:87f2f5183dfb 2367 float32_t * p, float32_t * pOut,
Kojto 115:87f2f5183dfb 2368 uint8_t ifftFlag);
Kojto 115:87f2f5183dfb 2369
Kojto 115:87f2f5183dfb 2370 /**
Kojto 115:87f2f5183dfb 2371 * @brief Instance structure for the floating-point DCT4/IDCT4 function.
Kojto 115:87f2f5183dfb 2372 */
Kojto 115:87f2f5183dfb 2373
Kojto 115:87f2f5183dfb 2374 typedef struct
Kojto 115:87f2f5183dfb 2375 {
Kojto 115:87f2f5183dfb 2376 uint16_t N; /**< length of the DCT4. */
Kojto 115:87f2f5183dfb 2377 uint16_t Nby2; /**< half of the length of the DCT4. */
Kojto 115:87f2f5183dfb 2378 float32_t normalize; /**< normalizing factor. */
Kojto 115:87f2f5183dfb 2379 float32_t *pTwiddle; /**< points to the twiddle factor table. */
Kojto 115:87f2f5183dfb 2380 float32_t *pCosFactor; /**< points to the cosFactor table. */
Kojto 115:87f2f5183dfb 2381 arm_rfft_instance_f32 *pRfft; /**< points to the real FFT instance. */
Kojto 115:87f2f5183dfb 2382 arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
Kojto 115:87f2f5183dfb 2383 } arm_dct4_instance_f32;
Kojto 115:87f2f5183dfb 2384
Kojto 115:87f2f5183dfb 2385 /**
Kojto 115:87f2f5183dfb 2386 * @brief Initialization function for the floating-point DCT4/IDCT4.
Kojto 115:87f2f5183dfb 2387 * @param[in,out] *S points to an instance of floating-point DCT4/IDCT4 structure.
Kojto 115:87f2f5183dfb 2388 * @param[in] *S_RFFT points to an instance of floating-point RFFT/RIFFT structure.
Kojto 115:87f2f5183dfb 2389 * @param[in] *S_CFFT points to an instance of floating-point CFFT/CIFFT structure.
Kojto 115:87f2f5183dfb 2390 * @param[in] N length of the DCT4.
Kojto 115:87f2f5183dfb 2391 * @param[in] Nby2 half of the length of the DCT4.
Kojto 115:87f2f5183dfb 2392 * @param[in] normalize normalizing factor.
Kojto 115:87f2f5183dfb 2393 * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported transform length.
Kojto 115:87f2f5183dfb 2394 */
Kojto 115:87f2f5183dfb 2395
Kojto 115:87f2f5183dfb 2396 arm_status arm_dct4_init_f32(
Kojto 115:87f2f5183dfb 2397 arm_dct4_instance_f32 * S,
Kojto 115:87f2f5183dfb 2398 arm_rfft_instance_f32 * S_RFFT,
Kojto 115:87f2f5183dfb 2399 arm_cfft_radix4_instance_f32 * S_CFFT,
Kojto 115:87f2f5183dfb 2400 uint16_t N,
Kojto 115:87f2f5183dfb 2401 uint16_t Nby2,
Kojto 115:87f2f5183dfb 2402 float32_t normalize);
Kojto 115:87f2f5183dfb 2403
Kojto 115:87f2f5183dfb 2404 /**
Kojto 115:87f2f5183dfb 2405 * @brief Processing function for the floating-point DCT4/IDCT4.
Kojto 115:87f2f5183dfb 2406 * @param[in] *S points to an instance of the floating-point DCT4/IDCT4 structure.
Kojto 115:87f2f5183dfb 2407 * @param[in] *pState points to state buffer.
Kojto 115:87f2f5183dfb 2408 * @param[in,out] *pInlineBuffer points to the in-place input and output buffer.
Kojto 115:87f2f5183dfb 2409 * @return none.
Kojto 115:87f2f5183dfb 2410 */
Kojto 115:87f2f5183dfb 2411
Kojto 115:87f2f5183dfb 2412 void arm_dct4_f32(
Kojto 115:87f2f5183dfb 2413 const arm_dct4_instance_f32 * S,
Kojto 115:87f2f5183dfb 2414 float32_t * pState,
Kojto 115:87f2f5183dfb 2415 float32_t * pInlineBuffer);
Kojto 115:87f2f5183dfb 2416
Kojto 115:87f2f5183dfb 2417 /**
Kojto 115:87f2f5183dfb 2418 * @brief Instance structure for the Q31 DCT4/IDCT4 function.
Kojto 115:87f2f5183dfb 2419 */
Kojto 115:87f2f5183dfb 2420
Kojto 115:87f2f5183dfb 2421 typedef struct
Kojto 115:87f2f5183dfb 2422 {
Kojto 115:87f2f5183dfb 2423 uint16_t N; /**< length of the DCT4. */
Kojto 115:87f2f5183dfb 2424 uint16_t Nby2; /**< half of the length of the DCT4. */
Kojto 115:87f2f5183dfb 2425 q31_t normalize; /**< normalizing factor. */
Kojto 115:87f2f5183dfb 2426 q31_t *pTwiddle; /**< points to the twiddle factor table. */
Kojto 115:87f2f5183dfb 2427 q31_t *pCosFactor; /**< points to the cosFactor table. */
Kojto 115:87f2f5183dfb 2428 arm_rfft_instance_q31 *pRfft; /**< points to the real FFT instance. */
Kojto 115:87f2f5183dfb 2429 arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */
Kojto 115:87f2f5183dfb 2430 } arm_dct4_instance_q31;
Kojto 115:87f2f5183dfb 2431
Kojto 115:87f2f5183dfb 2432 /**
Kojto 115:87f2f5183dfb 2433 * @brief Initialization function for the Q31 DCT4/IDCT4.
Kojto 115:87f2f5183dfb 2434 * @param[in,out] *S points to an instance of Q31 DCT4/IDCT4 structure.
Kojto 115:87f2f5183dfb 2435 * @param[in] *S_RFFT points to an instance of Q31 RFFT/RIFFT structure
Kojto 115:87f2f5183dfb 2436 * @param[in] *S_CFFT points to an instance of Q31 CFFT/CIFFT structure
Kojto 115:87f2f5183dfb 2437 * @param[in] N length of the DCT4.
Kojto 115:87f2f5183dfb 2438 * @param[in] Nby2 half of the length of the DCT4.
Kojto 115:87f2f5183dfb 2439 * @param[in] normalize normalizing factor.
Kojto 115:87f2f5183dfb 2440 * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length.
Kojto 115:87f2f5183dfb 2441 */
Kojto 115:87f2f5183dfb 2442
Kojto 115:87f2f5183dfb 2443 arm_status arm_dct4_init_q31(
Kojto 115:87f2f5183dfb 2444 arm_dct4_instance_q31 * S,
Kojto 115:87f2f5183dfb 2445 arm_rfft_instance_q31 * S_RFFT,
Kojto 115:87f2f5183dfb 2446 arm_cfft_radix4_instance_q31 * S_CFFT,
Kojto 115:87f2f5183dfb 2447 uint16_t N,
Kojto 115:87f2f5183dfb 2448 uint16_t Nby2,
Kojto 115:87f2f5183dfb 2449 q31_t normalize);
Kojto 115:87f2f5183dfb 2450
Kojto 115:87f2f5183dfb 2451 /**
Kojto 115:87f2f5183dfb 2452 * @brief Processing function for the Q31 DCT4/IDCT4.
Kojto 115:87f2f5183dfb 2453 * @param[in] *S points to an instance of the Q31 DCT4 structure.
Kojto 115:87f2f5183dfb 2454 * @param[in] *pState points to state buffer.
Kojto 115:87f2f5183dfb 2455 * @param[in,out] *pInlineBuffer points to the in-place input and output buffer.
Kojto 115:87f2f5183dfb 2456 * @return none.
Kojto 115:87f2f5183dfb 2457 */
Kojto 115:87f2f5183dfb 2458
Kojto 115:87f2f5183dfb 2459 void arm_dct4_q31(
Kojto 115:87f2f5183dfb 2460 const arm_dct4_instance_q31 * S,
Kojto 115:87f2f5183dfb 2461 q31_t * pState,
Kojto 115:87f2f5183dfb 2462 q31_t * pInlineBuffer);
Kojto 115:87f2f5183dfb 2463
Kojto 115:87f2f5183dfb 2464 /**
Kojto 115:87f2f5183dfb 2465 * @brief Instance structure for the Q15 DCT4/IDCT4 function.
Kojto 115:87f2f5183dfb 2466 */
Kojto 115:87f2f5183dfb 2467
Kojto 115:87f2f5183dfb 2468 typedef struct
Kojto 115:87f2f5183dfb 2469 {
Kojto 115:87f2f5183dfb 2470 uint16_t N; /**< length of the DCT4. */
Kojto 115:87f2f5183dfb 2471 uint16_t Nby2; /**< half of the length of the DCT4. */
Kojto 115:87f2f5183dfb 2472 q15_t normalize; /**< normalizing factor. */
Kojto 115:87f2f5183dfb 2473 q15_t *pTwiddle; /**< points to the twiddle factor table. */
Kojto 115:87f2f5183dfb 2474 q15_t *pCosFactor; /**< points to the cosFactor table. */
Kojto 115:87f2f5183dfb 2475 arm_rfft_instance_q15 *pRfft; /**< points to the real FFT instance. */
Kojto 115:87f2f5183dfb 2476 arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */
Kojto 115:87f2f5183dfb 2477 } arm_dct4_instance_q15;
Kojto 115:87f2f5183dfb 2478
Kojto 115:87f2f5183dfb 2479 /**
Kojto 115:87f2f5183dfb 2480 * @brief Initialization function for the Q15 DCT4/IDCT4.
Kojto 115:87f2f5183dfb 2481 * @param[in,out] *S points to an instance of Q15 DCT4/IDCT4 structure.
Kojto 115:87f2f5183dfb 2482 * @param[in] *S_RFFT points to an instance of Q15 RFFT/RIFFT structure.
Kojto 115:87f2f5183dfb 2483 * @param[in] *S_CFFT points to an instance of Q15 CFFT/CIFFT structure.
Kojto 115:87f2f5183dfb 2484 * @param[in] N length of the DCT4.
Kojto 115:87f2f5183dfb 2485 * @param[in] Nby2 half of the length of the DCT4.
Kojto 115:87f2f5183dfb 2486 * @param[in] normalize normalizing factor.
Kojto 115:87f2f5183dfb 2487 * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length.
Kojto 115:87f2f5183dfb 2488 */
Kojto 115:87f2f5183dfb 2489
Kojto 115:87f2f5183dfb 2490 arm_status arm_dct4_init_q15(
Kojto 115:87f2f5183dfb 2491 arm_dct4_instance_q15 * S,
Kojto 115:87f2f5183dfb 2492 arm_rfft_instance_q15 * S_RFFT,
Kojto 115:87f2f5183dfb 2493 arm_cfft_radix4_instance_q15 * S_CFFT,
Kojto 115:87f2f5183dfb 2494 uint16_t N,
Kojto 115:87f2f5183dfb 2495 uint16_t Nby2,
Kojto 115:87f2f5183dfb 2496 q15_t normalize);
Kojto 115:87f2f5183dfb 2497
Kojto 115:87f2f5183dfb 2498 /**
Kojto 115:87f2f5183dfb 2499 * @brief Processing function for the Q15 DCT4/IDCT4.
Kojto 115:87f2f5183dfb 2500 * @param[in] *S points to an instance of the Q15 DCT4 structure.
Kojto 115:87f2f5183dfb 2501 * @param[in] *pState points to state buffer.
Kojto 115:87f2f5183dfb 2502 * @param[in,out] *pInlineBuffer points to the in-place input and output buffer.
Kojto 115:87f2f5183dfb 2503 * @return none.
Kojto 115:87f2f5183dfb 2504 */
Kojto 115:87f2f5183dfb 2505
Kojto 115:87f2f5183dfb 2506 void arm_dct4_q15(
Kojto 115:87f2f5183dfb 2507 const arm_dct4_instance_q15 * S,
Kojto 115:87f2f5183dfb 2508 q15_t * pState,
Kojto 115:87f2f5183dfb 2509 q15_t * pInlineBuffer);
Kojto 115:87f2f5183dfb 2510
Kojto 115:87f2f5183dfb 2511 /**
Kojto 115:87f2f5183dfb 2512 * @brief Floating-point vector addition.
Kojto 115:87f2f5183dfb 2513 * @param[in] *pSrcA points to the first input vector
Kojto 115:87f2f5183dfb 2514 * @param[in] *pSrcB points to the second input vector
Kojto 115:87f2f5183dfb 2515 * @param[out] *pDst points to the output vector
Kojto 115:87f2f5183dfb 2516 * @param[in] blockSize number of samples in each vector
Kojto 115:87f2f5183dfb 2517 * @return none.
Kojto 115:87f2f5183dfb 2518 */
Kojto 115:87f2f5183dfb 2519
Kojto 115:87f2f5183dfb 2520 void arm_add_f32(
Kojto 115:87f2f5183dfb 2521 float32_t * pSrcA,
Kojto 115:87f2f5183dfb 2522 float32_t * pSrcB,
Kojto 115:87f2f5183dfb 2523 float32_t * pDst,
Kojto 115:87f2f5183dfb 2524 uint32_t blockSize);
Kojto 115:87f2f5183dfb 2525
Kojto 115:87f2f5183dfb 2526 /**
Kojto 115:87f2f5183dfb 2527 * @brief Q7 vector addition.
Kojto 115:87f2f5183dfb 2528 * @param[in] *pSrcA points to the first input vector
Kojto 115:87f2f5183dfb 2529 * @param[in] *pSrcB points to the second input vector
Kojto 115:87f2f5183dfb 2530 * @param[out] *pDst points to the output vector
Kojto 115:87f2f5183dfb 2531 * @param[in] blockSize number of samples in each vector
Kojto 115:87f2f5183dfb 2532 * @return none.
Kojto 115:87f2f5183dfb 2533 */
Kojto 115:87f2f5183dfb 2534
Kojto 115:87f2f5183dfb 2535 void arm_add_q7(
Kojto 115:87f2f5183dfb 2536 q7_t * pSrcA,
Kojto 115:87f2f5183dfb 2537 q7_t * pSrcB,
Kojto 115:87f2f5183dfb 2538 q7_t * pDst,
Kojto 115:87f2f5183dfb 2539 uint32_t blockSize);
Kojto 115:87f2f5183dfb 2540
Kojto 115:87f2f5183dfb 2541 /**
Kojto 115:87f2f5183dfb 2542 * @brief Q15 vector addition.
Kojto 115:87f2f5183dfb 2543 * @param[in] *pSrcA points to the first input vector
Kojto 115:87f2f5183dfb 2544 * @param[in] *pSrcB points to the second input vector
Kojto 115:87f2f5183dfb 2545 * @param[out] *pDst points to the output vector
Kojto 115:87f2f5183dfb 2546 * @param[in] blockSize number of samples in each vector
Kojto 115:87f2f5183dfb 2547 * @return none.
Kojto 115:87f2f5183dfb 2548 */
Kojto 115:87f2f5183dfb 2549
Kojto 115:87f2f5183dfb 2550 void arm_add_q15(
Kojto 115:87f2f5183dfb 2551 q15_t * pSrcA,
Kojto 115:87f2f5183dfb 2552 q15_t * pSrcB,
Kojto 115:87f2f5183dfb 2553 q15_t * pDst,
Kojto 115:87f2f5183dfb 2554 uint32_t blockSize);
Kojto 115:87f2f5183dfb 2555
Kojto 115:87f2f5183dfb 2556 /**
Kojto 115:87f2f5183dfb 2557 * @brief Q31 vector addition.
Kojto 115:87f2f5183dfb 2558 * @param[in] *pSrcA points to the first input vector
Kojto 115:87f2f5183dfb 2559 * @param[in] *pSrcB points to the second input vector
Kojto 115:87f2f5183dfb 2560 * @param[out] *pDst points to the output vector
Kojto 115:87f2f5183dfb 2561 * @param[in] blockSize number of samples in each vector
Kojto 115:87f2f5183dfb 2562 * @return none.
Kojto 115:87f2f5183dfb 2563 */
Kojto 115:87f2f5183dfb 2564
Kojto 115:87f2f5183dfb 2565 void arm_add_q31(
Kojto 115:87f2f5183dfb 2566 q31_t * pSrcA,
Kojto 115:87f2f5183dfb 2567 q31_t * pSrcB,
Kojto 115:87f2f5183dfb 2568 q31_t * pDst,
Kojto 115:87f2f5183dfb 2569 uint32_t blockSize);
Kojto 115:87f2f5183dfb 2570
Kojto 115:87f2f5183dfb 2571 /**
Kojto 115:87f2f5183dfb 2572 * @brief Floating-point vector subtraction.
Kojto 115:87f2f5183dfb 2573 * @param[in] *pSrcA points to the first input vector
Kojto 115:87f2f5183dfb 2574 * @param[in] *pSrcB points to the second input vector
Kojto 115:87f2f5183dfb 2575 * @param[out] *pDst points to the output vector
Kojto 115:87f2f5183dfb 2576 * @param[in] blockSize number of samples in each vector
Kojto 115:87f2f5183dfb 2577 * @return none.
Kojto 115:87f2f5183dfb 2578 */
Kojto 115:87f2f5183dfb 2579
Kojto 115:87f2f5183dfb 2580 void arm_sub_f32(
Kojto 115:87f2f5183dfb 2581 float32_t * pSrcA,
Kojto 115:87f2f5183dfb 2582 float32_t * pSrcB,
Kojto 115:87f2f5183dfb 2583 float32_t * pDst,
Kojto 115:87f2f5183dfb 2584 uint32_t blockSize);
Kojto 115:87f2f5183dfb 2585
Kojto 115:87f2f5183dfb 2586 /**
Kojto 115:87f2f5183dfb 2587 * @brief Q7 vector subtraction.
Kojto 115:87f2f5183dfb 2588 * @param[in] *pSrcA points to the first input vector
Kojto 115:87f2f5183dfb 2589 * @param[in] *pSrcB points to the second input vector
Kojto 115:87f2f5183dfb 2590 * @param[out] *pDst points to the output vector
Kojto 115:87f2f5183dfb 2591 * @param[in] blockSize number of samples in each vector
Kojto 115:87f2f5183dfb 2592 * @return none.
Kojto 115:87f2f5183dfb 2593 */
Kojto 115:87f2f5183dfb 2594
Kojto 115:87f2f5183dfb 2595 void arm_sub_q7(
Kojto 115:87f2f5183dfb 2596 q7_t * pSrcA,
Kojto 115:87f2f5183dfb 2597 q7_t * pSrcB,
Kojto 115:87f2f5183dfb 2598 q7_t * pDst,
Kojto 115:87f2f5183dfb 2599 uint32_t blockSize);
Kojto 115:87f2f5183dfb 2600
Kojto 115:87f2f5183dfb 2601 /**
Kojto 115:87f2f5183dfb 2602 * @brief Q15 vector subtraction.
Kojto 115:87f2f5183dfb 2603 * @param[in] *pSrcA points to the first input vector
Kojto 115:87f2f5183dfb 2604 * @param[in] *pSrcB points to the second input vector
Kojto 115:87f2f5183dfb 2605 * @param[out] *pDst points to the output vector
Kojto 115:87f2f5183dfb 2606 * @param[in] blockSize number of samples in each vector
Kojto 115:87f2f5183dfb 2607 * @return none.
Kojto 115:87f2f5183dfb 2608 */
Kojto 115:87f2f5183dfb 2609
Kojto 115:87f2f5183dfb 2610 void arm_sub_q15(
Kojto 115:87f2f5183dfb 2611 q15_t * pSrcA,
Kojto 115:87f2f5183dfb 2612 q15_t * pSrcB,
Kojto 115:87f2f5183dfb 2613 q15_t * pDst,
Kojto 115:87f2f5183dfb 2614 uint32_t blockSize);
Kojto 115:87f2f5183dfb 2615
Kojto 115:87f2f5183dfb 2616 /**
Kojto 115:87f2f5183dfb 2617 * @brief Q31 vector subtraction.
Kojto 115:87f2f5183dfb 2618 * @param[in] *pSrcA points to the first input vector
Kojto 115:87f2f5183dfb 2619 * @param[in] *pSrcB points to the second input vector
Kojto 115:87f2f5183dfb 2620 * @param[out] *pDst points to the output vector
Kojto 115:87f2f5183dfb 2621 * @param[in] blockSize number of samples in each vector
Kojto 115:87f2f5183dfb 2622 * @return none.
Kojto 115:87f2f5183dfb 2623 */
Kojto 115:87f2f5183dfb 2624
Kojto 115:87f2f5183dfb 2625 void arm_sub_q31(
Kojto 115:87f2f5183dfb 2626 q31_t * pSrcA,
Kojto 115:87f2f5183dfb 2627 q31_t * pSrcB,
Kojto 115:87f2f5183dfb 2628 q31_t * pDst,
Kojto 115:87f2f5183dfb 2629 uint32_t blockSize);
Kojto 115:87f2f5183dfb 2630
Kojto 115:87f2f5183dfb 2631 /**
Kojto 115:87f2f5183dfb 2632 * @brief Multiplies a floating-point vector by a scalar.
Kojto 115:87f2f5183dfb 2633 * @param[in] *pSrc points to the input vector
Kojto 115:87f2f5183dfb 2634 * @param[in] scale scale factor to be applied
Kojto 115:87f2f5183dfb 2635 * @param[out] *pDst points to the output vector
Kojto 115:87f2f5183dfb 2636 * @param[in] blockSize number of samples in the vector
Kojto 115:87f2f5183dfb 2637 * @return none.
Kojto 115:87f2f5183dfb 2638 */
Kojto 115:87f2f5183dfb 2639
Kojto 115:87f2f5183dfb 2640 void arm_scale_f32(
Kojto 115:87f2f5183dfb 2641 float32_t * pSrc,
Kojto 115:87f2f5183dfb 2642 float32_t scale,
Kojto 115:87f2f5183dfb 2643 float32_t * pDst,
Kojto 115:87f2f5183dfb 2644 uint32_t blockSize);
Kojto 115:87f2f5183dfb 2645
Kojto 115:87f2f5183dfb 2646 /**
Kojto 115:87f2f5183dfb 2647 * @brief Multiplies a Q7 vector by a scalar.
Kojto 115:87f2f5183dfb 2648 * @param[in] *pSrc points to the input vector
Kojto 115:87f2f5183dfb 2649 * @param[in] scaleFract fractional portion of the scale value
Kojto 115:87f2f5183dfb 2650 * @param[in] shift number of bits to shift the result by
Kojto 115:87f2f5183dfb 2651 * @param[out] *pDst points to the output vector
Kojto 115:87f2f5183dfb 2652 * @param[in] blockSize number of samples in the vector
Kojto 115:87f2f5183dfb 2653 * @return none.
Kojto 115:87f2f5183dfb 2654 */
Kojto 115:87f2f5183dfb 2655
Kojto 115:87f2f5183dfb 2656 void arm_scale_q7(
Kojto 115:87f2f5183dfb 2657 q7_t * pSrc,
Kojto 115:87f2f5183dfb 2658 q7_t scaleFract,
Kojto 115:87f2f5183dfb 2659 int8_t shift,
Kojto 115:87f2f5183dfb 2660 q7_t * pDst,
Kojto 115:87f2f5183dfb 2661 uint32_t blockSize);
Kojto 115:87f2f5183dfb 2662
Kojto 115:87f2f5183dfb 2663 /**
Kojto 115:87f2f5183dfb 2664 * @brief Multiplies a Q15 vector by a scalar.
Kojto 115:87f2f5183dfb 2665 * @param[in] *pSrc points to the input vector
Kojto 115:87f2f5183dfb 2666 * @param[in] scaleFract fractional portion of the scale value
Kojto 115:87f2f5183dfb 2667 * @param[in] shift number of bits to shift the result by
Kojto 115:87f2f5183dfb 2668 * @param[out] *pDst points to the output vector
Kojto 115:87f2f5183dfb 2669 * @param[in] blockSize number of samples in the vector
Kojto 115:87f2f5183dfb 2670 * @return none.
Kojto 115:87f2f5183dfb 2671 */
Kojto 115:87f2f5183dfb 2672
Kojto 115:87f2f5183dfb 2673 void arm_scale_q15(
Kojto 115:87f2f5183dfb 2674 q15_t * pSrc,
Kojto 115:87f2f5183dfb 2675 q15_t scaleFract,
Kojto 115:87f2f5183dfb 2676 int8_t shift,
Kojto 115:87f2f5183dfb 2677 q15_t * pDst,
Kojto 115:87f2f5183dfb 2678 uint32_t blockSize);
Kojto 115:87f2f5183dfb 2679
Kojto 115:87f2f5183dfb 2680 /**
Kojto 115:87f2f5183dfb 2681 * @brief Multiplies a Q31 vector by a scalar.
Kojto 115:87f2f5183dfb 2682 * @param[in] *pSrc points to the input vector
Kojto 115:87f2f5183dfb 2683 * @param[in] scaleFract fractional portion of the scale value
Kojto 115:87f2f5183dfb 2684 * @param[in] shift number of bits to shift the result by
Kojto 115:87f2f5183dfb 2685 * @param[out] *pDst points to the output vector
Kojto 115:87f2f5183dfb 2686 * @param[in] blockSize number of samples in the vector
Kojto 115:87f2f5183dfb 2687 * @return none.
Kojto 115:87f2f5183dfb 2688 */
Kojto 115:87f2f5183dfb 2689
Kojto 115:87f2f5183dfb 2690 void arm_scale_q31(
Kojto 115:87f2f5183dfb 2691 q31_t * pSrc,
Kojto 115:87f2f5183dfb 2692 q31_t scaleFract,
Kojto 115:87f2f5183dfb 2693 int8_t shift,
Kojto 115:87f2f5183dfb 2694 q31_t * pDst,
Kojto 115:87f2f5183dfb 2695 uint32_t blockSize);
Kojto 115:87f2f5183dfb 2696
Kojto 115:87f2f5183dfb 2697 /**
Kojto 115:87f2f5183dfb 2698 * @brief Q7 vector absolute value.
Kojto 115:87f2f5183dfb 2699 * @param[in] *pSrc points to the input buffer
Kojto 115:87f2f5183dfb 2700 * @param[out] *pDst points to the output buffer
Kojto 115:87f2f5183dfb 2701 * @param[in] blockSize number of samples in each vector
Kojto 115:87f2f5183dfb 2702 * @return none.
Kojto 115:87f2f5183dfb 2703 */
Kojto 115:87f2f5183dfb 2704
Kojto 115:87f2f5183dfb 2705 void arm_abs_q7(
Kojto 115:87f2f5183dfb 2706 q7_t * pSrc,
Kojto 115:87f2f5183dfb 2707 q7_t * pDst,
Kojto 115:87f2f5183dfb 2708 uint32_t blockSize);
Kojto 115:87f2f5183dfb 2709
Kojto 115:87f2f5183dfb 2710 /**
Kojto 115:87f2f5183dfb 2711 * @brief Floating-point vector absolute value.
Kojto 115:87f2f5183dfb 2712 * @param[in] *pSrc points to the input buffer
Kojto 115:87f2f5183dfb 2713 * @param[out] *pDst points to the output buffer
Kojto 115:87f2f5183dfb 2714 * @param[in] blockSize number of samples in each vector
Kojto 115:87f2f5183dfb 2715 * @return none.
Kojto 115:87f2f5183dfb 2716 */
Kojto 115:87f2f5183dfb 2717
Kojto 115:87f2f5183dfb 2718 void arm_abs_f32(
Kojto 115:87f2f5183dfb 2719 float32_t * pSrc,
Kojto 115:87f2f5183dfb 2720 float32_t * pDst,
Kojto 115:87f2f5183dfb 2721 uint32_t blockSize);
Kojto 115:87f2f5183dfb 2722
Kojto 115:87f2f5183dfb 2723 /**
Kojto 115:87f2f5183dfb 2724 * @brief Q15 vector absolute value.
Kojto 115:87f2f5183dfb 2725 * @param[in] *pSrc points to the input buffer
Kojto 115:87f2f5183dfb 2726 * @param[out] *pDst points to the output buffer
Kojto 115:87f2f5183dfb 2727 * @param[in] blockSize number of samples in each vector
Kojto 115:87f2f5183dfb 2728 * @return none.
Kojto 115:87f2f5183dfb 2729 */
Kojto 115:87f2f5183dfb 2730
Kojto 115:87f2f5183dfb 2731 void arm_abs_q15(
Kojto 115:87f2f5183dfb 2732 q15_t * pSrc,
Kojto 115:87f2f5183dfb 2733 q15_t * pDst,
Kojto 115:87f2f5183dfb 2734 uint32_t blockSize);
Kojto 115:87f2f5183dfb 2735
Kojto 115:87f2f5183dfb 2736 /**
Kojto 115:87f2f5183dfb 2737 * @brief Q31 vector absolute value.
Kojto 115:87f2f5183dfb 2738 * @param[in] *pSrc points to the input buffer
Kojto 115:87f2f5183dfb 2739 * @param[out] *pDst points to the output buffer
Kojto 115:87f2f5183dfb 2740 * @param[in] blockSize number of samples in each vector
Kojto 115:87f2f5183dfb 2741 * @return none.
Kojto 115:87f2f5183dfb 2742 */
Kojto 115:87f2f5183dfb 2743
Kojto 115:87f2f5183dfb 2744 void arm_abs_q31(
Kojto 115:87f2f5183dfb 2745 q31_t * pSrc,
Kojto 115:87f2f5183dfb 2746 q31_t * pDst,
Kojto 115:87f2f5183dfb 2747 uint32_t blockSize);
Kojto 115:87f2f5183dfb 2748
Kojto 115:87f2f5183dfb 2749 /**
Kojto 115:87f2f5183dfb 2750 * @brief Dot product of floating-point vectors.
Kojto 115:87f2f5183dfb 2751 * @param[in] *pSrcA points to the first input vector
Kojto 115:87f2f5183dfb 2752 * @param[in] *pSrcB points to the second input vector
Kojto 115:87f2f5183dfb 2753 * @param[in] blockSize number of samples in each vector
Kojto 115:87f2f5183dfb 2754 * @param[out] *result output result returned here
Kojto 115:87f2f5183dfb 2755 * @return none.
Kojto 115:87f2f5183dfb 2756 */
Kojto 115:87f2f5183dfb 2757
Kojto 115:87f2f5183dfb 2758 void arm_dot_prod_f32(
Kojto 115:87f2f5183dfb 2759 float32_t * pSrcA,
Kojto 115:87f2f5183dfb 2760 float32_t * pSrcB,
Kojto 115:87f2f5183dfb 2761 uint32_t blockSize,
Kojto 115:87f2f5183dfb 2762 float32_t * result);
Kojto 115:87f2f5183dfb 2763
Kojto 115:87f2f5183dfb 2764 /**
Kojto 115:87f2f5183dfb 2765 * @brief Dot product of Q7 vectors.
Kojto 115:87f2f5183dfb 2766 * @param[in] *pSrcA points to the first input vector
Kojto 115:87f2f5183dfb 2767 * @param[in] *pSrcB points to the second input vector
Kojto 115:87f2f5183dfb 2768 * @param[in] blockSize number of samples in each vector
Kojto 115:87f2f5183dfb 2769 * @param[out] *result output result returned here
Kojto 115:87f2f5183dfb 2770 * @return none.
Kojto 115:87f2f5183dfb 2771 */
Kojto 115:87f2f5183dfb 2772
Kojto 115:87f2f5183dfb 2773 void arm_dot_prod_q7(
Kojto 115:87f2f5183dfb 2774 q7_t * pSrcA,
Kojto 115:87f2f5183dfb 2775 q7_t * pSrcB,
Kojto 115:87f2f5183dfb 2776 uint32_t blockSize,
Kojto 115:87f2f5183dfb 2777 q31_t * result);
Kojto 115:87f2f5183dfb 2778
Kojto 115:87f2f5183dfb 2779 /**
Kojto 115:87f2f5183dfb 2780 * @brief Dot product of Q15 vectors.
Kojto 115:87f2f5183dfb 2781 * @param[in] *pSrcA points to the first input vector
Kojto 115:87f2f5183dfb 2782 * @param[in] *pSrcB points to the second input vector
Kojto 115:87f2f5183dfb 2783 * @param[in] blockSize number of samples in each vector
Kojto 115:87f2f5183dfb 2784 * @param[out] *result output result returned here
Kojto 115:87f2f5183dfb 2785 * @return none.
Kojto 115:87f2f5183dfb 2786 */
Kojto 115:87f2f5183dfb 2787
Kojto 115:87f2f5183dfb 2788 void arm_dot_prod_q15(
Kojto 115:87f2f5183dfb 2789 q15_t * pSrcA,
Kojto 115:87f2f5183dfb 2790 q15_t * pSrcB,
Kojto 115:87f2f5183dfb 2791 uint32_t blockSize,
Kojto 115:87f2f5183dfb 2792 q63_t * result);
Kojto 115:87f2f5183dfb 2793
Kojto 115:87f2f5183dfb 2794 /**
Kojto 115:87f2f5183dfb 2795 * @brief Dot product of Q31 vectors.
Kojto 115:87f2f5183dfb 2796 * @param[in] *pSrcA points to the first input vector
Kojto 115:87f2f5183dfb 2797 * @param[in] *pSrcB points to the second input vector
Kojto 115:87f2f5183dfb 2798 * @param[in] blockSize number of samples in each vector
Kojto 115:87f2f5183dfb 2799 * @param[out] *result output result returned here
Kojto 115:87f2f5183dfb 2800 * @return none.
Kojto 115:87f2f5183dfb 2801 */
Kojto 115:87f2f5183dfb 2802
Kojto 115:87f2f5183dfb 2803 void arm_dot_prod_q31(
Kojto 115:87f2f5183dfb 2804 q31_t * pSrcA,
Kojto 115:87f2f5183dfb 2805 q31_t * pSrcB,
Kojto 115:87f2f5183dfb 2806 uint32_t blockSize,
Kojto 115:87f2f5183dfb 2807 q63_t * result);
Kojto 115:87f2f5183dfb 2808
Kojto 115:87f2f5183dfb 2809 /**
Kojto 115:87f2f5183dfb 2810 * @brief Shifts the elements of a Q7 vector a specified number of bits.
Kojto 115:87f2f5183dfb 2811 * @param[in] *pSrc points to the input vector
Kojto 115:87f2f5183dfb 2812 * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
Kojto 115:87f2f5183dfb 2813 * @param[out] *pDst points to the output vector
Kojto 115:87f2f5183dfb 2814 * @param[in] blockSize number of samples in the vector
Kojto 115:87f2f5183dfb 2815 * @return none.
Kojto 115:87f2f5183dfb 2816 */
Kojto 115:87f2f5183dfb 2817
Kojto 115:87f2f5183dfb 2818 void arm_shift_q7(
Kojto 115:87f2f5183dfb 2819 q7_t * pSrc,
Kojto 115:87f2f5183dfb 2820 int8_t shiftBits,
Kojto 115:87f2f5183dfb 2821 q7_t * pDst,
Kojto 115:87f2f5183dfb 2822 uint32_t blockSize);
Kojto 115:87f2f5183dfb 2823
Kojto 115:87f2f5183dfb 2824 /**
Kojto 115:87f2f5183dfb 2825 * @brief Shifts the elements of a Q15 vector a specified number of bits.
Kojto 115:87f2f5183dfb 2826 * @param[in] *pSrc points to the input vector
Kojto 115:87f2f5183dfb 2827 * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
Kojto 115:87f2f5183dfb 2828 * @param[out] *pDst points to the output vector
Kojto 115:87f2f5183dfb 2829 * @param[in] blockSize number of samples in the vector
Kojto 115:87f2f5183dfb 2830 * @return none.
Kojto 115:87f2f5183dfb 2831 */
Kojto 115:87f2f5183dfb 2832
Kojto 115:87f2f5183dfb 2833 void arm_shift_q15(
Kojto 115:87f2f5183dfb 2834 q15_t * pSrc,
Kojto 115:87f2f5183dfb 2835 int8_t shiftBits,
Kojto 115:87f2f5183dfb 2836 q15_t * pDst,
Kojto 115:87f2f5183dfb 2837 uint32_t blockSize);
Kojto 115:87f2f5183dfb 2838
Kojto 115:87f2f5183dfb 2839 /**
Kojto 115:87f2f5183dfb 2840 * @brief Shifts the elements of a Q31 vector a specified number of bits.
Kojto 115:87f2f5183dfb 2841 * @param[in] *pSrc points to the input vector
Kojto 115:87f2f5183dfb 2842 * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
Kojto 115:87f2f5183dfb 2843 * @param[out] *pDst points to the output vector
Kojto 115:87f2f5183dfb 2844 * @param[in] blockSize number of samples in the vector
Kojto 115:87f2f5183dfb 2845 * @return none.
Kojto 115:87f2f5183dfb 2846 */
Kojto 115:87f2f5183dfb 2847
Kojto 115:87f2f5183dfb 2848 void arm_shift_q31(
Kojto 115:87f2f5183dfb 2849 q31_t * pSrc,
Kojto 115:87f2f5183dfb 2850 int8_t shiftBits,
Kojto 115:87f2f5183dfb 2851 q31_t * pDst,
Kojto 115:87f2f5183dfb 2852 uint32_t blockSize);
Kojto 115:87f2f5183dfb 2853
Kojto 115:87f2f5183dfb 2854 /**
Kojto 115:87f2f5183dfb 2855 * @brief Adds a constant offset to a floating-point vector.
Kojto 115:87f2f5183dfb 2856 * @param[in] *pSrc points to the input vector
Kojto 115:87f2f5183dfb 2857 * @param[in] offset is the offset to be added
Kojto 115:87f2f5183dfb 2858 * @param[out] *pDst points to the output vector
Kojto 115:87f2f5183dfb 2859 * @param[in] blockSize number of samples in the vector
Kojto 115:87f2f5183dfb 2860 * @return none.
Kojto 115:87f2f5183dfb 2861 */
Kojto 115:87f2f5183dfb 2862
Kojto 115:87f2f5183dfb 2863 void arm_offset_f32(
Kojto 115:87f2f5183dfb 2864 float32_t * pSrc,
Kojto 115:87f2f5183dfb 2865 float32_t offset,
Kojto 115:87f2f5183dfb 2866 float32_t * pDst,
Kojto 115:87f2f5183dfb 2867 uint32_t blockSize);
Kojto 115:87f2f5183dfb 2868
Kojto 115:87f2f5183dfb 2869 /**
Kojto 115:87f2f5183dfb 2870 * @brief Adds a constant offset to a Q7 vector.
Kojto 115:87f2f5183dfb 2871 * @param[in] *pSrc points to the input vector
Kojto 115:87f2f5183dfb 2872 * @param[in] offset is the offset to be added
Kojto 115:87f2f5183dfb 2873 * @param[out] *pDst points to the output vector
Kojto 115:87f2f5183dfb 2874 * @param[in] blockSize number of samples in the vector
Kojto 115:87f2f5183dfb 2875 * @return none.
Kojto 115:87f2f5183dfb 2876 */
Kojto 115:87f2f5183dfb 2877
Kojto 115:87f2f5183dfb 2878 void arm_offset_q7(
Kojto 115:87f2f5183dfb 2879 q7_t * pSrc,
Kojto 115:87f2f5183dfb 2880 q7_t offset,
Kojto 115:87f2f5183dfb 2881 q7_t * pDst,
Kojto 115:87f2f5183dfb 2882 uint32_t blockSize);
Kojto 115:87f2f5183dfb 2883
Kojto 115:87f2f5183dfb 2884 /**
Kojto 115:87f2f5183dfb 2885 * @brief Adds a constant offset to a Q15 vector.
Kojto 115:87f2f5183dfb 2886 * @param[in] *pSrc points to the input vector
Kojto 115:87f2f5183dfb 2887 * @param[in] offset is the offset to be added
Kojto 115:87f2f5183dfb 2888 * @param[out] *pDst points to the output vector
Kojto 115:87f2f5183dfb 2889 * @param[in] blockSize number of samples in the vector
Kojto 115:87f2f5183dfb 2890 * @return none.
Kojto 115:87f2f5183dfb 2891 */
Kojto 115:87f2f5183dfb 2892
Kojto 115:87f2f5183dfb 2893 void arm_offset_q15(
Kojto 115:87f2f5183dfb 2894 q15_t * pSrc,
Kojto 115:87f2f5183dfb 2895 q15_t offset,
Kojto 115:87f2f5183dfb 2896 q15_t * pDst,
Kojto 115:87f2f5183dfb 2897 uint32_t blockSize);
Kojto 115:87f2f5183dfb 2898
Kojto 115:87f2f5183dfb 2899 /**
Kojto 115:87f2f5183dfb 2900 * @brief Adds a constant offset to a Q31 vector.
Kojto 115:87f2f5183dfb 2901 * @param[in] *pSrc points to the input vector
Kojto 115:87f2f5183dfb 2902 * @param[in] offset is the offset to be added
Kojto 115:87f2f5183dfb 2903 * @param[out] *pDst points to the output vector
Kojto 115:87f2f5183dfb 2904 * @param[in] blockSize number of samples in the vector
Kojto 115:87f2f5183dfb 2905 * @return none.
Kojto 115:87f2f5183dfb 2906 */
Kojto 115:87f2f5183dfb 2907
Kojto 115:87f2f5183dfb 2908 void arm_offset_q31(
Kojto 115:87f2f5183dfb 2909 q31_t * pSrc,
Kojto 115:87f2f5183dfb 2910 q31_t offset,
Kojto 115:87f2f5183dfb 2911 q31_t * pDst,
Kojto 115:87f2f5183dfb 2912 uint32_t blockSize);
Kojto 115:87f2f5183dfb 2913
Kojto 115:87f2f5183dfb 2914 /**
Kojto 115:87f2f5183dfb 2915 * @brief Negates the elements of a floating-point vector.
Kojto 115:87f2f5183dfb 2916 * @param[in] *pSrc points to the input vector
Kojto 115:87f2f5183dfb 2917 * @param[out] *pDst points to the output vector
Kojto 115:87f2f5183dfb 2918 * @param[in] blockSize number of samples in the vector
Kojto 115:87f2f5183dfb 2919 * @return none.
Kojto 115:87f2f5183dfb 2920 */
Kojto 115:87f2f5183dfb 2921
Kojto 115:87f2f5183dfb 2922 void arm_negate_f32(
Kojto 115:87f2f5183dfb 2923 float32_t * pSrc,
Kojto 115:87f2f5183dfb 2924 float32_t * pDst,
Kojto 115:87f2f5183dfb 2925 uint32_t blockSize);
Kojto 115:87f2f5183dfb 2926
Kojto 115:87f2f5183dfb 2927 /**
Kojto 115:87f2f5183dfb 2928 * @brief Negates the elements of a Q7 vector.
Kojto 115:87f2f5183dfb 2929 * @param[in] *pSrc points to the input vector
Kojto 115:87f2f5183dfb 2930 * @param[out] *pDst points to the output vector
Kojto 115:87f2f5183dfb 2931 * @param[in] blockSize number of samples in the vector
Kojto 115:87f2f5183dfb 2932 * @return none.
Kojto 115:87f2f5183dfb 2933 */
Kojto 115:87f2f5183dfb 2934
Kojto 115:87f2f5183dfb 2935 void arm_negate_q7(
Kojto 115:87f2f5183dfb 2936 q7_t * pSrc,
Kojto 115:87f2f5183dfb 2937 q7_t * pDst,
Kojto 115:87f2f5183dfb 2938 uint32_t blockSize);
Kojto 115:87f2f5183dfb 2939
Kojto 115:87f2f5183dfb 2940 /**
Kojto 115:87f2f5183dfb 2941 * @brief Negates the elements of a Q15 vector.
Kojto 115:87f2f5183dfb 2942 * @param[in] *pSrc points to the input vector
Kojto 115:87f2f5183dfb 2943 * @param[out] *pDst points to the output vector
Kojto 115:87f2f5183dfb 2944 * @param[in] blockSize number of samples in the vector
Kojto 115:87f2f5183dfb 2945 * @return none.
Kojto 115:87f2f5183dfb 2946 */
Kojto 115:87f2f5183dfb 2947
Kojto 115:87f2f5183dfb 2948 void arm_negate_q15(
Kojto 115:87f2f5183dfb 2949 q15_t * pSrc,
Kojto 115:87f2f5183dfb 2950 q15_t * pDst,
Kojto 115:87f2f5183dfb 2951 uint32_t blockSize);
Kojto 115:87f2f5183dfb 2952
Kojto 115:87f2f5183dfb 2953 /**
Kojto 115:87f2f5183dfb 2954 * @brief Negates the elements of a Q31 vector.
Kojto 115:87f2f5183dfb 2955 * @param[in] *pSrc points to the input vector
Kojto 115:87f2f5183dfb 2956 * @param[out] *pDst points to the output vector
Kojto 115:87f2f5183dfb 2957 * @param[in] blockSize number of samples in the vector
Kojto 115:87f2f5183dfb 2958 * @return none.
Kojto 115:87f2f5183dfb 2959 */
Kojto 115:87f2f5183dfb 2960
Kojto 115:87f2f5183dfb 2961 void arm_negate_q31(
Kojto 115:87f2f5183dfb 2962 q31_t * pSrc,
Kojto 115:87f2f5183dfb 2963 q31_t * pDst,
Kojto 115:87f2f5183dfb 2964 uint32_t blockSize);
Kojto 115:87f2f5183dfb 2965 /**
Kojto 115:87f2f5183dfb 2966 * @brief Copies the elements of a floating-point vector.
Kojto 115:87f2f5183dfb 2967 * @param[in] *pSrc input pointer
Kojto 115:87f2f5183dfb 2968 * @param[out] *pDst output pointer
Kojto 115:87f2f5183dfb 2969 * @param[in] blockSize number of samples to process
Kojto 115:87f2f5183dfb 2970 * @return none.
Kojto 115:87f2f5183dfb 2971 */
Kojto 115:87f2f5183dfb 2972 void arm_copy_f32(
Kojto 115:87f2f5183dfb 2973 float32_t * pSrc,
Kojto 115:87f2f5183dfb 2974 float32_t * pDst,
Kojto 115:87f2f5183dfb 2975 uint32_t blockSize);
Kojto 115:87f2f5183dfb 2976
Kojto 115:87f2f5183dfb 2977 /**
Kojto 115:87f2f5183dfb 2978 * @brief Copies the elements of a Q7 vector.
Kojto 115:87f2f5183dfb 2979 * @param[in] *pSrc input pointer
Kojto 115:87f2f5183dfb 2980 * @param[out] *pDst output pointer
Kojto 115:87f2f5183dfb 2981 * @param[in] blockSize number of samples to process
Kojto 115:87f2f5183dfb 2982 * @return none.
Kojto 115:87f2f5183dfb 2983 */
Kojto 115:87f2f5183dfb 2984 void arm_copy_q7(
Kojto 115:87f2f5183dfb 2985 q7_t * pSrc,
Kojto 115:87f2f5183dfb 2986 q7_t * pDst,
Kojto 115:87f2f5183dfb 2987 uint32_t blockSize);
Kojto 115:87f2f5183dfb 2988
Kojto 115:87f2f5183dfb 2989 /**
Kojto 115:87f2f5183dfb 2990 * @brief Copies the elements of a Q15 vector.
Kojto 115:87f2f5183dfb 2991 * @param[in] *pSrc input pointer
Kojto 115:87f2f5183dfb 2992 * @param[out] *pDst output pointer
Kojto 115:87f2f5183dfb 2993 * @param[in] blockSize number of samples to process
Kojto 115:87f2f5183dfb 2994 * @return none.
Kojto 115:87f2f5183dfb 2995 */
Kojto 115:87f2f5183dfb 2996 void arm_copy_q15(
Kojto 115:87f2f5183dfb 2997 q15_t * pSrc,
Kojto 115:87f2f5183dfb 2998 q15_t * pDst,
Kojto 115:87f2f5183dfb 2999 uint32_t blockSize);
Kojto 115:87f2f5183dfb 3000
Kojto 115:87f2f5183dfb 3001 /**
Kojto 115:87f2f5183dfb 3002 * @brief Copies the elements of a Q31 vector.
Kojto 115:87f2f5183dfb 3003 * @param[in] *pSrc input pointer
Kojto 115:87f2f5183dfb 3004 * @param[out] *pDst output pointer
Kojto 115:87f2f5183dfb 3005 * @param[in] blockSize number of samples to process
Kojto 115:87f2f5183dfb 3006 * @return none.
Kojto 115:87f2f5183dfb 3007 */
Kojto 115:87f2f5183dfb 3008 void arm_copy_q31(
Kojto 115:87f2f5183dfb 3009 q31_t * pSrc,
Kojto 115:87f2f5183dfb 3010 q31_t * pDst,
Kojto 115:87f2f5183dfb 3011 uint32_t blockSize);
Kojto 115:87f2f5183dfb 3012 /**
Kojto 115:87f2f5183dfb 3013 * @brief Fills a constant value into a floating-point vector.
Kojto 115:87f2f5183dfb 3014 * @param[in] value input value to be filled
Kojto 115:87f2f5183dfb 3015 * @param[out] *pDst output pointer
Kojto 115:87f2f5183dfb 3016 * @param[in] blockSize number of samples to process
Kojto 115:87f2f5183dfb 3017 * @return none.
Kojto 115:87f2f5183dfb 3018 */
Kojto 115:87f2f5183dfb 3019 void arm_fill_f32(
Kojto 115:87f2f5183dfb 3020 float32_t value,
Kojto 115:87f2f5183dfb 3021 float32_t * pDst,
Kojto 115:87f2f5183dfb 3022 uint32_t blockSize);
Kojto 115:87f2f5183dfb 3023
Kojto 115:87f2f5183dfb 3024 /**
Kojto 115:87f2f5183dfb 3025 * @brief Fills a constant value into a Q7 vector.
Kojto 115:87f2f5183dfb 3026 * @param[in] value input value to be filled
Kojto 115:87f2f5183dfb 3027 * @param[out] *pDst output pointer
Kojto 115:87f2f5183dfb 3028 * @param[in] blockSize number of samples to process
Kojto 115:87f2f5183dfb 3029 * @return none.
Kojto 115:87f2f5183dfb 3030 */
Kojto 115:87f2f5183dfb 3031 void arm_fill_q7(
Kojto 115:87f2f5183dfb 3032 q7_t value,
Kojto 115:87f2f5183dfb 3033 q7_t * pDst,
Kojto 115:87f2f5183dfb 3034 uint32_t blockSize);
Kojto 115:87f2f5183dfb 3035
Kojto 115:87f2f5183dfb 3036 /**
Kojto 115:87f2f5183dfb 3037 * @brief Fills a constant value into a Q15 vector.
Kojto 115:87f2f5183dfb 3038 * @param[in] value input value to be filled
Kojto 115:87f2f5183dfb 3039 * @param[out] *pDst output pointer
Kojto 115:87f2f5183dfb 3040 * @param[in] blockSize number of samples to process
Kojto 115:87f2f5183dfb 3041 * @return none.
Kojto 115:87f2f5183dfb 3042 */
Kojto 115:87f2f5183dfb 3043 void arm_fill_q15(
Kojto 115:87f2f5183dfb 3044 q15_t value,
Kojto 115:87f2f5183dfb 3045 q15_t * pDst,
Kojto 115:87f2f5183dfb 3046 uint32_t blockSize);
Kojto 115:87f2f5183dfb 3047
Kojto 115:87f2f5183dfb 3048 /**
Kojto 115:87f2f5183dfb 3049 * @brief Fills a constant value into a Q31 vector.
Kojto 115:87f2f5183dfb 3050 * @param[in] value input value to be filled
Kojto 115:87f2f5183dfb 3051 * @param[out] *pDst output pointer
Kojto 115:87f2f5183dfb 3052 * @param[in] blockSize number of samples to process
Kojto 115:87f2f5183dfb 3053 * @return none.
Kojto 115:87f2f5183dfb 3054 */
Kojto 115:87f2f5183dfb 3055 void arm_fill_q31(
Kojto 115:87f2f5183dfb 3056 q31_t value,
Kojto 115:87f2f5183dfb 3057 q31_t * pDst,
Kojto 115:87f2f5183dfb 3058 uint32_t blockSize);
Kojto 115:87f2f5183dfb 3059
Kojto 115:87f2f5183dfb 3060 /**
Kojto 115:87f2f5183dfb 3061 * @brief Convolution of floating-point sequences.
Kojto 115:87f2f5183dfb 3062 * @param[in] *pSrcA points to the first input sequence.
Kojto 115:87f2f5183dfb 3063 * @param[in] srcALen length of the first input sequence.
Kojto 115:87f2f5183dfb 3064 * @param[in] *pSrcB points to the second input sequence.
Kojto 115:87f2f5183dfb 3065 * @param[in] srcBLen length of the second input sequence.
Kojto 115:87f2f5183dfb 3066 * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
Kojto 115:87f2f5183dfb 3067 * @return none.
Kojto 115:87f2f5183dfb 3068 */
Kojto 115:87f2f5183dfb 3069
Kojto 115:87f2f5183dfb 3070 void arm_conv_f32(
Kojto 115:87f2f5183dfb 3071 float32_t * pSrcA,
Kojto 115:87f2f5183dfb 3072 uint32_t srcALen,
Kojto 115:87f2f5183dfb 3073 float32_t * pSrcB,
Kojto 115:87f2f5183dfb 3074 uint32_t srcBLen,
Kojto 115:87f2f5183dfb 3075 float32_t * pDst);
Kojto 115:87f2f5183dfb 3076
Kojto 115:87f2f5183dfb 3077
Kojto 115:87f2f5183dfb 3078 /**
Kojto 115:87f2f5183dfb 3079 * @brief Convolution of Q15 sequences.
Kojto 115:87f2f5183dfb 3080 * @param[in] *pSrcA points to the first input sequence.
Kojto 115:87f2f5183dfb 3081 * @param[in] srcALen length of the first input sequence.
Kojto 115:87f2f5183dfb 3082 * @param[in] *pSrcB points to the second input sequence.
Kojto 115:87f2f5183dfb 3083 * @param[in] srcBLen length of the second input sequence.
Kojto 115:87f2f5183dfb 3084 * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
Kojto 115:87f2f5183dfb 3085 * @param[in] *pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
Kojto 115:87f2f5183dfb 3086 * @param[in] *pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
Kojto 115:87f2f5183dfb 3087 * @return none.
Kojto 115:87f2f5183dfb 3088 */
Kojto 115:87f2f5183dfb 3089
Kojto 115:87f2f5183dfb 3090
Kojto 115:87f2f5183dfb 3091 void arm_conv_opt_q15(
Kojto 115:87f2f5183dfb 3092 q15_t * pSrcA,
Kojto 115:87f2f5183dfb 3093 uint32_t srcALen,
Kojto 115:87f2f5183dfb 3094 q15_t * pSrcB,
Kojto 115:87f2f5183dfb 3095 uint32_t srcBLen,
Kojto 115:87f2f5183dfb 3096 q15_t * pDst,
Kojto 115:87f2f5183dfb 3097 q15_t * pScratch1,
Kojto 115:87f2f5183dfb 3098 q15_t * pScratch2);
Kojto 115:87f2f5183dfb 3099
Kojto 115:87f2f5183dfb 3100
Kojto 115:87f2f5183dfb 3101 /**
Kojto 115:87f2f5183dfb 3102 * @brief Convolution of Q15 sequences.
Kojto 115:87f2f5183dfb 3103 * @param[in] *pSrcA points to the first input sequence.
Kojto 115:87f2f5183dfb 3104 * @param[in] srcALen length of the first input sequence.
Kojto 115:87f2f5183dfb 3105 * @param[in] *pSrcB points to the second input sequence.
Kojto 115:87f2f5183dfb 3106 * @param[in] srcBLen length of the second input sequence.
Kojto 115:87f2f5183dfb 3107 * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
Kojto 115:87f2f5183dfb 3108 * @return none.
Kojto 115:87f2f5183dfb 3109 */
Kojto 115:87f2f5183dfb 3110
Kojto 115:87f2f5183dfb 3111 void arm_conv_q15(
Kojto 115:87f2f5183dfb 3112 q15_t * pSrcA,
Kojto 115:87f2f5183dfb 3113 uint32_t srcALen,
Kojto 115:87f2f5183dfb 3114 q15_t * pSrcB,
Kojto 115:87f2f5183dfb 3115 uint32_t srcBLen,
Kojto 115:87f2f5183dfb 3116 q15_t * pDst);
Kojto 115:87f2f5183dfb 3117
Kojto 115:87f2f5183dfb 3118 /**
Kojto 115:87f2f5183dfb 3119 * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
Kojto 115:87f2f5183dfb 3120 * @param[in] *pSrcA points to the first input sequence.
Kojto 115:87f2f5183dfb 3121 * @param[in] srcALen length of the first input sequence.
Kojto 115:87f2f5183dfb 3122 * @param[in] *pSrcB points to the second input sequence.
Kojto 115:87f2f5183dfb 3123 * @param[in] srcBLen length of the second input sequence.
Kojto 115:87f2f5183dfb 3124 * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
Kojto 115:87f2f5183dfb 3125 * @return none.
Kojto 115:87f2f5183dfb 3126 */
Kojto 115:87f2f5183dfb 3127
Kojto 115:87f2f5183dfb 3128 void arm_conv_fast_q15(
Kojto 115:87f2f5183dfb 3129 q15_t * pSrcA,
Kojto 115:87f2f5183dfb 3130 uint32_t srcALen,
Kojto 115:87f2f5183dfb 3131 q15_t * pSrcB,
Kojto 115:87f2f5183dfb 3132 uint32_t srcBLen,
Kojto 115:87f2f5183dfb 3133 q15_t * pDst);
Kojto 115:87f2f5183dfb 3134
Kojto 115:87f2f5183dfb 3135 /**
Kojto 115:87f2f5183dfb 3136 * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
Kojto 115:87f2f5183dfb 3137 * @param[in] *pSrcA points to the first input sequence.
Kojto 115:87f2f5183dfb 3138 * @param[in] srcALen length of the first input sequence.
Kojto 115:87f2f5183dfb 3139 * @param[in] *pSrcB points to the second input sequence.
Kojto 115:87f2f5183dfb 3140 * @param[in] srcBLen length of the second input sequence.
Kojto 115:87f2f5183dfb 3141 * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
Kojto 115:87f2f5183dfb 3142 * @param[in] *pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
Kojto 115:87f2f5183dfb 3143 * @param[in] *pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
Kojto 115:87f2f5183dfb 3144 * @return none.
Kojto 115:87f2f5183dfb 3145 */
Kojto 115:87f2f5183dfb 3146
Kojto 115:87f2f5183dfb 3147 void arm_conv_fast_opt_q15(
Kojto 115:87f2f5183dfb 3148 q15_t * pSrcA,
Kojto 115:87f2f5183dfb 3149 uint32_t srcALen,
Kojto 115:87f2f5183dfb 3150 q15_t * pSrcB,
Kojto 115:87f2f5183dfb 3151 uint32_t srcBLen,
Kojto 115:87f2f5183dfb 3152 q15_t * pDst,
Kojto 115:87f2f5183dfb 3153 q15_t * pScratch1,
Kojto 115:87f2f5183dfb 3154 q15_t * pScratch2);
Kojto 115:87f2f5183dfb 3155
Kojto 115:87f2f5183dfb 3156
Kojto 115:87f2f5183dfb 3157
Kojto 115:87f2f5183dfb 3158 /**
Kojto 115:87f2f5183dfb 3159 * @brief Convolution of Q31 sequences.
Kojto 115:87f2f5183dfb 3160 * @param[in] *pSrcA points to the first input sequence.
Kojto 115:87f2f5183dfb 3161 * @param[in] srcALen length of the first input sequence.
Kojto 115:87f2f5183dfb 3162 * @param[in] *pSrcB points to the second input sequence.
Kojto 115:87f2f5183dfb 3163 * @param[in] srcBLen length of the second input sequence.
Kojto 115:87f2f5183dfb 3164 * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
Kojto 115:87f2f5183dfb 3165 * @return none.
Kojto 115:87f2f5183dfb 3166 */
Kojto 115:87f2f5183dfb 3167
Kojto 115:87f2f5183dfb 3168 void arm_conv_q31(
Kojto 115:87f2f5183dfb 3169 q31_t * pSrcA,
Kojto 115:87f2f5183dfb 3170 uint32_t srcALen,
Kojto 115:87f2f5183dfb 3171 q31_t * pSrcB,
Kojto 115:87f2f5183dfb 3172 uint32_t srcBLen,
Kojto 115:87f2f5183dfb 3173 q31_t * pDst);
Kojto 115:87f2f5183dfb 3174
Kojto 115:87f2f5183dfb 3175 /**
Kojto 115:87f2f5183dfb 3176 * @brief Convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
Kojto 115:87f2f5183dfb 3177 * @param[in] *pSrcA points to the first input sequence.
Kojto 115:87f2f5183dfb 3178 * @param[in] srcALen length of the first input sequence.
Kojto 115:87f2f5183dfb 3179 * @param[in] *pSrcB points to the second input sequence.
Kojto 115:87f2f5183dfb 3180 * @param[in] srcBLen length of the second input sequence.
Kojto 115:87f2f5183dfb 3181 * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
Kojto 115:87f2f5183dfb 3182 * @return none.
Kojto 115:87f2f5183dfb 3183 */
Kojto 115:87f2f5183dfb 3184
Kojto 115:87f2f5183dfb 3185 void arm_conv_fast_q31(
Kojto 115:87f2f5183dfb 3186 q31_t * pSrcA,
Kojto 115:87f2f5183dfb 3187 uint32_t srcALen,
Kojto 115:87f2f5183dfb 3188 q31_t * pSrcB,
Kojto 115:87f2f5183dfb 3189 uint32_t srcBLen,
Kojto 115:87f2f5183dfb 3190 q31_t * pDst);
Kojto 115:87f2f5183dfb 3191
Kojto 115:87f2f5183dfb 3192
Kojto 115:87f2f5183dfb 3193 /**
Kojto 115:87f2f5183dfb 3194 * @brief Convolution of Q7 sequences.
Kojto 115:87f2f5183dfb 3195 * @param[in] *pSrcA points to the first input sequence.
Kojto 115:87f2f5183dfb 3196 * @param[in] srcALen length of the first input sequence.
Kojto 115:87f2f5183dfb 3197 * @param[in] *pSrcB points to the second input sequence.
Kojto 115:87f2f5183dfb 3198 * @param[in] srcBLen length of the second input sequence.
Kojto 115:87f2f5183dfb 3199 * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
Kojto 115:87f2f5183dfb 3200 * @param[in] *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
Kojto 115:87f2f5183dfb 3201 * @param[in] *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
Kojto 115:87f2f5183dfb 3202 * @return none.
Kojto 115:87f2f5183dfb 3203 */
Kojto 115:87f2f5183dfb 3204
Kojto 115:87f2f5183dfb 3205 void arm_conv_opt_q7(
Kojto 115:87f2f5183dfb 3206 q7_t * pSrcA,
Kojto 115:87f2f5183dfb 3207 uint32_t srcALen,
Kojto 115:87f2f5183dfb 3208 q7_t * pSrcB,
Kojto 115:87f2f5183dfb 3209 uint32_t srcBLen,
Kojto 115:87f2f5183dfb 3210 q7_t * pDst,
Kojto 115:87f2f5183dfb 3211 q15_t * pScratch1,
Kojto 115:87f2f5183dfb 3212 q15_t * pScratch2);
Kojto 115:87f2f5183dfb 3213
Kojto 115:87f2f5183dfb 3214
Kojto 115:87f2f5183dfb 3215
Kojto 115:87f2f5183dfb 3216 /**
Kojto 115:87f2f5183dfb 3217 * @brief Convolution of Q7 sequences.
Kojto 115:87f2f5183dfb 3218 * @param[in] *pSrcA points to the first input sequence.
Kojto 115:87f2f5183dfb 3219 * @param[in] srcALen length of the first input sequence.
Kojto 115:87f2f5183dfb 3220 * @param[in] *pSrcB points to the second input sequence.
Kojto 115:87f2f5183dfb 3221 * @param[in] srcBLen length of the second input sequence.
Kojto 115:87f2f5183dfb 3222 * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
Kojto 115:87f2f5183dfb 3223 * @return none.
Kojto 115:87f2f5183dfb 3224 */
Kojto 115:87f2f5183dfb 3225
Kojto 115:87f2f5183dfb 3226 void arm_conv_q7(
Kojto 115:87f2f5183dfb 3227 q7_t * pSrcA,
Kojto 115:87f2f5183dfb 3228 uint32_t srcALen,
Kojto 115:87f2f5183dfb 3229 q7_t * pSrcB,
Kojto 115:87f2f5183dfb 3230 uint32_t srcBLen,
Kojto 115:87f2f5183dfb 3231 q7_t * pDst);
Kojto 115:87f2f5183dfb 3232
Kojto 115:87f2f5183dfb 3233
Kojto 115:87f2f5183dfb 3234 /**
Kojto 115:87f2f5183dfb 3235 * @brief Partial convolution of floating-point sequences.
Kojto 115:87f2f5183dfb 3236 * @param[in] *pSrcA points to the first input sequence.
Kojto 115:87f2f5183dfb 3237 * @param[in] srcALen length of the first input sequence.
Kojto 115:87f2f5183dfb 3238 * @param[in] *pSrcB points to the second input sequence.
Kojto 115:87f2f5183dfb 3239 * @param[in] srcBLen length of the second input sequence.
Kojto 115:87f2f5183dfb 3240 * @param[out] *pDst points to the block of output data
Kojto 115:87f2f5183dfb 3241 * @param[in] firstIndex is the first output sample to start with.
Kojto 115:87f2f5183dfb 3242 * @param[in] numPoints is the number of output points to be computed.
Kojto 115:87f2f5183dfb 3243 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
Kojto 115:87f2f5183dfb 3244 */
Kojto 115:87f2f5183dfb 3245
Kojto 115:87f2f5183dfb 3246 arm_status arm_conv_partial_f32(
Kojto 115:87f2f5183dfb 3247 float32_t * pSrcA,
Kojto 115:87f2f5183dfb 3248 uint32_t srcALen,
Kojto 115:87f2f5183dfb 3249 float32_t * pSrcB,
Kojto 115:87f2f5183dfb 3250 uint32_t srcBLen,
Kojto 115:87f2f5183dfb 3251 float32_t * pDst,
Kojto 115:87f2f5183dfb 3252 uint32_t firstIndex,
Kojto 115:87f2f5183dfb 3253 uint32_t numPoints);
Kojto 115:87f2f5183dfb 3254
Kojto 115:87f2f5183dfb 3255 /**
Kojto 115:87f2f5183dfb 3256 * @brief Partial convolution of Q15 sequences.
Kojto 115:87f2f5183dfb 3257 * @param[in] *pSrcA points to the first input sequence.
Kojto 115:87f2f5183dfb 3258 * @param[in] srcALen length of the first input sequence.
Kojto 115:87f2f5183dfb 3259 * @param[in] *pSrcB points to the second input sequence.
Kojto 115:87f2f5183dfb 3260 * @param[in] srcBLen length of the second input sequence.
Kojto 115:87f2f5183dfb 3261 * @param[out] *pDst points to the block of output data
Kojto 115:87f2f5183dfb 3262 * @param[in] firstIndex is the first output sample to start with.
Kojto 115:87f2f5183dfb 3263 * @param[in] numPoints is the number of output points to be computed.
Kojto 115:87f2f5183dfb 3264 * @param[in] * pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
Kojto 115:87f2f5183dfb 3265 * @param[in] * pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
Kojto 115:87f2f5183dfb 3266 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
Kojto 115:87f2f5183dfb 3267 */
Kojto 115:87f2f5183dfb 3268
Kojto 115:87f2f5183dfb 3269 arm_status arm_conv_partial_opt_q15(
Kojto 115:87f2f5183dfb 3270 q15_t * pSrcA,
Kojto 115:87f2f5183dfb 3271 uint32_t srcALen,
Kojto 115:87f2f5183dfb 3272 q15_t * pSrcB,
Kojto 115:87f2f5183dfb 3273 uint32_t srcBLen,
Kojto 115:87f2f5183dfb 3274 q15_t * pDst,
Kojto 115:87f2f5183dfb 3275 uint32_t firstIndex,
Kojto 115:87f2f5183dfb 3276 uint32_t numPoints,
Kojto 115:87f2f5183dfb 3277 q15_t * pScratch1,
Kojto 115:87f2f5183dfb 3278 q15_t * pScratch2);
Kojto 115:87f2f5183dfb 3279
Kojto 115:87f2f5183dfb 3280
Kojto 115:87f2f5183dfb 3281 /**
Kojto 115:87f2f5183dfb 3282 * @brief Partial convolution of Q15 sequences.
Kojto 115:87f2f5183dfb 3283 * @param[in] *pSrcA points to the first input sequence.
Kojto 115:87f2f5183dfb 3284 * @param[in] srcALen length of the first input sequence.
Kojto 115:87f2f5183dfb 3285 * @param[in] *pSrcB points to the second input sequence.
Kojto 115:87f2f5183dfb 3286 * @param[in] srcBLen length of the second input sequence.
Kojto 115:87f2f5183dfb 3287 * @param[out] *pDst points to the block of output data
Kojto 115:87f2f5183dfb 3288 * @param[in] firstIndex is the first output sample to start with.
Kojto 115:87f2f5183dfb 3289 * @param[in] numPoints is the number of output points to be computed.
Kojto 115:87f2f5183dfb 3290 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
Kojto 115:87f2f5183dfb 3291 */
Kojto 115:87f2f5183dfb 3292
Kojto 115:87f2f5183dfb 3293 arm_status arm_conv_partial_q15(
Kojto 115:87f2f5183dfb 3294 q15_t * pSrcA,
Kojto 115:87f2f5183dfb 3295 uint32_t srcALen,
Kojto 115:87f2f5183dfb 3296 q15_t * pSrcB,
Kojto 115:87f2f5183dfb 3297 uint32_t srcBLen,
Kojto 115:87f2f5183dfb 3298 q15_t * pDst,
Kojto 115:87f2f5183dfb 3299 uint32_t firstIndex,
Kojto 115:87f2f5183dfb 3300 uint32_t numPoints);
Kojto 115:87f2f5183dfb 3301
Kojto 115:87f2f5183dfb 3302 /**
Kojto 115:87f2f5183dfb 3303 * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
Kojto 115:87f2f5183dfb 3304 * @param[in] *pSrcA points to the first input sequence.
Kojto 115:87f2f5183dfb 3305 * @param[in] srcALen length of the first input sequence.
Kojto 115:87f2f5183dfb 3306 * @param[in] *pSrcB points to the second input sequence.
Kojto 115:87f2f5183dfb 3307 * @param[in] srcBLen length of the second input sequence.
Kojto 115:87f2f5183dfb 3308 * @param[out] *pDst points to the block of output data
Kojto 115:87f2f5183dfb 3309 * @param[in] firstIndex is the first output sample to start with.
Kojto 115:87f2f5183dfb 3310 * @param[in] numPoints is the number of output points to be computed.
Kojto 115:87f2f5183dfb 3311 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
Kojto 115:87f2f5183dfb 3312 */
Kojto 115:87f2f5183dfb 3313
Kojto 115:87f2f5183dfb 3314 arm_status arm_conv_partial_fast_q15(
Kojto 115:87f2f5183dfb 3315 q15_t * pSrcA,
Kojto 115:87f2f5183dfb 3316 uint32_t srcALen,
Kojto 115:87f2f5183dfb 3317 q15_t * pSrcB,
Kojto 115:87f2f5183dfb 3318 uint32_t srcBLen,
Kojto 115:87f2f5183dfb 3319 q15_t * pDst,
Kojto 115:87f2f5183dfb 3320 uint32_t firstIndex,
Kojto 115:87f2f5183dfb 3321 uint32_t numPoints);
Kojto 115:87f2f5183dfb 3322
Kojto 115:87f2f5183dfb 3323
Kojto 115:87f2f5183dfb 3324 /**
Kojto 115:87f2f5183dfb 3325 * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
Kojto 115:87f2f5183dfb 3326 * @param[in] *pSrcA points to the first input sequence.
Kojto 115:87f2f5183dfb 3327 * @param[in] srcALen length of the first input sequence.
Kojto 115:87f2f5183dfb 3328 * @param[in] *pSrcB points to the second input sequence.
Kojto 115:87f2f5183dfb 3329 * @param[in] srcBLen length of the second input sequence.
Kojto 115:87f2f5183dfb 3330 * @param[out] *pDst points to the block of output data
Kojto 115:87f2f5183dfb 3331 * @param[in] firstIndex is the first output sample to start with.
Kojto 115:87f2f5183dfb 3332 * @param[in] numPoints is the number of output points to be computed.
Kojto 115:87f2f5183dfb 3333 * @param[in] * pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
Kojto 115:87f2f5183dfb 3334 * @param[in] * pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
Kojto 115:87f2f5183dfb 3335 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
Kojto 115:87f2f5183dfb 3336 */
Kojto 115:87f2f5183dfb 3337
Kojto 115:87f2f5183dfb 3338 arm_status arm_conv_partial_fast_opt_q15(
Kojto 115:87f2f5183dfb 3339 q15_t * pSrcA,
Kojto 115:87f2f5183dfb 3340 uint32_t srcALen,
Kojto 115:87f2f5183dfb 3341 q15_t * pSrcB,
Kojto 115:87f2f5183dfb 3342 uint32_t srcBLen,
Kojto 115:87f2f5183dfb 3343 q15_t * pDst,
Kojto 115:87f2f5183dfb 3344 uint32_t firstIndex,
Kojto 115:87f2f5183dfb 3345 uint32_t numPoints,
Kojto 115:87f2f5183dfb 3346 q15_t * pScratch1,
Kojto 115:87f2f5183dfb 3347 q15_t * pScratch2);
Kojto 115:87f2f5183dfb 3348
Kojto 115:87f2f5183dfb 3349
Kojto 115:87f2f5183dfb 3350 /**
Kojto 115:87f2f5183dfb 3351 * @brief Partial convolution of Q31 sequences.
Kojto 115:87f2f5183dfb 3352 * @param[in] *pSrcA points to the first input sequence.
Kojto 115:87f2f5183dfb 3353 * @param[in] srcALen length of the first input sequence.
Kojto 115:87f2f5183dfb 3354 * @param[in] *pSrcB points to the second input sequence.
Kojto 115:87f2f5183dfb 3355 * @param[in] srcBLen length of the second input sequence.
Kojto 115:87f2f5183dfb 3356 * @param[out] *pDst points to the block of output data
Kojto 115:87f2f5183dfb 3357 * @param[in] firstIndex is the first output sample to start with.
Kojto 115:87f2f5183dfb 3358 * @param[in] numPoints is the number of output points to be computed.
Kojto 115:87f2f5183dfb 3359 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
Kojto 115:87f2f5183dfb 3360 */
Kojto 115:87f2f5183dfb 3361
Kojto 115:87f2f5183dfb 3362 arm_status arm_conv_partial_q31(
Kojto 115:87f2f5183dfb 3363 q31_t * pSrcA,
Kojto 115:87f2f5183dfb 3364 uint32_t srcALen,
Kojto 115:87f2f5183dfb 3365 q31_t * pSrcB,
Kojto 115:87f2f5183dfb 3366 uint32_t srcBLen,
Kojto 115:87f2f5183dfb 3367 q31_t * pDst,
Kojto 115:87f2f5183dfb 3368 uint32_t firstIndex,
Kojto 115:87f2f5183dfb 3369 uint32_t numPoints);
Kojto 115:87f2f5183dfb 3370
Kojto 115:87f2f5183dfb 3371
Kojto 115:87f2f5183dfb 3372 /**
Kojto 115:87f2f5183dfb 3373 * @brief Partial convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
Kojto 115:87f2f5183dfb 3374 * @param[in] *pSrcA points to the first input sequence.
Kojto 115:87f2f5183dfb 3375 * @param[in] srcALen length of the first input sequence.
Kojto 115:87f2f5183dfb 3376 * @param[in] *pSrcB points to the second input sequence.
Kojto 115:87f2f5183dfb 3377 * @param[in] srcBLen length of the second input sequence.
Kojto 115:87f2f5183dfb 3378 * @param[out] *pDst points to the block of output data
Kojto 115:87f2f5183dfb 3379 * @param[in] firstIndex is the first output sample to start with.
Kojto 115:87f2f5183dfb 3380 * @param[in] numPoints is the number of output points to be computed.
Kojto 115:87f2f5183dfb 3381 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
Kojto 115:87f2f5183dfb 3382 */
Kojto 115:87f2f5183dfb 3383
Kojto 115:87f2f5183dfb 3384 arm_status arm_conv_partial_fast_q31(
Kojto 115:87f2f5183dfb 3385 q31_t * pSrcA,
Kojto 115:87f2f5183dfb 3386 uint32_t srcALen,
Kojto 115:87f2f5183dfb 3387 q31_t * pSrcB,
Kojto 115:87f2f5183dfb 3388 uint32_t srcBLen,
Kojto 115:87f2f5183dfb 3389 q31_t * pDst,
Kojto 115:87f2f5183dfb 3390 uint32_t firstIndex,
Kojto 115:87f2f5183dfb 3391 uint32_t numPoints);
Kojto 115:87f2f5183dfb 3392
Kojto 115:87f2f5183dfb 3393
Kojto 115:87f2f5183dfb 3394 /**
Kojto 115:87f2f5183dfb 3395 * @brief Partial convolution of Q7 sequences
Kojto 115:87f2f5183dfb 3396 * @param[in] *pSrcA points to the first input sequence.
Kojto 115:87f2f5183dfb 3397 * @param[in] srcALen length of the first input sequence.
Kojto 115:87f2f5183dfb 3398 * @param[in] *pSrcB points to the second input sequence.
Kojto 115:87f2f5183dfb 3399 * @param[in] srcBLen length of the second input sequence.
Kojto 115:87f2f5183dfb 3400 * @param[out] *pDst points to the block of output data
Kojto 115:87f2f5183dfb 3401 * @param[in] firstIndex is the first output sample to start with.
Kojto 115:87f2f5183dfb 3402 * @param[in] numPoints is the number of output points to be computed.
Kojto 115:87f2f5183dfb 3403 * @param[in] *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
Kojto 115:87f2f5183dfb 3404 * @param[in] *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
Kojto 115:87f2f5183dfb 3405 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
Kojto 115:87f2f5183dfb 3406 */
Kojto 115:87f2f5183dfb 3407
Kojto 115:87f2f5183dfb 3408 arm_status arm_conv_partial_opt_q7(
Kojto 115:87f2f5183dfb 3409 q7_t * pSrcA,
Kojto 115:87f2f5183dfb 3410 uint32_t srcALen,
Kojto 115:87f2f5183dfb 3411 q7_t * pSrcB,
Kojto 115:87f2f5183dfb 3412 uint32_t srcBLen,
Kojto 115:87f2f5183dfb 3413 q7_t * pDst,
Kojto 115:87f2f5183dfb 3414 uint32_t firstIndex,
Kojto 115:87f2f5183dfb 3415 uint32_t numPoints,
Kojto 115:87f2f5183dfb 3416 q15_t * pScratch1,
Kojto 115:87f2f5183dfb 3417 q15_t * pScratch2);
Kojto 115:87f2f5183dfb 3418
Kojto 115:87f2f5183dfb 3419
Kojto 115:87f2f5183dfb 3420 /**
Kojto 115:87f2f5183dfb 3421 * @brief Partial convolution of Q7 sequences.
Kojto 115:87f2f5183dfb 3422 * @param[in] *pSrcA points to the first input sequence.
Kojto 115:87f2f5183dfb 3423 * @param[in] srcALen length of the first input sequence.
Kojto 115:87f2f5183dfb 3424 * @param[in] *pSrcB points to the second input sequence.
Kojto 115:87f2f5183dfb 3425 * @param[in] srcBLen length of the second input sequence.
Kojto 115:87f2f5183dfb 3426 * @param[out] *pDst points to the block of output data
Kojto 115:87f2f5183dfb 3427 * @param[in] firstIndex is the first output sample to start with.
Kojto 115:87f2f5183dfb 3428 * @param[in] numPoints is the number of output points to be computed.
Kojto 115:87f2f5183dfb 3429 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
Kojto 115:87f2f5183dfb 3430 */
Kojto 115:87f2f5183dfb 3431
Kojto 115:87f2f5183dfb 3432 arm_status arm_conv_partial_q7(
Kojto 115:87f2f5183dfb 3433 q7_t * pSrcA,
Kojto 115:87f2f5183dfb 3434 uint32_t srcALen,
Kojto 115:87f2f5183dfb 3435 q7_t * pSrcB,
Kojto 115:87f2f5183dfb 3436 uint32_t srcBLen,
Kojto 115:87f2f5183dfb 3437 q7_t * pDst,
Kojto 115:87f2f5183dfb 3438 uint32_t firstIndex,
Kojto 115:87f2f5183dfb 3439 uint32_t numPoints);
Kojto 115:87f2f5183dfb 3440
Kojto 115:87f2f5183dfb 3441
Kojto 115:87f2f5183dfb 3442
Kojto 115:87f2f5183dfb 3443 /**
Kojto 115:87f2f5183dfb 3444 * @brief Instance structure for the Q15 FIR decimator.
Kojto 115:87f2f5183dfb 3445 */
Kojto 115:87f2f5183dfb 3446
Kojto 115:87f2f5183dfb 3447 typedef struct
Kojto 115:87f2f5183dfb 3448 {
Kojto 115:87f2f5183dfb 3449 uint8_t M; /**< decimation factor. */
Kojto 115:87f2f5183dfb 3450 uint16_t numTaps; /**< number of coefficients in the filter. */
Kojto 115:87f2f5183dfb 3451 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
Kojto 115:87f2f5183dfb 3452 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
Kojto 115:87f2f5183dfb 3453 } arm_fir_decimate_instance_q15;
Kojto 115:87f2f5183dfb 3454
Kojto 115:87f2f5183dfb 3455 /**
Kojto 115:87f2f5183dfb 3456 * @brief Instance structure for the Q31 FIR decimator.
Kojto 115:87f2f5183dfb 3457 */
Kojto 115:87f2f5183dfb 3458
Kojto 115:87f2f5183dfb 3459 typedef struct
Kojto 115:87f2f5183dfb 3460 {
Kojto 115:87f2f5183dfb 3461 uint8_t M; /**< decimation factor. */
Kojto 115:87f2f5183dfb 3462 uint16_t numTaps; /**< number of coefficients in the filter. */
Kojto 115:87f2f5183dfb 3463 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
Kojto 115:87f2f5183dfb 3464 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
Kojto 115:87f2f5183dfb 3465
Kojto 115:87f2f5183dfb 3466 } arm_fir_decimate_instance_q31;
Kojto 115:87f2f5183dfb 3467
Kojto 115:87f2f5183dfb 3468 /**
Kojto 115:87f2f5183dfb 3469 * @brief Instance structure for the floating-point FIR decimator.
Kojto 115:87f2f5183dfb 3470 */
Kojto 115:87f2f5183dfb 3471
Kojto 115:87f2f5183dfb 3472 typedef struct
Kojto 115:87f2f5183dfb 3473 {
Kojto 115:87f2f5183dfb 3474 uint8_t M; /**< decimation factor. */
Kojto 115:87f2f5183dfb 3475 uint16_t numTaps; /**< number of coefficients in the filter. */
Kojto 115:87f2f5183dfb 3476 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
Kojto 115:87f2f5183dfb 3477 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
Kojto 115:87f2f5183dfb 3478
Kojto 115:87f2f5183dfb 3479 } arm_fir_decimate_instance_f32;
Kojto 115:87f2f5183dfb 3480
Kojto 115:87f2f5183dfb 3481
Kojto 115:87f2f5183dfb 3482
Kojto 115:87f2f5183dfb 3483 /**
Kojto 115:87f2f5183dfb 3484 * @brief Processing function for the floating-point FIR decimator.
Kojto 115:87f2f5183dfb 3485 * @param[in] *S points to an instance of the floating-point FIR decimator structure.
Kojto 115:87f2f5183dfb 3486 * @param[in] *pSrc points to the block of input data.
Kojto 115:87f2f5183dfb 3487 * @param[out] *pDst points to the block of output data
Kojto 115:87f2f5183dfb 3488 * @param[in] blockSize number of input samples to process per call.
Kojto 115:87f2f5183dfb 3489 * @return none
Kojto 115:87f2f5183dfb 3490 */
Kojto 115:87f2f5183dfb 3491
Kojto 115:87f2f5183dfb 3492 void arm_fir_decimate_f32(
Kojto 115:87f2f5183dfb 3493 const arm_fir_decimate_instance_f32 * S,
Kojto 115:87f2f5183dfb 3494 float32_t * pSrc,
Kojto 115:87f2f5183dfb 3495 float32_t * pDst,
Kojto 115:87f2f5183dfb 3496 uint32_t blockSize);
Kojto 115:87f2f5183dfb 3497
Kojto 115:87f2f5183dfb 3498
Kojto 115:87f2f5183dfb 3499 /**
Kojto 115:87f2f5183dfb 3500 * @brief Initialization function for the floating-point FIR decimator.
Kojto 115:87f2f5183dfb 3501 * @param[in,out] *S points to an instance of the floating-point FIR decimator structure.
Kojto 115:87f2f5183dfb 3502 * @param[in] numTaps number of coefficients in the filter.
Kojto 115:87f2f5183dfb 3503 * @param[in] M decimation factor.
Kojto 115:87f2f5183dfb 3504 * @param[in] *pCoeffs points to the filter coefficients.
Kojto 115:87f2f5183dfb 3505 * @param[in] *pState points to the state buffer.
Kojto 115:87f2f5183dfb 3506 * @param[in] blockSize number of input samples to process per call.
Kojto 115:87f2f5183dfb 3507 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
Kojto 115:87f2f5183dfb 3508 * <code>blockSize</code> is not a multiple of <code>M</code>.
Kojto 115:87f2f5183dfb 3509 */
Kojto 115:87f2f5183dfb 3510
Kojto 115:87f2f5183dfb 3511 arm_status arm_fir_decimate_init_f32(
Kojto 115:87f2f5183dfb 3512 arm_fir_decimate_instance_f32 * S,
Kojto 115:87f2f5183dfb 3513 uint16_t numTaps,
Kojto 115:87f2f5183dfb 3514 uint8_t M,
Kojto 115:87f2f5183dfb 3515 float32_t * pCoeffs,
Kojto 115:87f2f5183dfb 3516 float32_t * pState,
Kojto 115:87f2f5183dfb 3517 uint32_t blockSize);
Kojto 115:87f2f5183dfb 3518
Kojto 115:87f2f5183dfb 3519 /**
Kojto 115:87f2f5183dfb 3520 * @brief Processing function for the Q15 FIR decimator.
Kojto 115:87f2f5183dfb 3521 * @param[in] *S points to an instance of the Q15 FIR decimator structure.
Kojto 115:87f2f5183dfb 3522 * @param[in] *pSrc points to the block of input data.
Kojto 115:87f2f5183dfb 3523 * @param[out] *pDst points to the block of output data
Kojto 115:87f2f5183dfb 3524 * @param[in] blockSize number of input samples to process per call.
Kojto 115:87f2f5183dfb 3525 * @return none
Kojto 115:87f2f5183dfb 3526 */
Kojto 115:87f2f5183dfb 3527
Kojto 115:87f2f5183dfb 3528 void arm_fir_decimate_q15(
Kojto 115:87f2f5183dfb 3529 const arm_fir_decimate_instance_q15 * S,
Kojto 115:87f2f5183dfb 3530 q15_t * pSrc,
Kojto 115:87f2f5183dfb 3531 q15_t * pDst,
Kojto 115:87f2f5183dfb 3532 uint32_t blockSize);
Kojto 115:87f2f5183dfb 3533
Kojto 115:87f2f5183dfb 3534 /**
Kojto 115:87f2f5183dfb 3535 * @brief Processing function for the Q15 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
Kojto 115:87f2f5183dfb 3536 * @param[in] *S points to an instance of the Q15 FIR decimator structure.
Kojto 115:87f2f5183dfb 3537 * @param[in] *pSrc points to the block of input data.
Kojto 115:87f2f5183dfb 3538 * @param[out] *pDst points to the block of output data
Kojto 115:87f2f5183dfb 3539 * @param[in] blockSize number of input samples to process per call.
Kojto 115:87f2f5183dfb 3540 * @return none
Kojto 115:87f2f5183dfb 3541 */
Kojto 115:87f2f5183dfb 3542
Kojto 115:87f2f5183dfb 3543 void arm_fir_decimate_fast_q15(
Kojto 115:87f2f5183dfb 3544 const arm_fir_decimate_instance_q15 * S,
Kojto 115:87f2f5183dfb 3545 q15_t * pSrc,
Kojto 115:87f2f5183dfb 3546 q15_t * pDst,
Kojto 115:87f2f5183dfb 3547 uint32_t blockSize);
Kojto 115:87f2f5183dfb 3548
Kojto 115:87f2f5183dfb 3549
Kojto 115:87f2f5183dfb 3550
Kojto 115:87f2f5183dfb 3551 /**
Kojto 115:87f2f5183dfb 3552 * @brief Initialization function for the Q15 FIR decimator.
Kojto 115:87f2f5183dfb 3553 * @param[in,out] *S points to an instance of the Q15 FIR decimator structure.
Kojto 115:87f2f5183dfb 3554 * @param[in] numTaps number of coefficients in the filter.
Kojto 115:87f2f5183dfb 3555 * @param[in] M decimation factor.
Kojto 115:87f2f5183dfb 3556 * @param[in] *pCoeffs points to the filter coefficients.
Kojto 115:87f2f5183dfb 3557 * @param[in] *pState points to the state buffer.
Kojto 115:87f2f5183dfb 3558 * @param[in] blockSize number of input samples to process per call.
Kojto 115:87f2f5183dfb 3559 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
Kojto 115:87f2f5183dfb 3560 * <code>blockSize</code> is not a multiple of <code>M</code>.
Kojto 115:87f2f5183dfb 3561 */
Kojto 115:87f2f5183dfb 3562
Kojto 115:87f2f5183dfb 3563 arm_status arm_fir_decimate_init_q15(
Kojto 115:87f2f5183dfb 3564 arm_fir_decimate_instance_q15 * S,
Kojto 115:87f2f5183dfb 3565 uint16_t numTaps,
Kojto 115:87f2f5183dfb 3566 uint8_t M,
Kojto 115:87f2f5183dfb 3567 q15_t * pCoeffs,
Kojto 115:87f2f5183dfb 3568 q15_t * pState,
Kojto 115:87f2f5183dfb 3569 uint32_t blockSize);
Kojto 115:87f2f5183dfb 3570
Kojto 115:87f2f5183dfb 3571 /**
Kojto 115:87f2f5183dfb 3572 * @brief Processing function for the Q31 FIR decimator.
Kojto 115:87f2f5183dfb 3573 * @param[in] *S points to an instance of the Q31 FIR decimator structure.
Kojto 115:87f2f5183dfb 3574 * @param[in] *pSrc points to the block of input data.
Kojto 115:87f2f5183dfb 3575 * @param[out] *pDst points to the block of output data
Kojto 115:87f2f5183dfb 3576 * @param[in] blockSize number of input samples to process per call.
Kojto 115:87f2f5183dfb 3577 * @return none
Kojto 115:87f2f5183dfb 3578 */
Kojto 115:87f2f5183dfb 3579
Kojto 115:87f2f5183dfb 3580 void arm_fir_decimate_q31(
Kojto 115:87f2f5183dfb 3581 const arm_fir_decimate_instance_q31 * S,
Kojto 115:87f2f5183dfb 3582 q31_t * pSrc,
Kojto 115:87f2f5183dfb 3583 q31_t * pDst,
Kojto 115:87f2f5183dfb 3584 uint32_t blockSize);
Kojto 115:87f2f5183dfb 3585
Kojto 115:87f2f5183dfb 3586 /**
Kojto 115:87f2f5183dfb 3587 * @brief Processing function for the Q31 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
Kojto 115:87f2f5183dfb 3588 * @param[in] *S points to an instance of the Q31 FIR decimator structure.
Kojto 115:87f2f5183dfb 3589 * @param[in] *pSrc points to the block of input data.
Kojto 115:87f2f5183dfb 3590 * @param[out] *pDst points to the block of output data
Kojto 115:87f2f5183dfb 3591 * @param[in] blockSize number of input samples to process per call.
Kojto 115:87f2f5183dfb 3592 * @return none
Kojto 115:87f2f5183dfb 3593 */
Kojto 115:87f2f5183dfb 3594
Kojto 115:87f2f5183dfb 3595 void arm_fir_decimate_fast_q31(
Kojto 115:87f2f5183dfb 3596 arm_fir_decimate_instance_q31 * S,
Kojto 115:87f2f5183dfb 3597 q31_t * pSrc,
Kojto 115:87f2f5183dfb 3598 q31_t * pDst,
Kojto 115:87f2f5183dfb 3599 uint32_t blockSize);
Kojto 115:87f2f5183dfb 3600
Kojto 115:87f2f5183dfb 3601
Kojto 115:87f2f5183dfb 3602 /**
Kojto 115:87f2f5183dfb 3603 * @brief Initialization function for the Q31 FIR decimator.
Kojto 115:87f2f5183dfb 3604 * @param[in,out] *S points to an instance of the Q31 FIR decimator structure.
Kojto 115:87f2f5183dfb 3605 * @param[in] numTaps number of coefficients in the filter.
Kojto 115:87f2f5183dfb 3606 * @param[in] M decimation factor.
Kojto 115:87f2f5183dfb 3607 * @param[in] *pCoeffs points to the filter coefficients.
Kojto 115:87f2f5183dfb 3608 * @param[in] *pState points to the state buffer.
Kojto 115:87f2f5183dfb 3609 * @param[in] blockSize number of input samples to process per call.
Kojto 115:87f2f5183dfb 3610 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
Kojto 115:87f2f5183dfb 3611 * <code>blockSize</code> is not a multiple of <code>M</code>.
Kojto 115:87f2f5183dfb 3612 */
Kojto 115:87f2f5183dfb 3613
Kojto 115:87f2f5183dfb 3614 arm_status arm_fir_decimate_init_q31(
Kojto 115:87f2f5183dfb 3615 arm_fir_decimate_instance_q31 * S,
Kojto 115:87f2f5183dfb 3616 uint16_t numTaps,
Kojto 115:87f2f5183dfb 3617 uint8_t M,
Kojto 115:87f2f5183dfb 3618 q31_t * pCoeffs,
Kojto 115:87f2f5183dfb 3619 q31_t * pState,
Kojto 115:87f2f5183dfb 3620 uint32_t blockSize);
Kojto 115:87f2f5183dfb 3621
Kojto 115:87f2f5183dfb 3622
Kojto 115:87f2f5183dfb 3623
Kojto 115:87f2f5183dfb 3624 /**
Kojto 115:87f2f5183dfb 3625 * @brief Instance structure for the Q15 FIR interpolator.
Kojto 115:87f2f5183dfb 3626 */
Kojto 115:87f2f5183dfb 3627
Kojto 115:87f2f5183dfb 3628 typedef struct
Kojto 115:87f2f5183dfb 3629 {
Kojto 115:87f2f5183dfb 3630 uint8_t L; /**< upsample factor. */
Kojto 115:87f2f5183dfb 3631 uint16_t phaseLength; /**< length of each polyphase filter component. */
Kojto 115:87f2f5183dfb 3632 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
Kojto 115:87f2f5183dfb 3633 q15_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
Kojto 115:87f2f5183dfb 3634 } arm_fir_interpolate_instance_q15;
Kojto 115:87f2f5183dfb 3635
Kojto 115:87f2f5183dfb 3636 /**
Kojto 115:87f2f5183dfb 3637 * @brief Instance structure for the Q31 FIR interpolator.
Kojto 115:87f2f5183dfb 3638 */
Kojto 115:87f2f5183dfb 3639
Kojto 115:87f2f5183dfb 3640 typedef struct
Kojto 115:87f2f5183dfb 3641 {
Kojto 115:87f2f5183dfb 3642 uint8_t L; /**< upsample factor. */
Kojto 115:87f2f5183dfb 3643 uint16_t phaseLength; /**< length of each polyphase filter component. */
Kojto 115:87f2f5183dfb 3644 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
Kojto 115:87f2f5183dfb 3645 q31_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
Kojto 115:87f2f5183dfb 3646 } arm_fir_interpolate_instance_q31;
Kojto 115:87f2f5183dfb 3647
Kojto 115:87f2f5183dfb 3648 /**
Kojto 115:87f2f5183dfb 3649 * @brief Instance structure for the floating-point FIR interpolator.
Kojto 115:87f2f5183dfb 3650 */
Kojto 115:87f2f5183dfb 3651
Kojto 115:87f2f5183dfb 3652 typedef struct
Kojto 115:87f2f5183dfb 3653 {
Kojto 115:87f2f5183dfb 3654 uint8_t L; /**< upsample factor. */
Kojto 115:87f2f5183dfb 3655 uint16_t phaseLength; /**< length of each polyphase filter component. */
Kojto 115:87f2f5183dfb 3656 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
Kojto 115:87f2f5183dfb 3657 float32_t *pState; /**< points to the state variable array. The array is of length phaseLength+numTaps-1. */
Kojto 115:87f2f5183dfb 3658 } arm_fir_interpolate_instance_f32;
Kojto 115:87f2f5183dfb 3659
Kojto 115:87f2f5183dfb 3660
Kojto 115:87f2f5183dfb 3661 /**
Kojto 115:87f2f5183dfb 3662 * @brief Processing function for the Q15 FIR interpolator.
Kojto 115:87f2f5183dfb 3663 * @param[in] *S points to an instance of the Q15 FIR interpolator structure.
Kojto 115:87f2f5183dfb 3664 * @param[in] *pSrc points to the block of input data.
Kojto 115:87f2f5183dfb 3665 * @param[out] *pDst points to the block of output data.
Kojto 115:87f2f5183dfb 3666 * @param[in] blockSize number of input samples to process per call.
Kojto 115:87f2f5183dfb 3667 * @return none.
Kojto 115:87f2f5183dfb 3668 */
Kojto 115:87f2f5183dfb 3669
Kojto 115:87f2f5183dfb 3670 void arm_fir_interpolate_q15(
Kojto 115:87f2f5183dfb 3671 const arm_fir_interpolate_instance_q15 * S,
Kojto 115:87f2f5183dfb 3672 q15_t * pSrc,
Kojto 115:87f2f5183dfb 3673 q15_t * pDst,
Kojto 115:87f2f5183dfb 3674 uint32_t blockSize);
Kojto 115:87f2f5183dfb 3675
Kojto 115:87f2f5183dfb 3676
Kojto 115:87f2f5183dfb 3677 /**
Kojto 115:87f2f5183dfb 3678 * @brief Initialization function for the Q15 FIR interpolator.
Kojto 115:87f2f5183dfb 3679 * @param[in,out] *S points to an instance of the Q15 FIR interpolator structure.
Kojto 115:87f2f5183dfb 3680 * @param[in] L upsample factor.
Kojto 115:87f2f5183dfb 3681 * @param[in] numTaps number of filter coefficients in the filter.
Kojto 115:87f2f5183dfb 3682 * @param[in] *pCoeffs points to the filter coefficient buffer.
Kojto 115:87f2f5183dfb 3683 * @param[in] *pState points to the state buffer.
Kojto 115:87f2f5183dfb 3684 * @param[in] blockSize number of input samples to process per call.
Kojto 115:87f2f5183dfb 3685 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
Kojto 115:87f2f5183dfb 3686 * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
Kojto 115:87f2f5183dfb 3687 */
Kojto 115:87f2f5183dfb 3688
Kojto 115:87f2f5183dfb 3689 arm_status arm_fir_interpolate_init_q15(
Kojto 115:87f2f5183dfb 3690 arm_fir_interpolate_instance_q15 * S,
Kojto 115:87f2f5183dfb 3691 uint8_t L,
Kojto 115:87f2f5183dfb 3692 uint16_t numTaps,
Kojto 115:87f2f5183dfb 3693 q15_t * pCoeffs,
Kojto 115:87f2f5183dfb 3694 q15_t * pState,
Kojto 115:87f2f5183dfb 3695 uint32_t blockSize);
Kojto 115:87f2f5183dfb 3696
Kojto 115:87f2f5183dfb 3697 /**
Kojto 115:87f2f5183dfb 3698 * @brief Processing function for the Q31 FIR interpolator.
Kojto 115:87f2f5183dfb 3699 * @param[in] *S points to an instance of the Q15 FIR interpolator structure.
Kojto 115:87f2f5183dfb 3700 * @param[in] *pSrc points to the block of input data.
Kojto 115:87f2f5183dfb 3701 * @param[out] *pDst points to the block of output data.
Kojto 115:87f2f5183dfb 3702 * @param[in] blockSize number of input samples to process per call.
Kojto 115:87f2f5183dfb 3703 * @return none.
Kojto 115:87f2f5183dfb 3704 */
Kojto 115:87f2f5183dfb 3705
Kojto 115:87f2f5183dfb 3706 void arm_fir_interpolate_q31(
Kojto 115:87f2f5183dfb 3707 const arm_fir_interpolate_instance_q31 * S,
Kojto 115:87f2f5183dfb 3708 q31_t * pSrc,
Kojto 115:87f2f5183dfb 3709 q31_t * pDst,
Kojto 115:87f2f5183dfb 3710 uint32_t blockSize);
Kojto 115:87f2f5183dfb 3711
Kojto 115:87f2f5183dfb 3712 /**
Kojto 115:87f2f5183dfb 3713 * @brief Initialization function for the Q31 FIR interpolator.
Kojto 115:87f2f5183dfb 3714 * @param[in,out] *S points to an instance of the Q31 FIR interpolator structure.
Kojto 115:87f2f5183dfb 3715 * @param[in] L upsample factor.
Kojto 115:87f2f5183dfb 3716 * @param[in] numTaps number of filter coefficients in the filter.
Kojto 115:87f2f5183dfb 3717 * @param[in] *pCoeffs points to the filter coefficient buffer.
Kojto 115:87f2f5183dfb 3718 * @param[in] *pState points to the state buffer.
Kojto 115:87f2f5183dfb 3719 * @param[in] blockSize number of input samples to process per call.
Kojto 115:87f2f5183dfb 3720 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
Kojto 115:87f2f5183dfb 3721 * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
Kojto 115:87f2f5183dfb 3722 */
Kojto 115:87f2f5183dfb 3723
Kojto 115:87f2f5183dfb 3724 arm_status arm_fir_interpolate_init_q31(
Kojto 115:87f2f5183dfb 3725 arm_fir_interpolate_instance_q31 * S,
Kojto 115:87f2f5183dfb 3726 uint8_t L,
Kojto 115:87f2f5183dfb 3727 uint16_t numTaps,
Kojto 115:87f2f5183dfb 3728 q31_t * pCoeffs,
Kojto 115:87f2f5183dfb 3729 q31_t * pState,
Kojto 115:87f2f5183dfb 3730 uint32_t blockSize);
Kojto 115:87f2f5183dfb 3731
Kojto 115:87f2f5183dfb 3732
Kojto 115:87f2f5183dfb 3733 /**
Kojto 115:87f2f5183dfb 3734 * @brief Processing function for the floating-point FIR interpolator.
Kojto 115:87f2f5183dfb 3735 * @param[in] *S points to an instance of the floating-point FIR interpolator structure.
Kojto 115:87f2f5183dfb 3736 * @param[in] *pSrc points to the block of input data.
Kojto 115:87f2f5183dfb 3737 * @param[out] *pDst points to the block of output data.
Kojto 115:87f2f5183dfb 3738 * @param[in] blockSize number of input samples to process per call.
Kojto 115:87f2f5183dfb 3739 * @return none.
Kojto 115:87f2f5183dfb 3740 */
Kojto 115:87f2f5183dfb 3741
Kojto 115:87f2f5183dfb 3742 void arm_fir_interpolate_f32(
Kojto 115:87f2f5183dfb 3743 const arm_fir_interpolate_instance_f32 * S,
Kojto 115:87f2f5183dfb 3744 float32_t * pSrc,
Kojto 115:87f2f5183dfb 3745 float32_t * pDst,
Kojto 115:87f2f5183dfb 3746 uint32_t blockSize);
Kojto 115:87f2f5183dfb 3747
Kojto 115:87f2f5183dfb 3748 /**
Kojto 115:87f2f5183dfb 3749 * @brief Initialization function for the floating-point FIR interpolator.
Kojto 115:87f2f5183dfb 3750 * @param[in,out] *S points to an instance of the floating-point FIR interpolator structure.
Kojto 115:87f2f5183dfb 3751 * @param[in] L upsample factor.
Kojto 115:87f2f5183dfb 3752 * @param[in] numTaps number of filter coefficients in the filter.
Kojto 115:87f2f5183dfb 3753 * @param[in] *pCoeffs points to the filter coefficient buffer.
Kojto 115:87f2f5183dfb 3754 * @param[in] *pState points to the state buffer.
Kojto 115:87f2f5183dfb 3755 * @param[in] blockSize number of input samples to process per call.
Kojto 115:87f2f5183dfb 3756 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
Kojto 115:87f2f5183dfb 3757 * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
Kojto 115:87f2f5183dfb 3758 */
Kojto 115:87f2f5183dfb 3759
Kojto 115:87f2f5183dfb 3760 arm_status arm_fir_interpolate_init_f32(
Kojto 115:87f2f5183dfb 3761 arm_fir_interpolate_instance_f32 * S,
Kojto 115:87f2f5183dfb 3762 uint8_t L,
Kojto 115:87f2f5183dfb 3763 uint16_t numTaps,
Kojto 115:87f2f5183dfb 3764 float32_t * pCoeffs,
Kojto 115:87f2f5183dfb 3765 float32_t * pState,
Kojto 115:87f2f5183dfb 3766 uint32_t blockSize);
Kojto 115:87f2f5183dfb 3767
Kojto 115:87f2f5183dfb 3768 /**
Kojto 115:87f2f5183dfb 3769 * @brief Instance structure for the high precision Q31 Biquad cascade filter.
Kojto 115:87f2f5183dfb 3770 */
Kojto 115:87f2f5183dfb 3771
Kojto 115:87f2f5183dfb 3772 typedef struct
Kojto 115:87f2f5183dfb 3773 {
Kojto 115:87f2f5183dfb 3774 uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
Kojto 115:87f2f5183dfb 3775 q63_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */
Kojto 115:87f2f5183dfb 3776 q31_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
Kojto 115:87f2f5183dfb 3777 uint8_t postShift; /**< additional shift, in bits, applied to each output sample. */
Kojto 115:87f2f5183dfb 3778
Kojto 115:87f2f5183dfb 3779 } arm_biquad_cas_df1_32x64_ins_q31;
Kojto 115:87f2f5183dfb 3780
Kojto 115:87f2f5183dfb 3781
Kojto 115:87f2f5183dfb 3782 /**
Kojto 115:87f2f5183dfb 3783 * @param[in] *S points to an instance of the high precision Q31 Biquad cascade filter structure.
Kojto 115:87f2f5183dfb 3784 * @param[in] *pSrc points to the block of input data.
Kojto 115:87f2f5183dfb 3785 * @param[out] *pDst points to the block of output data
Kojto 115:87f2f5183dfb 3786 * @param[in] blockSize number of samples to process.
Kojto 115:87f2f5183dfb 3787 * @return none.
Kojto 115:87f2f5183dfb 3788 */
Kojto 115:87f2f5183dfb 3789
Kojto 115:87f2f5183dfb 3790 void arm_biquad_cas_df1_32x64_q31(
Kojto 115:87f2f5183dfb 3791 const arm_biquad_cas_df1_32x64_ins_q31 * S,
Kojto 115:87f2f5183dfb 3792 q31_t * pSrc,
Kojto 115:87f2f5183dfb 3793 q31_t * pDst,
Kojto 115:87f2f5183dfb 3794 uint32_t blockSize);
Kojto 115:87f2f5183dfb 3795
Kojto 115:87f2f5183dfb 3796
Kojto 115:87f2f5183dfb 3797 /**
Kojto 115:87f2f5183dfb 3798 * @param[in,out] *S points to an instance of the high precision Q31 Biquad cascade filter structure.
Kojto 115:87f2f5183dfb 3799 * @param[in] numStages number of 2nd order stages in the filter.
Kojto 115:87f2f5183dfb 3800 * @param[in] *pCoeffs points to the filter coefficients.
Kojto 115:87f2f5183dfb 3801 * @param[in] *pState points to the state buffer.
Kojto 115:87f2f5183dfb 3802 * @param[in] postShift shift to be applied to the output. Varies according to the coefficients format
Kojto 115:87f2f5183dfb 3803 * @return none
Kojto 115:87f2f5183dfb 3804 */
Kojto 115:87f2f5183dfb 3805
Kojto 115:87f2f5183dfb 3806 void arm_biquad_cas_df1_32x64_init_q31(
Kojto 115:87f2f5183dfb 3807 arm_biquad_cas_df1_32x64_ins_q31 * S,
Kojto 115:87f2f5183dfb 3808 uint8_t numStages,
Kojto 115:87f2f5183dfb 3809 q31_t * pCoeffs,
Kojto 115:87f2f5183dfb 3810 q63_t * pState,
Kojto 115:87f2f5183dfb 3811 uint8_t postShift);
Kojto 115:87f2f5183dfb 3812
Kojto 115:87f2f5183dfb 3813
Kojto 115:87f2f5183dfb 3814
Kojto 115:87f2f5183dfb 3815 /**
Kojto 115:87f2f5183dfb 3816 * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
Kojto 115:87f2f5183dfb 3817 */
Kojto 115:87f2f5183dfb 3818
Kojto 115:87f2f5183dfb 3819 typedef struct
Kojto 115:87f2f5183dfb 3820 {
Kojto 115:87f2f5183dfb 3821 uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
Kojto 115:87f2f5183dfb 3822 float32_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */
Kojto 115:87f2f5183dfb 3823 float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
Kojto 115:87f2f5183dfb 3824 } arm_biquad_cascade_df2T_instance_f32;
Kojto 115:87f2f5183dfb 3825
Kojto 115:87f2f5183dfb 3826
Kojto 115:87f2f5183dfb 3827
Kojto 115:87f2f5183dfb 3828 /**
Kojto 115:87f2f5183dfb 3829 * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
Kojto 115:87f2f5183dfb 3830 */
Kojto 115:87f2f5183dfb 3831
Kojto 115:87f2f5183dfb 3832 typedef struct
Kojto 115:87f2f5183dfb 3833 {
Kojto 115:87f2f5183dfb 3834 uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
Kojto 115:87f2f5183dfb 3835 float32_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */
Kojto 115:87f2f5183dfb 3836 float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
Kojto 115:87f2f5183dfb 3837 } arm_biquad_cascade_stereo_df2T_instance_f32;
Kojto 115:87f2f5183dfb 3838
Kojto 115:87f2f5183dfb 3839
Kojto 115:87f2f5183dfb 3840
Kojto 115:87f2f5183dfb 3841 /**
Kojto 115:87f2f5183dfb 3842 * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
Kojto 115:87f2f5183dfb 3843 */
Kojto 115:87f2f5183dfb 3844
Kojto 115:87f2f5183dfb 3845 typedef struct
Kojto 115:87f2f5183dfb 3846 {
Kojto 115:87f2f5183dfb 3847 uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
Kojto 115:87f2f5183dfb 3848 float64_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */
Kojto 115:87f2f5183dfb 3849 float64_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
Kojto 115:87f2f5183dfb 3850 } arm_biquad_cascade_df2T_instance_f64;
Kojto 115:87f2f5183dfb 3851
Kojto 115:87f2f5183dfb 3852
Kojto 115:87f2f5183dfb 3853 /**
Kojto 115:87f2f5183dfb 3854 * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
Kojto 115:87f2f5183dfb 3855 * @param[in] *S points to an instance of the filter data structure.
Kojto 115:87f2f5183dfb 3856 * @param[in] *pSrc points to the block of input data.
Kojto 115:87f2f5183dfb 3857 * @param[out] *pDst points to the block of output data
Kojto 115:87f2f5183dfb 3858 * @param[in] blockSize number of samples to process.
Kojto 115:87f2f5183dfb 3859 * @return none.
Kojto 115:87f2f5183dfb 3860 */
Kojto 115:87f2f5183dfb 3861
Kojto 115:87f2f5183dfb 3862 void arm_biquad_cascade_df2T_f32(
Kojto 115:87f2f5183dfb 3863 const arm_biquad_cascade_df2T_instance_f32 * S,
Kojto 115:87f2f5183dfb 3864 float32_t * pSrc,
Kojto 115:87f2f5183dfb 3865 float32_t * pDst,
Kojto 115:87f2f5183dfb 3866 uint32_t blockSize);
Kojto 115:87f2f5183dfb 3867
Kojto 115:87f2f5183dfb 3868
Kojto 115:87f2f5183dfb 3869 /**
Kojto 115:87f2f5183dfb 3870 * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. 2 channels
Kojto 115:87f2f5183dfb 3871 * @param[in] *S points to an instance of the filter data structure.
Kojto 115:87f2f5183dfb 3872 * @param[in] *pSrc points to the block of input data.
Kojto 115:87f2f5183dfb 3873 * @param[out] *pDst points to the block of output data
Kojto 115:87f2f5183dfb 3874 * @param[in] blockSize number of samples to process.
Kojto 115:87f2f5183dfb 3875 * @return none.
Kojto 115:87f2f5183dfb 3876 */
Kojto 115:87f2f5183dfb 3877
Kojto 115:87f2f5183dfb 3878 void arm_biquad_cascade_stereo_df2T_f32(
Kojto 115:87f2f5183dfb 3879 const arm_biquad_cascade_stereo_df2T_instance_f32 * S,
Kojto 115:87f2f5183dfb 3880 float32_t * pSrc,
Kojto 115:87f2f5183dfb 3881 float32_t * pDst,
Kojto 115:87f2f5183dfb 3882 uint32_t blockSize);
Kojto 115:87f2f5183dfb 3883
Kojto 115:87f2f5183dfb 3884 /**
Kojto 115:87f2f5183dfb 3885 * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
Kojto 115:87f2f5183dfb 3886 * @param[in] *S points to an instance of the filter data structure.
Kojto 115:87f2f5183dfb 3887 * @param[in] *pSrc points to the block of input data.
Kojto 115:87f2f5183dfb 3888 * @param[out] *pDst points to the block of output data
Kojto 115:87f2f5183dfb 3889 * @param[in] blockSize number of samples to process.
Kojto 115:87f2f5183dfb 3890 * @return none.
Kojto 115:87f2f5183dfb 3891 */
Kojto 115:87f2f5183dfb 3892
Kojto 115:87f2f5183dfb 3893 void arm_biquad_cascade_df2T_f64(
Kojto 115:87f2f5183dfb 3894 const arm_biquad_cascade_df2T_instance_f64 * S,
Kojto 115:87f2f5183dfb 3895 float64_t * pSrc,
Kojto 115:87f2f5183dfb 3896 float64_t * pDst,
Kojto 115:87f2f5183dfb 3897 uint32_t blockSize);
Kojto 115:87f2f5183dfb 3898
Kojto 115:87f2f5183dfb 3899
Kojto 115:87f2f5183dfb 3900 /**
Kojto 115:87f2f5183dfb 3901 * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
Kojto 115:87f2f5183dfb 3902 * @param[in,out] *S points to an instance of the filter data structure.
Kojto 115:87f2f5183dfb 3903 * @param[in] numStages number of 2nd order stages in the filter.
Kojto 115:87f2f5183dfb 3904 * @param[in] *pCoeffs points to the filter coefficients.
Kojto 115:87f2f5183dfb 3905 * @param[in] *pState points to the state buffer.
Kojto 115:87f2f5183dfb 3906 * @return none
Kojto 115:87f2f5183dfb 3907 */
Kojto 115:87f2f5183dfb 3908
Kojto 115:87f2f5183dfb 3909 void arm_biquad_cascade_df2T_init_f32(
Kojto 115:87f2f5183dfb 3910 arm_biquad_cascade_df2T_instance_f32 * S,
Kojto 115:87f2f5183dfb 3911 uint8_t numStages,
Kojto 115:87f2f5183dfb 3912 float32_t * pCoeffs,
Kojto 115:87f2f5183dfb 3913 float32_t * pState);
Kojto 115:87f2f5183dfb 3914
Kojto 115:87f2f5183dfb 3915
Kojto 115:87f2f5183dfb 3916 /**
Kojto 115:87f2f5183dfb 3917 * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
Kojto 115:87f2f5183dfb 3918 * @param[in,out] *S points to an instance of the filter data structure.
Kojto 115:87f2f5183dfb 3919 * @param[in] numStages number of 2nd order stages in the filter.
Kojto 115:87f2f5183dfb 3920 * @param[in] *pCoeffs points to the filter coefficients.
Kojto 115:87f2f5183dfb 3921 * @param[in] *pState points to the state buffer.
Kojto 115:87f2f5183dfb 3922 * @return none
Kojto 115:87f2f5183dfb 3923 */
Kojto 115:87f2f5183dfb 3924
Kojto 115:87f2f5183dfb 3925 void arm_biquad_cascade_stereo_df2T_init_f32(
Kojto 115:87f2f5183dfb 3926 arm_biquad_cascade_stereo_df2T_instance_f32 * S,
Kojto 115:87f2f5183dfb 3927 uint8_t numStages,
Kojto 115:87f2f5183dfb 3928 float32_t * pCoeffs,
Kojto 115:87f2f5183dfb 3929 float32_t * pState);
Kojto 115:87f2f5183dfb 3930
Kojto 115:87f2f5183dfb 3931
Kojto 115:87f2f5183dfb 3932 /**
Kojto 115:87f2f5183dfb 3933 * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
Kojto 115:87f2f5183dfb 3934 * @param[in,out] *S points to an instance of the filter data structure.
Kojto 115:87f2f5183dfb 3935 * @param[in] numStages number of 2nd order stages in the filter.
Kojto 115:87f2f5183dfb 3936 * @param[in] *pCoeffs points to the filter coefficients.
Kojto 115:87f2f5183dfb 3937 * @param[in] *pState points to the state buffer.
Kojto 115:87f2f5183dfb 3938 * @return none
Kojto 115:87f2f5183dfb 3939 */
Kojto 115:87f2f5183dfb 3940
Kojto 115:87f2f5183dfb 3941 void arm_biquad_cascade_df2T_init_f64(
Kojto 115:87f2f5183dfb 3942 arm_biquad_cascade_df2T_instance_f64 * S,
Kojto 115:87f2f5183dfb 3943 uint8_t numStages,
Kojto 115:87f2f5183dfb 3944 float64_t * pCoeffs,
Kojto 115:87f2f5183dfb 3945 float64_t * pState);
Kojto 115:87f2f5183dfb 3946
Kojto 115:87f2f5183dfb 3947
Kojto 115:87f2f5183dfb 3948
Kojto 115:87f2f5183dfb 3949 /**
Kojto 115:87f2f5183dfb 3950 * @brief Instance structure for the Q15 FIR lattice filter.
Kojto 115:87f2f5183dfb 3951 */
Kojto 115:87f2f5183dfb 3952
Kojto 115:87f2f5183dfb 3953 typedef struct
Kojto 115:87f2f5183dfb 3954 {
Kojto 115:87f2f5183dfb 3955 uint16_t numStages; /**< number of filter stages. */
Kojto 115:87f2f5183dfb 3956 q15_t *pState; /**< points to the state variable array. The array is of length numStages. */
Kojto 115:87f2f5183dfb 3957 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
Kojto 115:87f2f5183dfb 3958 } arm_fir_lattice_instance_q15;
Kojto 115:87f2f5183dfb 3959
Kojto 115:87f2f5183dfb 3960 /**
Kojto 115:87f2f5183dfb 3961 * @brief Instance structure for the Q31 FIR lattice filter.
Kojto 115:87f2f5183dfb 3962 */
Kojto 115:87f2f5183dfb 3963
Kojto 115:87f2f5183dfb 3964 typedef struct
Kojto 115:87f2f5183dfb 3965 {
Kojto 115:87f2f5183dfb 3966 uint16_t numStages; /**< number of filter stages. */
Kojto 115:87f2f5183dfb 3967 q31_t *pState; /**< points to the state variable array. The array is of length numStages. */
Kojto 115:87f2f5183dfb 3968 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
Kojto 115:87f2f5183dfb 3969 } arm_fir_lattice_instance_q31;
Kojto 115:87f2f5183dfb 3970
Kojto 115:87f2f5183dfb 3971 /**
Kojto 115:87f2f5183dfb 3972 * @brief Instance structure for the floating-point FIR lattice filter.
Kojto 115:87f2f5183dfb 3973 */
Kojto 115:87f2f5183dfb 3974
Kojto 115:87f2f5183dfb 3975 typedef struct
Kojto 115:87f2f5183dfb 3976 {
Kojto 115:87f2f5183dfb 3977 uint16_t numStages; /**< number of filter stages. */
Kojto 115:87f2f5183dfb 3978 float32_t *pState; /**< points to the state variable array. The array is of length numStages. */
Kojto 115:87f2f5183dfb 3979 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
Kojto 115:87f2f5183dfb 3980 } arm_fir_lattice_instance_f32;
Kojto 115:87f2f5183dfb 3981
Kojto 115:87f2f5183dfb 3982 /**
Kojto 115:87f2f5183dfb 3983 * @brief Initialization function for the Q15 FIR lattice filter.
Kojto 115:87f2f5183dfb 3984 * @param[in] *S points to an instance of the Q15 FIR lattice structure.
Kojto 115:87f2f5183dfb 3985 * @param[in] numStages number of filter stages.
Kojto 115:87f2f5183dfb 3986 * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages.
Kojto 115:87f2f5183dfb 3987 * @param[in] *pState points to the state buffer. The array is of length numStages.
Kojto 115:87f2f5183dfb 3988 * @return none.
Kojto 115:87f2f5183dfb 3989 */
Kojto 115:87f2f5183dfb 3990
Kojto 115:87f2f5183dfb 3991 void arm_fir_lattice_init_q15(
Kojto 115:87f2f5183dfb 3992 arm_fir_lattice_instance_q15 * S,
Kojto 115:87f2f5183dfb 3993 uint16_t numStages,
Kojto 115:87f2f5183dfb 3994 q15_t * pCoeffs,
Kojto 115:87f2f5183dfb 3995 q15_t * pState);
Kojto 115:87f2f5183dfb 3996
Kojto 115:87f2f5183dfb 3997
Kojto 115:87f2f5183dfb 3998 /**
Kojto 115:87f2f5183dfb 3999 * @brief Processing function for the Q15 FIR lattice filter.
Kojto 115:87f2f5183dfb 4000 * @param[in] *S points to an instance of the Q15 FIR lattice structure.
Kojto 115:87f2f5183dfb 4001 * @param[in] *pSrc points to the block of input data.
Kojto 115:87f2f5183dfb 4002 * @param[out] *pDst points to the block of output data.
Kojto 115:87f2f5183dfb 4003 * @param[in] blockSize number of samples to process.
Kojto 115:87f2f5183dfb 4004 * @return none.
Kojto 115:87f2f5183dfb 4005 */
Kojto 115:87f2f5183dfb 4006 void arm_fir_lattice_q15(
Kojto 115:87f2f5183dfb 4007 const arm_fir_lattice_instance_q15 * S,
Kojto 115:87f2f5183dfb 4008 q15_t * pSrc,
Kojto 115:87f2f5183dfb 4009 q15_t * pDst,
Kojto 115:87f2f5183dfb 4010 uint32_t blockSize);
Kojto 115:87f2f5183dfb 4011
Kojto 115:87f2f5183dfb 4012 /**
Kojto 115:87f2f5183dfb 4013 * @brief Initialization function for the Q31 FIR lattice filter.
Kojto 115:87f2f5183dfb 4014 * @param[in] *S points to an instance of the Q31 FIR lattice structure.
Kojto 115:87f2f5183dfb 4015 * @param[in] numStages number of filter stages.
Kojto 115:87f2f5183dfb 4016 * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages.
Kojto 115:87f2f5183dfb 4017 * @param[in] *pState points to the state buffer. The array is of length numStages.
Kojto 115:87f2f5183dfb 4018 * @return none.
Kojto 115:87f2f5183dfb 4019 */
Kojto 115:87f2f5183dfb 4020
Kojto 115:87f2f5183dfb 4021 void arm_fir_lattice_init_q31(
Kojto 115:87f2f5183dfb 4022 arm_fir_lattice_instance_q31 * S,
Kojto 115:87f2f5183dfb 4023 uint16_t numStages,
Kojto 115:87f2f5183dfb 4024 q31_t * pCoeffs,
Kojto 115:87f2f5183dfb 4025 q31_t * pState);
Kojto 115:87f2f5183dfb 4026
Kojto 115:87f2f5183dfb 4027
Kojto 115:87f2f5183dfb 4028 /**
Kojto 115:87f2f5183dfb 4029 * @brief Processing function for the Q31 FIR lattice filter.
Kojto 115:87f2f5183dfb 4030 * @param[in] *S points to an instance of the Q31 FIR lattice structure.
Kojto 115:87f2f5183dfb 4031 * @param[in] *pSrc points to the block of input data.
Kojto 115:87f2f5183dfb 4032 * @param[out] *pDst points to the block of output data
Kojto 115:87f2f5183dfb 4033 * @param[in] blockSize number of samples to process.
Kojto 115:87f2f5183dfb 4034 * @return none.
Kojto 115:87f2f5183dfb 4035 */
Kojto 115:87f2f5183dfb 4036
Kojto 115:87f2f5183dfb 4037 void arm_fir_lattice_q31(
Kojto 115:87f2f5183dfb 4038 const arm_fir_lattice_instance_q31 * S,
Kojto 115:87f2f5183dfb 4039 q31_t * pSrc,
Kojto 115:87f2f5183dfb 4040 q31_t * pDst,
Kojto 115:87f2f5183dfb 4041 uint32_t blockSize);
Kojto 115:87f2f5183dfb 4042
Kojto 115:87f2f5183dfb 4043 /**
Kojto 115:87f2f5183dfb 4044 * @brief Initialization function for the floating-point FIR lattice filter.
Kojto 115:87f2f5183dfb 4045 * @param[in] *S points to an instance of the floating-point FIR lattice structure.
Kojto 115:87f2f5183dfb 4046 * @param[in] numStages number of filter stages.
Kojto 115:87f2f5183dfb 4047 * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages.
Kojto 115:87f2f5183dfb 4048 * @param[in] *pState points to the state buffer. The array is of length numStages.
Kojto 115:87f2f5183dfb 4049 * @return none.
Kojto 115:87f2f5183dfb 4050 */
Kojto 115:87f2f5183dfb 4051
Kojto 115:87f2f5183dfb 4052 void arm_fir_lattice_init_f32(
Kojto 115:87f2f5183dfb 4053 arm_fir_lattice_instance_f32 * S,
Kojto 115:87f2f5183dfb 4054 uint16_t numStages,
Kojto 115:87f2f5183dfb 4055 float32_t * pCoeffs,
Kojto 115:87f2f5183dfb 4056 float32_t * pState);
Kojto 115:87f2f5183dfb 4057
Kojto 115:87f2f5183dfb 4058 /**
Kojto 115:87f2f5183dfb 4059 * @brief Processing function for the floating-point FIR lattice filter.
Kojto 115:87f2f5183dfb 4060 * @param[in] *S points to an instance of the floating-point FIR lattice structure.
Kojto 115:87f2f5183dfb 4061 * @param[in] *pSrc points to the block of input data.
Kojto 115:87f2f5183dfb 4062 * @param[out] *pDst points to the block of output data
Kojto 115:87f2f5183dfb 4063 * @param[in] blockSize number of samples to process.
Kojto 115:87f2f5183dfb 4064 * @return none.
Kojto 115:87f2f5183dfb 4065 */
Kojto 115:87f2f5183dfb 4066
Kojto 115:87f2f5183dfb 4067 void arm_fir_lattice_f32(
Kojto 115:87f2f5183dfb 4068 const arm_fir_lattice_instance_f32 * S,
Kojto 115:87f2f5183dfb 4069 float32_t * pSrc,
Kojto 115:87f2f5183dfb 4070 float32_t * pDst,
Kojto 115:87f2f5183dfb 4071 uint32_t blockSize);
Kojto 115:87f2f5183dfb 4072
Kojto 115:87f2f5183dfb 4073 /**
Kojto 115:87f2f5183dfb 4074 * @brief Instance structure for the Q15 IIR lattice filter.
Kojto 115:87f2f5183dfb 4075 */
Kojto 115:87f2f5183dfb 4076 typedef struct
Kojto 115:87f2f5183dfb 4077 {
Kojto 115:87f2f5183dfb 4078 uint16_t numStages; /**< number of stages in the filter. */
Kojto 115:87f2f5183dfb 4079 q15_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
Kojto 115:87f2f5183dfb 4080 q15_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
Kojto 115:87f2f5183dfb 4081 q15_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
Kojto 115:87f2f5183dfb 4082 } arm_iir_lattice_instance_q15;
Kojto 115:87f2f5183dfb 4083
Kojto 115:87f2f5183dfb 4084 /**
Kojto 115:87f2f5183dfb 4085 * @brief Instance structure for the Q31 IIR lattice filter.
Kojto 115:87f2f5183dfb 4086 */
Kojto 115:87f2f5183dfb 4087 typedef struct
Kojto 115:87f2f5183dfb 4088 {
Kojto 115:87f2f5183dfb 4089 uint16_t numStages; /**< number of stages in the filter. */
Kojto 115:87f2f5183dfb 4090 q31_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
Kojto 115:87f2f5183dfb 4091 q31_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
Kojto 115:87f2f5183dfb 4092 q31_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
Kojto 115:87f2f5183dfb 4093 } arm_iir_lattice_instance_q31;
Kojto 115:87f2f5183dfb 4094
Kojto 115:87f2f5183dfb 4095 /**
Kojto 115:87f2f5183dfb 4096 * @brief Instance structure for the floating-point IIR lattice filter.
Kojto 115:87f2f5183dfb 4097 */
Kojto 115:87f2f5183dfb 4098 typedef struct
Kojto 115:87f2f5183dfb 4099 {
Kojto 115:87f2f5183dfb 4100 uint16_t numStages; /**< number of stages in the filter. */
Kojto 115:87f2f5183dfb 4101 float32_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
Kojto 115:87f2f5183dfb 4102 float32_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
Kojto 115:87f2f5183dfb 4103 float32_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
Kojto 115:87f2f5183dfb 4104 } arm_iir_lattice_instance_f32;
Kojto 115:87f2f5183dfb 4105
Kojto 115:87f2f5183dfb 4106 /**
Kojto 115:87f2f5183dfb 4107 * @brief Processing function for the floating-point IIR lattice filter.
Kojto 115:87f2f5183dfb 4108 * @param[in] *S points to an instance of the floating-point IIR lattice structure.
Kojto 115:87f2f5183dfb 4109 * @param[in] *pSrc points to the block of input data.
Kojto 115:87f2f5183dfb 4110 * @param[out] *pDst points to the block of output data.
Kojto 115:87f2f5183dfb 4111 * @param[in] blockSize number of samples to process.
Kojto 115:87f2f5183dfb 4112 * @return none.
Kojto 115:87f2f5183dfb 4113 */
Kojto 115:87f2f5183dfb 4114
Kojto 115:87f2f5183dfb 4115 void arm_iir_lattice_f32(
Kojto 115:87f2f5183dfb 4116 const arm_iir_lattice_instance_f32 * S,
Kojto 115:87f2f5183dfb 4117 float32_t * pSrc,
Kojto 115:87f2f5183dfb 4118 float32_t * pDst,
Kojto 115:87f2f5183dfb 4119 uint32_t blockSize);
Kojto 115:87f2f5183dfb 4120
Kojto 115:87f2f5183dfb 4121 /**
Kojto 115:87f2f5183dfb 4122 * @brief Initialization function for the floating-point IIR lattice filter.
Kojto 115:87f2f5183dfb 4123 * @param[in] *S points to an instance of the floating-point IIR lattice structure.
Kojto 115:87f2f5183dfb 4124 * @param[in] numStages number of stages in the filter.
Kojto 115:87f2f5183dfb 4125 * @param[in] *pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.
Kojto 115:87f2f5183dfb 4126 * @param[in] *pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.
Kojto 115:87f2f5183dfb 4127 * @param[in] *pState points to the state buffer. The array is of length numStages+blockSize-1.
Kojto 115:87f2f5183dfb 4128 * @param[in] blockSize number of samples to process.
Kojto 115:87f2f5183dfb 4129 * @return none.
Kojto 115:87f2f5183dfb 4130 */
Kojto 115:87f2f5183dfb 4131
Kojto 115:87f2f5183dfb 4132 void arm_iir_lattice_init_f32(
Kojto 115:87f2f5183dfb 4133 arm_iir_lattice_instance_f32 * S,
Kojto 115:87f2f5183dfb 4134 uint16_t numStages,
Kojto 115:87f2f5183dfb 4135 float32_t * pkCoeffs,
Kojto 115:87f2f5183dfb 4136 float32_t * pvCoeffs,
Kojto 115:87f2f5183dfb 4137 float32_t * pState,
Kojto 115:87f2f5183dfb 4138 uint32_t blockSize);
Kojto 115:87f2f5183dfb 4139
Kojto 115:87f2f5183dfb 4140
Kojto 115:87f2f5183dfb 4141 /**
Kojto 115:87f2f5183dfb 4142 * @brief Processing function for the Q31 IIR lattice filter.
Kojto 115:87f2f5183dfb 4143 * @param[in] *S points to an instance of the Q31 IIR lattice structure.
Kojto 115:87f2f5183dfb 4144 * @param[in] *pSrc points to the block of input data.
Kojto 115:87f2f5183dfb 4145 * @param[out] *pDst points to the block of output data.
Kojto 115:87f2f5183dfb 4146 * @param[in] blockSize number of samples to process.
Kojto 115:87f2f5183dfb 4147 * @return none.
Kojto 115:87f2f5183dfb 4148 */
Kojto 115:87f2f5183dfb 4149
Kojto 115:87f2f5183dfb 4150 void arm_iir_lattice_q31(
Kojto 115:87f2f5183dfb 4151 const arm_iir_lattice_instance_q31 * S,
Kojto 115:87f2f5183dfb 4152 q31_t * pSrc,
Kojto 115:87f2f5183dfb 4153 q31_t * pDst,
Kojto 115:87f2f5183dfb 4154 uint32_t blockSize);
Kojto 115:87f2f5183dfb 4155
Kojto 115:87f2f5183dfb 4156
Kojto 115:87f2f5183dfb 4157 /**
Kojto 115:87f2f5183dfb 4158 * @brief Initialization function for the Q31 IIR lattice filter.
Kojto 115:87f2f5183dfb 4159 * @param[in] *S points to an instance of the Q31 IIR lattice structure.
Kojto 115:87f2f5183dfb 4160 * @param[in] numStages number of stages in the filter.
Kojto 115:87f2f5183dfb 4161 * @param[in] *pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.
Kojto 115:87f2f5183dfb 4162 * @param[in] *pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.
Kojto 115:87f2f5183dfb 4163 * @param[in] *pState points to the state buffer. The array is of length numStages+blockSize.
Kojto 115:87f2f5183dfb 4164 * @param[in] blockSize number of samples to process.
Kojto 115:87f2f5183dfb 4165 * @return none.
Kojto 115:87f2f5183dfb 4166 */
Kojto 115:87f2f5183dfb 4167
Kojto 115:87f2f5183dfb 4168 void arm_iir_lattice_init_q31(
Kojto 115:87f2f5183dfb 4169 arm_iir_lattice_instance_q31 * S,
Kojto 115:87f2f5183dfb 4170 uint16_t numStages,
Kojto 115:87f2f5183dfb 4171 q31_t * pkCoeffs,
Kojto 115:87f2f5183dfb 4172 q31_t * pvCoeffs,
Kojto 115:87f2f5183dfb 4173 q31_t * pState,
Kojto 115:87f2f5183dfb 4174 uint32_t blockSize);
Kojto 115:87f2f5183dfb 4175
Kojto 115:87f2f5183dfb 4176
Kojto 115:87f2f5183dfb 4177 /**
Kojto 115:87f2f5183dfb 4178 * @brief Processing function for the Q15 IIR lattice filter.
Kojto 115:87f2f5183dfb 4179 * @param[in] *S points to an instance of the Q15 IIR lattice structure.
Kojto 115:87f2f5183dfb 4180 * @param[in] *pSrc points to the block of input data.
Kojto 115:87f2f5183dfb 4181 * @param[out] *pDst points to the block of output data.
Kojto 115:87f2f5183dfb 4182 * @param[in] blockSize number of samples to process.
Kojto 115:87f2f5183dfb 4183 * @return none.
Kojto 115:87f2f5183dfb 4184 */
Kojto 115:87f2f5183dfb 4185
Kojto 115:87f2f5183dfb 4186 void arm_iir_lattice_q15(
Kojto 115:87f2f5183dfb 4187 const arm_iir_lattice_instance_q15 * S,
Kojto 115:87f2f5183dfb 4188 q15_t * pSrc,
Kojto 115:87f2f5183dfb 4189 q15_t * pDst,
Kojto 115:87f2f5183dfb 4190 uint32_t blockSize);
Kojto 115:87f2f5183dfb 4191
Kojto 115:87f2f5183dfb 4192
Kojto 115:87f2f5183dfb 4193 /**
Kojto 115:87f2f5183dfb 4194 * @brief Initialization function for the Q15 IIR lattice filter.
Kojto 115:87f2f5183dfb 4195 * @param[in] *S points to an instance of the fixed-point Q15 IIR lattice structure.
Kojto 115:87f2f5183dfb 4196 * @param[in] numStages number of stages in the filter.
Kojto 115:87f2f5183dfb 4197 * @param[in] *pkCoeffs points to reflection coefficient buffer. The array is of length numStages.
Kojto 115:87f2f5183dfb 4198 * @param[in] *pvCoeffs points to ladder coefficient buffer. The array is of length numStages+1.
Kojto 115:87f2f5183dfb 4199 * @param[in] *pState points to state buffer. The array is of length numStages+blockSize.
Kojto 115:87f2f5183dfb 4200 * @param[in] blockSize number of samples to process per call.
Kojto 115:87f2f5183dfb 4201 * @return none.
Kojto 115:87f2f5183dfb 4202 */
Kojto 115:87f2f5183dfb 4203
Kojto 115:87f2f5183dfb 4204 void arm_iir_lattice_init_q15(
Kojto 115:87f2f5183dfb 4205 arm_iir_lattice_instance_q15 * S,
Kojto 115:87f2f5183dfb 4206 uint16_t numStages,
Kojto 115:87f2f5183dfb 4207 q15_t * pkCoeffs,
Kojto 115:87f2f5183dfb 4208 q15_t * pvCoeffs,
Kojto 115:87f2f5183dfb 4209 q15_t * pState,
Kojto 115:87f2f5183dfb 4210 uint32_t blockSize);
Kojto 115:87f2f5183dfb 4211
Kojto 115:87f2f5183dfb 4212 /**
Kojto 115:87f2f5183dfb 4213 * @brief Instance structure for the floating-point LMS filter.
Kojto 115:87f2f5183dfb 4214 */
Kojto 115:87f2f5183dfb 4215
Kojto 115:87f2f5183dfb 4216 typedef struct
Kojto 115:87f2f5183dfb 4217 {
Kojto 115:87f2f5183dfb 4218 uint16_t numTaps; /**< number of coefficients in the filter. */
Kojto 115:87f2f5183dfb 4219 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
Kojto 115:87f2f5183dfb 4220 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
Kojto 115:87f2f5183dfb 4221 float32_t mu; /**< step size that controls filter coefficient updates. */
Kojto 115:87f2f5183dfb 4222 } arm_lms_instance_f32;
Kojto 115:87f2f5183dfb 4223
Kojto 115:87f2f5183dfb 4224 /**
Kojto 115:87f2f5183dfb 4225 * @brief Processing function for floating-point LMS filter.
Kojto 115:87f2f5183dfb 4226 * @param[in] *S points to an instance of the floating-point LMS filter structure.
Kojto 115:87f2f5183dfb 4227 * @param[in] *pSrc points to the block of input data.
Kojto 115:87f2f5183dfb 4228 * @param[in] *pRef points to the block of reference data.
Kojto 115:87f2f5183dfb 4229 * @param[out] *pOut points to the block of output data.
Kojto 115:87f2f5183dfb 4230 * @param[out] *pErr points to the block of error data.
Kojto 115:87f2f5183dfb 4231 * @param[in] blockSize number of samples to process.
Kojto 115:87f2f5183dfb 4232 * @return none.
Kojto 115:87f2f5183dfb 4233 */
Kojto 115:87f2f5183dfb 4234
Kojto 115:87f2f5183dfb 4235 void arm_lms_f32(
Kojto 115:87f2f5183dfb 4236 const arm_lms_instance_f32 * S,
Kojto 115:87f2f5183dfb 4237 float32_t * pSrc,
Kojto 115:87f2f5183dfb 4238 float32_t * pRef,
Kojto 115:87f2f5183dfb 4239 float32_t * pOut,
Kojto 115:87f2f5183dfb 4240 float32_t * pErr,
Kojto 115:87f2f5183dfb 4241 uint32_t blockSize);
Kojto 115:87f2f5183dfb 4242
Kojto 115:87f2f5183dfb 4243 /**
Kojto 115:87f2f5183dfb 4244 * @brief Initialization function for floating-point LMS filter.
Kojto 115:87f2f5183dfb 4245 * @param[in] *S points to an instance of the floating-point LMS filter structure.
Kojto 115:87f2f5183dfb 4246 * @param[in] numTaps number of filter coefficients.
Kojto 115:87f2f5183dfb 4247 * @param[in] *pCoeffs points to the coefficient buffer.
Kojto 115:87f2f5183dfb 4248 * @param[in] *pState points to state buffer.
Kojto 115:87f2f5183dfb 4249 * @param[in] mu step size that controls filter coefficient updates.
Kojto 115:87f2f5183dfb 4250 * @param[in] blockSize number of samples to process.
Kojto 115:87f2f5183dfb 4251 * @return none.
Kojto 115:87f2f5183dfb 4252 */
Kojto 115:87f2f5183dfb 4253
Kojto 115:87f2f5183dfb 4254 void arm_lms_init_f32(
Kojto 115:87f2f5183dfb 4255 arm_lms_instance_f32 * S,
Kojto 115:87f2f5183dfb 4256 uint16_t numTaps,
Kojto 115:87f2f5183dfb 4257 float32_t * pCoeffs,
Kojto 115:87f2f5183dfb 4258 float32_t * pState,
Kojto 115:87f2f5183dfb 4259 float32_t mu,
Kojto 115:87f2f5183dfb 4260 uint32_t blockSize);
Kojto 115:87f2f5183dfb 4261
Kojto 115:87f2f5183dfb 4262 /**
Kojto 115:87f2f5183dfb 4263 * @brief Instance structure for the Q15 LMS filter.
Kojto 115:87f2f5183dfb 4264 */
Kojto 115:87f2f5183dfb 4265
Kojto 115:87f2f5183dfb 4266 typedef struct
Kojto 115:87f2f5183dfb 4267 {
Kojto 115:87f2f5183dfb 4268 uint16_t numTaps; /**< number of coefficients in the filter. */
Kojto 115:87f2f5183dfb 4269 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
Kojto 115:87f2f5183dfb 4270 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
Kojto 115:87f2f5183dfb 4271 q15_t mu; /**< step size that controls filter coefficient updates. */
Kojto 115:87f2f5183dfb 4272 uint32_t postShift; /**< bit shift applied to coefficients. */
Kojto 115:87f2f5183dfb 4273 } arm_lms_instance_q15;
Kojto 115:87f2f5183dfb 4274
Kojto 115:87f2f5183dfb 4275
Kojto 115:87f2f5183dfb 4276 /**
Kojto 115:87f2f5183dfb 4277 * @brief Initialization function for the Q15 LMS filter.
Kojto 115:87f2f5183dfb 4278 * @param[in] *S points to an instance of the Q15 LMS filter structure.
Kojto 115:87f2f5183dfb 4279 * @param[in] numTaps number of filter coefficients.
Kojto 115:87f2f5183dfb 4280 * @param[in] *pCoeffs points to the coefficient buffer.
Kojto 115:87f2f5183dfb 4281 * @param[in] *pState points to the state buffer.
Kojto 115:87f2f5183dfb 4282 * @param[in] mu step size that controls filter coefficient updates.
Kojto 115:87f2f5183dfb 4283 * @param[in] blockSize number of samples to process.
Kojto 115:87f2f5183dfb 4284 * @param[in] postShift bit shift applied to coefficients.
Kojto 115:87f2f5183dfb 4285 * @return none.
Kojto 115:87f2f5183dfb 4286 */
Kojto 115:87f2f5183dfb 4287
Kojto 115:87f2f5183dfb 4288 void arm_lms_init_q15(
Kojto 115:87f2f5183dfb 4289 arm_lms_instance_q15 * S,
Kojto 115:87f2f5183dfb 4290 uint16_t numTaps,
Kojto 115:87f2f5183dfb 4291 q15_t * pCoeffs,
Kojto 115:87f2f5183dfb 4292 q15_t * pState,
Kojto 115:87f2f5183dfb 4293 q15_t mu,
Kojto 115:87f2f5183dfb 4294 uint32_t blockSize,
Kojto 115:87f2f5183dfb 4295 uint32_t postShift);
Kojto 115:87f2f5183dfb 4296
Kojto 115:87f2f5183dfb 4297 /**
Kojto 115:87f2f5183dfb 4298 * @brief Processing function for Q15 LMS filter.
Kojto 115:87f2f5183dfb 4299 * @param[in] *S points to an instance of the Q15 LMS filter structure.
Kojto 115:87f2f5183dfb 4300 * @param[in] *pSrc points to the block of input data.
Kojto 115:87f2f5183dfb 4301 * @param[in] *pRef points to the block of reference data.
Kojto 115:87f2f5183dfb 4302 * @param[out] *pOut points to the block of output data.
Kojto 115:87f2f5183dfb 4303 * @param[out] *pErr points to the block of error data.
Kojto 115:87f2f5183dfb 4304 * @param[in] blockSize number of samples to process.
Kojto 115:87f2f5183dfb 4305 * @return none.
Kojto 115:87f2f5183dfb 4306 */
Kojto 115:87f2f5183dfb 4307
Kojto 115:87f2f5183dfb 4308 void arm_lms_q15(
Kojto 115:87f2f5183dfb 4309 const arm_lms_instance_q15 * S,
Kojto 115:87f2f5183dfb 4310 q15_t * pSrc,
Kojto 115:87f2f5183dfb 4311 q15_t * pRef,
Kojto 115:87f2f5183dfb 4312 q15_t * pOut,
Kojto 115:87f2f5183dfb 4313 q15_t * pErr,
Kojto 115:87f2f5183dfb 4314 uint32_t blockSize);
Kojto 115:87f2f5183dfb 4315
Kojto 115:87f2f5183dfb 4316
Kojto 115:87f2f5183dfb 4317 /**
Kojto 115:87f2f5183dfb 4318 * @brief Instance structure for the Q31 LMS filter.
Kojto 115:87f2f5183dfb 4319 */
Kojto 115:87f2f5183dfb 4320
Kojto 115:87f2f5183dfb 4321 typedef struct
Kojto 115:87f2f5183dfb 4322 {
Kojto 115:87f2f5183dfb 4323 uint16_t numTaps; /**< number of coefficients in the filter. */
Kojto 115:87f2f5183dfb 4324 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
Kojto 115:87f2f5183dfb 4325 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
Kojto 115:87f2f5183dfb 4326 q31_t mu; /**< step size that controls filter coefficient updates. */
Kojto 115:87f2f5183dfb 4327 uint32_t postShift; /**< bit shift applied to coefficients. */
Kojto 115:87f2f5183dfb 4328
Kojto 115:87f2f5183dfb 4329 } arm_lms_instance_q31;
Kojto 115:87f2f5183dfb 4330
Kojto 115:87f2f5183dfb 4331 /**
Kojto 115:87f2f5183dfb 4332 * @brief Processing function for Q31 LMS filter.
Kojto 115:87f2f5183dfb 4333 * @param[in] *S points to an instance of the Q15 LMS filter structure.
Kojto 115:87f2f5183dfb 4334 * @param[in] *pSrc points to the block of input data.
Kojto 115:87f2f5183dfb 4335 * @param[in] *pRef points to the block of reference data.
Kojto 115:87f2f5183dfb 4336 * @param[out] *pOut points to the block of output data.
Kojto 115:87f2f5183dfb 4337 * @param[out] *pErr points to the block of error data.
Kojto 115:87f2f5183dfb 4338 * @param[in] blockSize number of samples to process.
Kojto 115:87f2f5183dfb 4339 * @return none.
Kojto 115:87f2f5183dfb 4340 */
Kojto 115:87f2f5183dfb 4341
Kojto 115:87f2f5183dfb 4342 void arm_lms_q31(
Kojto 115:87f2f5183dfb 4343 const arm_lms_instance_q31 * S,
Kojto 115:87f2f5183dfb 4344 q31_t * pSrc,
Kojto 115:87f2f5183dfb 4345 q31_t * pRef,
Kojto 115:87f2f5183dfb 4346 q31_t * pOut,
Kojto 115:87f2f5183dfb 4347 q31_t * pErr,
Kojto 115:87f2f5183dfb 4348 uint32_t blockSize);
Kojto 115:87f2f5183dfb 4349
Kojto 115:87f2f5183dfb 4350 /**
Kojto 115:87f2f5183dfb 4351 * @brief Initialization function for Q31 LMS filter.
Kojto 115:87f2f5183dfb 4352 * @param[in] *S points to an instance of the Q31 LMS filter structure.
Kojto 115:87f2f5183dfb 4353 * @param[in] numTaps number of filter coefficients.
Kojto 115:87f2f5183dfb 4354 * @param[in] *pCoeffs points to coefficient buffer.
Kojto 115:87f2f5183dfb 4355 * @param[in] *pState points to state buffer.
Kojto 115:87f2f5183dfb 4356 * @param[in] mu step size that controls filter coefficient updates.
Kojto 115:87f2f5183dfb 4357 * @param[in] blockSize number of samples to process.
Kojto 115:87f2f5183dfb 4358 * @param[in] postShift bit shift applied to coefficients.
Kojto 115:87f2f5183dfb 4359 * @return none.
Kojto 115:87f2f5183dfb 4360 */
Kojto 115:87f2f5183dfb 4361
Kojto 115:87f2f5183dfb 4362 void arm_lms_init_q31(
Kojto 115:87f2f5183dfb 4363 arm_lms_instance_q31 * S,
Kojto 115:87f2f5183dfb 4364 uint16_t numTaps,
Kojto 115:87f2f5183dfb 4365 q31_t * pCoeffs,
Kojto 115:87f2f5183dfb 4366 q31_t * pState,
Kojto 115:87f2f5183dfb 4367 q31_t mu,
Kojto 115:87f2f5183dfb 4368 uint32_t blockSize,
Kojto 115:87f2f5183dfb 4369 uint32_t postShift);
Kojto 115:87f2f5183dfb 4370
Kojto 115:87f2f5183dfb 4371 /**
Kojto 115:87f2f5183dfb 4372 * @brief Instance structure for the floating-point normalized LMS filter.
Kojto 115:87f2f5183dfb 4373 */
Kojto 115:87f2f5183dfb 4374
Kojto 115:87f2f5183dfb 4375 typedef struct
Kojto 115:87f2f5183dfb 4376 {
Kojto 115:87f2f5183dfb 4377 uint16_t numTaps; /**< number of coefficients in the filter. */
Kojto 115:87f2f5183dfb 4378 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
Kojto 115:87f2f5183dfb 4379 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
Kojto 115:87f2f5183dfb 4380 float32_t mu; /**< step size that control filter coefficient updates. */
Kojto 115:87f2f5183dfb 4381 float32_t energy; /**< saves previous frame energy. */
Kojto 115:87f2f5183dfb 4382 float32_t x0; /**< saves previous input sample. */
Kojto 115:87f2f5183dfb 4383 } arm_lms_norm_instance_f32;
Kojto 115:87f2f5183dfb 4384
Kojto 115:87f2f5183dfb 4385 /**
Kojto 115:87f2f5183dfb 4386 * @brief Processing function for floating-point normalized LMS filter.
Kojto 115:87f2f5183dfb 4387 * @param[in] *S points to an instance of the floating-point normalized LMS filter structure.
Kojto 115:87f2f5183dfb 4388 * @param[in] *pSrc points to the block of input data.
Kojto 115:87f2f5183dfb 4389 * @param[in] *pRef points to the block of reference data.
Kojto 115:87f2f5183dfb 4390 * @param[out] *pOut points to the block of output data.
Kojto 115:87f2f5183dfb 4391 * @param[out] *pErr points to the block of error data.
Kojto 115:87f2f5183dfb 4392 * @param[in] blockSize number of samples to process.
Kojto 115:87f2f5183dfb 4393 * @return none.
Kojto 115:87f2f5183dfb 4394 */
Kojto 115:87f2f5183dfb 4395
Kojto 115:87f2f5183dfb 4396 void arm_lms_norm_f32(
Kojto 115:87f2f5183dfb 4397 arm_lms_norm_instance_f32 * S,
Kojto 115:87f2f5183dfb 4398 float32_t * pSrc,
Kojto 115:87f2f5183dfb 4399 float32_t * pRef,
Kojto 115:87f2f5183dfb 4400 float32_t * pOut,
Kojto 115:87f2f5183dfb 4401 float32_t * pErr,
Kojto 115:87f2f5183dfb 4402 uint32_t blockSize);
Kojto 115:87f2f5183dfb 4403
Kojto 115:87f2f5183dfb 4404 /**
Kojto 115:87f2f5183dfb 4405 * @brief Initialization function for floating-point normalized LMS filter.
Kojto 115:87f2f5183dfb 4406 * @param[in] *S points to an instance of the floating-point LMS filter structure.
Kojto 115:87f2f5183dfb 4407 * @param[in] numTaps number of filter coefficients.
Kojto 115:87f2f5183dfb 4408 * @param[in] *pCoeffs points to coefficient buffer.
Kojto 115:87f2f5183dfb 4409 * @param[in] *pState points to state buffer.
Kojto 115:87f2f5183dfb 4410 * @param[in] mu step size that controls filter coefficient updates.
Kojto 115:87f2f5183dfb 4411 * @param[in] blockSize number of samples to process.
Kojto 115:87f2f5183dfb 4412 * @return none.
Kojto 115:87f2f5183dfb 4413 */
Kojto 115:87f2f5183dfb 4414
Kojto 115:87f2f5183dfb 4415 void arm_lms_norm_init_f32(
Kojto 115:87f2f5183dfb 4416 arm_lms_norm_instance_f32 * S,
Kojto 115:87f2f5183dfb 4417 uint16_t numTaps,
Kojto 115:87f2f5183dfb 4418 float32_t * pCoeffs,
Kojto 115:87f2f5183dfb 4419 float32_t * pState,
Kojto 115:87f2f5183dfb 4420 float32_t mu,
Kojto 115:87f2f5183dfb 4421 uint32_t blockSize);
Kojto 115:87f2f5183dfb 4422
Kojto 115:87f2f5183dfb 4423
Kojto 115:87f2f5183dfb 4424 /**
Kojto 115:87f2f5183dfb 4425 * @brief Instance structure for the Q31 normalized LMS filter.
Kojto 115:87f2f5183dfb 4426 */
Kojto 115:87f2f5183dfb 4427 typedef struct
Kojto 115:87f2f5183dfb 4428 {
Kojto 115:87f2f5183dfb 4429 uint16_t numTaps; /**< number of coefficients in the filter. */
Kojto 115:87f2f5183dfb 4430 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
Kojto 115:87f2f5183dfb 4431 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
Kojto 115:87f2f5183dfb 4432 q31_t mu; /**< step size that controls filter coefficient updates. */
Kojto 115:87f2f5183dfb 4433 uint8_t postShift; /**< bit shift applied to coefficients. */
Kojto 115:87f2f5183dfb 4434 q31_t *recipTable; /**< points to the reciprocal initial value table. */
Kojto 115:87f2f5183dfb 4435 q31_t energy; /**< saves previous frame energy. */
Kojto 115:87f2f5183dfb 4436 q31_t x0; /**< saves previous input sample. */
Kojto 115:87f2f5183dfb 4437 } arm_lms_norm_instance_q31;
Kojto 115:87f2f5183dfb 4438
Kojto 115:87f2f5183dfb 4439 /**
Kojto 115:87f2f5183dfb 4440 * @brief Processing function for Q31 normalized LMS filter.
Kojto 115:87f2f5183dfb 4441 * @param[in] *S points to an instance of the Q31 normalized LMS filter structure.
Kojto 115:87f2f5183dfb 4442 * @param[in] *pSrc points to the block of input data.
Kojto 115:87f2f5183dfb 4443 * @param[in] *pRef points to the block of reference data.
Kojto 115:87f2f5183dfb 4444 * @param[out] *pOut points to the block of output data.
Kojto 115:87f2f5183dfb 4445 * @param[out] *pErr points to the block of error data.
Kojto 115:87f2f5183dfb 4446 * @param[in] blockSize number of samples to process.
Kojto 115:87f2f5183dfb 4447 * @return none.
Kojto 115:87f2f5183dfb 4448 */
Kojto 115:87f2f5183dfb 4449
Kojto 115:87f2f5183dfb 4450 void arm_lms_norm_q31(
Kojto 115:87f2f5183dfb 4451 arm_lms_norm_instance_q31 * S,
Kojto 115:87f2f5183dfb 4452 q31_t * pSrc,
Kojto 115:87f2f5183dfb 4453 q31_t * pRef,
Kojto 115:87f2f5183dfb 4454 q31_t * pOut,
Kojto 115:87f2f5183dfb 4455 q31_t * pErr,
Kojto 115:87f2f5183dfb 4456 uint32_t blockSize);
Kojto 115:87f2f5183dfb 4457
Kojto 115:87f2f5183dfb 4458 /**
Kojto 115:87f2f5183dfb 4459 * @brief Initialization function for Q31 normalized LMS filter.
Kojto 115:87f2f5183dfb 4460 * @param[in] *S points to an instance of the Q31 normalized LMS filter structure.
Kojto 115:87f2f5183dfb 4461 * @param[in] numTaps number of filter coefficients.
Kojto 115:87f2f5183dfb 4462 * @param[in] *pCoeffs points to coefficient buffer.
Kojto 115:87f2f5183dfb 4463 * @param[in] *pState points to state buffer.
Kojto 115:87f2f5183dfb 4464 * @param[in] mu step size that controls filter coefficient updates.
Kojto 115:87f2f5183dfb 4465 * @param[in] blockSize number of samples to process.
Kojto 115:87f2f5183dfb 4466 * @param[in] postShift bit shift applied to coefficients.
Kojto 115:87f2f5183dfb 4467 * @return none.
Kojto 115:87f2f5183dfb 4468 */
Kojto 115:87f2f5183dfb 4469
Kojto 115:87f2f5183dfb 4470 void arm_lms_norm_init_q31(
Kojto 115:87f2f5183dfb 4471 arm_lms_norm_instance_q31 * S,
Kojto 115:87f2f5183dfb 4472 uint16_t numTaps,
Kojto 115:87f2f5183dfb 4473 q31_t * pCoeffs,
Kojto 115:87f2f5183dfb 4474 q31_t * pState,
Kojto 115:87f2f5183dfb 4475 q31_t mu,
Kojto 115:87f2f5183dfb 4476 uint32_t blockSize,
Kojto 115:87f2f5183dfb 4477 uint8_t postShift);
Kojto 115:87f2f5183dfb 4478
Kojto 115:87f2f5183dfb 4479 /**
Kojto 115:87f2f5183dfb 4480 * @brief Instance structure for the Q15 normalized LMS filter.
Kojto 115:87f2f5183dfb 4481 */
Kojto 115:87f2f5183dfb 4482
Kojto 115:87f2f5183dfb 4483 typedef struct
Kojto 115:87f2f5183dfb 4484 {
Kojto 115:87f2f5183dfb 4485 uint16_t numTaps; /**< Number of coefficients in the filter. */
Kojto 115:87f2f5183dfb 4486 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
Kojto 115:87f2f5183dfb 4487 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
Kojto 115:87f2f5183dfb 4488 q15_t mu; /**< step size that controls filter coefficient updates. */
Kojto 115:87f2f5183dfb 4489 uint8_t postShift; /**< bit shift applied to coefficients. */
Kojto 115:87f2f5183dfb 4490 q15_t *recipTable; /**< Points to the reciprocal initial value table. */
Kojto 115:87f2f5183dfb 4491 q15_t energy; /**< saves previous frame energy. */
Kojto 115:87f2f5183dfb 4492 q15_t x0; /**< saves previous input sample. */
Kojto 115:87f2f5183dfb 4493 } arm_lms_norm_instance_q15;
Kojto 115:87f2f5183dfb 4494
Kojto 115:87f2f5183dfb 4495 /**
Kojto 115:87f2f5183dfb 4496 * @brief Processing function for Q15 normalized LMS filter.
Kojto 115:87f2f5183dfb 4497 * @param[in] *S points to an instance of the Q15 normalized LMS filter structure.
Kojto 115:87f2f5183dfb 4498 * @param[in] *pSrc points to the block of input data.
Kojto 115:87f2f5183dfb 4499 * @param[in] *pRef points to the block of reference data.
Kojto 115:87f2f5183dfb 4500 * @param[out] *pOut points to the block of output data.
Kojto 115:87f2f5183dfb 4501 * @param[out] *pErr points to the block of error data.
Kojto 115:87f2f5183dfb 4502 * @param[in] blockSize number of samples to process.
Kojto 115:87f2f5183dfb 4503 * @return none.
Kojto 115:87f2f5183dfb 4504 */
Kojto 115:87f2f5183dfb 4505
Kojto 115:87f2f5183dfb 4506 void arm_lms_norm_q15(
Kojto 115:87f2f5183dfb 4507 arm_lms_norm_instance_q15 * S,
Kojto 115:87f2f5183dfb 4508 q15_t * pSrc,
Kojto 115:87f2f5183dfb 4509 q15_t * pRef,
Kojto 115:87f2f5183dfb 4510 q15_t * pOut,
Kojto 115:87f2f5183dfb 4511 q15_t * pErr,
Kojto 115:87f2f5183dfb 4512 uint32_t blockSize);
Kojto 115:87f2f5183dfb 4513
Kojto 115:87f2f5183dfb 4514
Kojto 115:87f2f5183dfb 4515 /**
Kojto 115:87f2f5183dfb 4516 * @brief Initialization function for Q15 normalized LMS filter.
Kojto 115:87f2f5183dfb 4517 * @param[in] *S points to an instance of the Q15 normalized LMS filter structure.
Kojto 115:87f2f5183dfb 4518 * @param[in] numTaps number of filter coefficients.
Kojto 115:87f2f5183dfb 4519 * @param[in] *pCoeffs points to coefficient buffer.
Kojto 115:87f2f5183dfb 4520 * @param[in] *pState points to state buffer.
Kojto 115:87f2f5183dfb 4521 * @param[in] mu step size that controls filter coefficient updates.
Kojto 115:87f2f5183dfb 4522 * @param[in] blockSize number of samples to process.
Kojto 115:87f2f5183dfb 4523 * @param[in] postShift bit shift applied to coefficients.
Kojto 115:87f2f5183dfb 4524 * @return none.
Kojto 115:87f2f5183dfb 4525 */
Kojto 115:87f2f5183dfb 4526
Kojto 115:87f2f5183dfb 4527 void arm_lms_norm_init_q15(
Kojto 115:87f2f5183dfb 4528 arm_lms_norm_instance_q15 * S,
Kojto 115:87f2f5183dfb 4529 uint16_t numTaps,
Kojto 115:87f2f5183dfb 4530 q15_t * pCoeffs,
Kojto 115:87f2f5183dfb 4531 q15_t * pState,
Kojto 115:87f2f5183dfb 4532 q15_t mu,
Kojto 115:87f2f5183dfb 4533 uint32_t blockSize,
Kojto 115:87f2f5183dfb 4534 uint8_t postShift);
Kojto 115:87f2f5183dfb 4535
Kojto 115:87f2f5183dfb 4536 /**
Kojto 115:87f2f5183dfb 4537 * @brief Correlation of floating-point sequences.
Kojto 115:87f2f5183dfb 4538 * @param[in] *pSrcA points to the first input sequence.
Kojto 115:87f2f5183dfb 4539 * @param[in] srcALen length of the first input sequence.
Kojto 115:87f2f5183dfb 4540 * @param[in] *pSrcB points to the second input sequence.
Kojto 115:87f2f5183dfb 4541 * @param[in] srcBLen length of the second input sequence.
Kojto 115:87f2f5183dfb 4542 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
Kojto 115:87f2f5183dfb 4543 * @return none.
Kojto 115:87f2f5183dfb 4544 */
Kojto 115:87f2f5183dfb 4545
Kojto 115:87f2f5183dfb 4546 void arm_correlate_f32(
Kojto 115:87f2f5183dfb 4547 float32_t * pSrcA,
Kojto 115:87f2f5183dfb 4548 uint32_t srcALen,
Kojto 115:87f2f5183dfb 4549 float32_t * pSrcB,
Kojto 115:87f2f5183dfb 4550 uint32_t srcBLen,
Kojto 115:87f2f5183dfb 4551 float32_t * pDst);
Kojto 115:87f2f5183dfb 4552
Kojto 115:87f2f5183dfb 4553
Kojto 115:87f2f5183dfb 4554 /**
Kojto 115:87f2f5183dfb 4555 * @brief Correlation of Q15 sequences
Kojto 115:87f2f5183dfb 4556 * @param[in] *pSrcA points to the first input sequence.
Kojto 115:87f2f5183dfb 4557 * @param[in] srcALen length of the first input sequence.
Kojto 115:87f2f5183dfb 4558 * @param[in] *pSrcB points to the second input sequence.
Kojto 115:87f2f5183dfb 4559 * @param[in] srcBLen length of the second input sequence.
Kojto 115:87f2f5183dfb 4560 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
Kojto 115:87f2f5183dfb 4561 * @param[in] *pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
Kojto 115:87f2f5183dfb 4562 * @return none.
Kojto 115:87f2f5183dfb 4563 */
Kojto 115:87f2f5183dfb 4564 void arm_correlate_opt_q15(
Kojto 115:87f2f5183dfb 4565 q15_t * pSrcA,
Kojto 115:87f2f5183dfb 4566 uint32_t srcALen,
Kojto 115:87f2f5183dfb 4567 q15_t * pSrcB,
Kojto 115:87f2f5183dfb 4568 uint32_t srcBLen,
Kojto 115:87f2f5183dfb 4569 q15_t * pDst,
Kojto 115:87f2f5183dfb 4570 q15_t * pScratch);
Kojto 115:87f2f5183dfb 4571
Kojto 115:87f2f5183dfb 4572
Kojto 115:87f2f5183dfb 4573 /**
Kojto 115:87f2f5183dfb 4574 * @brief Correlation of Q15 sequences.
Kojto 115:87f2f5183dfb 4575 * @param[in] *pSrcA points to the first input sequence.
Kojto 115:87f2f5183dfb 4576 * @param[in] srcALen length of the first input sequence.
Kojto 115:87f2f5183dfb 4577 * @param[in] *pSrcB points to the second input sequence.
Kojto 115:87f2f5183dfb 4578 * @param[in] srcBLen length of the second input sequence.
Kojto 115:87f2f5183dfb 4579 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
Kojto 115:87f2f5183dfb 4580 * @return none.
Kojto 115:87f2f5183dfb 4581 */
Kojto 115:87f2f5183dfb 4582
Kojto 115:87f2f5183dfb 4583 void arm_correlate_q15(
Kojto 115:87f2f5183dfb 4584 q15_t * pSrcA,
Kojto 115:87f2f5183dfb 4585 uint32_t srcALen,
Kojto 115:87f2f5183dfb 4586 q15_t * pSrcB,
Kojto 115:87f2f5183dfb 4587 uint32_t srcBLen,
Kojto 115:87f2f5183dfb 4588 q15_t * pDst);
Kojto 115:87f2f5183dfb 4589
Kojto 115:87f2f5183dfb 4590 /**
Kojto 115:87f2f5183dfb 4591 * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
Kojto 115:87f2f5183dfb 4592 * @param[in] *pSrcA points to the first input sequence.
Kojto 115:87f2f5183dfb 4593 * @param[in] srcALen length of the first input sequence.
Kojto 115:87f2f5183dfb 4594 * @param[in] *pSrcB points to the second input sequence.
Kojto 115:87f2f5183dfb 4595 * @param[in] srcBLen length of the second input sequence.
Kojto 115:87f2f5183dfb 4596 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
Kojto 115:87f2f5183dfb 4597 * @return none.
Kojto 115:87f2f5183dfb 4598 */
Kojto 115:87f2f5183dfb 4599
Kojto 115:87f2f5183dfb 4600 void arm_correlate_fast_q15(
Kojto 115:87f2f5183dfb 4601 q15_t * pSrcA,
Kojto 115:87f2f5183dfb 4602 uint32_t srcALen,
Kojto 115:87f2f5183dfb 4603 q15_t * pSrcB,
Kojto 115:87f2f5183dfb 4604 uint32_t srcBLen,
Kojto 115:87f2f5183dfb 4605 q15_t * pDst);
Kojto 115:87f2f5183dfb 4606
Kojto 115:87f2f5183dfb 4607
Kojto 115:87f2f5183dfb 4608
Kojto 115:87f2f5183dfb 4609 /**
Kojto 115:87f2f5183dfb 4610 * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
Kojto 115:87f2f5183dfb 4611 * @param[in] *pSrcA points to the first input sequence.
Kojto 115:87f2f5183dfb 4612 * @param[in] srcALen length of the first input sequence.
Kojto 115:87f2f5183dfb 4613 * @param[in] *pSrcB points to the second input sequence.
Kojto 115:87f2f5183dfb 4614 * @param[in] srcBLen length of the second input sequence.
Kojto 115:87f2f5183dfb 4615 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
Kojto 115:87f2f5183dfb 4616 * @param[in] *pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
Kojto 115:87f2f5183dfb 4617 * @return none.
Kojto 115:87f2f5183dfb 4618 */
Kojto 115:87f2f5183dfb 4619
Kojto 115:87f2f5183dfb 4620 void arm_correlate_fast_opt_q15(
Kojto 115:87f2f5183dfb 4621 q15_t * pSrcA,
Kojto 115:87f2f5183dfb 4622 uint32_t srcALen,
Kojto 115:87f2f5183dfb 4623 q15_t * pSrcB,
Kojto 115:87f2f5183dfb 4624 uint32_t srcBLen,
Kojto 115:87f2f5183dfb 4625 q15_t * pDst,
Kojto 115:87f2f5183dfb 4626 q15_t * pScratch);
Kojto 115:87f2f5183dfb 4627
Kojto 115:87f2f5183dfb 4628 /**
Kojto 115:87f2f5183dfb 4629 * @brief Correlation of Q31 sequences.
Kojto 115:87f2f5183dfb 4630 * @param[in] *pSrcA points to the first input sequence.
Kojto 115:87f2f5183dfb 4631 * @param[in] srcALen length of the first input sequence.
Kojto 115:87f2f5183dfb 4632 * @param[in] *pSrcB points to the second input sequence.
Kojto 115:87f2f5183dfb 4633 * @param[in] srcBLen length of the second input sequence.
Kojto 115:87f2f5183dfb 4634 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
Kojto 115:87f2f5183dfb 4635 * @return none.
Kojto 115:87f2f5183dfb 4636 */
Kojto 115:87f2f5183dfb 4637
Kojto 115:87f2f5183dfb 4638 void arm_correlate_q31(
Kojto 115:87f2f5183dfb 4639 q31_t * pSrcA,
Kojto 115:87f2f5183dfb 4640 uint32_t srcALen,
Kojto 115:87f2f5183dfb 4641 q31_t * pSrcB,
Kojto 115:87f2f5183dfb 4642 uint32_t srcBLen,
Kojto 115:87f2f5183dfb 4643 q31_t * pDst);
Kojto 115:87f2f5183dfb 4644
Kojto 115:87f2f5183dfb 4645 /**
Kojto 115:87f2f5183dfb 4646 * @brief Correlation of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
Kojto 115:87f2f5183dfb 4647 * @param[in] *pSrcA points to the first input sequence.
Kojto 115:87f2f5183dfb 4648 * @param[in] srcALen length of the first input sequence.
Kojto 115:87f2f5183dfb 4649 * @param[in] *pSrcB points to the second input sequence.
Kojto 115:87f2f5183dfb 4650 * @param[in] srcBLen length of the second input sequence.
Kojto 115:87f2f5183dfb 4651 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
Kojto 115:87f2f5183dfb 4652 * @return none.
Kojto 115:87f2f5183dfb 4653 */
Kojto 115:87f2f5183dfb 4654
Kojto 115:87f2f5183dfb 4655 void arm_correlate_fast_q31(
Kojto 115:87f2f5183dfb 4656 q31_t * pSrcA,
Kojto 115:87f2f5183dfb 4657 uint32_t srcALen,
Kojto 115:87f2f5183dfb 4658 q31_t * pSrcB,
Kojto 115:87f2f5183dfb 4659 uint32_t srcBLen,
Kojto 115:87f2f5183dfb 4660 q31_t * pDst);
Kojto 115:87f2f5183dfb 4661
Kojto 115:87f2f5183dfb 4662
Kojto 115:87f2f5183dfb 4663
Kojto 115:87f2f5183dfb 4664 /**
Kojto 115:87f2f5183dfb 4665 * @brief Correlation of Q7 sequences.
Kojto 115:87f2f5183dfb 4666 * @param[in] *pSrcA points to the first input sequence.
Kojto 115:87f2f5183dfb 4667 * @param[in] srcALen length of the first input sequence.
Kojto 115:87f2f5183dfb 4668 * @param[in] *pSrcB points to the second input sequence.
Kojto 115:87f2f5183dfb 4669 * @param[in] srcBLen length of the second input sequence.
Kojto 115:87f2f5183dfb 4670 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
Kojto 115:87f2f5183dfb 4671 * @param[in] *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
Kojto 115:87f2f5183dfb 4672 * @param[in] *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
Kojto 115:87f2f5183dfb 4673 * @return none.
Kojto 115:87f2f5183dfb 4674 */
Kojto 115:87f2f5183dfb 4675
Kojto 115:87f2f5183dfb 4676 void arm_correlate_opt_q7(
Kojto 115:87f2f5183dfb 4677 q7_t * pSrcA,
Kojto 115:87f2f5183dfb 4678 uint32_t srcALen,
Kojto 115:87f2f5183dfb 4679 q7_t * pSrcB,
Kojto 115:87f2f5183dfb 4680 uint32_t srcBLen,
Kojto 115:87f2f5183dfb 4681 q7_t * pDst,
Kojto 115:87f2f5183dfb 4682 q15_t * pScratch1,
Kojto 115:87f2f5183dfb 4683 q15_t * pScratch2);
Kojto 115:87f2f5183dfb 4684
Kojto 115:87f2f5183dfb 4685
Kojto 115:87f2f5183dfb 4686 /**
Kojto 115:87f2f5183dfb 4687 * @brief Correlation of Q7 sequences.
Kojto 115:87f2f5183dfb 4688 * @param[in] *pSrcA points to the first input sequence.
Kojto 115:87f2f5183dfb 4689 * @param[in] srcALen length of the first input sequence.
Kojto 115:87f2f5183dfb 4690 * @param[in] *pSrcB points to the second input sequence.
Kojto 115:87f2f5183dfb 4691 * @param[in] srcBLen length of the second input sequence.
Kojto 115:87f2f5183dfb 4692 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
Kojto 115:87f2f5183dfb 4693 * @return none.
Kojto 115:87f2f5183dfb 4694 */
Kojto 115:87f2f5183dfb 4695
Kojto 115:87f2f5183dfb 4696 void arm_correlate_q7(
Kojto 115:87f2f5183dfb 4697 q7_t * pSrcA,
Kojto 115:87f2f5183dfb 4698 uint32_t srcALen,
Kojto 115:87f2f5183dfb 4699 q7_t * pSrcB,
Kojto 115:87f2f5183dfb 4700 uint32_t srcBLen,
Kojto 115:87f2f5183dfb 4701 q7_t * pDst);
Kojto 115:87f2f5183dfb 4702
Kojto 115:87f2f5183dfb 4703
Kojto 115:87f2f5183dfb 4704 /**
Kojto 115:87f2f5183dfb 4705 * @brief Instance structure for the floating-point sparse FIR filter.
Kojto 115:87f2f5183dfb 4706 */
Kojto 115:87f2f5183dfb 4707 typedef struct
Kojto 115:87f2f5183dfb 4708 {
Kojto 115:87f2f5183dfb 4709 uint16_t numTaps; /**< number of coefficients in the filter. */
Kojto 115:87f2f5183dfb 4710 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
Kojto 115:87f2f5183dfb 4711 float32_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
Kojto 115:87f2f5183dfb 4712 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
Kojto 115:87f2f5183dfb 4713 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
Kojto 115:87f2f5183dfb 4714 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
Kojto 115:87f2f5183dfb 4715 } arm_fir_sparse_instance_f32;
Kojto 115:87f2f5183dfb 4716
Kojto 115:87f2f5183dfb 4717 /**
Kojto 115:87f2f5183dfb 4718 * @brief Instance structure for the Q31 sparse FIR filter.
Kojto 115:87f2f5183dfb 4719 */
Kojto 115:87f2f5183dfb 4720
Kojto 115:87f2f5183dfb 4721 typedef struct
Kojto 115:87f2f5183dfb 4722 {
Kojto 115:87f2f5183dfb 4723 uint16_t numTaps; /**< number of coefficients in the filter. */
Kojto 115:87f2f5183dfb 4724 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
Kojto 115:87f2f5183dfb 4725 q31_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
Kojto 115:87f2f5183dfb 4726 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
Kojto 115:87f2f5183dfb 4727 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
Kojto 115:87f2f5183dfb 4728 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
Kojto 115:87f2f5183dfb 4729 } arm_fir_sparse_instance_q31;
Kojto 115:87f2f5183dfb 4730
Kojto 115:87f2f5183dfb 4731 /**
Kojto 115:87f2f5183dfb 4732 * @brief Instance structure for the Q15 sparse FIR filter.
Kojto 115:87f2f5183dfb 4733 */
Kojto 115:87f2f5183dfb 4734
Kojto 115:87f2f5183dfb 4735 typedef struct
Kojto 115:87f2f5183dfb 4736 {
Kojto 115:87f2f5183dfb 4737 uint16_t numTaps; /**< number of coefficients in the filter. */
Kojto 115:87f2f5183dfb 4738 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
Kojto 115:87f2f5183dfb 4739 q15_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
Kojto 115:87f2f5183dfb 4740 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
Kojto 115:87f2f5183dfb 4741 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
Kojto 115:87f2f5183dfb 4742 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
Kojto 115:87f2f5183dfb 4743 } arm_fir_sparse_instance_q15;
Kojto 115:87f2f5183dfb 4744
Kojto 115:87f2f5183dfb 4745 /**
Kojto 115:87f2f5183dfb 4746 * @brief Instance structure for the Q7 sparse FIR filter.
Kojto 115:87f2f5183dfb 4747 */
Kojto 115:87f2f5183dfb 4748
Kojto 115:87f2f5183dfb 4749 typedef struct
Kojto 115:87f2f5183dfb 4750 {
Kojto 115:87f2f5183dfb 4751 uint16_t numTaps; /**< number of coefficients in the filter. */
Kojto 115:87f2f5183dfb 4752 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
Kojto 115:87f2f5183dfb 4753 q7_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
Kojto 115:87f2f5183dfb 4754 q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
Kojto 115:87f2f5183dfb 4755 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
Kojto 115:87f2f5183dfb 4756 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
Kojto 115:87f2f5183dfb 4757 } arm_fir_sparse_instance_q7;
Kojto 115:87f2f5183dfb 4758
Kojto 115:87f2f5183dfb 4759 /**
Kojto 115:87f2f5183dfb 4760 * @brief Processing function for the floating-point sparse FIR filter.
Kojto 115:87f2f5183dfb 4761 * @param[in] *S points to an instance of the floating-point sparse FIR structure.
Kojto 115:87f2f5183dfb 4762 * @param[in] *pSrc points to the block of input data.
Kojto 115:87f2f5183dfb 4763 * @param[out] *pDst points to the block of output data
Kojto 115:87f2f5183dfb 4764 * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
Kojto 115:87f2f5183dfb 4765 * @param[in] blockSize number of input samples to process per call.
Kojto 115:87f2f5183dfb 4766 * @return none.
Kojto 115:87f2f5183dfb 4767 */
Kojto 115:87f2f5183dfb 4768
Kojto 115:87f2f5183dfb 4769 void arm_fir_sparse_f32(
Kojto 115:87f2f5183dfb 4770 arm_fir_sparse_instance_f32 * S,
Kojto 115:87f2f5183dfb 4771 float32_t * pSrc,
Kojto 115:87f2f5183dfb 4772 float32_t * pDst,
Kojto 115:87f2f5183dfb 4773 float32_t * pScratchIn,
Kojto 115:87f2f5183dfb 4774 uint32_t blockSize);
Kojto 115:87f2f5183dfb 4775
Kojto 115:87f2f5183dfb 4776 /**
Kojto 115:87f2f5183dfb 4777 * @brief Initialization function for the floating-point sparse FIR filter.
Kojto 115:87f2f5183dfb 4778 * @param[in,out] *S points to an instance of the floating-point sparse FIR structure.
Kojto 115:87f2f5183dfb 4779 * @param[in] numTaps number of nonzero coefficients in the filter.
Kojto 115:87f2f5183dfb 4780 * @param[in] *pCoeffs points to the array of filter coefficients.
Kojto 115:87f2f5183dfb 4781 * @param[in] *pState points to the state buffer.
Kojto 115:87f2f5183dfb 4782 * @param[in] *pTapDelay points to the array of offset times.
Kojto 115:87f2f5183dfb 4783 * @param[in] maxDelay maximum offset time supported.
Kojto 115:87f2f5183dfb 4784 * @param[in] blockSize number of samples that will be processed per block.
Kojto 115:87f2f5183dfb 4785 * @return none
Kojto 115:87f2f5183dfb 4786 */
Kojto 115:87f2f5183dfb 4787
Kojto 115:87f2f5183dfb 4788 void arm_fir_sparse_init_f32(
Kojto 115:87f2f5183dfb 4789 arm_fir_sparse_instance_f32 * S,
Kojto 115:87f2f5183dfb 4790 uint16_t numTaps,
Kojto 115:87f2f5183dfb 4791 float32_t * pCoeffs,
Kojto 115:87f2f5183dfb 4792 float32_t * pState,
Kojto 115:87f2f5183dfb 4793 int32_t * pTapDelay,
Kojto 115:87f2f5183dfb 4794 uint16_t maxDelay,
Kojto 115:87f2f5183dfb 4795 uint32_t blockSize);
Kojto 115:87f2f5183dfb 4796
Kojto 115:87f2f5183dfb 4797 /**
Kojto 115:87f2f5183dfb 4798 * @brief Processing function for the Q31 sparse FIR filter.
Kojto 115:87f2f5183dfb 4799 * @param[in] *S points to an instance of the Q31 sparse FIR structure.
Kojto 115:87f2f5183dfb 4800 * @param[in] *pSrc points to the block of input data.
Kojto 115:87f2f5183dfb 4801 * @param[out] *pDst points to the block of output data
Kojto 115:87f2f5183dfb 4802 * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
Kojto 115:87f2f5183dfb 4803 * @param[in] blockSize number of input samples to process per call.
Kojto 115:87f2f5183dfb 4804 * @return none.
Kojto 115:87f2f5183dfb 4805 */
Kojto 115:87f2f5183dfb 4806
Kojto 115:87f2f5183dfb 4807 void arm_fir_sparse_q31(
Kojto 115:87f2f5183dfb 4808 arm_fir_sparse_instance_q31 * S,
Kojto 115:87f2f5183dfb 4809 q31_t * pSrc,
Kojto 115:87f2f5183dfb 4810 q31_t * pDst,
Kojto 115:87f2f5183dfb 4811 q31_t * pScratchIn,
Kojto 115:87f2f5183dfb 4812 uint32_t blockSize);
Kojto 115:87f2f5183dfb 4813
Kojto 115:87f2f5183dfb 4814 /**
Kojto 115:87f2f5183dfb 4815 * @brief Initialization function for the Q31 sparse FIR filter.
Kojto 115:87f2f5183dfb 4816 * @param[in,out] *S points to an instance of the Q31 sparse FIR structure.
Kojto 115:87f2f5183dfb 4817 * @param[in] numTaps number of nonzero coefficients in the filter.
Kojto 115:87f2f5183dfb 4818 * @param[in] *pCoeffs points to the array of filter coefficients.
Kojto 115:87f2f5183dfb 4819 * @param[in] *pState points to the state buffer.
Kojto 115:87f2f5183dfb 4820 * @param[in] *pTapDelay points to the array of offset times.
Kojto 115:87f2f5183dfb 4821 * @param[in] maxDelay maximum offset time supported.
Kojto 115:87f2f5183dfb 4822 * @param[in] blockSize number of samples that will be processed per block.
Kojto 115:87f2f5183dfb 4823 * @return none
Kojto 115:87f2f5183dfb 4824 */
Kojto 115:87f2f5183dfb 4825
Kojto 115:87f2f5183dfb 4826 void arm_fir_sparse_init_q31(
Kojto 115:87f2f5183dfb 4827 arm_fir_sparse_instance_q31 * S,
Kojto 115:87f2f5183dfb 4828 uint16_t numTaps,
Kojto 115:87f2f5183dfb 4829 q31_t * pCoeffs,
Kojto 115:87f2f5183dfb 4830 q31_t * pState,
Kojto 115:87f2f5183dfb 4831 int32_t * pTapDelay,
Kojto 115:87f2f5183dfb 4832 uint16_t maxDelay,
Kojto 115:87f2f5183dfb 4833 uint32_t blockSize);
Kojto 115:87f2f5183dfb 4834
Kojto 115:87f2f5183dfb 4835 /**
Kojto 115:87f2f5183dfb 4836 * @brief Processing function for the Q15 sparse FIR filter.
Kojto 115:87f2f5183dfb 4837 * @param[in] *S points to an instance of the Q15 sparse FIR structure.
Kojto 115:87f2f5183dfb 4838 * @param[in] *pSrc points to the block of input data.
Kojto 115:87f2f5183dfb 4839 * @param[out] *pDst points to the block of output data
Kojto 115:87f2f5183dfb 4840 * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
Kojto 115:87f2f5183dfb 4841 * @param[in] *pScratchOut points to a temporary buffer of size blockSize.
Kojto 115:87f2f5183dfb 4842 * @param[in] blockSize number of input samples to process per call.
Kojto 115:87f2f5183dfb 4843 * @return none.
Kojto 115:87f2f5183dfb 4844 */
Kojto 115:87f2f5183dfb 4845
Kojto 115:87f2f5183dfb 4846 void arm_fir_sparse_q15(
Kojto 115:87f2f5183dfb 4847 arm_fir_sparse_instance_q15 * S,
Kojto 115:87f2f5183dfb 4848 q15_t * pSrc,
Kojto 115:87f2f5183dfb 4849 q15_t * pDst,
Kojto 115:87f2f5183dfb 4850 q15_t * pScratchIn,
Kojto 115:87f2f5183dfb 4851 q31_t * pScratchOut,
Kojto 115:87f2f5183dfb 4852 uint32_t blockSize);
Kojto 115:87f2f5183dfb 4853
Kojto 115:87f2f5183dfb 4854
Kojto 115:87f2f5183dfb 4855 /**
Kojto 115:87f2f5183dfb 4856 * @brief Initialization function for the Q15 sparse FIR filter.
Kojto 115:87f2f5183dfb 4857 * @param[in,out] *S points to an instance of the Q15 sparse FIR structure.
Kojto 115:87f2f5183dfb 4858 * @param[in] numTaps number of nonzero coefficients in the filter.
Kojto 115:87f2f5183dfb 4859 * @param[in] *pCoeffs points to the array of filter coefficients.
Kojto 115:87f2f5183dfb 4860 * @param[in] *pState points to the state buffer.
Kojto 115:87f2f5183dfb 4861 * @param[in] *pTapDelay points to the array of offset times.
Kojto 115:87f2f5183dfb 4862 * @param[in] maxDelay maximum offset time supported.
Kojto 115:87f2f5183dfb 4863 * @param[in] blockSize number of samples that will be processed per block.
Kojto 115:87f2f5183dfb 4864 * @return none
Kojto 115:87f2f5183dfb 4865 */
Kojto 115:87f2f5183dfb 4866
Kojto 115:87f2f5183dfb 4867 void arm_fir_sparse_init_q15(
Kojto 115:87f2f5183dfb 4868 arm_fir_sparse_instance_q15 * S,
Kojto 115:87f2f5183dfb 4869 uint16_t numTaps,
Kojto 115:87f2f5183dfb 4870 q15_t * pCoeffs,
Kojto 115:87f2f5183dfb 4871 q15_t * pState,
Kojto 115:87f2f5183dfb 4872 int32_t * pTapDelay,
Kojto 115:87f2f5183dfb 4873 uint16_t maxDelay,
Kojto 115:87f2f5183dfb 4874 uint32_t blockSize);
Kojto 115:87f2f5183dfb 4875
Kojto 115:87f2f5183dfb 4876 /**
Kojto 115:87f2f5183dfb 4877 * @brief Processing function for the Q7 sparse FIR filter.
Kojto 115:87f2f5183dfb 4878 * @param[in] *S points to an instance of the Q7 sparse FIR structure.
Kojto 115:87f2f5183dfb 4879 * @param[in] *pSrc points to the block of input data.
Kojto 115:87f2f5183dfb 4880 * @param[out] *pDst points to the block of output data
Kojto 115:87f2f5183dfb 4881 * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
Kojto 115:87f2f5183dfb 4882 * @param[in] *pScratchOut points to a temporary buffer of size blockSize.
Kojto 115:87f2f5183dfb 4883 * @param[in] blockSize number of input samples to process per call.
Kojto 115:87f2f5183dfb 4884 * @return none.
Kojto 115:87f2f5183dfb 4885 */
Kojto 115:87f2f5183dfb 4886
Kojto 115:87f2f5183dfb 4887 void arm_fir_sparse_q7(
Kojto 115:87f2f5183dfb 4888 arm_fir_sparse_instance_q7 * S,
Kojto 115:87f2f5183dfb 4889 q7_t * pSrc,
Kojto 115:87f2f5183dfb 4890 q7_t * pDst,
Kojto 115:87f2f5183dfb 4891 q7_t * pScratchIn,
Kojto 115:87f2f5183dfb 4892 q31_t * pScratchOut,
Kojto 115:87f2f5183dfb 4893 uint32_t blockSize);
Kojto 115:87f2f5183dfb 4894
Kojto 115:87f2f5183dfb 4895 /**
Kojto 115:87f2f5183dfb 4896 * @brief Initialization function for the Q7 sparse FIR filter.
Kojto 115:87f2f5183dfb 4897 * @param[in,out] *S points to an instance of the Q7 sparse FIR structure.
Kojto 115:87f2f5183dfb 4898 * @param[in] numTaps number of nonzero coefficients in the filter.
Kojto 115:87f2f5183dfb 4899 * @param[in] *pCoeffs points to the array of filter coefficients.
Kojto 115:87f2f5183dfb 4900 * @param[in] *pState points to the state buffer.
Kojto 115:87f2f5183dfb 4901 * @param[in] *pTapDelay points to the array of offset times.
Kojto 115:87f2f5183dfb 4902 * @param[in] maxDelay maximum offset time supported.
Kojto 115:87f2f5183dfb 4903 * @param[in] blockSize number of samples that will be processed per block.
Kojto 115:87f2f5183dfb 4904 * @return none
Kojto 115:87f2f5183dfb 4905 */
Kojto 115:87f2f5183dfb 4906
Kojto 115:87f2f5183dfb 4907 void arm_fir_sparse_init_q7(
Kojto 115:87f2f5183dfb 4908 arm_fir_sparse_instance_q7 * S,
Kojto 115:87f2f5183dfb 4909 uint16_t numTaps,
Kojto 115:87f2f5183dfb 4910 q7_t * pCoeffs,
Kojto 115:87f2f5183dfb 4911 q7_t * pState,
Kojto 115:87f2f5183dfb 4912 int32_t * pTapDelay,
Kojto 115:87f2f5183dfb 4913 uint16_t maxDelay,
Kojto 115:87f2f5183dfb 4914 uint32_t blockSize);
Kojto 115:87f2f5183dfb 4915
Kojto 115:87f2f5183dfb 4916
Kojto 115:87f2f5183dfb 4917 /*
Kojto 115:87f2f5183dfb 4918 * @brief Floating-point sin_cos function.
Kojto 115:87f2f5183dfb 4919 * @param[in] theta input value in degrees
Kojto 115:87f2f5183dfb 4920 * @param[out] *pSinVal points to the processed sine output.
Kojto 115:87f2f5183dfb 4921 * @param[out] *pCosVal points to the processed cos output.
Kojto 115:87f2f5183dfb 4922 * @return none.
Kojto 115:87f2f5183dfb 4923 */
Kojto 115:87f2f5183dfb 4924
Kojto 115:87f2f5183dfb 4925 void arm_sin_cos_f32(
Kojto 115:87f2f5183dfb 4926 float32_t theta,
Kojto 115:87f2f5183dfb 4927 float32_t * pSinVal,
Kojto 115:87f2f5183dfb 4928 float32_t * pCcosVal);
Kojto 115:87f2f5183dfb 4929
Kojto 115:87f2f5183dfb 4930 /*
Kojto 115:87f2f5183dfb 4931 * @brief Q31 sin_cos function.
Kojto 115:87f2f5183dfb 4932 * @param[in] theta scaled input value in degrees
Kojto 115:87f2f5183dfb 4933 * @param[out] *pSinVal points to the processed sine output.
Kojto 115:87f2f5183dfb 4934 * @param[out] *pCosVal points to the processed cosine output.
Kojto 115:87f2f5183dfb 4935 * @return none.
Kojto 115:87f2f5183dfb 4936 */
Kojto 115:87f2f5183dfb 4937
Kojto 115:87f2f5183dfb 4938 void arm_sin_cos_q31(
Kojto 115:87f2f5183dfb 4939 q31_t theta,
Kojto 115:87f2f5183dfb 4940 q31_t * pSinVal,
Kojto 115:87f2f5183dfb 4941 q31_t * pCosVal);
Kojto 115:87f2f5183dfb 4942
Kojto 115:87f2f5183dfb 4943
Kojto 115:87f2f5183dfb 4944 /**
Kojto 115:87f2f5183dfb 4945 * @brief Floating-point complex conjugate.
Kojto 115:87f2f5183dfb 4946 * @param[in] *pSrc points to the input vector
Kojto 115:87f2f5183dfb 4947 * @param[out] *pDst points to the output vector
Kojto 115:87f2f5183dfb 4948 * @param[in] numSamples number of complex samples in each vector
Kojto 115:87f2f5183dfb 4949 * @return none.
Kojto 115:87f2f5183dfb 4950 */
Kojto 115:87f2f5183dfb 4951
Kojto 115:87f2f5183dfb 4952 void arm_cmplx_conj_f32(
Kojto 115:87f2f5183dfb 4953 float32_t * pSrc,
Kojto 115:87f2f5183dfb 4954 float32_t * pDst,
Kojto 115:87f2f5183dfb 4955 uint32_t numSamples);
Kojto 115:87f2f5183dfb 4956
Kojto 115:87f2f5183dfb 4957 /**
Kojto 115:87f2f5183dfb 4958 * @brief Q31 complex conjugate.
Kojto 115:87f2f5183dfb 4959 * @param[in] *pSrc points to the input vector
Kojto 115:87f2f5183dfb 4960 * @param[out] *pDst points to the output vector
Kojto 115:87f2f5183dfb 4961 * @param[in] numSamples number of complex samples in each vector
Kojto 115:87f2f5183dfb 4962 * @return none.
Kojto 115:87f2f5183dfb 4963 */
Kojto 115:87f2f5183dfb 4964
Kojto 115:87f2f5183dfb 4965 void arm_cmplx_conj_q31(
Kojto 115:87f2f5183dfb 4966 q31_t * pSrc,
Kojto 115:87f2f5183dfb 4967 q31_t * pDst,
Kojto 115:87f2f5183dfb 4968 uint32_t numSamples);
Kojto 115:87f2f5183dfb 4969
Kojto 115:87f2f5183dfb 4970 /**
Kojto 115:87f2f5183dfb 4971 * @brief Q15 complex conjugate.
Kojto 115:87f2f5183dfb 4972 * @param[in] *pSrc points to the input vector
Kojto 115:87f2f5183dfb 4973 * @param[out] *pDst points to the output vector
Kojto 115:87f2f5183dfb 4974 * @param[in] numSamples number of complex samples in each vector
Kojto 115:87f2f5183dfb 4975 * @return none.
Kojto 115:87f2f5183dfb 4976 */
Kojto 115:87f2f5183dfb 4977
Kojto 115:87f2f5183dfb 4978 void arm_cmplx_conj_q15(
Kojto 115:87f2f5183dfb 4979 q15_t * pSrc,
Kojto 115:87f2f5183dfb 4980 q15_t * pDst,
Kojto 115:87f2f5183dfb 4981 uint32_t numSamples);
Kojto 115:87f2f5183dfb 4982
Kojto 115:87f2f5183dfb 4983
Kojto 115:87f2f5183dfb 4984
Kojto 115:87f2f5183dfb 4985 /**
Kojto 115:87f2f5183dfb 4986 * @brief Floating-point complex magnitude squared
Kojto 115:87f2f5183dfb 4987 * @param[in] *pSrc points to the complex input vector
Kojto 115:87f2f5183dfb 4988 * @param[out] *pDst points to the real output vector
Kojto 115:87f2f5183dfb 4989 * @param[in] numSamples number of complex samples in the input vector
Kojto 115:87f2f5183dfb 4990 * @return none.
Kojto 115:87f2f5183dfb 4991 */
Kojto 115:87f2f5183dfb 4992
Kojto 115:87f2f5183dfb 4993 void arm_cmplx_mag_squared_f32(
Kojto 115:87f2f5183dfb 4994 float32_t * pSrc,
Kojto 115:87f2f5183dfb 4995 float32_t * pDst,
Kojto 115:87f2f5183dfb 4996 uint32_t numSamples);
Kojto 115:87f2f5183dfb 4997
Kojto 115:87f2f5183dfb 4998 /**
Kojto 115:87f2f5183dfb 4999 * @brief Q31 complex magnitude squared
Kojto 115:87f2f5183dfb 5000 * @param[in] *pSrc points to the complex input vector
Kojto 115:87f2f5183dfb 5001 * @param[out] *pDst points to the real output vector
Kojto 115:87f2f5183dfb 5002 * @param[in] numSamples number of complex samples in the input vector
Kojto 115:87f2f5183dfb 5003 * @return none.
Kojto 115:87f2f5183dfb 5004 */
Kojto 115:87f2f5183dfb 5005
Kojto 115:87f2f5183dfb 5006 void arm_cmplx_mag_squared_q31(
Kojto 115:87f2f5183dfb 5007 q31_t * pSrc,
Kojto 115:87f2f5183dfb 5008 q31_t * pDst,
Kojto 115:87f2f5183dfb 5009 uint32_t numSamples);
Kojto 115:87f2f5183dfb 5010
Kojto 115:87f2f5183dfb 5011 /**
Kojto 115:87f2f5183dfb 5012 * @brief Q15 complex magnitude squared
Kojto 115:87f2f5183dfb 5013 * @param[in] *pSrc points to the complex input vector
Kojto 115:87f2f5183dfb 5014 * @param[out] *pDst points to the real output vector
Kojto 115:87f2f5183dfb 5015 * @param[in] numSamples number of complex samples in the input vector
Kojto 115:87f2f5183dfb 5016 * @return none.
Kojto 115:87f2f5183dfb 5017 */
Kojto 115:87f2f5183dfb 5018
Kojto 115:87f2f5183dfb 5019 void arm_cmplx_mag_squared_q15(
Kojto 115:87f2f5183dfb 5020 q15_t * pSrc,
Kojto 115:87f2f5183dfb 5021 q15_t * pDst,
Kojto 115:87f2f5183dfb 5022 uint32_t numSamples);
Kojto 115:87f2f5183dfb 5023
Kojto 115:87f2f5183dfb 5024
Kojto 115:87f2f5183dfb 5025 /**
Kojto 115:87f2f5183dfb 5026 * @ingroup groupController
Kojto 115:87f2f5183dfb 5027 */
Kojto 115:87f2f5183dfb 5028
Kojto 115:87f2f5183dfb 5029 /**
Kojto 115:87f2f5183dfb 5030 * @defgroup PID PID Motor Control
Kojto 115:87f2f5183dfb 5031 *
Kojto 115:87f2f5183dfb 5032 * A Proportional Integral Derivative (PID) controller is a generic feedback control
Kojto 115:87f2f5183dfb 5033 * loop mechanism widely used in industrial control systems.
Kojto 115:87f2f5183dfb 5034 * A PID controller is the most commonly used type of feedback controller.
Kojto 115:87f2f5183dfb 5035 *
Kojto 115:87f2f5183dfb 5036 * This set of functions implements (PID) controllers
Kojto 115:87f2f5183dfb 5037 * for Q15, Q31, and floating-point data types. The functions operate on a single sample
Kojto 115:87f2f5183dfb 5038 * of data and each call to the function returns a single processed value.
Kojto 115:87f2f5183dfb 5039 * <code>S</code> points to an instance of the PID control data structure. <code>in</code>
Kojto 115:87f2f5183dfb 5040 * is the input sample value. The functions return the output value.
Kojto 115:87f2f5183dfb 5041 *
Kojto 115:87f2f5183dfb 5042 * \par Algorithm:
Kojto 115:87f2f5183dfb 5043 * <pre>
Kojto 115:87f2f5183dfb 5044 * y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2]
Kojto 115:87f2f5183dfb 5045 * A0 = Kp + Ki + Kd
Kojto 115:87f2f5183dfb 5046 * A1 = (-Kp ) - (2 * Kd )
Kojto 115:87f2f5183dfb 5047 * A2 = Kd </pre>
Kojto 115:87f2f5183dfb 5048 *
Kojto 115:87f2f5183dfb 5049 * \par
Kojto 115:87f2f5183dfb 5050 * where \c Kp is proportional constant, \c Ki is Integral constant and \c Kd is Derivative constant
Kojto 115:87f2f5183dfb 5051 *
Kojto 115:87f2f5183dfb 5052 * \par
Kojto 115:87f2f5183dfb 5053 * \image html PID.gif "Proportional Integral Derivative Controller"
Kojto 115:87f2f5183dfb 5054 *
Kojto 115:87f2f5183dfb 5055 * \par
Kojto 115:87f2f5183dfb 5056 * The PID controller calculates an "error" value as the difference between
Kojto 115:87f2f5183dfb 5057 * the measured output and the reference input.
Kojto 115:87f2f5183dfb 5058 * The controller attempts to minimize the error by adjusting the process control inputs.
Kojto 115:87f2f5183dfb 5059 * The proportional value determines the reaction to the current error,
Kojto 115:87f2f5183dfb 5060 * the integral value determines the reaction based on the sum of recent errors,
Kojto 115:87f2f5183dfb 5061 * and the derivative value determines the reaction based on the rate at which the error has been changing.
Kojto 115:87f2f5183dfb 5062 *
Kojto 115:87f2f5183dfb 5063 * \par Instance Structure
Kojto 115:87f2f5183dfb 5064 * The Gains A0, A1, A2 and state variables for a PID controller are stored together in an instance data structure.
Kojto 115:87f2f5183dfb 5065 * A separate instance structure must be defined for each PID Controller.
Kojto 115:87f2f5183dfb 5066 * There are separate instance structure declarations for each of the 3 supported data types.
Kojto 115:87f2f5183dfb 5067 *
Kojto 115:87f2f5183dfb 5068 * \par Reset Functions
Kojto 115:87f2f5183dfb 5069 * There is also an associated reset function for each data type which clears the state array.
Kojto 115:87f2f5183dfb 5070 *
Kojto 115:87f2f5183dfb 5071 * \par Initialization Functions
Kojto 115:87f2f5183dfb 5072 * There is also an associated initialization function for each data type.
Kojto 115:87f2f5183dfb 5073 * The initialization function performs the following operations:
Kojto 115:87f2f5183dfb 5074 * - Initializes the Gains A0, A1, A2 from Kp,Ki, Kd gains.
Kojto 115:87f2f5183dfb 5075 * - Zeros out the values in the state buffer.
Kojto 115:87f2f5183dfb 5076 *
Kojto 115:87f2f5183dfb 5077 * \par
Kojto 115:87f2f5183dfb 5078 * Instance structure cannot be placed into a const data section and it is recommended to use the initialization function.
Kojto 115:87f2f5183dfb 5079 *
Kojto 115:87f2f5183dfb 5080 * \par Fixed-Point Behavior
Kojto 115:87f2f5183dfb 5081 * Care must be taken when using the fixed-point versions of the PID Controller functions.
Kojto 115:87f2f5183dfb 5082 * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered.
Kojto 115:87f2f5183dfb 5083 * Refer to the function specific documentation below for usage guidelines.
Kojto 115:87f2f5183dfb 5084 */
Kojto 115:87f2f5183dfb 5085
Kojto 115:87f2f5183dfb 5086 /**
Kojto 115:87f2f5183dfb 5087 * @addtogroup PID
Kojto 115:87f2f5183dfb 5088 * @{
Kojto 115:87f2f5183dfb 5089 */
Kojto 115:87f2f5183dfb 5090
Kojto 115:87f2f5183dfb 5091 /**
Kojto 115:87f2f5183dfb 5092 * @brief Process function for the floating-point PID Control.
Kojto 115:87f2f5183dfb 5093 * @param[in,out] *S is an instance of the floating-point PID Control structure
Kojto 115:87f2f5183dfb 5094 * @param[in] in input sample to process
Kojto 115:87f2f5183dfb 5095 * @return out processed output sample.
Kojto 115:87f2f5183dfb 5096 */
Kojto 115:87f2f5183dfb 5097
Kojto 115:87f2f5183dfb 5098
Kojto 115:87f2f5183dfb 5099 static __INLINE float32_t arm_pid_f32(
Kojto 115:87f2f5183dfb 5100 arm_pid_instance_f32 * S,
Kojto 115:87f2f5183dfb 5101 float32_t in)
Kojto 115:87f2f5183dfb 5102 {
Kojto 115:87f2f5183dfb 5103 float32_t out;
Kojto 115:87f2f5183dfb 5104
Kojto 115:87f2f5183dfb 5105 /* y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] */
Kojto 115:87f2f5183dfb 5106 out = (S->A0 * in) +
Kojto 115:87f2f5183dfb 5107 (S->A1 * S->state[0]) + (S->A2 * S->state[1]) + (S->state[2]);
Kojto 115:87f2f5183dfb 5108
Kojto 115:87f2f5183dfb 5109 /* Update state */
Kojto 115:87f2f5183dfb 5110 S->state[1] = S->state[0];
Kojto 115:87f2f5183dfb 5111 S->state[0] = in;
Kojto 115:87f2f5183dfb 5112 S->state[2] = out;
Kojto 115:87f2f5183dfb 5113
Kojto 115:87f2f5183dfb 5114 /* return to application */
Kojto 115:87f2f5183dfb 5115 return (out);
Kojto 115:87f2f5183dfb 5116
Kojto 115:87f2f5183dfb 5117 }
Kojto 115:87f2f5183dfb 5118
Kojto 115:87f2f5183dfb 5119 /**
Kojto 115:87f2f5183dfb 5120 * @brief Process function for the Q31 PID Control.
Kojto 115:87f2f5183dfb 5121 * @param[in,out] *S points to an instance of the Q31 PID Control structure
Kojto 115:87f2f5183dfb 5122 * @param[in] in input sample to process
Kojto 115:87f2f5183dfb 5123 * @return out processed output sample.
Kojto 115:87f2f5183dfb 5124 *
Kojto 115:87f2f5183dfb 5125 * <b>Scaling and Overflow Behavior:</b>
Kojto 115:87f2f5183dfb 5126 * \par
Kojto 115:87f2f5183dfb 5127 * The function is implemented using an internal 64-bit accumulator.
Kojto 115:87f2f5183dfb 5128 * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
Kojto 115:87f2f5183dfb 5129 * Thus, if the accumulator result overflows it wraps around rather than clip.
Kojto 115:87f2f5183dfb 5130 * In order to avoid overflows completely the input signal must be scaled down by 2 bits as there are four additions.
Kojto 115:87f2f5183dfb 5131 * After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format.
Kojto 115:87f2f5183dfb 5132 */
Kojto 115:87f2f5183dfb 5133
Kojto 115:87f2f5183dfb 5134 static __INLINE q31_t arm_pid_q31(
Kojto 115:87f2f5183dfb 5135 arm_pid_instance_q31 * S,
Kojto 115:87f2f5183dfb 5136 q31_t in)
Kojto 115:87f2f5183dfb 5137 {
Kojto 115:87f2f5183dfb 5138 q63_t acc;
Kojto 115:87f2f5183dfb 5139 q31_t out;
Kojto 115:87f2f5183dfb 5140
Kojto 115:87f2f5183dfb 5141 /* acc = A0 * x[n] */
Kojto 115:87f2f5183dfb 5142 acc = (q63_t) S->A0 * in;
Kojto 115:87f2f5183dfb 5143
Kojto 115:87f2f5183dfb 5144 /* acc += A1 * x[n-1] */
Kojto 115:87f2f5183dfb 5145 acc += (q63_t) S->A1 * S->state[0];
Kojto 115:87f2f5183dfb 5146
Kojto 115:87f2f5183dfb 5147 /* acc += A2 * x[n-2] */
Kojto 115:87f2f5183dfb 5148 acc += (q63_t) S->A2 * S->state[1];
Kojto 115:87f2f5183dfb 5149
Kojto 115:87f2f5183dfb 5150 /* convert output to 1.31 format to add y[n-1] */
Kojto 115:87f2f5183dfb 5151 out = (q31_t) (acc >> 31u);
Kojto 115:87f2f5183dfb 5152
Kojto 115:87f2f5183dfb 5153 /* out += y[n-1] */
Kojto 115:87f2f5183dfb 5154 out += S->state[2];
Kojto 115:87f2f5183dfb 5155
Kojto 115:87f2f5183dfb 5156 /* Update state */
Kojto 115:87f2f5183dfb 5157 S->state[1] = S->state[0];
Kojto 115:87f2f5183dfb 5158 S->state[0] = in;
Kojto 115:87f2f5183dfb 5159 S->state[2] = out;
Kojto 115:87f2f5183dfb 5160
Kojto 115:87f2f5183dfb 5161 /* return to application */
Kojto 115:87f2f5183dfb 5162 return (out);
Kojto 115:87f2f5183dfb 5163
Kojto 115:87f2f5183dfb 5164 }
Kojto 115:87f2f5183dfb 5165
Kojto 115:87f2f5183dfb 5166 /**
Kojto 115:87f2f5183dfb 5167 * @brief Process function for the Q15 PID Control.
Kojto 115:87f2f5183dfb 5168 * @param[in,out] *S points to an instance of the Q15 PID Control structure
Kojto 115:87f2f5183dfb 5169 * @param[in] in input sample to process
Kojto 115:87f2f5183dfb 5170 * @return out processed output sample.
Kojto 115:87f2f5183dfb 5171 *
Kojto 115:87f2f5183dfb 5172 * <b>Scaling and Overflow Behavior:</b>
Kojto 115:87f2f5183dfb 5173 * \par
Kojto 115:87f2f5183dfb 5174 * The function is implemented using a 64-bit internal accumulator.
Kojto 115:87f2f5183dfb 5175 * Both Gains and state variables are represented in 1.15 format and multiplications yield a 2.30 result.
Kojto 115:87f2f5183dfb 5176 * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
Kojto 115:87f2f5183dfb 5177 * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
Kojto 115:87f2f5183dfb 5178 * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits.
Kojto 115:87f2f5183dfb 5179 * Lastly, the accumulator is saturated to yield a result in 1.15 format.
Kojto 115:87f2f5183dfb 5180 */
Kojto 115:87f2f5183dfb 5181
Kojto 115:87f2f5183dfb 5182 static __INLINE q15_t arm_pid_q15(
Kojto 115:87f2f5183dfb 5183 arm_pid_instance_q15 * S,
Kojto 115:87f2f5183dfb 5184 q15_t in)
Kojto 115:87f2f5183dfb 5185 {
Kojto 115:87f2f5183dfb 5186 q63_t acc;
Kojto 115:87f2f5183dfb 5187 q15_t out;
Kojto 115:87f2f5183dfb 5188
Kojto 115:87f2f5183dfb 5189 #ifndef ARM_MATH_CM0_FAMILY
Kojto 115:87f2f5183dfb 5190 __SIMD32_TYPE *vstate;
Kojto 115:87f2f5183dfb 5191
Kojto 115:87f2f5183dfb 5192 /* Implementation of PID controller */
Kojto 115:87f2f5183dfb 5193
Kojto 115:87f2f5183dfb 5194 /* acc = A0 * x[n] */
Kojto 115:87f2f5183dfb 5195 acc = (q31_t) __SMUAD(S->A0, in);
Kojto 115:87f2f5183dfb 5196
Kojto 115:87f2f5183dfb 5197 /* acc += A1 * x[n-1] + A2 * x[n-2] */
Kojto 115:87f2f5183dfb 5198 vstate = __SIMD32_CONST(S->state);
Kojto 115:87f2f5183dfb 5199 acc = __SMLALD(S->A1, (q31_t) *vstate, acc);
Kojto 115:87f2f5183dfb 5200
Kojto 115:87f2f5183dfb 5201 #else
Kojto 115:87f2f5183dfb 5202 /* acc = A0 * x[n] */
Kojto 115:87f2f5183dfb 5203 acc = ((q31_t) S->A0) * in;
Kojto 115:87f2f5183dfb 5204
Kojto 115:87f2f5183dfb 5205 /* acc += A1 * x[n-1] + A2 * x[n-2] */
Kojto 115:87f2f5183dfb 5206 acc += (q31_t) S->A1 * S->state[0];
Kojto 115:87f2f5183dfb 5207 acc += (q31_t) S->A2 * S->state[1];
Kojto 115:87f2f5183dfb 5208
Kojto 115:87f2f5183dfb 5209 #endif
Kojto 115:87f2f5183dfb 5210
Kojto 115:87f2f5183dfb 5211 /* acc += y[n-1] */
Kojto 115:87f2f5183dfb 5212 acc += (q31_t) S->state[2] << 15;
Kojto 115:87f2f5183dfb 5213
Kojto 115:87f2f5183dfb 5214 /* saturate the output */
Kojto 115:87f2f5183dfb 5215 out = (q15_t) (__SSAT((acc >> 15), 16));
Kojto 115:87f2f5183dfb 5216
Kojto 115:87f2f5183dfb 5217 /* Update state */
Kojto 115:87f2f5183dfb 5218 S->state[1] = S->state[0];
Kojto 115:87f2f5183dfb 5219 S->state[0] = in;
Kojto 115:87f2f5183dfb 5220 S->state[2] = out;
Kojto 115:87f2f5183dfb 5221
Kojto 115:87f2f5183dfb 5222 /* return to application */
Kojto 115:87f2f5183dfb 5223 return (out);
Kojto 115:87f2f5183dfb 5224
Kojto 115:87f2f5183dfb 5225 }
Kojto 115:87f2f5183dfb 5226
Kojto 115:87f2f5183dfb 5227 /**
Kojto 115:87f2f5183dfb 5228 * @} end of PID group
Kojto 115:87f2f5183dfb 5229 */
Kojto 115:87f2f5183dfb 5230
Kojto 115:87f2f5183dfb 5231
Kojto 115:87f2f5183dfb 5232 /**
Kojto 115:87f2f5183dfb 5233 * @brief Floating-point matrix inverse.
Kojto 115:87f2f5183dfb 5234 * @param[in] *src points to the instance of the input floating-point matrix structure.
Kojto 115:87f2f5183dfb 5235 * @param[out] *dst points to the instance of the output floating-point matrix structure.
Kojto 115:87f2f5183dfb 5236 * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
Kojto 115:87f2f5183dfb 5237 * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR.
Kojto 115:87f2f5183dfb 5238 */
Kojto 115:87f2f5183dfb 5239
Kojto 115:87f2f5183dfb 5240 arm_status arm_mat_inverse_f32(
Kojto 115:87f2f5183dfb 5241 const arm_matrix_instance_f32 * src,
Kojto 115:87f2f5183dfb 5242 arm_matrix_instance_f32 * dst);
Kojto 115:87f2f5183dfb 5243
Kojto 115:87f2f5183dfb 5244
Kojto 115:87f2f5183dfb 5245 /**
Kojto 115:87f2f5183dfb 5246 * @brief Floating-point matrix inverse.
Kojto 115:87f2f5183dfb 5247 * @param[in] *src points to the instance of the input floating-point matrix structure.
Kojto 115:87f2f5183dfb 5248 * @param[out] *dst points to the instance of the output floating-point matrix structure.
Kojto 115:87f2f5183dfb 5249 * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
Kojto 115:87f2f5183dfb 5250 * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR.
Kojto 115:87f2f5183dfb 5251 */
Kojto 115:87f2f5183dfb 5252
Kojto 115:87f2f5183dfb 5253 arm_status arm_mat_inverse_f64(
Kojto 115:87f2f5183dfb 5254 const arm_matrix_instance_f64 * src,
Kojto 115:87f2f5183dfb 5255 arm_matrix_instance_f64 * dst);
Kojto 115:87f2f5183dfb 5256
Kojto 115:87f2f5183dfb 5257
Kojto 115:87f2f5183dfb 5258
Kojto 115:87f2f5183dfb 5259 /**
Kojto 115:87f2f5183dfb 5260 * @ingroup groupController
Kojto 115:87f2f5183dfb 5261 */
Kojto 115:87f2f5183dfb 5262
Kojto 115:87f2f5183dfb 5263
Kojto 115:87f2f5183dfb 5264 /**
Kojto 115:87f2f5183dfb 5265 * @defgroup clarke Vector Clarke Transform
Kojto 115:87f2f5183dfb 5266 * Forward Clarke transform converts the instantaneous stator phases into a two-coordinate time invariant vector.
Kojto 115:87f2f5183dfb 5267 * Generally the Clarke transform uses three-phase currents <code>Ia, Ib and Ic</code> to calculate currents
Kojto 115:87f2f5183dfb 5268 * in the two-phase orthogonal stator axis <code>Ialpha</code> and <code>Ibeta</code>.
Kojto 115:87f2f5183dfb 5269 * When <code>Ialpha</code> is superposed with <code>Ia</code> as shown in the figure below
Kojto 115:87f2f5183dfb 5270 * \image html clarke.gif Stator current space vector and its components in (a,b).
Kojto 115:87f2f5183dfb 5271 * and <code>Ia + Ib + Ic = 0</code>, in this condition <code>Ialpha</code> and <code>Ibeta</code>
Kojto 115:87f2f5183dfb 5272 * can be calculated using only <code>Ia</code> and <code>Ib</code>.
Kojto 115:87f2f5183dfb 5273 *
Kojto 115:87f2f5183dfb 5274 * The function operates on a single sample of data and each call to the function returns the processed output.
Kojto 115:87f2f5183dfb 5275 * The library provides separate functions for Q31 and floating-point data types.
Kojto 115:87f2f5183dfb 5276 * \par Algorithm
Kojto 115:87f2f5183dfb 5277 * \image html clarkeFormula.gif
Kojto 115:87f2f5183dfb 5278 * where <code>Ia</code> and <code>Ib</code> are the instantaneous stator phases and
Kojto 115:87f2f5183dfb 5279 * <code>pIalpha</code> and <code>pIbeta</code> are the two coordinates of time invariant vector.
Kojto 115:87f2f5183dfb 5280 * \par Fixed-Point Behavior
Kojto 115:87f2f5183dfb 5281 * Care must be taken when using the Q31 version of the Clarke transform.
Kojto 115:87f2f5183dfb 5282 * In particular, the overflow and saturation behavior of the accumulator used must be considered.
Kojto 115:87f2f5183dfb 5283 * Refer to the function specific documentation below for usage guidelines.
Kojto 115:87f2f5183dfb 5284 */
Kojto 115:87f2f5183dfb 5285
Kojto 115:87f2f5183dfb 5286 /**
Kojto 115:87f2f5183dfb 5287 * @addtogroup clarke
Kojto 115:87f2f5183dfb 5288 * @{
Kojto 115:87f2f5183dfb 5289 */
Kojto 115:87f2f5183dfb 5290
Kojto 115:87f2f5183dfb 5291 /**
Kojto 115:87f2f5183dfb 5292 *
Kojto 115:87f2f5183dfb 5293 * @brief Floating-point Clarke transform
Kojto 115:87f2f5183dfb 5294 * @param[in] Ia input three-phase coordinate <code>a</code>
Kojto 115:87f2f5183dfb 5295 * @param[in] Ib input three-phase coordinate <code>b</code>
Kojto 115:87f2f5183dfb 5296 * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha
Kojto 115:87f2f5183dfb 5297 * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta
Kojto 115:87f2f5183dfb 5298 * @return none.
Kojto 115:87f2f5183dfb 5299 */
Kojto 115:87f2f5183dfb 5300
Kojto 115:87f2f5183dfb 5301 static __INLINE void arm_clarke_f32(
Kojto 115:87f2f5183dfb 5302 float32_t Ia,
Kojto 115:87f2f5183dfb 5303 float32_t Ib,
Kojto 115:87f2f5183dfb 5304 float32_t * pIalpha,
Kojto 115:87f2f5183dfb 5305 float32_t * pIbeta)
Kojto 115:87f2f5183dfb 5306 {
Kojto 115:87f2f5183dfb 5307 /* Calculate pIalpha using the equation, pIalpha = Ia */
Kojto 115:87f2f5183dfb 5308 *pIalpha = Ia;
Kojto 115:87f2f5183dfb 5309
Kojto 115:87f2f5183dfb 5310 /* Calculate pIbeta using the equation, pIbeta = (1/sqrt(3)) * Ia + (2/sqrt(3)) * Ib */
Kojto 115:87f2f5183dfb 5311 *pIbeta =
Kojto 115:87f2f5183dfb 5312 ((float32_t) 0.57735026919 * Ia + (float32_t) 1.15470053838 * Ib);
Kojto 115:87f2f5183dfb 5313
Kojto 115:87f2f5183dfb 5314 }
Kojto 115:87f2f5183dfb 5315
Kojto 115:87f2f5183dfb 5316 /**
Kojto 115:87f2f5183dfb 5317 * @brief Clarke transform for Q31 version
Kojto 115:87f2f5183dfb 5318 * @param[in] Ia input three-phase coordinate <code>a</code>
Kojto 115:87f2f5183dfb 5319 * @param[in] Ib input three-phase coordinate <code>b</code>
Kojto 115:87f2f5183dfb 5320 * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha
Kojto 115:87f2f5183dfb 5321 * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta
Kojto 115:87f2f5183dfb 5322 * @return none.
Kojto 115:87f2f5183dfb 5323 *
Kojto 115:87f2f5183dfb 5324 * <b>Scaling and Overflow Behavior:</b>
Kojto 115:87f2f5183dfb 5325 * \par
Kojto 115:87f2f5183dfb 5326 * The function is implemented using an internal 32-bit accumulator.
Kojto 115:87f2f5183dfb 5327 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
Kojto 115:87f2f5183dfb 5328 * There is saturation on the addition, hence there is no risk of overflow.
Kojto 115:87f2f5183dfb 5329 */
Kojto 115:87f2f5183dfb 5330
Kojto 115:87f2f5183dfb 5331 static __INLINE void arm_clarke_q31(
Kojto 115:87f2f5183dfb 5332 q31_t Ia,
Kojto 115:87f2f5183dfb 5333 q31_t Ib,
Kojto 115:87f2f5183dfb 5334 q31_t * pIalpha,
Kojto 115:87f2f5183dfb 5335 q31_t * pIbeta)
Kojto 115:87f2f5183dfb 5336 {
Kojto 115:87f2f5183dfb 5337 q31_t product1, product2; /* Temporary variables used to store intermediate results */
Kojto 115:87f2f5183dfb 5338
Kojto 115:87f2f5183dfb 5339 /* Calculating pIalpha from Ia by equation pIalpha = Ia */
Kojto 115:87f2f5183dfb 5340 *pIalpha = Ia;
Kojto 115:87f2f5183dfb 5341
Kojto 115:87f2f5183dfb 5342 /* Intermediate product is calculated by (1/(sqrt(3)) * Ia) */
Kojto 115:87f2f5183dfb 5343 product1 = (q31_t) (((q63_t) Ia * 0x24F34E8B) >> 30);
Kojto 115:87f2f5183dfb 5344
Kojto 115:87f2f5183dfb 5345 /* Intermediate product is calculated by (2/sqrt(3) * Ib) */
Kojto 115:87f2f5183dfb 5346 product2 = (q31_t) (((q63_t) Ib * 0x49E69D16) >> 30);
Kojto 115:87f2f5183dfb 5347
Kojto 115:87f2f5183dfb 5348 /* pIbeta is calculated by adding the intermediate products */
Kojto 115:87f2f5183dfb 5349 *pIbeta = __QADD(product1, product2);
Kojto 115:87f2f5183dfb 5350 }
Kojto 115:87f2f5183dfb 5351
Kojto 115:87f2f5183dfb 5352 /**
Kojto 115:87f2f5183dfb 5353 * @} end of clarke group
Kojto 115:87f2f5183dfb 5354 */
Kojto 115:87f2f5183dfb 5355
Kojto 115:87f2f5183dfb 5356 /**
Kojto 115:87f2f5183dfb 5357 * @brief Converts the elements of the Q7 vector to Q31 vector.
Kojto 115:87f2f5183dfb 5358 * @param[in] *pSrc input pointer
Kojto 115:87f2f5183dfb 5359 * @param[out] *pDst output pointer
Kojto 115:87f2f5183dfb 5360 * @param[in] blockSize number of samples to process
Kojto 115:87f2f5183dfb 5361 * @return none.
Kojto 115:87f2f5183dfb 5362 */
Kojto 115:87f2f5183dfb 5363 void arm_q7_to_q31(
Kojto 115:87f2f5183dfb 5364 q7_t * pSrc,
Kojto 115:87f2f5183dfb 5365 q31_t * pDst,
Kojto 115:87f2f5183dfb 5366 uint32_t blockSize);
Kojto 115:87f2f5183dfb 5367
Kojto 115:87f2f5183dfb 5368
Kojto 115:87f2f5183dfb 5369
Kojto 115:87f2f5183dfb 5370
Kojto 115:87f2f5183dfb 5371 /**
Kojto 115:87f2f5183dfb 5372 * @ingroup groupController
Kojto 115:87f2f5183dfb 5373 */
Kojto 115:87f2f5183dfb 5374
Kojto 115:87f2f5183dfb 5375 /**
Kojto 115:87f2f5183dfb 5376 * @defgroup inv_clarke Vector Inverse Clarke Transform
Kojto 115:87f2f5183dfb 5377 * Inverse Clarke transform converts the two-coordinate time invariant vector into instantaneous stator phases.
Kojto 115:87f2f5183dfb 5378 *
Kojto 115:87f2f5183dfb 5379 * The function operates on a single sample of data and each call to the function returns the processed output.
Kojto 115:87f2f5183dfb 5380 * The library provides separate functions for Q31 and floating-point data types.
Kojto 115:87f2f5183dfb 5381 * \par Algorithm
Kojto 115:87f2f5183dfb 5382 * \image html clarkeInvFormula.gif
Kojto 115:87f2f5183dfb 5383 * where <code>pIa</code> and <code>pIb</code> are the instantaneous stator phases and
Kojto 115:87f2f5183dfb 5384 * <code>Ialpha</code> and <code>Ibeta</code> are the two coordinates of time invariant vector.
Kojto 115:87f2f5183dfb 5385 * \par Fixed-Point Behavior
Kojto 115:87f2f5183dfb 5386 * Care must be taken when using the Q31 version of the Clarke transform.
Kojto 115:87f2f5183dfb 5387 * In particular, the overflow and saturation behavior of the accumulator used must be considered.
Kojto 115:87f2f5183dfb 5388 * Refer to the function specific documentation below for usage guidelines.
Kojto 115:87f2f5183dfb 5389 */
Kojto 115:87f2f5183dfb 5390
Kojto 115:87f2f5183dfb 5391 /**
Kojto 115:87f2f5183dfb 5392 * @addtogroup inv_clarke
Kojto 115:87f2f5183dfb 5393 * @{
Kojto 115:87f2f5183dfb 5394 */
Kojto 115:87f2f5183dfb 5395
Kojto 115:87f2f5183dfb 5396 /**
Kojto 115:87f2f5183dfb 5397 * @brief Floating-point Inverse Clarke transform
Kojto 115:87f2f5183dfb 5398 * @param[in] Ialpha input two-phase orthogonal vector axis alpha
Kojto 115:87f2f5183dfb 5399 * @param[in] Ibeta input two-phase orthogonal vector axis beta
Kojto 115:87f2f5183dfb 5400 * @param[out] *pIa points to output three-phase coordinate <code>a</code>
Kojto 115:87f2f5183dfb 5401 * @param[out] *pIb points to output three-phase coordinate <code>b</code>
Kojto 115:87f2f5183dfb 5402 * @return none.
Kojto 115:87f2f5183dfb 5403 */
Kojto 115:87f2f5183dfb 5404
Kojto 115:87f2f5183dfb 5405
Kojto 115:87f2f5183dfb 5406 static __INLINE void arm_inv_clarke_f32(
Kojto 115:87f2f5183dfb 5407 float32_t Ialpha,
Kojto 115:87f2f5183dfb 5408 float32_t Ibeta,
Kojto 115:87f2f5183dfb 5409 float32_t * pIa,
Kojto 115:87f2f5183dfb 5410 float32_t * pIb)
Kojto 115:87f2f5183dfb 5411 {
Kojto 115:87f2f5183dfb 5412 /* Calculating pIa from Ialpha by equation pIa = Ialpha */
Kojto 115:87f2f5183dfb 5413 *pIa = Ialpha;
Kojto 115:87f2f5183dfb 5414
Kojto 115:87f2f5183dfb 5415 /* Calculating pIb from Ialpha and Ibeta by equation pIb = -(1/2) * Ialpha + (sqrt(3)/2) * Ibeta */
Kojto 115:87f2f5183dfb 5416 *pIb = -0.5 * Ialpha + (float32_t) 0.8660254039 *Ibeta;
Kojto 115:87f2f5183dfb 5417
Kojto 115:87f2f5183dfb 5418 }
Kojto 115:87f2f5183dfb 5419
Kojto 115:87f2f5183dfb 5420 /**
Kojto 115:87f2f5183dfb 5421 * @brief Inverse Clarke transform for Q31 version
Kojto 115:87f2f5183dfb 5422 * @param[in] Ialpha input two-phase orthogonal vector axis alpha
Kojto 115:87f2f5183dfb 5423 * @param[in] Ibeta input two-phase orthogonal vector axis beta
Kojto 115:87f2f5183dfb 5424 * @param[out] *pIa points to output three-phase coordinate <code>a</code>
Kojto 115:87f2f5183dfb 5425 * @param[out] *pIb points to output three-phase coordinate <code>b</code>
Kojto 115:87f2f5183dfb 5426 * @return none.
Kojto 115:87f2f5183dfb 5427 *
Kojto 115:87f2f5183dfb 5428 * <b>Scaling and Overflow Behavior:</b>
Kojto 115:87f2f5183dfb 5429 * \par
Kojto 115:87f2f5183dfb 5430 * The function is implemented using an internal 32-bit accumulator.
Kojto 115:87f2f5183dfb 5431 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
Kojto 115:87f2f5183dfb 5432 * There is saturation on the subtraction, hence there is no risk of overflow.
Kojto 115:87f2f5183dfb 5433 */
Kojto 115:87f2f5183dfb 5434
Kojto 115:87f2f5183dfb 5435 static __INLINE void arm_inv_clarke_q31(
Kojto 115:87f2f5183dfb 5436 q31_t Ialpha,
Kojto 115:87f2f5183dfb 5437 q31_t Ibeta,
Kojto 115:87f2f5183dfb 5438 q31_t * pIa,
Kojto 115:87f2f5183dfb 5439 q31_t * pIb)
Kojto 115:87f2f5183dfb 5440 {
Kojto 115:87f2f5183dfb 5441 q31_t product1, product2; /* Temporary variables used to store intermediate results */
Kojto 115:87f2f5183dfb 5442
Kojto 115:87f2f5183dfb 5443 /* Calculating pIa from Ialpha by equation pIa = Ialpha */
Kojto 115:87f2f5183dfb 5444 *pIa = Ialpha;
Kojto 115:87f2f5183dfb 5445
Kojto 115:87f2f5183dfb 5446 /* Intermediate product is calculated by (1/(2*sqrt(3)) * Ia) */
Kojto 115:87f2f5183dfb 5447 product1 = (q31_t) (((q63_t) (Ialpha) * (0x40000000)) >> 31);
Kojto 115:87f2f5183dfb 5448
Kojto 115:87f2f5183dfb 5449 /* Intermediate product is calculated by (1/sqrt(3) * pIb) */
Kojto 115:87f2f5183dfb 5450 product2 = (q31_t) (((q63_t) (Ibeta) * (0x6ED9EBA1)) >> 31);
Kojto 115:87f2f5183dfb 5451
Kojto 115:87f2f5183dfb 5452 /* pIb is calculated by subtracting the products */
Kojto 115:87f2f5183dfb 5453 *pIb = __QSUB(product2, product1);
Kojto 115:87f2f5183dfb 5454
Kojto 115:87f2f5183dfb 5455 }
Kojto 115:87f2f5183dfb 5456
Kojto 115:87f2f5183dfb 5457 /**
Kojto 115:87f2f5183dfb 5458 * @} end of inv_clarke group
Kojto 115:87f2f5183dfb 5459 */
Kojto 115:87f2f5183dfb 5460
Kojto 115:87f2f5183dfb 5461 /**
Kojto 115:87f2f5183dfb 5462 * @brief Converts the elements of the Q7 vector to Q15 vector.
Kojto 115:87f2f5183dfb 5463 * @param[in] *pSrc input pointer
Kojto 115:87f2f5183dfb 5464 * @param[out] *pDst output pointer
Kojto 115:87f2f5183dfb 5465 * @param[in] blockSize number of samples to process
Kojto 115:87f2f5183dfb 5466 * @return none.
Kojto 115:87f2f5183dfb 5467 */
Kojto 115:87f2f5183dfb 5468 void arm_q7_to_q15(
Kojto 115:87f2f5183dfb 5469 q7_t * pSrc,
Kojto 115:87f2f5183dfb 5470 q15_t * pDst,
Kojto 115:87f2f5183dfb 5471 uint32_t blockSize);
Kojto 115:87f2f5183dfb 5472
Kojto 115:87f2f5183dfb 5473
Kojto 115:87f2f5183dfb 5474
Kojto 115:87f2f5183dfb 5475 /**
Kojto 115:87f2f5183dfb 5476 * @ingroup groupController
Kojto 115:87f2f5183dfb 5477 */
Kojto 115:87f2f5183dfb 5478
Kojto 115:87f2f5183dfb 5479 /**
Kojto 115:87f2f5183dfb 5480 * @defgroup park Vector Park Transform
Kojto 115:87f2f5183dfb 5481 *
Kojto 115:87f2f5183dfb 5482 * Forward Park transform converts the input two-coordinate vector to flux and torque components.
Kojto 115:87f2f5183dfb 5483 * The Park transform can be used to realize the transformation of the <code>Ialpha</code> and the <code>Ibeta</code> currents
Kojto 115:87f2f5183dfb 5484 * from the stationary to the moving reference frame and control the spatial relationship between
Kojto 115:87f2f5183dfb 5485 * the stator vector current and rotor flux vector.
Kojto 115:87f2f5183dfb 5486 * If we consider the d axis aligned with the rotor flux, the diagram below shows the
Kojto 115:87f2f5183dfb 5487 * current vector and the relationship from the two reference frames:
Kojto 115:87f2f5183dfb 5488 * \image html park.gif "Stator current space vector and its component in (a,b) and in the d,q rotating reference frame"
Kojto 115:87f2f5183dfb 5489 *
Kojto 115:87f2f5183dfb 5490 * The function operates on a single sample of data and each call to the function returns the processed output.
Kojto 115:87f2f5183dfb 5491 * The library provides separate functions for Q31 and floating-point data types.
Kojto 115:87f2f5183dfb 5492 * \par Algorithm
Kojto 115:87f2f5183dfb 5493 * \image html parkFormula.gif
Kojto 115:87f2f5183dfb 5494 * where <code>Ialpha</code> and <code>Ibeta</code> are the stator vector components,
Kojto 115:87f2f5183dfb 5495 * <code>pId</code> and <code>pIq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the
Kojto 115:87f2f5183dfb 5496 * cosine and sine values of theta (rotor flux position).
Kojto 115:87f2f5183dfb 5497 * \par Fixed-Point Behavior
Kojto 115:87f2f5183dfb 5498 * Care must be taken when using the Q31 version of the Park transform.
Kojto 115:87f2f5183dfb 5499 * In particular, the overflow and saturation behavior of the accumulator used must be considered.
Kojto 115:87f2f5183dfb 5500 * Refer to the function specific documentation below for usage guidelines.
Kojto 115:87f2f5183dfb 5501 */
Kojto 115:87f2f5183dfb 5502
Kojto 115:87f2f5183dfb 5503 /**
Kojto 115:87f2f5183dfb 5504 * @addtogroup park
Kojto 115:87f2f5183dfb 5505 * @{
Kojto 115:87f2f5183dfb 5506 */
Kojto 115:87f2f5183dfb 5507
Kojto 115:87f2f5183dfb 5508 /**
Kojto 115:87f2f5183dfb 5509 * @brief Floating-point Park transform
Kojto 115:87f2f5183dfb 5510 * @param[in] Ialpha input two-phase vector coordinate alpha
Kojto 115:87f2f5183dfb 5511 * @param[in] Ibeta input two-phase vector coordinate beta
Kojto 115:87f2f5183dfb 5512 * @param[out] *pId points to output rotor reference frame d
Kojto 115:87f2f5183dfb 5513 * @param[out] *pIq points to output rotor reference frame q
Kojto 115:87f2f5183dfb 5514 * @param[in] sinVal sine value of rotation angle theta
Kojto 115:87f2f5183dfb 5515 * @param[in] cosVal cosine value of rotation angle theta
Kojto 115:87f2f5183dfb 5516 * @return none.
Kojto 115:87f2f5183dfb 5517 *
Kojto 115:87f2f5183dfb 5518 * The function implements the forward Park transform.
Kojto 115:87f2f5183dfb 5519 *
Kojto 115:87f2f5183dfb 5520 */
Kojto 115:87f2f5183dfb 5521
Kojto 115:87f2f5183dfb 5522 static __INLINE void arm_park_f32(
Kojto 115:87f2f5183dfb 5523 float32_t Ialpha,
Kojto 115:87f2f5183dfb 5524 float32_t Ibeta,
Kojto 115:87f2f5183dfb 5525 float32_t * pId,
Kojto 115:87f2f5183dfb 5526 float32_t * pIq,
Kojto 115:87f2f5183dfb 5527 float32_t sinVal,
Kojto 115:87f2f5183dfb 5528 float32_t cosVal)
Kojto 115:87f2f5183dfb 5529 {
Kojto 115:87f2f5183dfb 5530 /* Calculate pId using the equation, pId = Ialpha * cosVal + Ibeta * sinVal */
Kojto 115:87f2f5183dfb 5531 *pId = Ialpha * cosVal + Ibeta * sinVal;
Kojto 115:87f2f5183dfb 5532
Kojto 115:87f2f5183dfb 5533 /* Calculate pIq using the equation, pIq = - Ialpha * sinVal + Ibeta * cosVal */
Kojto 115:87f2f5183dfb 5534 *pIq = -Ialpha * sinVal + Ibeta * cosVal;
Kojto 115:87f2f5183dfb 5535
Kojto 115:87f2f5183dfb 5536 }
Kojto 115:87f2f5183dfb 5537
Kojto 115:87f2f5183dfb 5538 /**
Kojto 115:87f2f5183dfb 5539 * @brief Park transform for Q31 version
Kojto 115:87f2f5183dfb 5540 * @param[in] Ialpha input two-phase vector coordinate alpha
Kojto 115:87f2f5183dfb 5541 * @param[in] Ibeta input two-phase vector coordinate beta
Kojto 115:87f2f5183dfb 5542 * @param[out] *pId points to output rotor reference frame d
Kojto 115:87f2f5183dfb 5543 * @param[out] *pIq points to output rotor reference frame q
Kojto 115:87f2f5183dfb 5544 * @param[in] sinVal sine value of rotation angle theta
Kojto 115:87f2f5183dfb 5545 * @param[in] cosVal cosine value of rotation angle theta
Kojto 115:87f2f5183dfb 5546 * @return none.
Kojto 115:87f2f5183dfb 5547 *
Kojto 115:87f2f5183dfb 5548 * <b>Scaling and Overflow Behavior:</b>
Kojto 115:87f2f5183dfb 5549 * \par
Kojto 115:87f2f5183dfb 5550 * The function is implemented using an internal 32-bit accumulator.
Kojto 115:87f2f5183dfb 5551 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
Kojto 115:87f2f5183dfb 5552 * There is saturation on the addition and subtraction, hence there is no risk of overflow.
Kojto 115:87f2f5183dfb 5553 */
Kojto 115:87f2f5183dfb 5554
Kojto 115:87f2f5183dfb 5555
Kojto 115:87f2f5183dfb 5556 static __INLINE void arm_park_q31(
Kojto 115:87f2f5183dfb 5557 q31_t Ialpha,
Kojto 115:87f2f5183dfb 5558 q31_t Ibeta,
Kojto 115:87f2f5183dfb 5559 q31_t * pId,
Kojto 115:87f2f5183dfb 5560 q31_t * pIq,
Kojto 115:87f2f5183dfb 5561 q31_t sinVal,
Kojto 115:87f2f5183dfb 5562 q31_t cosVal)
Kojto 115:87f2f5183dfb 5563 {
Kojto 115:87f2f5183dfb 5564 q31_t product1, product2; /* Temporary variables used to store intermediate results */
Kojto 115:87f2f5183dfb 5565 q31_t product3, product4; /* Temporary variables used to store intermediate results */
Kojto 115:87f2f5183dfb 5566
Kojto 115:87f2f5183dfb 5567 /* Intermediate product is calculated by (Ialpha * cosVal) */
Kojto 115:87f2f5183dfb 5568 product1 = (q31_t) (((q63_t) (Ialpha) * (cosVal)) >> 31);
Kojto 115:87f2f5183dfb 5569
Kojto 115:87f2f5183dfb 5570 /* Intermediate product is calculated by (Ibeta * sinVal) */
Kojto 115:87f2f5183dfb 5571 product2 = (q31_t) (((q63_t) (Ibeta) * (sinVal)) >> 31);
Kojto 115:87f2f5183dfb 5572
Kojto 115:87f2f5183dfb 5573
Kojto 115:87f2f5183dfb 5574 /* Intermediate product is calculated by (Ialpha * sinVal) */
Kojto 115:87f2f5183dfb 5575 product3 = (q31_t) (((q63_t) (Ialpha) * (sinVal)) >> 31);
Kojto 115:87f2f5183dfb 5576
Kojto 115:87f2f5183dfb 5577 /* Intermediate product is calculated by (Ibeta * cosVal) */
Kojto 115:87f2f5183dfb 5578 product4 = (q31_t) (((q63_t) (Ibeta) * (cosVal)) >> 31);
Kojto 115:87f2f5183dfb 5579
Kojto 115:87f2f5183dfb 5580 /* Calculate pId by adding the two intermediate products 1 and 2 */
Kojto 115:87f2f5183dfb 5581 *pId = __QADD(product1, product2);
Kojto 115:87f2f5183dfb 5582
Kojto 115:87f2f5183dfb 5583 /* Calculate pIq by subtracting the two intermediate products 3 from 4 */
Kojto 115:87f2f5183dfb 5584 *pIq = __QSUB(product4, product3);
Kojto 115:87f2f5183dfb 5585 }
Kojto 115:87f2f5183dfb 5586
Kojto 115:87f2f5183dfb 5587 /**
Kojto 115:87f2f5183dfb 5588 * @} end of park group
Kojto 115:87f2f5183dfb 5589 */
Kojto 115:87f2f5183dfb 5590
Kojto 115:87f2f5183dfb 5591 /**
Kojto 115:87f2f5183dfb 5592 * @brief Converts the elements of the Q7 vector to floating-point vector.
Kojto 115:87f2f5183dfb 5593 * @param[in] *pSrc is input pointer
Kojto 115:87f2f5183dfb 5594 * @param[out] *pDst is output pointer
Kojto 115:87f2f5183dfb 5595 * @param[in] blockSize is the number of samples to process
Kojto 115:87f2f5183dfb 5596 * @return none.
Kojto 115:87f2f5183dfb 5597 */
Kojto 115:87f2f5183dfb 5598 void arm_q7_to_float(
Kojto 115:87f2f5183dfb 5599 q7_t * pSrc,
Kojto 115:87f2f5183dfb 5600 float32_t * pDst,
Kojto 115:87f2f5183dfb 5601 uint32_t blockSize);
Kojto 115:87f2f5183dfb 5602
Kojto 115:87f2f5183dfb 5603
Kojto 115:87f2f5183dfb 5604 /**
Kojto 115:87f2f5183dfb 5605 * @ingroup groupController
Kojto 115:87f2f5183dfb 5606 */
Kojto 115:87f2f5183dfb 5607
Kojto 115:87f2f5183dfb 5608 /**
Kojto 115:87f2f5183dfb 5609 * @defgroup inv_park Vector Inverse Park transform
Kojto 115:87f2f5183dfb 5610 * Inverse Park transform converts the input flux and torque components to two-coordinate vector.
Kojto 115:87f2f5183dfb 5611 *
Kojto 115:87f2f5183dfb 5612 * The function operates on a single sample of data and each call to the function returns the processed output.
Kojto 115:87f2f5183dfb 5613 * The library provides separate functions for Q31 and floating-point data types.
Kojto 115:87f2f5183dfb 5614 * \par Algorithm
Kojto 115:87f2f5183dfb 5615 * \image html parkInvFormula.gif
Kojto 115:87f2f5183dfb 5616 * where <code>pIalpha</code> and <code>pIbeta</code> are the stator vector components,
Kojto 115:87f2f5183dfb 5617 * <code>Id</code> and <code>Iq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the
Kojto 115:87f2f5183dfb 5618 * cosine and sine values of theta (rotor flux position).
Kojto 115:87f2f5183dfb 5619 * \par Fixed-Point Behavior
Kojto 115:87f2f5183dfb 5620 * Care must be taken when using the Q31 version of the Park transform.
Kojto 115:87f2f5183dfb 5621 * In particular, the overflow and saturation behavior of the accumulator used must be considered.
Kojto 115:87f2f5183dfb 5622 * Refer to the function specific documentation below for usage guidelines.
Kojto 115:87f2f5183dfb 5623 */
Kojto 115:87f2f5183dfb 5624
Kojto 115:87f2f5183dfb 5625 /**
Kojto 115:87f2f5183dfb 5626 * @addtogroup inv_park
Kojto 115:87f2f5183dfb 5627 * @{
Kojto 115:87f2f5183dfb 5628 */
Kojto 115:87f2f5183dfb 5629
Kojto 115:87f2f5183dfb 5630 /**
Kojto 115:87f2f5183dfb 5631 * @brief Floating-point Inverse Park transform
Kojto 115:87f2f5183dfb 5632 * @param[in] Id input coordinate of rotor reference frame d
Kojto 115:87f2f5183dfb 5633 * @param[in] Iq input coordinate of rotor reference frame q
Kojto 115:87f2f5183dfb 5634 * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha
Kojto 115:87f2f5183dfb 5635 * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta
Kojto 115:87f2f5183dfb 5636 * @param[in] sinVal sine value of rotation angle theta
Kojto 115:87f2f5183dfb 5637 * @param[in] cosVal cosine value of rotation angle theta
Kojto 115:87f2f5183dfb 5638 * @return none.
Kojto 115:87f2f5183dfb 5639 */
Kojto 115:87f2f5183dfb 5640
Kojto 115:87f2f5183dfb 5641 static __INLINE void arm_inv_park_f32(
Kojto 115:87f2f5183dfb 5642 float32_t Id,
Kojto 115:87f2f5183dfb 5643 float32_t Iq,
Kojto 115:87f2f5183dfb 5644 float32_t * pIalpha,
Kojto 115:87f2f5183dfb 5645 float32_t * pIbeta,
Kojto 115:87f2f5183dfb 5646 float32_t sinVal,
Kojto 115:87f2f5183dfb 5647 float32_t cosVal)
Kojto 115:87f2f5183dfb 5648 {
Kojto 115:87f2f5183dfb 5649 /* Calculate pIalpha using the equation, pIalpha = Id * cosVal - Iq * sinVal */
Kojto 115:87f2f5183dfb 5650 *pIalpha = Id * cosVal - Iq * sinVal;
Kojto 115:87f2f5183dfb 5651
Kojto 115:87f2f5183dfb 5652 /* Calculate pIbeta using the equation, pIbeta = Id * sinVal + Iq * cosVal */
Kojto 115:87f2f5183dfb 5653 *pIbeta = Id * sinVal + Iq * cosVal;
Kojto 115:87f2f5183dfb 5654
Kojto 115:87f2f5183dfb 5655 }
Kojto 115:87f2f5183dfb 5656
Kojto 115:87f2f5183dfb 5657
Kojto 115:87f2f5183dfb 5658 /**
Kojto 115:87f2f5183dfb 5659 * @brief Inverse Park transform for Q31 version
Kojto 115:87f2f5183dfb 5660 * @param[in] Id input coordinate of rotor reference frame d
Kojto 115:87f2f5183dfb 5661 * @param[in] Iq input coordinate of rotor reference frame q
Kojto 115:87f2f5183dfb 5662 * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha
Kojto 115:87f2f5183dfb 5663 * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta
Kojto 115:87f2f5183dfb 5664 * @param[in] sinVal sine value of rotation angle theta
Kojto 115:87f2f5183dfb 5665 * @param[in] cosVal cosine value of rotation angle theta
Kojto 115:87f2f5183dfb 5666 * @return none.
Kojto 115:87f2f5183dfb 5667 *
Kojto 115:87f2f5183dfb 5668 * <b>Scaling and Overflow Behavior:</b>
Kojto 115:87f2f5183dfb 5669 * \par
Kojto 115:87f2f5183dfb 5670 * The function is implemented using an internal 32-bit accumulator.
Kojto 115:87f2f5183dfb 5671 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
Kojto 115:87f2f5183dfb 5672 * There is saturation on the addition, hence there is no risk of overflow.
Kojto 115:87f2f5183dfb 5673 */
Kojto 115:87f2f5183dfb 5674
Kojto 115:87f2f5183dfb 5675
Kojto 115:87f2f5183dfb 5676 static __INLINE void arm_inv_park_q31(
Kojto 115:87f2f5183dfb 5677 q31_t Id,
Kojto 115:87f2f5183dfb 5678 q31_t Iq,
Kojto 115:87f2f5183dfb 5679 q31_t * pIalpha,
Kojto 115:87f2f5183dfb 5680 q31_t * pIbeta,
Kojto 115:87f2f5183dfb 5681 q31_t sinVal,
Kojto 115:87f2f5183dfb 5682 q31_t cosVal)
Kojto 115:87f2f5183dfb 5683 {
Kojto 115:87f2f5183dfb 5684 q31_t product1, product2; /* Temporary variables used to store intermediate results */
Kojto 115:87f2f5183dfb 5685 q31_t product3, product4; /* Temporary variables used to store intermediate results */
Kojto 115:87f2f5183dfb 5686
Kojto 115:87f2f5183dfb 5687 /* Intermediate product is calculated by (Id * cosVal) */
Kojto 115:87f2f5183dfb 5688 product1 = (q31_t) (((q63_t) (Id) * (cosVal)) >> 31);
Kojto 115:87f2f5183dfb 5689
Kojto 115:87f2f5183dfb 5690 /* Intermediate product is calculated by (Iq * sinVal) */
Kojto 115:87f2f5183dfb 5691 product2 = (q31_t) (((q63_t) (Iq) * (sinVal)) >> 31);
Kojto 115:87f2f5183dfb 5692
Kojto 115:87f2f5183dfb 5693
Kojto 115:87f2f5183dfb 5694 /* Intermediate product is calculated by (Id * sinVal) */
Kojto 115:87f2f5183dfb 5695 product3 = (q31_t) (((q63_t) (Id) * (sinVal)) >> 31);
Kojto 115:87f2f5183dfb 5696
Kojto 115:87f2f5183dfb 5697 /* Intermediate product is calculated by (Iq * cosVal) */
Kojto 115:87f2f5183dfb 5698 product4 = (q31_t) (((q63_t) (Iq) * (cosVal)) >> 31);
Kojto 115:87f2f5183dfb 5699
Kojto 115:87f2f5183dfb 5700 /* Calculate pIalpha by using the two intermediate products 1 and 2 */
Kojto 115:87f2f5183dfb 5701 *pIalpha = __QSUB(product1, product2);
Kojto 115:87f2f5183dfb 5702
Kojto 115:87f2f5183dfb 5703 /* Calculate pIbeta by using the two intermediate products 3 and 4 */
Kojto 115:87f2f5183dfb 5704 *pIbeta = __QADD(product4, product3);
Kojto 115:87f2f5183dfb 5705
Kojto 115:87f2f5183dfb 5706 }
Kojto 115:87f2f5183dfb 5707
Kojto 115:87f2f5183dfb 5708 /**
Kojto 115:87f2f5183dfb 5709 * @} end of Inverse park group
Kojto 115:87f2f5183dfb 5710 */
Kojto 115:87f2f5183dfb 5711
Kojto 115:87f2f5183dfb 5712
Kojto 115:87f2f5183dfb 5713 /**
Kojto 115:87f2f5183dfb 5714 * @brief Converts the elements of the Q31 vector to floating-point vector.
Kojto 115:87f2f5183dfb 5715 * @param[in] *pSrc is input pointer
Kojto 115:87f2f5183dfb 5716 * @param[out] *pDst is output pointer
Kojto 115:87f2f5183dfb 5717 * @param[in] blockSize is the number of samples to process
Kojto 115:87f2f5183dfb 5718 * @return none.
Kojto 115:87f2f5183dfb 5719 */
Kojto 115:87f2f5183dfb 5720 void arm_q31_to_float(
Kojto 115:87f2f5183dfb 5721 q31_t * pSrc,
Kojto 115:87f2f5183dfb 5722 float32_t * pDst,
Kojto 115:87f2f5183dfb 5723 uint32_t blockSize);
Kojto 115:87f2f5183dfb 5724
Kojto 115:87f2f5183dfb 5725 /**
Kojto 115:87f2f5183dfb 5726 * @ingroup groupInterpolation
Kojto 115:87f2f5183dfb 5727 */
Kojto 115:87f2f5183dfb 5728
Kojto 115:87f2f5183dfb 5729 /**
Kojto 115:87f2f5183dfb 5730 * @defgroup LinearInterpolate Linear Interpolation
Kojto 115:87f2f5183dfb 5731 *
Kojto 115:87f2f5183dfb 5732 * Linear interpolation is a method of curve fitting using linear polynomials.
Kojto 115:87f2f5183dfb 5733 * Linear interpolation works by effectively drawing a straight line between two neighboring samples and returning the appropriate point along that line
Kojto 115:87f2f5183dfb 5734 *
Kojto 115:87f2f5183dfb 5735 * \par
Kojto 115:87f2f5183dfb 5736 * \image html LinearInterp.gif "Linear interpolation"
Kojto 115:87f2f5183dfb 5737 *
Kojto 115:87f2f5183dfb 5738 * \par
Kojto 115:87f2f5183dfb 5739 * A Linear Interpolate function calculates an output value(y), for the input(x)
Kojto 115:87f2f5183dfb 5740 * using linear interpolation of the input values x0, x1( nearest input values) and the output values y0 and y1(nearest output values)
Kojto 115:87f2f5183dfb 5741 *
Kojto 115:87f2f5183dfb 5742 * \par Algorithm:
Kojto 115:87f2f5183dfb 5743 * <pre>
Kojto 115:87f2f5183dfb 5744 * y = y0 + (x - x0) * ((y1 - y0)/(x1-x0))
Kojto 115:87f2f5183dfb 5745 * where x0, x1 are nearest values of input x
Kojto 115:87f2f5183dfb 5746 * y0, y1 are nearest values to output y
Kojto 115:87f2f5183dfb 5747 * </pre>
Kojto 115:87f2f5183dfb 5748 *
Kojto 115:87f2f5183dfb 5749 * \par
Kojto 115:87f2f5183dfb 5750 * This set of functions implements Linear interpolation process
Kojto 115:87f2f5183dfb 5751 * for Q7, Q15, Q31, and floating-point data types. The functions operate on a single
Kojto 115:87f2f5183dfb 5752 * sample of data and each call to the function returns a single processed value.
Kojto 115:87f2f5183dfb 5753 * <code>S</code> points to an instance of the Linear Interpolate function data structure.
Kojto 115:87f2f5183dfb 5754 * <code>x</code> is the input sample value. The functions returns the output value.
Kojto 115:87f2f5183dfb 5755 *
Kojto 115:87f2f5183dfb 5756 * \par
Kojto 115:87f2f5183dfb 5757 * if x is outside of the table boundary, Linear interpolation returns first value of the table
Kojto 115:87f2f5183dfb 5758 * if x is below input range and returns last value of table if x is above range.
Kojto 115:87f2f5183dfb 5759 */
Kojto 115:87f2f5183dfb 5760
Kojto 115:87f2f5183dfb 5761 /**
Kojto 115:87f2f5183dfb 5762 * @addtogroup LinearInterpolate
Kojto 115:87f2f5183dfb 5763 * @{
Kojto 115:87f2f5183dfb 5764 */
Kojto 115:87f2f5183dfb 5765
Kojto 115:87f2f5183dfb 5766 /**
Kojto 115:87f2f5183dfb 5767 * @brief Process function for the floating-point Linear Interpolation Function.
Kojto 115:87f2f5183dfb 5768 * @param[in,out] *S is an instance of the floating-point Linear Interpolation structure
Kojto 115:87f2f5183dfb 5769 * @param[in] x input sample to process
Kojto 115:87f2f5183dfb 5770 * @return y processed output sample.
Kojto 115:87f2f5183dfb 5771 *
Kojto 115:87f2f5183dfb 5772 */
Kojto 115:87f2f5183dfb 5773
Kojto 115:87f2f5183dfb 5774 static __INLINE float32_t arm_linear_interp_f32(
Kojto 115:87f2f5183dfb 5775 arm_linear_interp_instance_f32 * S,
Kojto 115:87f2f5183dfb 5776 float32_t x)
Kojto 115:87f2f5183dfb 5777 {
Kojto 115:87f2f5183dfb 5778
Kojto 115:87f2f5183dfb 5779 float32_t y;
Kojto 115:87f2f5183dfb 5780 float32_t x0, x1; /* Nearest input values */
Kojto 115:87f2f5183dfb 5781 float32_t y0, y1; /* Nearest output values */
Kojto 115:87f2f5183dfb 5782 float32_t xSpacing = S->xSpacing; /* spacing between input values */
Kojto 115:87f2f5183dfb 5783 int32_t i; /* Index variable */
Kojto 115:87f2f5183dfb 5784 float32_t *pYData = S->pYData; /* pointer to output table */
Kojto 115:87f2f5183dfb 5785
Kojto 115:87f2f5183dfb 5786 /* Calculation of index */
Kojto 115:87f2f5183dfb 5787 i = (int32_t) ((x - S->x1) / xSpacing);
Kojto 115:87f2f5183dfb 5788
Kojto 115:87f2f5183dfb 5789 if(i < 0)
Kojto 115:87f2f5183dfb 5790 {
Kojto 115:87f2f5183dfb 5791 /* Iniatilize output for below specified range as least output value of table */
Kojto 115:87f2f5183dfb 5792 y = pYData[0];
Kojto 115:87f2f5183dfb 5793 }
Kojto 115:87f2f5183dfb 5794 else if((uint32_t)i >= S->nValues)
Kojto 115:87f2f5183dfb 5795 {
Kojto 115:87f2f5183dfb 5796 /* Iniatilize output for above specified range as last output value of table */
Kojto 115:87f2f5183dfb 5797 y = pYData[S->nValues - 1];
Kojto 115:87f2f5183dfb 5798 }
Kojto 115:87f2f5183dfb 5799 else
Kojto 115:87f2f5183dfb 5800 {
Kojto 115:87f2f5183dfb 5801 /* Calculation of nearest input values */
Kojto 115:87f2f5183dfb 5802 x0 = S->x1 + i * xSpacing;
Kojto 115:87f2f5183dfb 5803 x1 = S->x1 + (i + 1) * xSpacing;
Kojto 115:87f2f5183dfb 5804
Kojto 115:87f2f5183dfb 5805 /* Read of nearest output values */
Kojto 115:87f2f5183dfb 5806 y0 = pYData[i];
Kojto 115:87f2f5183dfb 5807 y1 = pYData[i + 1];
Kojto 115:87f2f5183dfb 5808
Kojto 115:87f2f5183dfb 5809 /* Calculation of output */
Kojto 115:87f2f5183dfb 5810 y = y0 + (x - x0) * ((y1 - y0) / (x1 - x0));
Kojto 115:87f2f5183dfb 5811
Kojto 115:87f2f5183dfb 5812 }
Kojto 115:87f2f5183dfb 5813
Kojto 115:87f2f5183dfb 5814 /* returns output value */
Kojto 115:87f2f5183dfb 5815 return (y);
Kojto 115:87f2f5183dfb 5816 }
Kojto 115:87f2f5183dfb 5817
Kojto 115:87f2f5183dfb 5818 /**
Kojto 115:87f2f5183dfb 5819 *
Kojto 115:87f2f5183dfb 5820 * @brief Process function for the Q31 Linear Interpolation Function.
Kojto 115:87f2f5183dfb 5821 * @param[in] *pYData pointer to Q31 Linear Interpolation table
Kojto 115:87f2f5183dfb 5822 * @param[in] x input sample to process
Kojto 115:87f2f5183dfb 5823 * @param[in] nValues number of table values
Kojto 115:87f2f5183dfb 5824 * @return y processed output sample.
Kojto 115:87f2f5183dfb 5825 *
Kojto 115:87f2f5183dfb 5826 * \par
Kojto 115:87f2f5183dfb 5827 * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
Kojto 115:87f2f5183dfb 5828 * This function can support maximum of table size 2^12.
Kojto 115:87f2f5183dfb 5829 *
Kojto 115:87f2f5183dfb 5830 */
Kojto 115:87f2f5183dfb 5831
Kojto 115:87f2f5183dfb 5832
Kojto 115:87f2f5183dfb 5833 static __INLINE q31_t arm_linear_interp_q31(
Kojto 115:87f2f5183dfb 5834 q31_t * pYData,
Kojto 115:87f2f5183dfb 5835 q31_t x,
Kojto 115:87f2f5183dfb 5836 uint32_t nValues)
Kojto 115:87f2f5183dfb 5837 {
Kojto 115:87f2f5183dfb 5838 q31_t y; /* output */
Kojto 115:87f2f5183dfb 5839 q31_t y0, y1; /* Nearest output values */
Kojto 115:87f2f5183dfb 5840 q31_t fract; /* fractional part */
Kojto 115:87f2f5183dfb 5841 int32_t index; /* Index to read nearest output values */
Kojto 115:87f2f5183dfb 5842
Kojto 115:87f2f5183dfb 5843 /* Input is in 12.20 format */
Kojto 115:87f2f5183dfb 5844 /* 12 bits for the table index */
Kojto 115:87f2f5183dfb 5845 /* Index value calculation */
Kojto 115:87f2f5183dfb 5846 index = ((x & 0xFFF00000) >> 20);
Kojto 115:87f2f5183dfb 5847
Kojto 115:87f2f5183dfb 5848 if(index >= (int32_t)(nValues - 1))
Kojto 115:87f2f5183dfb 5849 {
Kojto 115:87f2f5183dfb 5850 return (pYData[nValues - 1]);
Kojto 115:87f2f5183dfb 5851 }
Kojto 115:87f2f5183dfb 5852 else if(index < 0)
Kojto 115:87f2f5183dfb 5853 {
Kojto 115:87f2f5183dfb 5854 return (pYData[0]);
Kojto 115:87f2f5183dfb 5855 }
Kojto 115:87f2f5183dfb 5856 else
Kojto 115:87f2f5183dfb 5857 {
Kojto 115:87f2f5183dfb 5858
Kojto 115:87f2f5183dfb 5859 /* 20 bits for the fractional part */
Kojto 115:87f2f5183dfb 5860 /* shift left by 11 to keep fract in 1.31 format */
Kojto 115:87f2f5183dfb 5861 fract = (x & 0x000FFFFF) << 11;
Kojto 115:87f2f5183dfb 5862
Kojto 115:87f2f5183dfb 5863 /* Read two nearest output values from the index in 1.31(q31) format */
Kojto 115:87f2f5183dfb 5864 y0 = pYData[index];
Kojto 115:87f2f5183dfb 5865 y1 = pYData[index + 1u];
Kojto 115:87f2f5183dfb 5866
Kojto 115:87f2f5183dfb 5867 /* Calculation of y0 * (1-fract) and y is in 2.30 format */
Kojto 115:87f2f5183dfb 5868 y = ((q31_t) ((q63_t) y0 * (0x7FFFFFFF - fract) >> 32));
Kojto 115:87f2f5183dfb 5869
Kojto 115:87f2f5183dfb 5870 /* Calculation of y0 * (1-fract) + y1 *fract and y is in 2.30 format */
Kojto 115:87f2f5183dfb 5871 y += ((q31_t) (((q63_t) y1 * fract) >> 32));
Kojto 115:87f2f5183dfb 5872
Kojto 115:87f2f5183dfb 5873 /* Convert y to 1.31 format */
Kojto 115:87f2f5183dfb 5874 return (y << 1u);
Kojto 115:87f2f5183dfb 5875
Kojto 115:87f2f5183dfb 5876 }
Kojto 115:87f2f5183dfb 5877
Kojto 115:87f2f5183dfb 5878 }
Kojto 115:87f2f5183dfb 5879
Kojto 115:87f2f5183dfb 5880 /**
Kojto 115:87f2f5183dfb 5881 *
Kojto 115:87f2f5183dfb 5882 * @brief Process function for the Q15 Linear Interpolation Function.
Kojto 115:87f2f5183dfb 5883 * @param[in] *pYData pointer to Q15 Linear Interpolation table
Kojto 115:87f2f5183dfb 5884 * @param[in] x input sample to process
Kojto 115:87f2f5183dfb 5885 * @param[in] nValues number of table values
Kojto 115:87f2f5183dfb 5886 * @return y processed output sample.
Kojto 115:87f2f5183dfb 5887 *
Kojto 115:87f2f5183dfb 5888 * \par
Kojto 115:87f2f5183dfb 5889 * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
Kojto 115:87f2f5183dfb 5890 * This function can support maximum of table size 2^12.
Kojto 115:87f2f5183dfb 5891 *
Kojto 115:87f2f5183dfb 5892 */
Kojto 115:87f2f5183dfb 5893
Kojto 115:87f2f5183dfb 5894
Kojto 115:87f2f5183dfb 5895 static __INLINE q15_t arm_linear_interp_q15(
Kojto 115:87f2f5183dfb 5896 q15_t * pYData,
Kojto 115:87f2f5183dfb 5897 q31_t x,
Kojto 115:87f2f5183dfb 5898 uint32_t nValues)
Kojto 115:87f2f5183dfb 5899 {
Kojto 115:87f2f5183dfb 5900 q63_t y; /* output */
Kojto 115:87f2f5183dfb 5901 q15_t y0, y1; /* Nearest output values */
Kojto 115:87f2f5183dfb 5902 q31_t fract; /* fractional part */
Kojto 115:87f2f5183dfb 5903 int32_t index; /* Index to read nearest output values */
Kojto 115:87f2f5183dfb 5904
Kojto 115:87f2f5183dfb 5905 /* Input is in 12.20 format */
Kojto 115:87f2f5183dfb 5906 /* 12 bits for the table index */
Kojto 115:87f2f5183dfb 5907 /* Index value calculation */
Kojto 115:87f2f5183dfb 5908 index = ((x & 0xFFF00000) >> 20u);
Kojto 115:87f2f5183dfb 5909
Kojto 115:87f2f5183dfb 5910 if(index >= (int32_t)(nValues - 1))
Kojto 115:87f2f5183dfb 5911 {
Kojto 115:87f2f5183dfb 5912 return (pYData[nValues - 1]);
Kojto 115:87f2f5183dfb 5913 }
Kojto 115:87f2f5183dfb 5914 else if(index < 0)
Kojto 115:87f2f5183dfb 5915 {
Kojto 115:87f2f5183dfb 5916 return (pYData[0]);
Kojto 115:87f2f5183dfb 5917 }
Kojto 115:87f2f5183dfb 5918 else
Kojto 115:87f2f5183dfb 5919 {
Kojto 115:87f2f5183dfb 5920 /* 20 bits for the fractional part */
Kojto 115:87f2f5183dfb 5921 /* fract is in 12.20 format */
Kojto 115:87f2f5183dfb 5922 fract = (x & 0x000FFFFF);
Kojto 115:87f2f5183dfb 5923
Kojto 115:87f2f5183dfb 5924 /* Read two nearest output values from the index */
Kojto 115:87f2f5183dfb 5925 y0 = pYData[index];
Kojto 115:87f2f5183dfb 5926 y1 = pYData[index + 1u];
Kojto 115:87f2f5183dfb 5927
Kojto 115:87f2f5183dfb 5928 /* Calculation of y0 * (1-fract) and y is in 13.35 format */
Kojto 115:87f2f5183dfb 5929 y = ((q63_t) y0 * (0xFFFFF - fract));
Kojto 115:87f2f5183dfb 5930
Kojto 115:87f2f5183dfb 5931 /* Calculation of (y0 * (1-fract) + y1 * fract) and y is in 13.35 format */
Kojto 115:87f2f5183dfb 5932 y += ((q63_t) y1 * (fract));
Kojto 115:87f2f5183dfb 5933
Kojto 115:87f2f5183dfb 5934 /* convert y to 1.15 format */
Kojto 115:87f2f5183dfb 5935 return (y >> 20);
Kojto 115:87f2f5183dfb 5936 }
Kojto 115:87f2f5183dfb 5937
Kojto 115:87f2f5183dfb 5938
Kojto 115:87f2f5183dfb 5939 }
Kojto 115:87f2f5183dfb 5940
Kojto 115:87f2f5183dfb 5941 /**
Kojto 115:87f2f5183dfb 5942 *
Kojto 115:87f2f5183dfb 5943 * @brief Process function for the Q7 Linear Interpolation Function.
Kojto 115:87f2f5183dfb 5944 * @param[in] *pYData pointer to Q7 Linear Interpolation table
Kojto 115:87f2f5183dfb 5945 * @param[in] x input sample to process
Kojto 115:87f2f5183dfb 5946 * @param[in] nValues number of table values
Kojto 115:87f2f5183dfb 5947 * @return y processed output sample.
Kojto 115:87f2f5183dfb 5948 *
Kojto 115:87f2f5183dfb 5949 * \par
Kojto 115:87f2f5183dfb 5950 * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
Kojto 115:87f2f5183dfb 5951 * This function can support maximum of table size 2^12.
Kojto 115:87f2f5183dfb 5952 */
Kojto 115:87f2f5183dfb 5953
Kojto 115:87f2f5183dfb 5954
Kojto 115:87f2f5183dfb 5955 static __INLINE q7_t arm_linear_interp_q7(
Kojto 115:87f2f5183dfb 5956 q7_t * pYData,
Kojto 115:87f2f5183dfb 5957 q31_t x,
Kojto 115:87f2f5183dfb 5958 uint32_t nValues)
Kojto 115:87f2f5183dfb 5959 {
Kojto 115:87f2f5183dfb 5960 q31_t y; /* output */
Kojto 115:87f2f5183dfb 5961 q7_t y0, y1; /* Nearest output values */
Kojto 115:87f2f5183dfb 5962 q31_t fract; /* fractional part */
Kojto 115:87f2f5183dfb 5963 uint32_t index; /* Index to read nearest output values */
Kojto 115:87f2f5183dfb 5964
Kojto 115:87f2f5183dfb 5965 /* Input is in 12.20 format */
Kojto 115:87f2f5183dfb 5966 /* 12 bits for the table index */
Kojto 115:87f2f5183dfb 5967 /* Index value calculation */
Kojto 115:87f2f5183dfb 5968 if (x < 0)
Kojto 115:87f2f5183dfb 5969 {
Kojto 115:87f2f5183dfb 5970 return (pYData[0]);
Kojto 115:87f2f5183dfb 5971 }
Kojto 115:87f2f5183dfb 5972 index = (x >> 20) & 0xfff;
Kojto 115:87f2f5183dfb 5973
Kojto 115:87f2f5183dfb 5974
Kojto 115:87f2f5183dfb 5975 if(index >= (nValues - 1))
Kojto 115:87f2f5183dfb 5976 {
Kojto 115:87f2f5183dfb 5977 return (pYData[nValues - 1]);
Kojto 115:87f2f5183dfb 5978 }
Kojto 115:87f2f5183dfb 5979 else
Kojto 115:87f2f5183dfb 5980 {
Kojto 115:87f2f5183dfb 5981
Kojto 115:87f2f5183dfb 5982 /* 20 bits for the fractional part */
Kojto 115:87f2f5183dfb 5983 /* fract is in 12.20 format */
Kojto 115:87f2f5183dfb 5984 fract = (x & 0x000FFFFF);
Kojto 115:87f2f5183dfb 5985
Kojto 115:87f2f5183dfb 5986 /* Read two nearest output values from the index and are in 1.7(q7) format */
Kojto 115:87f2f5183dfb 5987 y0 = pYData[index];
Kojto 115:87f2f5183dfb 5988 y1 = pYData[index + 1u];
Kojto 115:87f2f5183dfb 5989
Kojto 115:87f2f5183dfb 5990 /* Calculation of y0 * (1-fract ) and y is in 13.27(q27) format */
Kojto 115:87f2f5183dfb 5991 y = ((y0 * (0xFFFFF - fract)));
Kojto 115:87f2f5183dfb 5992
Kojto 115:87f2f5183dfb 5993 /* Calculation of y1 * fract + y0 * (1-fract) and y is in 13.27(q27) format */
Kojto 115:87f2f5183dfb 5994 y += (y1 * fract);
Kojto 115:87f2f5183dfb 5995
Kojto 115:87f2f5183dfb 5996 /* convert y to 1.7(q7) format */
Kojto 115:87f2f5183dfb 5997 return (y >> 20u);
Kojto 115:87f2f5183dfb 5998
Kojto 115:87f2f5183dfb 5999 }
Kojto 115:87f2f5183dfb 6000
Kojto 115:87f2f5183dfb 6001 }
Kojto 115:87f2f5183dfb 6002 /**
Kojto 115:87f2f5183dfb 6003 * @} end of LinearInterpolate group
Kojto 115:87f2f5183dfb 6004 */
Kojto 115:87f2f5183dfb 6005
Kojto 115:87f2f5183dfb 6006 /**
Kojto 115:87f2f5183dfb 6007 * @brief Fast approximation to the trigonometric sine function for floating-point data.
Kojto 115:87f2f5183dfb 6008 * @param[in] x input value in radians.
Kojto 115:87f2f5183dfb 6009 * @return sin(x).
Kojto 115:87f2f5183dfb 6010 */
Kojto 115:87f2f5183dfb 6011
Kojto 115:87f2f5183dfb 6012 float32_t arm_sin_f32(
Kojto 115:87f2f5183dfb 6013 float32_t x);
Kojto 115:87f2f5183dfb 6014
Kojto 115:87f2f5183dfb 6015 /**
Kojto 115:87f2f5183dfb 6016 * @brief Fast approximation to the trigonometric sine function for Q31 data.
Kojto 115:87f2f5183dfb 6017 * @param[in] x Scaled input value in radians.
Kojto 115:87f2f5183dfb 6018 * @return sin(x).
Kojto 115:87f2f5183dfb 6019 */
Kojto 115:87f2f5183dfb 6020
Kojto 115:87f2f5183dfb 6021 q31_t arm_sin_q31(
Kojto 115:87f2f5183dfb 6022 q31_t x);
Kojto 115:87f2f5183dfb 6023
Kojto 115:87f2f5183dfb 6024 /**
Kojto 115:87f2f5183dfb 6025 * @brief Fast approximation to the trigonometric sine function for Q15 data.
Kojto 115:87f2f5183dfb 6026 * @param[in] x Scaled input value in radians.
Kojto 115:87f2f5183dfb 6027 * @return sin(x).
Kojto 115:87f2f5183dfb 6028 */
Kojto 115:87f2f5183dfb 6029
Kojto 115:87f2f5183dfb 6030 q15_t arm_sin_q15(
Kojto 115:87f2f5183dfb 6031 q15_t x);
Kojto 115:87f2f5183dfb 6032
Kojto 115:87f2f5183dfb 6033 /**
Kojto 115:87f2f5183dfb 6034 * @brief Fast approximation to the trigonometric cosine function for floating-point data.
Kojto 115:87f2f5183dfb 6035 * @param[in] x input value in radians.
Kojto 115:87f2f5183dfb 6036 * @return cos(x).
Kojto 115:87f2f5183dfb 6037 */
Kojto 115:87f2f5183dfb 6038
Kojto 115:87f2f5183dfb 6039 float32_t arm_cos_f32(
Kojto 115:87f2f5183dfb 6040 float32_t x);
Kojto 115:87f2f5183dfb 6041
Kojto 115:87f2f5183dfb 6042 /**
Kojto 115:87f2f5183dfb 6043 * @brief Fast approximation to the trigonometric cosine function for Q31 data.
Kojto 115:87f2f5183dfb 6044 * @param[in] x Scaled input value in radians.
Kojto 115:87f2f5183dfb 6045 * @return cos(x).
Kojto 115:87f2f5183dfb 6046 */
Kojto 115:87f2f5183dfb 6047
Kojto 115:87f2f5183dfb 6048 q31_t arm_cos_q31(
Kojto 115:87f2f5183dfb 6049 q31_t x);
Kojto 115:87f2f5183dfb 6050
Kojto 115:87f2f5183dfb 6051 /**
Kojto 115:87f2f5183dfb 6052 * @brief Fast approximation to the trigonometric cosine function for Q15 data.
Kojto 115:87f2f5183dfb 6053 * @param[in] x Scaled input value in radians.
Kojto 115:87f2f5183dfb 6054 * @return cos(x).
Kojto 115:87f2f5183dfb 6055 */
Kojto 115:87f2f5183dfb 6056
Kojto 115:87f2f5183dfb 6057 q15_t arm_cos_q15(
Kojto 115:87f2f5183dfb 6058 q15_t x);
Kojto 115:87f2f5183dfb 6059
Kojto 115:87f2f5183dfb 6060
Kojto 115:87f2f5183dfb 6061 /**
Kojto 115:87f2f5183dfb 6062 * @ingroup groupFastMath
Kojto 115:87f2f5183dfb 6063 */
Kojto 115:87f2f5183dfb 6064
Kojto 115:87f2f5183dfb 6065
Kojto 115:87f2f5183dfb 6066 /**
Kojto 115:87f2f5183dfb 6067 * @defgroup SQRT Square Root
Kojto 115:87f2f5183dfb 6068 *
Kojto 115:87f2f5183dfb 6069 * Computes the square root of a number.
Kojto 115:87f2f5183dfb 6070 * There are separate functions for Q15, Q31, and floating-point data types.
Kojto 115:87f2f5183dfb 6071 * The square root function is computed using the Newton-Raphson algorithm.
Kojto 115:87f2f5183dfb 6072 * This is an iterative algorithm of the form:
Kojto 115:87f2f5183dfb 6073 * <pre>
Kojto 115:87f2f5183dfb 6074 * x1 = x0 - f(x0)/f'(x0)
Kojto 115:87f2f5183dfb 6075 * </pre>
Kojto 115:87f2f5183dfb 6076 * where <code>x1</code> is the current estimate,
Kojto 115:87f2f5183dfb 6077 * <code>x0</code> is the previous estimate, and
Kojto 115:87f2f5183dfb 6078 * <code>f'(x0)</code> is the derivative of <code>f()</code> evaluated at <code>x0</code>.
Kojto 115:87f2f5183dfb 6079 * For the square root function, the algorithm reduces to:
Kojto 115:87f2f5183dfb 6080 * <pre>
Kojto 115:87f2f5183dfb 6081 * x0 = in/2 [initial guess]
Kojto 115:87f2f5183dfb 6082 * x1 = 1/2 * ( x0 + in / x0) [each iteration]
Kojto 115:87f2f5183dfb 6083 * </pre>
Kojto 115:87f2f5183dfb 6084 */
Kojto 115:87f2f5183dfb 6085
Kojto 115:87f2f5183dfb 6086
Kojto 115:87f2f5183dfb 6087 /**
Kojto 115:87f2f5183dfb 6088 * @addtogroup SQRT
Kojto 115:87f2f5183dfb 6089 * @{
Kojto 115:87f2f5183dfb 6090 */
Kojto 115:87f2f5183dfb 6091
Kojto 115:87f2f5183dfb 6092 /**
Kojto 115:87f2f5183dfb 6093 * @brief Floating-point square root function.
Kojto 115:87f2f5183dfb 6094 * @param[in] in input value.
Kojto 115:87f2f5183dfb 6095 * @param[out] *pOut square root of input value.
Kojto 115:87f2f5183dfb 6096 * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
Kojto 115:87f2f5183dfb 6097 * <code>in</code> is negative value and returns zero output for negative values.
Kojto 115:87f2f5183dfb 6098 */
Kojto 115:87f2f5183dfb 6099
Kojto 115:87f2f5183dfb 6100 static __INLINE arm_status arm_sqrt_f32(
Kojto 115:87f2f5183dfb 6101 float32_t in,
Kojto 115:87f2f5183dfb 6102 float32_t * pOut)
Kojto 115:87f2f5183dfb 6103 {
Kojto 115:87f2f5183dfb 6104 if(in >= 0.0f)
Kojto 115:87f2f5183dfb 6105 {
Kojto 115:87f2f5183dfb 6106
Kojto 115:87f2f5183dfb 6107 // #if __FPU_USED
Kojto 115:87f2f5183dfb 6108 #if (__FPU_USED == 1) && defined ( __CC_ARM )
Kojto 115:87f2f5183dfb 6109 *pOut = __sqrtf(in);
Kojto 115:87f2f5183dfb 6110 #else
Kojto 115:87f2f5183dfb 6111 *pOut = sqrtf(in);
Kojto 115:87f2f5183dfb 6112 #endif
Kojto 115:87f2f5183dfb 6113
Kojto 115:87f2f5183dfb 6114 return (ARM_MATH_SUCCESS);
Kojto 115:87f2f5183dfb 6115 }
Kojto 115:87f2f5183dfb 6116 else
Kojto 115:87f2f5183dfb 6117 {
Kojto 115:87f2f5183dfb 6118 *pOut = 0.0f;
Kojto 115:87f2f5183dfb 6119 return (ARM_MATH_ARGUMENT_ERROR);
Kojto 115:87f2f5183dfb 6120 }
Kojto 115:87f2f5183dfb 6121
Kojto 115:87f2f5183dfb 6122 }
Kojto 115:87f2f5183dfb 6123
Kojto 115:87f2f5183dfb 6124
Kojto 115:87f2f5183dfb 6125 /**
Kojto 115:87f2f5183dfb 6126 * @brief Q31 square root function.
Kojto 115:87f2f5183dfb 6127 * @param[in] in input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF.
Kojto 115:87f2f5183dfb 6128 * @param[out] *pOut square root of input value.
Kojto 115:87f2f5183dfb 6129 * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
Kojto 115:87f2f5183dfb 6130 * <code>in</code> is negative value and returns zero output for negative values.
Kojto 115:87f2f5183dfb 6131 */
Kojto 115:87f2f5183dfb 6132 arm_status arm_sqrt_q31(
Kojto 115:87f2f5183dfb 6133 q31_t in,
Kojto 115:87f2f5183dfb 6134 q31_t * pOut);
Kojto 115:87f2f5183dfb 6135
Kojto 115:87f2f5183dfb 6136 /**
Kojto 115:87f2f5183dfb 6137 * @brief Q15 square root function.
Kojto 115:87f2f5183dfb 6138 * @param[in] in input value. The range of the input value is [0 +1) or 0x0000 to 0x7FFF.
Kojto 115:87f2f5183dfb 6139 * @param[out] *pOut square root of input value.
Kojto 115:87f2f5183dfb 6140 * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
Kojto 115:87f2f5183dfb 6141 * <code>in</code> is negative value and returns zero output for negative values.
Kojto 115:87f2f5183dfb 6142 */
Kojto 115:87f2f5183dfb 6143 arm_status arm_sqrt_q15(
Kojto 115:87f2f5183dfb 6144 q15_t in,
Kojto 115:87f2f5183dfb 6145 q15_t * pOut);
Kojto 115:87f2f5183dfb 6146
Kojto 115:87f2f5183dfb 6147 /**
Kojto 115:87f2f5183dfb 6148 * @} end of SQRT group
Kojto 115:87f2f5183dfb 6149 */
Kojto 115:87f2f5183dfb 6150
Kojto 115:87f2f5183dfb 6151
Kojto 115:87f2f5183dfb 6152
Kojto 115:87f2f5183dfb 6153
Kojto 115:87f2f5183dfb 6154
Kojto 115:87f2f5183dfb 6155
Kojto 115:87f2f5183dfb 6156 /**
Kojto 115:87f2f5183dfb 6157 * @brief floating-point Circular write function.
Kojto 115:87f2f5183dfb 6158 */
Kojto 115:87f2f5183dfb 6159
Kojto 115:87f2f5183dfb 6160 static __INLINE void arm_circularWrite_f32(
Kojto 115:87f2f5183dfb 6161 int32_t * circBuffer,
Kojto 115:87f2f5183dfb 6162 int32_t L,
Kojto 115:87f2f5183dfb 6163 uint16_t * writeOffset,
Kojto 115:87f2f5183dfb 6164 int32_t bufferInc,
Kojto 115:87f2f5183dfb 6165 const int32_t * src,
Kojto 115:87f2f5183dfb 6166 int32_t srcInc,
Kojto 115:87f2f5183dfb 6167 uint32_t blockSize)
Kojto 115:87f2f5183dfb 6168 {
Kojto 115:87f2f5183dfb 6169 uint32_t i = 0u;
Kojto 115:87f2f5183dfb 6170 int32_t wOffset;
Kojto 115:87f2f5183dfb 6171
Kojto 115:87f2f5183dfb 6172 /* Copy the value of Index pointer that points
Kojto 115:87f2f5183dfb 6173 * to the current location where the input samples to be copied */
Kojto 115:87f2f5183dfb 6174 wOffset = *writeOffset;
Kojto 115:87f2f5183dfb 6175
Kojto 115:87f2f5183dfb 6176 /* Loop over the blockSize */
Kojto 115:87f2f5183dfb 6177 i = blockSize;
Kojto 115:87f2f5183dfb 6178
Kojto 115:87f2f5183dfb 6179 while(i > 0u)
Kojto 115:87f2f5183dfb 6180 {
Kojto 115:87f2f5183dfb 6181 /* copy the input sample to the circular buffer */
Kojto 115:87f2f5183dfb 6182 circBuffer[wOffset] = *src;
Kojto 115:87f2f5183dfb 6183
Kojto 115:87f2f5183dfb 6184 /* Update the input pointer */
Kojto 115:87f2f5183dfb 6185 src += srcInc;
Kojto 115:87f2f5183dfb 6186
Kojto 115:87f2f5183dfb 6187 /* Circularly update wOffset. Watch out for positive and negative value */
Kojto 115:87f2f5183dfb 6188 wOffset += bufferInc;
Kojto 115:87f2f5183dfb 6189 if(wOffset >= L)
Kojto 115:87f2f5183dfb 6190 wOffset -= L;
Kojto 115:87f2f5183dfb 6191
Kojto 115:87f2f5183dfb 6192 /* Decrement the loop counter */
Kojto 115:87f2f5183dfb 6193 i--;
Kojto 115:87f2f5183dfb 6194 }
Kojto 115:87f2f5183dfb 6195
Kojto 115:87f2f5183dfb 6196 /* Update the index pointer */
Kojto 115:87f2f5183dfb 6197 *writeOffset = wOffset;
Kojto 115:87f2f5183dfb 6198 }
Kojto 115:87f2f5183dfb 6199
Kojto 115:87f2f5183dfb 6200
Kojto 115:87f2f5183dfb 6201
Kojto 115:87f2f5183dfb 6202 /**
Kojto 115:87f2f5183dfb 6203 * @brief floating-point Circular Read function.
Kojto 115:87f2f5183dfb 6204 */
Kojto 115:87f2f5183dfb 6205 static __INLINE void arm_circularRead_f32(
Kojto 115:87f2f5183dfb 6206 int32_t * circBuffer,
Kojto 115:87f2f5183dfb 6207 int32_t L,
Kojto 115:87f2f5183dfb 6208 int32_t * readOffset,
Kojto 115:87f2f5183dfb 6209 int32_t bufferInc,
Kojto 115:87f2f5183dfb 6210 int32_t * dst,
Kojto 115:87f2f5183dfb 6211 int32_t * dst_base,
Kojto 115:87f2f5183dfb 6212 int32_t dst_length,
Kojto 115:87f2f5183dfb 6213 int32_t dstInc,
Kojto 115:87f2f5183dfb 6214 uint32_t blockSize)
Kojto 115:87f2f5183dfb 6215 {
Kojto 115:87f2f5183dfb 6216 uint32_t i = 0u;
Kojto 115:87f2f5183dfb 6217 int32_t rOffset, dst_end;
Kojto 115:87f2f5183dfb 6218
Kojto 115:87f2f5183dfb 6219 /* Copy the value of Index pointer that points
Kojto 115:87f2f5183dfb 6220 * to the current location from where the input samples to be read */
Kojto 115:87f2f5183dfb 6221 rOffset = *readOffset;
Kojto 115:87f2f5183dfb 6222 dst_end = (int32_t) (dst_base + dst_length);
Kojto 115:87f2f5183dfb 6223
Kojto 115:87f2f5183dfb 6224 /* Loop over the blockSize */
Kojto 115:87f2f5183dfb 6225 i = blockSize;
Kojto 115:87f2f5183dfb 6226
Kojto 115:87f2f5183dfb 6227 while(i > 0u)
Kojto 115:87f2f5183dfb 6228 {
Kojto 115:87f2f5183dfb 6229 /* copy the sample from the circular buffer to the destination buffer */
Kojto 115:87f2f5183dfb 6230 *dst = circBuffer[rOffset];
Kojto 115:87f2f5183dfb 6231
Kojto 115:87f2f5183dfb 6232 /* Update the input pointer */
Kojto 115:87f2f5183dfb 6233 dst += dstInc;
Kojto 115:87f2f5183dfb 6234
Kojto 115:87f2f5183dfb 6235 if(dst == (int32_t *) dst_end)
Kojto 115:87f2f5183dfb 6236 {
Kojto 115:87f2f5183dfb 6237 dst = dst_base;
Kojto 115:87f2f5183dfb 6238 }
Kojto 115:87f2f5183dfb 6239
Kojto 115:87f2f5183dfb 6240 /* Circularly update rOffset. Watch out for positive and negative value */
Kojto 115:87f2f5183dfb 6241 rOffset += bufferInc;
Kojto 115:87f2f5183dfb 6242
Kojto 115:87f2f5183dfb 6243 if(rOffset >= L)
Kojto 115:87f2f5183dfb 6244 {
Kojto 115:87f2f5183dfb 6245 rOffset -= L;
Kojto 115:87f2f5183dfb 6246 }
Kojto 115:87f2f5183dfb 6247
Kojto 115:87f2f5183dfb 6248 /* Decrement the loop counter */
Kojto 115:87f2f5183dfb 6249 i--;
Kojto 115:87f2f5183dfb 6250 }
Kojto 115:87f2f5183dfb 6251
Kojto 115:87f2f5183dfb 6252 /* Update the index pointer */
Kojto 115:87f2f5183dfb 6253 *readOffset = rOffset;
Kojto 115:87f2f5183dfb 6254 }
Kojto 115:87f2f5183dfb 6255
Kojto 115:87f2f5183dfb 6256 /**
Kojto 115:87f2f5183dfb 6257 * @brief Q15 Circular write function.
Kojto 115:87f2f5183dfb 6258 */
Kojto 115:87f2f5183dfb 6259
Kojto 115:87f2f5183dfb 6260 static __INLINE void arm_circularWrite_q15(
Kojto 115:87f2f5183dfb 6261 q15_t * circBuffer,
Kojto 115:87f2f5183dfb 6262 int32_t L,
Kojto 115:87f2f5183dfb 6263 uint16_t * writeOffset,
Kojto 115:87f2f5183dfb 6264 int32_t bufferInc,
Kojto 115:87f2f5183dfb 6265 const q15_t * src,
Kojto 115:87f2f5183dfb 6266 int32_t srcInc,
Kojto 115:87f2f5183dfb 6267 uint32_t blockSize)
Kojto 115:87f2f5183dfb 6268 {
Kojto 115:87f2f5183dfb 6269 uint32_t i = 0u;
Kojto 115:87f2f5183dfb 6270 int32_t wOffset;
Kojto 115:87f2f5183dfb 6271
Kojto 115:87f2f5183dfb 6272 /* Copy the value of Index pointer that points
Kojto 115:87f2f5183dfb 6273 * to the current location where the input samples to be copied */
Kojto 115:87f2f5183dfb 6274 wOffset = *writeOffset;
Kojto 115:87f2f5183dfb 6275
Kojto 115:87f2f5183dfb 6276 /* Loop over the blockSize */
Kojto 115:87f2f5183dfb 6277 i = blockSize;
Kojto 115:87f2f5183dfb 6278
Kojto 115:87f2f5183dfb 6279 while(i > 0u)
Kojto 115:87f2f5183dfb 6280 {
Kojto 115:87f2f5183dfb 6281 /* copy the input sample to the circular buffer */
Kojto 115:87f2f5183dfb 6282 circBuffer[wOffset] = *src;
Kojto 115:87f2f5183dfb 6283
Kojto 115:87f2f5183dfb 6284 /* Update the input pointer */
Kojto 115:87f2f5183dfb 6285 src += srcInc;
Kojto 115:87f2f5183dfb 6286
Kojto 115:87f2f5183dfb 6287 /* Circularly update wOffset. Watch out for positive and negative value */
Kojto 115:87f2f5183dfb 6288 wOffset += bufferInc;
Kojto 115:87f2f5183dfb 6289 if(wOffset >= L)
Kojto 115:87f2f5183dfb 6290 wOffset -= L;
Kojto 115:87f2f5183dfb 6291
Kojto 115:87f2f5183dfb 6292 /* Decrement the loop counter */
Kojto 115:87f2f5183dfb 6293 i--;
Kojto 115:87f2f5183dfb 6294 }
Kojto 115:87f2f5183dfb 6295
Kojto 115:87f2f5183dfb 6296 /* Update the index pointer */
Kojto 115:87f2f5183dfb 6297 *writeOffset = wOffset;
Kojto 115:87f2f5183dfb 6298 }
Kojto 115:87f2f5183dfb 6299
Kojto 115:87f2f5183dfb 6300
Kojto 115:87f2f5183dfb 6301
Kojto 115:87f2f5183dfb 6302 /**
Kojto 115:87f2f5183dfb 6303 * @brief Q15 Circular Read function.
Kojto 115:87f2f5183dfb 6304 */
Kojto 115:87f2f5183dfb 6305 static __INLINE void arm_circularRead_q15(
Kojto 115:87f2f5183dfb 6306 q15_t * circBuffer,
Kojto 115:87f2f5183dfb 6307 int32_t L,
Kojto 115:87f2f5183dfb 6308 int32_t * readOffset,
Kojto 115:87f2f5183dfb 6309 int32_t bufferInc,
Kojto 115:87f2f5183dfb 6310 q15_t * dst,
Kojto 115:87f2f5183dfb 6311 q15_t * dst_base,
Kojto 115:87f2f5183dfb 6312 int32_t dst_length,
Kojto 115:87f2f5183dfb 6313 int32_t dstInc,
Kojto 115:87f2f5183dfb 6314 uint32_t blockSize)
Kojto 115:87f2f5183dfb 6315 {
Kojto 115:87f2f5183dfb 6316 uint32_t i = 0;
Kojto 115:87f2f5183dfb 6317 int32_t rOffset, dst_end;
Kojto 115:87f2f5183dfb 6318
Kojto 115:87f2f5183dfb 6319 /* Copy the value of Index pointer that points
Kojto 115:87f2f5183dfb 6320 * to the current location from where the input samples to be read */
Kojto 115:87f2f5183dfb 6321 rOffset = *readOffset;
Kojto 115:87f2f5183dfb 6322
Kojto 115:87f2f5183dfb 6323 dst_end = (int32_t) (dst_base + dst_length);
Kojto 115:87f2f5183dfb 6324
Kojto 115:87f2f5183dfb 6325 /* Loop over the blockSize */
Kojto 115:87f2f5183dfb 6326 i = blockSize;
Kojto 115:87f2f5183dfb 6327
Kojto 115:87f2f5183dfb 6328 while(i > 0u)
Kojto 115:87f2f5183dfb 6329 {
Kojto 115:87f2f5183dfb 6330 /* copy the sample from the circular buffer to the destination buffer */
Kojto 115:87f2f5183dfb 6331 *dst = circBuffer[rOffset];
Kojto 115:87f2f5183dfb 6332
Kojto 115:87f2f5183dfb 6333 /* Update the input pointer */
Kojto 115:87f2f5183dfb 6334 dst += dstInc;
Kojto 115:87f2f5183dfb 6335
Kojto 115:87f2f5183dfb 6336 if(dst == (q15_t *) dst_end)
Kojto 115:87f2f5183dfb 6337 {
Kojto 115:87f2f5183dfb 6338 dst = dst_base;
Kojto 115:87f2f5183dfb 6339 }
Kojto 115:87f2f5183dfb 6340
Kojto 115:87f2f5183dfb 6341 /* Circularly update wOffset. Watch out for positive and negative value */
Kojto 115:87f2f5183dfb 6342 rOffset += bufferInc;
Kojto 115:87f2f5183dfb 6343
Kojto 115:87f2f5183dfb 6344 if(rOffset >= L)
Kojto 115:87f2f5183dfb 6345 {
Kojto 115:87f2f5183dfb 6346 rOffset -= L;
Kojto 115:87f2f5183dfb 6347 }
Kojto 115:87f2f5183dfb 6348
Kojto 115:87f2f5183dfb 6349 /* Decrement the loop counter */
Kojto 115:87f2f5183dfb 6350 i--;
Kojto 115:87f2f5183dfb 6351 }
Kojto 115:87f2f5183dfb 6352
Kojto 115:87f2f5183dfb 6353 /* Update the index pointer */
Kojto 115:87f2f5183dfb 6354 *readOffset = rOffset;
Kojto 115:87f2f5183dfb 6355 }
Kojto 115:87f2f5183dfb 6356
Kojto 115:87f2f5183dfb 6357
Kojto 115:87f2f5183dfb 6358 /**
Kojto 115:87f2f5183dfb 6359 * @brief Q7 Circular write function.
Kojto 115:87f2f5183dfb 6360 */
Kojto 115:87f2f5183dfb 6361
Kojto 115:87f2f5183dfb 6362 static __INLINE void arm_circularWrite_q7(
Kojto 115:87f2f5183dfb 6363 q7_t * circBuffer,
Kojto 115:87f2f5183dfb 6364 int32_t L,
Kojto 115:87f2f5183dfb 6365 uint16_t * writeOffset,
Kojto 115:87f2f5183dfb 6366 int32_t bufferInc,
Kojto 115:87f2f5183dfb 6367 const q7_t * src,
Kojto 115:87f2f5183dfb 6368 int32_t srcInc,
Kojto 115:87f2f5183dfb 6369 uint32_t blockSize)
Kojto 115:87f2f5183dfb 6370 {
Kojto 115:87f2f5183dfb 6371 uint32_t i = 0u;
Kojto 115:87f2f5183dfb 6372 int32_t wOffset;
Kojto 115:87f2f5183dfb 6373
Kojto 115:87f2f5183dfb 6374 /* Copy the value of Index pointer that points
Kojto 115:87f2f5183dfb 6375 * to the current location where the input samples to be copied */
Kojto 115:87f2f5183dfb 6376 wOffset = *writeOffset;
Kojto 115:87f2f5183dfb 6377
Kojto 115:87f2f5183dfb 6378 /* Loop over the blockSize */
Kojto 115:87f2f5183dfb 6379 i = blockSize;
Kojto 115:87f2f5183dfb 6380
Kojto 115:87f2f5183dfb 6381 while(i > 0u)
Kojto 115:87f2f5183dfb 6382 {
Kojto 115:87f2f5183dfb 6383 /* copy the input sample to the circular buffer */
Kojto 115:87f2f5183dfb 6384 circBuffer[wOffset] = *src;
Kojto 115:87f2f5183dfb 6385
Kojto 115:87f2f5183dfb 6386 /* Update the input pointer */
Kojto 115:87f2f5183dfb 6387 src += srcInc;
Kojto 115:87f2f5183dfb 6388
Kojto 115:87f2f5183dfb 6389 /* Circularly update wOffset. Watch out for positive and negative value */
Kojto 115:87f2f5183dfb 6390 wOffset += bufferInc;
Kojto 115:87f2f5183dfb 6391 if(wOffset >= L)
Kojto 115:87f2f5183dfb 6392 wOffset -= L;
Kojto 115:87f2f5183dfb 6393
Kojto 115:87f2f5183dfb 6394 /* Decrement the loop counter */
Kojto 115:87f2f5183dfb 6395 i--;
Kojto 115:87f2f5183dfb 6396 }
Kojto 115:87f2f5183dfb 6397
Kojto 115:87f2f5183dfb 6398 /* Update the index pointer */
Kojto 115:87f2f5183dfb 6399 *writeOffset = wOffset;
Kojto 115:87f2f5183dfb 6400 }
Kojto 115:87f2f5183dfb 6401
Kojto 115:87f2f5183dfb 6402
Kojto 115:87f2f5183dfb 6403
Kojto 115:87f2f5183dfb 6404 /**
Kojto 115:87f2f5183dfb 6405 * @brief Q7 Circular Read function.
Kojto 115:87f2f5183dfb 6406 */
Kojto 115:87f2f5183dfb 6407 static __INLINE void arm_circularRead_q7(
Kojto 115:87f2f5183dfb 6408 q7_t * circBuffer,
Kojto 115:87f2f5183dfb 6409 int32_t L,
Kojto 115:87f2f5183dfb 6410 int32_t * readOffset,
Kojto 115:87f2f5183dfb 6411 int32_t bufferInc,
Kojto 115:87f2f5183dfb 6412 q7_t * dst,
Kojto 115:87f2f5183dfb 6413 q7_t * dst_base,
Kojto 115:87f2f5183dfb 6414 int32_t dst_length,
Kojto 115:87f2f5183dfb 6415 int32_t dstInc,
Kojto 115:87f2f5183dfb 6416 uint32_t blockSize)
Kojto 115:87f2f5183dfb 6417 {
Kojto 115:87f2f5183dfb 6418 uint32_t i = 0;
Kojto 115:87f2f5183dfb 6419 int32_t rOffset, dst_end;
Kojto 115:87f2f5183dfb 6420
Kojto 115:87f2f5183dfb 6421 /* Copy the value of Index pointer that points
Kojto 115:87f2f5183dfb 6422 * to the current location from where the input samples to be read */
Kojto 115:87f2f5183dfb 6423 rOffset = *readOffset;
Kojto 115:87f2f5183dfb 6424
Kojto 115:87f2f5183dfb 6425 dst_end = (int32_t) (dst_base + dst_length);
Kojto 115:87f2f5183dfb 6426
Kojto 115:87f2f5183dfb 6427 /* Loop over the blockSize */
Kojto 115:87f2f5183dfb 6428 i = blockSize;
Kojto 115:87f2f5183dfb 6429
Kojto 115:87f2f5183dfb 6430 while(i > 0u)
Kojto 115:87f2f5183dfb 6431 {
Kojto 115:87f2f5183dfb 6432 /* copy the sample from the circular buffer to the destination buffer */
Kojto 115:87f2f5183dfb 6433 *dst = circBuffer[rOffset];
Kojto 115:87f2f5183dfb 6434
Kojto 115:87f2f5183dfb 6435 /* Update the input pointer */
Kojto 115:87f2f5183dfb 6436 dst += dstInc;
Kojto 115:87f2f5183dfb 6437
Kojto 115:87f2f5183dfb 6438 if(dst == (q7_t *) dst_end)
Kojto 115:87f2f5183dfb 6439 {
Kojto 115:87f2f5183dfb 6440 dst = dst_base;
Kojto 115:87f2f5183dfb 6441 }
Kojto 115:87f2f5183dfb 6442
Kojto 115:87f2f5183dfb 6443 /* Circularly update rOffset. Watch out for positive and negative value */
Kojto 115:87f2f5183dfb 6444 rOffset += bufferInc;
Kojto 115:87f2f5183dfb 6445
Kojto 115:87f2f5183dfb 6446 if(rOffset >= L)
Kojto 115:87f2f5183dfb 6447 {
Kojto 115:87f2f5183dfb 6448 rOffset -= L;
Kojto 115:87f2f5183dfb 6449 }
Kojto 115:87f2f5183dfb 6450
Kojto 115:87f2f5183dfb 6451 /* Decrement the loop counter */
Kojto 115:87f2f5183dfb 6452 i--;
Kojto 115:87f2f5183dfb 6453 }
Kojto 115:87f2f5183dfb 6454
Kojto 115:87f2f5183dfb 6455 /* Update the index pointer */
Kojto 115:87f2f5183dfb 6456 *readOffset = rOffset;
Kojto 115:87f2f5183dfb 6457 }
Kojto 115:87f2f5183dfb 6458
Kojto 115:87f2f5183dfb 6459
Kojto 115:87f2f5183dfb 6460 /**
Kojto 115:87f2f5183dfb 6461 * @brief Sum of the squares of the elements of a Q31 vector.
Kojto 115:87f2f5183dfb 6462 * @param[in] *pSrc is input pointer
Kojto 115:87f2f5183dfb 6463 * @param[in] blockSize is the number of samples to process
Kojto 115:87f2f5183dfb 6464 * @param[out] *pResult is output value.
Kojto 115:87f2f5183dfb 6465 * @return none.
Kojto 115:87f2f5183dfb 6466 */
Kojto 115:87f2f5183dfb 6467
Kojto 115:87f2f5183dfb 6468 void arm_power_q31(
Kojto 115:87f2f5183dfb 6469 q31_t * pSrc,
Kojto 115:87f2f5183dfb 6470 uint32_t blockSize,
Kojto 115:87f2f5183dfb 6471 q63_t * pResult);
Kojto 115:87f2f5183dfb 6472
Kojto 115:87f2f5183dfb 6473 /**
Kojto 115:87f2f5183dfb 6474 * @brief Sum of the squares of the elements of a floating-point vector.
Kojto 115:87f2f5183dfb 6475 * @param[in] *pSrc is input pointer
Kojto 115:87f2f5183dfb 6476 * @param[in] blockSize is the number of samples to process
Kojto 115:87f2f5183dfb 6477 * @param[out] *pResult is output value.
Kojto 115:87f2f5183dfb 6478 * @return none.
Kojto 115:87f2f5183dfb 6479 */
Kojto 115:87f2f5183dfb 6480
Kojto 115:87f2f5183dfb 6481 void arm_power_f32(
Kojto 115:87f2f5183dfb 6482 float32_t * pSrc,
Kojto 115:87f2f5183dfb 6483 uint32_t blockSize,
Kojto 115:87f2f5183dfb 6484 float32_t * pResult);
Kojto 115:87f2f5183dfb 6485
Kojto 115:87f2f5183dfb 6486 /**
Kojto 115:87f2f5183dfb 6487 * @brief Sum of the squares of the elements of a Q15 vector.
Kojto 115:87f2f5183dfb 6488 * @param[in] *pSrc is input pointer
Kojto 115:87f2f5183dfb 6489 * @param[in] blockSize is the number of samples to process
Kojto 115:87f2f5183dfb 6490 * @param[out] *pResult is output value.
Kojto 115:87f2f5183dfb 6491 * @return none.
Kojto 115:87f2f5183dfb 6492 */
Kojto 115:87f2f5183dfb 6493
Kojto 115:87f2f5183dfb 6494 void arm_power_q15(
Kojto 115:87f2f5183dfb 6495 q15_t * pSrc,
Kojto 115:87f2f5183dfb 6496 uint32_t blockSize,
Kojto 115:87f2f5183dfb 6497 q63_t * pResult);
Kojto 115:87f2f5183dfb 6498
Kojto 115:87f2f5183dfb 6499 /**
Kojto 115:87f2f5183dfb 6500 * @brief Sum of the squares of the elements of a Q7 vector.
Kojto 115:87f2f5183dfb 6501 * @param[in] *pSrc is input pointer
Kojto 115:87f2f5183dfb 6502 * @param[in] blockSize is the number of samples to process
Kojto 115:87f2f5183dfb 6503 * @param[out] *pResult is output value.
Kojto 115:87f2f5183dfb 6504 * @return none.
Kojto 115:87f2f5183dfb 6505 */
Kojto 115:87f2f5183dfb 6506
Kojto 115:87f2f5183dfb 6507 void arm_power_q7(
Kojto 115:87f2f5183dfb 6508 q7_t * pSrc,
Kojto 115:87f2f5183dfb 6509 uint32_t blockSize,
Kojto 115:87f2f5183dfb 6510 q31_t * pResult);
Kojto 115:87f2f5183dfb 6511
Kojto 115:87f2f5183dfb 6512 /**
Kojto 115:87f2f5183dfb 6513 * @brief Mean value of a Q7 vector.
Kojto 115:87f2f5183dfb 6514 * @param[in] *pSrc is input pointer
Kojto 115:87f2f5183dfb 6515 * @param[in] blockSize is the number of samples to process
Kojto 115:87f2f5183dfb 6516 * @param[out] *pResult is output value.
Kojto 115:87f2f5183dfb 6517 * @return none.
Kojto 115:87f2f5183dfb 6518 */
Kojto 115:87f2f5183dfb 6519
Kojto 115:87f2f5183dfb 6520 void arm_mean_q7(
Kojto 115:87f2f5183dfb 6521 q7_t * pSrc,
Kojto 115:87f2f5183dfb 6522 uint32_t blockSize,
Kojto 115:87f2f5183dfb 6523 q7_t * pResult);
Kojto 115:87f2f5183dfb 6524
Kojto 115:87f2f5183dfb 6525 /**
Kojto 115:87f2f5183dfb 6526 * @brief Mean value of a Q15 vector.
Kojto 115:87f2f5183dfb 6527 * @param[in] *pSrc is input pointer
Kojto 115:87f2f5183dfb 6528 * @param[in] blockSize is the number of samples to process
Kojto 115:87f2f5183dfb 6529 * @param[out] *pResult is output value.
Kojto 115:87f2f5183dfb 6530 * @return none.
Kojto 115:87f2f5183dfb 6531 */
Kojto 115:87f2f5183dfb 6532 void arm_mean_q15(
Kojto 115:87f2f5183dfb 6533 q15_t * pSrc,
Kojto 115:87f2f5183dfb 6534 uint32_t blockSize,
Kojto 115:87f2f5183dfb 6535 q15_t * pResult);
Kojto 115:87f2f5183dfb 6536
Kojto 115:87f2f5183dfb 6537 /**
Kojto 115:87f2f5183dfb 6538 * @brief Mean value of a Q31 vector.
Kojto 115:87f2f5183dfb 6539 * @param[in] *pSrc is input pointer
Kojto 115:87f2f5183dfb 6540 * @param[in] blockSize is the number of samples to process
Kojto 115:87f2f5183dfb 6541 * @param[out] *pResult is output value.
Kojto 115:87f2f5183dfb 6542 * @return none.
Kojto 115:87f2f5183dfb 6543 */
Kojto 115:87f2f5183dfb 6544 void arm_mean_q31(
Kojto 115:87f2f5183dfb 6545 q31_t * pSrc,
Kojto 115:87f2f5183dfb 6546 uint32_t blockSize,
Kojto 115:87f2f5183dfb 6547 q31_t * pResult);
Kojto 115:87f2f5183dfb 6548
Kojto 115:87f2f5183dfb 6549 /**
Kojto 115:87f2f5183dfb 6550 * @brief Mean value of a floating-point vector.
Kojto 115:87f2f5183dfb 6551 * @param[in] *pSrc is input pointer
Kojto 115:87f2f5183dfb 6552 * @param[in] blockSize is the number of samples to process
Kojto 115:87f2f5183dfb 6553 * @param[out] *pResult is output value.
Kojto 115:87f2f5183dfb 6554 * @return none.
Kojto 115:87f2f5183dfb 6555 */
Kojto 115:87f2f5183dfb 6556 void arm_mean_f32(
Kojto 115:87f2f5183dfb 6557 float32_t * pSrc,
Kojto 115:87f2f5183dfb 6558 uint32_t blockSize,
Kojto 115:87f2f5183dfb 6559 float32_t * pResult);
Kojto 115:87f2f5183dfb 6560
Kojto 115:87f2f5183dfb 6561 /**
Kojto 115:87f2f5183dfb 6562 * @brief Variance of the elements of a floating-point vector.
Kojto 115:87f2f5183dfb 6563 * @param[in] *pSrc is input pointer
Kojto 115:87f2f5183dfb 6564 * @param[in] blockSize is the number of samples to process
Kojto 115:87f2f5183dfb 6565 * @param[out] *pResult is output value.
Kojto 115:87f2f5183dfb 6566 * @return none.
Kojto 115:87f2f5183dfb 6567 */
Kojto 115:87f2f5183dfb 6568
Kojto 115:87f2f5183dfb 6569 void arm_var_f32(
Kojto 115:87f2f5183dfb 6570 float32_t * pSrc,
Kojto 115:87f2f5183dfb 6571 uint32_t blockSize,
Kojto 115:87f2f5183dfb 6572 float32_t * pResult);
Kojto 115:87f2f5183dfb 6573
Kojto 115:87f2f5183dfb 6574 /**
Kojto 115:87f2f5183dfb 6575 * @brief Variance of the elements of a Q31 vector.
Kojto 115:87f2f5183dfb 6576 * @param[in] *pSrc is input pointer
Kojto 115:87f2f5183dfb 6577 * @param[in] blockSize is the number of samples to process
Kojto 115:87f2f5183dfb 6578 * @param[out] *pResult is output value.
Kojto 115:87f2f5183dfb 6579 * @return none.
Kojto 115:87f2f5183dfb 6580 */
Kojto 115:87f2f5183dfb 6581
Kojto 115:87f2f5183dfb 6582 void arm_var_q31(
Kojto 115:87f2f5183dfb 6583 q31_t * pSrc,
Kojto 115:87f2f5183dfb 6584 uint32_t blockSize,
Kojto 115:87f2f5183dfb 6585 q31_t * pResult);
Kojto 115:87f2f5183dfb 6586
Kojto 115:87f2f5183dfb 6587 /**
Kojto 115:87f2f5183dfb 6588 * @brief Variance of the elements of a Q15 vector.
Kojto 115:87f2f5183dfb 6589 * @param[in] *pSrc is input pointer
Kojto 115:87f2f5183dfb 6590 * @param[in] blockSize is the number of samples to process
Kojto 115:87f2f5183dfb 6591 * @param[out] *pResult is output value.
Kojto 115:87f2f5183dfb 6592 * @return none.
Kojto 115:87f2f5183dfb 6593 */
Kojto 115:87f2f5183dfb 6594
Kojto 115:87f2f5183dfb 6595 void arm_var_q15(
Kojto 115:87f2f5183dfb 6596 q15_t * pSrc,
Kojto 115:87f2f5183dfb 6597 uint32_t blockSize,
Kojto 115:87f2f5183dfb 6598 q15_t * pResult);
Kojto 115:87f2f5183dfb 6599
Kojto 115:87f2f5183dfb 6600 /**
Kojto 115:87f2f5183dfb 6601 * @brief Root Mean Square of the elements of a floating-point vector.
Kojto 115:87f2f5183dfb 6602 * @param[in] *pSrc is input pointer
Kojto 115:87f2f5183dfb 6603 * @param[in] blockSize is the number of samples to process
Kojto 115:87f2f5183dfb 6604 * @param[out] *pResult is output value.
Kojto 115:87f2f5183dfb 6605 * @return none.
Kojto 115:87f2f5183dfb 6606 */
Kojto 115:87f2f5183dfb 6607
Kojto 115:87f2f5183dfb 6608 void arm_rms_f32(
Kojto 115:87f2f5183dfb 6609 float32_t * pSrc,
Kojto 115:87f2f5183dfb 6610 uint32_t blockSize,
Kojto 115:87f2f5183dfb 6611 float32_t * pResult);
Kojto 115:87f2f5183dfb 6612
Kojto 115:87f2f5183dfb 6613 /**
Kojto 115:87f2f5183dfb 6614 * @brief Root Mean Square of the elements of a Q31 vector.
Kojto 115:87f2f5183dfb 6615 * @param[in] *pSrc is input pointer
Kojto 115:87f2f5183dfb 6616 * @param[in] blockSize is the number of samples to process
Kojto 115:87f2f5183dfb 6617 * @param[out] *pResult is output value.
Kojto 115:87f2f5183dfb 6618 * @return none.
Kojto 115:87f2f5183dfb 6619 */
Kojto 115:87f2f5183dfb 6620
Kojto 115:87f2f5183dfb 6621 void arm_rms_q31(
Kojto 115:87f2f5183dfb 6622 q31_t * pSrc,
Kojto 115:87f2f5183dfb 6623 uint32_t blockSize,
Kojto 115:87f2f5183dfb 6624 q31_t * pResult);
Kojto 115:87f2f5183dfb 6625
Kojto 115:87f2f5183dfb 6626 /**
Kojto 115:87f2f5183dfb 6627 * @brief Root Mean Square of the elements of a Q15 vector.
Kojto 115:87f2f5183dfb 6628 * @param[in] *pSrc is input pointer
Kojto 115:87f2f5183dfb 6629 * @param[in] blockSize is the number of samples to process
Kojto 115:87f2f5183dfb 6630 * @param[out] *pResult is output value.
Kojto 115:87f2f5183dfb 6631 * @return none.
Kojto 115:87f2f5183dfb 6632 */
Kojto 115:87f2f5183dfb 6633
Kojto 115:87f2f5183dfb 6634 void arm_rms_q15(
Kojto 115:87f2f5183dfb 6635 q15_t * pSrc,
Kojto 115:87f2f5183dfb 6636 uint32_t blockSize,
Kojto 115:87f2f5183dfb 6637 q15_t * pResult);
Kojto 115:87f2f5183dfb 6638
Kojto 115:87f2f5183dfb 6639 /**
Kojto 115:87f2f5183dfb 6640 * @brief Standard deviation of the elements of a floating-point vector.
Kojto 115:87f2f5183dfb 6641 * @param[in] *pSrc is input pointer
Kojto 115:87f2f5183dfb 6642 * @param[in] blockSize is the number of samples to process
Kojto 115:87f2f5183dfb 6643 * @param[out] *pResult is output value.
Kojto 115:87f2f5183dfb 6644 * @return none.
Kojto 115:87f2f5183dfb 6645 */
Kojto 115:87f2f5183dfb 6646
Kojto 115:87f2f5183dfb 6647 void arm_std_f32(
Kojto 115:87f2f5183dfb 6648 float32_t * pSrc,
Kojto 115:87f2f5183dfb 6649 uint32_t blockSize,
Kojto 115:87f2f5183dfb 6650 float32_t * pResult);
Kojto 115:87f2f5183dfb 6651
Kojto 115:87f2f5183dfb 6652 /**
Kojto 115:87f2f5183dfb 6653 * @brief Standard deviation of the elements of a Q31 vector.
Kojto 115:87f2f5183dfb 6654 * @param[in] *pSrc is input pointer
Kojto 115:87f2f5183dfb 6655 * @param[in] blockSize is the number of samples to process
Kojto 115:87f2f5183dfb 6656 * @param[out] *pResult is output value.
Kojto 115:87f2f5183dfb 6657 * @return none.
Kojto 115:87f2f5183dfb 6658 */
Kojto 115:87f2f5183dfb 6659
Kojto 115:87f2f5183dfb 6660 void arm_std_q31(
Kojto 115:87f2f5183dfb 6661 q31_t * pSrc,
Kojto 115:87f2f5183dfb 6662 uint32_t blockSize,
Kojto 115:87f2f5183dfb 6663 q31_t * pResult);
Kojto 115:87f2f5183dfb 6664
Kojto 115:87f2f5183dfb 6665 /**
Kojto 115:87f2f5183dfb 6666 * @brief Standard deviation of the elements of a Q15 vector.
Kojto 115:87f2f5183dfb 6667 * @param[in] *pSrc is input pointer
Kojto 115:87f2f5183dfb 6668 * @param[in] blockSize is the number of samples to process
Kojto 115:87f2f5183dfb 6669 * @param[out] *pResult is output value.
Kojto 115:87f2f5183dfb 6670 * @return none.
Kojto 115:87f2f5183dfb 6671 */
Kojto 115:87f2f5183dfb 6672
Kojto 115:87f2f5183dfb 6673 void arm_std_q15(
Kojto 115:87f2f5183dfb 6674 q15_t * pSrc,
Kojto 115:87f2f5183dfb 6675 uint32_t blockSize,
Kojto 115:87f2f5183dfb 6676 q15_t * pResult);
Kojto 115:87f2f5183dfb 6677
Kojto 115:87f2f5183dfb 6678 /**
Kojto 115:87f2f5183dfb 6679 * @brief Floating-point complex magnitude
Kojto 115:87f2f5183dfb 6680 * @param[in] *pSrc points to the complex input vector
Kojto 115:87f2f5183dfb 6681 * @param[out] *pDst points to the real output vector
Kojto 115:87f2f5183dfb 6682 * @param[in] numSamples number of complex samples in the input vector
Kojto 115:87f2f5183dfb 6683 * @return none.
Kojto 115:87f2f5183dfb 6684 */
Kojto 115:87f2f5183dfb 6685
Kojto 115:87f2f5183dfb 6686 void arm_cmplx_mag_f32(
Kojto 115:87f2f5183dfb 6687 float32_t * pSrc,
Kojto 115:87f2f5183dfb 6688 float32_t * pDst,
Kojto 115:87f2f5183dfb 6689 uint32_t numSamples);
Kojto 115:87f2f5183dfb 6690
Kojto 115:87f2f5183dfb 6691 /**
Kojto 115:87f2f5183dfb 6692 * @brief Q31 complex magnitude
Kojto 115:87f2f5183dfb 6693 * @param[in] *pSrc points to the complex input vector
Kojto 115:87f2f5183dfb 6694 * @param[out] *pDst points to the real output vector
Kojto 115:87f2f5183dfb 6695 * @param[in] numSamples number of complex samples in the input vector
Kojto 115:87f2f5183dfb 6696 * @return none.
Kojto 115:87f2f5183dfb 6697 */
Kojto 115:87f2f5183dfb 6698
Kojto 115:87f2f5183dfb 6699 void arm_cmplx_mag_q31(
Kojto 115:87f2f5183dfb 6700 q31_t * pSrc,
Kojto 115:87f2f5183dfb 6701 q31_t * pDst,
Kojto 115:87f2f5183dfb 6702 uint32_t numSamples);
Kojto 115:87f2f5183dfb 6703
Kojto 115:87f2f5183dfb 6704 /**
Kojto 115:87f2f5183dfb 6705 * @brief Q15 complex magnitude
Kojto 115:87f2f5183dfb 6706 * @param[in] *pSrc points to the complex input vector
Kojto 115:87f2f5183dfb 6707 * @param[out] *pDst points to the real output vector
Kojto 115:87f2f5183dfb 6708 * @param[in] numSamples number of complex samples in the input vector
Kojto 115:87f2f5183dfb 6709 * @return none.
Kojto 115:87f2f5183dfb 6710 */
Kojto 115:87f2f5183dfb 6711
Kojto 115:87f2f5183dfb 6712 void arm_cmplx_mag_q15(
Kojto 115:87f2f5183dfb 6713 q15_t * pSrc,
Kojto 115:87f2f5183dfb 6714 q15_t * pDst,
Kojto 115:87f2f5183dfb 6715 uint32_t numSamples);
Kojto 115:87f2f5183dfb 6716
Kojto 115:87f2f5183dfb 6717 /**
Kojto 115:87f2f5183dfb 6718 * @brief Q15 complex dot product
Kojto 115:87f2f5183dfb 6719 * @param[in] *pSrcA points to the first input vector
Kojto 115:87f2f5183dfb 6720 * @param[in] *pSrcB points to the second input vector
Kojto 115:87f2f5183dfb 6721 * @param[in] numSamples number of complex samples in each vector
Kojto 115:87f2f5183dfb 6722 * @param[out] *realResult real part of the result returned here
Kojto 115:87f2f5183dfb 6723 * @param[out] *imagResult imaginary part of the result returned here
Kojto 115:87f2f5183dfb 6724 * @return none.
Kojto 115:87f2f5183dfb 6725 */
Kojto 115:87f2f5183dfb 6726
Kojto 115:87f2f5183dfb 6727 void arm_cmplx_dot_prod_q15(
Kojto 115:87f2f5183dfb 6728 q15_t * pSrcA,
Kojto 115:87f2f5183dfb 6729 q15_t * pSrcB,
Kojto 115:87f2f5183dfb 6730 uint32_t numSamples,
Kojto 115:87f2f5183dfb 6731 q31_t * realResult,
Kojto 115:87f2f5183dfb 6732 q31_t * imagResult);
Kojto 115:87f2f5183dfb 6733
Kojto 115:87f2f5183dfb 6734 /**
Kojto 115:87f2f5183dfb 6735 * @brief Q31 complex dot product
Kojto 115:87f2f5183dfb 6736 * @param[in] *pSrcA points to the first input vector
Kojto 115:87f2f5183dfb 6737 * @param[in] *pSrcB points to the second input vector
Kojto 115:87f2f5183dfb 6738 * @param[in] numSamples number of complex samples in each vector
Kojto 115:87f2f5183dfb 6739 * @param[out] *realResult real part of the result returned here
Kojto 115:87f2f5183dfb 6740 * @param[out] *imagResult imaginary part of the result returned here
Kojto 115:87f2f5183dfb 6741 * @return none.
Kojto 115:87f2f5183dfb 6742 */
Kojto 115:87f2f5183dfb 6743
Kojto 115:87f2f5183dfb 6744 void arm_cmplx_dot_prod_q31(
Kojto 115:87f2f5183dfb 6745 q31_t * pSrcA,
Kojto 115:87f2f5183dfb 6746 q31_t * pSrcB,
Kojto 115:87f2f5183dfb 6747 uint32_t numSamples,
Kojto 115:87f2f5183dfb 6748 q63_t * realResult,
Kojto 115:87f2f5183dfb 6749 q63_t * imagResult);
Kojto 115:87f2f5183dfb 6750
Kojto 115:87f2f5183dfb 6751 /**
Kojto 115:87f2f5183dfb 6752 * @brief Floating-point complex dot product
Kojto 115:87f2f5183dfb 6753 * @param[in] *pSrcA points to the first input vector
Kojto 115:87f2f5183dfb 6754 * @param[in] *pSrcB points to the second input vector
Kojto 115:87f2f5183dfb 6755 * @param[in] numSamples number of complex samples in each vector
Kojto 115:87f2f5183dfb 6756 * @param[out] *realResult real part of the result returned here
Kojto 115:87f2f5183dfb 6757 * @param[out] *imagResult imaginary part of the result returned here
Kojto 115:87f2f5183dfb 6758 * @return none.
Kojto 115:87f2f5183dfb 6759 */
Kojto 115:87f2f5183dfb 6760
Kojto 115:87f2f5183dfb 6761 void arm_cmplx_dot_prod_f32(
Kojto 115:87f2f5183dfb 6762 float32_t * pSrcA,
Kojto 115:87f2f5183dfb 6763 float32_t * pSrcB,
Kojto 115:87f2f5183dfb 6764 uint32_t numSamples,
Kojto 115:87f2f5183dfb 6765 float32_t * realResult,
Kojto 115:87f2f5183dfb 6766 float32_t * imagResult);
Kojto 115:87f2f5183dfb 6767
Kojto 115:87f2f5183dfb 6768 /**
Kojto 115:87f2f5183dfb 6769 * @brief Q15 complex-by-real multiplication
Kojto 115:87f2f5183dfb 6770 * @param[in] *pSrcCmplx points to the complex input vector
Kojto 115:87f2f5183dfb 6771 * @param[in] *pSrcReal points to the real input vector
Kojto 115:87f2f5183dfb 6772 * @param[out] *pCmplxDst points to the complex output vector
Kojto 115:87f2f5183dfb 6773 * @param[in] numSamples number of samples in each vector
Kojto 115:87f2f5183dfb 6774 * @return none.
Kojto 115:87f2f5183dfb 6775 */
Kojto 115:87f2f5183dfb 6776
Kojto 115:87f2f5183dfb 6777 void arm_cmplx_mult_real_q15(
Kojto 115:87f2f5183dfb 6778 q15_t * pSrcCmplx,
Kojto 115:87f2f5183dfb 6779 q15_t * pSrcReal,
Kojto 115:87f2f5183dfb 6780 q15_t * pCmplxDst,
Kojto 115:87f2f5183dfb 6781 uint32_t numSamples);
Kojto 115:87f2f5183dfb 6782
Kojto 115:87f2f5183dfb 6783 /**
Kojto 115:87f2f5183dfb 6784 * @brief Q31 complex-by-real multiplication
Kojto 115:87f2f5183dfb 6785 * @param[in] *pSrcCmplx points to the complex input vector
Kojto 115:87f2f5183dfb 6786 * @param[in] *pSrcReal points to the real input vector
Kojto 115:87f2f5183dfb 6787 * @param[out] *pCmplxDst points to the complex output vector
Kojto 115:87f2f5183dfb 6788 * @param[in] numSamples number of samples in each vector
Kojto 115:87f2f5183dfb 6789 * @return none.
Kojto 115:87f2f5183dfb 6790 */
Kojto 115:87f2f5183dfb 6791
Kojto 115:87f2f5183dfb 6792 void arm_cmplx_mult_real_q31(
Kojto 115:87f2f5183dfb 6793 q31_t * pSrcCmplx,
Kojto 115:87f2f5183dfb 6794 q31_t * pSrcReal,
Kojto 115:87f2f5183dfb 6795 q31_t * pCmplxDst,
Kojto 115:87f2f5183dfb 6796 uint32_t numSamples);
Kojto 115:87f2f5183dfb 6797
Kojto 115:87f2f5183dfb 6798 /**
Kojto 115:87f2f5183dfb 6799 * @brief Floating-point complex-by-real multiplication
Kojto 115:87f2f5183dfb 6800 * @param[in] *pSrcCmplx points to the complex input vector
Kojto 115:87f2f5183dfb 6801 * @param[in] *pSrcReal points to the real input vector
Kojto 115:87f2f5183dfb 6802 * @param[out] *pCmplxDst points to the complex output vector
Kojto 115:87f2f5183dfb 6803 * @param[in] numSamples number of samples in each vector
Kojto 115:87f2f5183dfb 6804 * @return none.
Kojto 115:87f2f5183dfb 6805 */
Kojto 115:87f2f5183dfb 6806
Kojto 115:87f2f5183dfb 6807 void arm_cmplx_mult_real_f32(
Kojto 115:87f2f5183dfb 6808 float32_t * pSrcCmplx,
Kojto 115:87f2f5183dfb 6809 float32_t * pSrcReal,
Kojto 115:87f2f5183dfb 6810 float32_t * pCmplxDst,
Kojto 115:87f2f5183dfb 6811 uint32_t numSamples);
Kojto 115:87f2f5183dfb 6812
Kojto 115:87f2f5183dfb 6813 /**
Kojto 115:87f2f5183dfb 6814 * @brief Minimum value of a Q7 vector.
Kojto 115:87f2f5183dfb 6815 * @param[in] *pSrc is input pointer
Kojto 115:87f2f5183dfb 6816 * @param[in] blockSize is the number of samples to process
Kojto 115:87f2f5183dfb 6817 * @param[out] *result is output pointer
Kojto 115:87f2f5183dfb 6818 * @param[in] index is the array index of the minimum value in the input buffer.
Kojto 115:87f2f5183dfb 6819 * @return none.
Kojto 115:87f2f5183dfb 6820 */
Kojto 115:87f2f5183dfb 6821
Kojto 115:87f2f5183dfb 6822 void arm_min_q7(
Kojto 115:87f2f5183dfb 6823 q7_t * pSrc,
Kojto 115:87f2f5183dfb 6824 uint32_t blockSize,
Kojto 115:87f2f5183dfb 6825 q7_t * result,
Kojto 115:87f2f5183dfb 6826 uint32_t * index);
Kojto 115:87f2f5183dfb 6827
Kojto 115:87f2f5183dfb 6828 /**
Kojto 115:87f2f5183dfb 6829 * @brief Minimum value of a Q15 vector.
Kojto 115:87f2f5183dfb 6830 * @param[in] *pSrc is input pointer
Kojto 115:87f2f5183dfb 6831 * @param[in] blockSize is the number of samples to process
Kojto 115:87f2f5183dfb 6832 * @param[out] *pResult is output pointer
Kojto 115:87f2f5183dfb 6833 * @param[in] *pIndex is the array index of the minimum value in the input buffer.
Kojto 115:87f2f5183dfb 6834 * @return none.
Kojto 115:87f2f5183dfb 6835 */
Kojto 115:87f2f5183dfb 6836
Kojto 115:87f2f5183dfb 6837 void arm_min_q15(
Kojto 115:87f2f5183dfb 6838 q15_t * pSrc,
Kojto 115:87f2f5183dfb 6839 uint32_t blockSize,
Kojto 115:87f2f5183dfb 6840 q15_t * pResult,
Kojto 115:87f2f5183dfb 6841 uint32_t * pIndex);
Kojto 115:87f2f5183dfb 6842
Kojto 115:87f2f5183dfb 6843 /**
Kojto 115:87f2f5183dfb 6844 * @brief Minimum value of a Q31 vector.
Kojto 115:87f2f5183dfb 6845 * @param[in] *pSrc is input pointer
Kojto 115:87f2f5183dfb 6846 * @param[in] blockSize is the number of samples to process
Kojto 115:87f2f5183dfb 6847 * @param[out] *pResult is output pointer
Kojto 115:87f2f5183dfb 6848 * @param[out] *pIndex is the array index of the minimum value in the input buffer.
Kojto 115:87f2f5183dfb 6849 * @return none.
Kojto 115:87f2f5183dfb 6850 */
Kojto 115:87f2f5183dfb 6851 void arm_min_q31(
Kojto 115:87f2f5183dfb 6852 q31_t * pSrc,
Kojto 115:87f2f5183dfb 6853 uint32_t blockSize,
Kojto 115:87f2f5183dfb 6854 q31_t * pResult,
Kojto 115:87f2f5183dfb 6855 uint32_t * pIndex);
Kojto 115:87f2f5183dfb 6856
Kojto 115:87f2f5183dfb 6857 /**
Kojto 115:87f2f5183dfb 6858 * @brief Minimum value of a floating-point vector.
Kojto 115:87f2f5183dfb 6859 * @param[in] *pSrc is input pointer
Kojto 115:87f2f5183dfb 6860 * @param[in] blockSize is the number of samples to process
Kojto 115:87f2f5183dfb 6861 * @param[out] *pResult is output pointer
Kojto 115:87f2f5183dfb 6862 * @param[out] *pIndex is the array index of the minimum value in the input buffer.
Kojto 115:87f2f5183dfb 6863 * @return none.
Kojto 115:87f2f5183dfb 6864 */
Kojto 115:87f2f5183dfb 6865
Kojto 115:87f2f5183dfb 6866 void arm_min_f32(
Kojto 115:87f2f5183dfb 6867 float32_t * pSrc,
Kojto 115:87f2f5183dfb 6868 uint32_t blockSize,
Kojto 115:87f2f5183dfb 6869 float32_t * pResult,
Kojto 115:87f2f5183dfb 6870 uint32_t * pIndex);
Kojto 115:87f2f5183dfb 6871
Kojto 115:87f2f5183dfb 6872 /**
Kojto 115:87f2f5183dfb 6873 * @brief Maximum value of a Q7 vector.
Kojto 115:87f2f5183dfb 6874 * @param[in] *pSrc points to the input buffer
Kojto 115:87f2f5183dfb 6875 * @param[in] blockSize length of the input vector
Kojto 115:87f2f5183dfb 6876 * @param[out] *pResult maximum value returned here
Kojto 115:87f2f5183dfb 6877 * @param[out] *pIndex index of maximum value returned here
Kojto 115:87f2f5183dfb 6878 * @return none.
Kojto 115:87f2f5183dfb 6879 */
Kojto 115:87f2f5183dfb 6880
Kojto 115:87f2f5183dfb 6881 void arm_max_q7(
Kojto 115:87f2f5183dfb 6882 q7_t * pSrc,
Kojto 115:87f2f5183dfb 6883 uint32_t blockSize,
Kojto 115:87f2f5183dfb 6884 q7_t * pResult,
Kojto 115:87f2f5183dfb 6885 uint32_t * pIndex);
Kojto 115:87f2f5183dfb 6886
Kojto 115:87f2f5183dfb 6887 /**
Kojto 115:87f2f5183dfb 6888 * @brief Maximum value of a Q15 vector.
Kojto 115:87f2f5183dfb 6889 * @param[in] *pSrc points to the input buffer
Kojto 115:87f2f5183dfb 6890 * @param[in] blockSize length of the input vector
Kojto 115:87f2f5183dfb 6891 * @param[out] *pResult maximum value returned here
Kojto 115:87f2f5183dfb 6892 * @param[out] *pIndex index of maximum value returned here
Kojto 115:87f2f5183dfb 6893 * @return none.
Kojto 115:87f2f5183dfb 6894 */
Kojto 115:87f2f5183dfb 6895
Kojto 115:87f2f5183dfb 6896 void arm_max_q15(
Kojto 115:87f2f5183dfb 6897 q15_t * pSrc,
Kojto 115:87f2f5183dfb 6898 uint32_t blockSize,
Kojto 115:87f2f5183dfb 6899 q15_t * pResult,
Kojto 115:87f2f5183dfb 6900 uint32_t * pIndex);
Kojto 115:87f2f5183dfb 6901
Kojto 115:87f2f5183dfb 6902 /**
Kojto 115:87f2f5183dfb 6903 * @brief Maximum value of a Q31 vector.
Kojto 115:87f2f5183dfb 6904 * @param[in] *pSrc points to the input buffer
Kojto 115:87f2f5183dfb 6905 * @param[in] blockSize length of the input vector
Kojto 115:87f2f5183dfb 6906 * @param[out] *pResult maximum value returned here
Kojto 115:87f2f5183dfb 6907 * @param[out] *pIndex index of maximum value returned here
Kojto 115:87f2f5183dfb 6908 * @return none.
Kojto 115:87f2f5183dfb 6909 */
Kojto 115:87f2f5183dfb 6910
Kojto 115:87f2f5183dfb 6911 void arm_max_q31(
Kojto 115:87f2f5183dfb 6912 q31_t * pSrc,
Kojto 115:87f2f5183dfb 6913 uint32_t blockSize,
Kojto 115:87f2f5183dfb 6914 q31_t * pResult,
Kojto 115:87f2f5183dfb 6915 uint32_t * pIndex);
Kojto 115:87f2f5183dfb 6916
Kojto 115:87f2f5183dfb 6917 /**
Kojto 115:87f2f5183dfb 6918 * @brief Maximum value of a floating-point vector.
Kojto 115:87f2f5183dfb 6919 * @param[in] *pSrc points to the input buffer
Kojto 115:87f2f5183dfb 6920 * @param[in] blockSize length of the input vector
Kojto 115:87f2f5183dfb 6921 * @param[out] *pResult maximum value returned here
Kojto 115:87f2f5183dfb 6922 * @param[out] *pIndex index of maximum value returned here
Kojto 115:87f2f5183dfb 6923 * @return none.
Kojto 115:87f2f5183dfb 6924 */
Kojto 115:87f2f5183dfb 6925
Kojto 115:87f2f5183dfb 6926 void arm_max_f32(
Kojto 115:87f2f5183dfb 6927 float32_t * pSrc,
Kojto 115:87f2f5183dfb 6928 uint32_t blockSize,
Kojto 115:87f2f5183dfb 6929 float32_t * pResult,
Kojto 115:87f2f5183dfb 6930 uint32_t * pIndex);
Kojto 115:87f2f5183dfb 6931
Kojto 115:87f2f5183dfb 6932 /**
Kojto 115:87f2f5183dfb 6933 * @brief Q15 complex-by-complex multiplication
Kojto 115:87f2f5183dfb 6934 * @param[in] *pSrcA points to the first input vector
Kojto 115:87f2f5183dfb 6935 * @param[in] *pSrcB points to the second input vector
Kojto 115:87f2f5183dfb 6936 * @param[out] *pDst points to the output vector
Kojto 115:87f2f5183dfb 6937 * @param[in] numSamples number of complex samples in each vector
Kojto 115:87f2f5183dfb 6938 * @return none.
Kojto 115:87f2f5183dfb 6939 */
Kojto 115:87f2f5183dfb 6940
Kojto 115:87f2f5183dfb 6941 void arm_cmplx_mult_cmplx_q15(
Kojto 115:87f2f5183dfb 6942 q15_t * pSrcA,
Kojto 115:87f2f5183dfb 6943 q15_t * pSrcB,
Kojto 115:87f2f5183dfb 6944 q15_t * pDst,
Kojto 115:87f2f5183dfb 6945 uint32_t numSamples);
Kojto 115:87f2f5183dfb 6946
Kojto 115:87f2f5183dfb 6947 /**
Kojto 115:87f2f5183dfb 6948 * @brief Q31 complex-by-complex multiplication
Kojto 115:87f2f5183dfb 6949 * @param[in] *pSrcA points to the first input vector
Kojto 115:87f2f5183dfb 6950 * @param[in] *pSrcB points to the second input vector
Kojto 115:87f2f5183dfb 6951 * @param[out] *pDst points to the output vector
Kojto 115:87f2f5183dfb 6952 * @param[in] numSamples number of complex samples in each vector
Kojto 115:87f2f5183dfb 6953 * @return none.
Kojto 115:87f2f5183dfb 6954 */
Kojto 115:87f2f5183dfb 6955
Kojto 115:87f2f5183dfb 6956 void arm_cmplx_mult_cmplx_q31(
Kojto 115:87f2f5183dfb 6957 q31_t * pSrcA,
Kojto 115:87f2f5183dfb 6958 q31_t * pSrcB,
Kojto 115:87f2f5183dfb 6959 q31_t * pDst,
Kojto 115:87f2f5183dfb 6960 uint32_t numSamples);
Kojto 115:87f2f5183dfb 6961
Kojto 115:87f2f5183dfb 6962 /**
Kojto 115:87f2f5183dfb 6963 * @brief Floating-point complex-by-complex multiplication
Kojto 115:87f2f5183dfb 6964 * @param[in] *pSrcA points to the first input vector
Kojto 115:87f2f5183dfb 6965 * @param[in] *pSrcB points to the second input vector
Kojto 115:87f2f5183dfb 6966 * @param[out] *pDst points to the output vector
Kojto 115:87f2f5183dfb 6967 * @param[in] numSamples number of complex samples in each vector
Kojto 115:87f2f5183dfb 6968 * @return none.
Kojto 115:87f2f5183dfb 6969 */
Kojto 115:87f2f5183dfb 6970
Kojto 115:87f2f5183dfb 6971 void arm_cmplx_mult_cmplx_f32(
Kojto 115:87f2f5183dfb 6972 float32_t * pSrcA,
Kojto 115:87f2f5183dfb 6973 float32_t * pSrcB,
Kojto 115:87f2f5183dfb 6974 float32_t * pDst,
Kojto 115:87f2f5183dfb 6975 uint32_t numSamples);
Kojto 115:87f2f5183dfb 6976
Kojto 115:87f2f5183dfb 6977 /**
Kojto 115:87f2f5183dfb 6978 * @brief Converts the elements of the floating-point vector to Q31 vector.
Kojto 115:87f2f5183dfb 6979 * @param[in] *pSrc points to the floating-point input vector
Kojto 115:87f2f5183dfb 6980 * @param[out] *pDst points to the Q31 output vector
Kojto 115:87f2f5183dfb 6981 * @param[in] blockSize length of the input vector
Kojto 115:87f2f5183dfb 6982 * @return none.
Kojto 115:87f2f5183dfb 6983 */
Kojto 115:87f2f5183dfb 6984 void arm_float_to_q31(
Kojto 115:87f2f5183dfb 6985 float32_t * pSrc,
Kojto 115:87f2f5183dfb 6986 q31_t * pDst,
Kojto 115:87f2f5183dfb 6987 uint32_t blockSize);
Kojto 115:87f2f5183dfb 6988
Kojto 115:87f2f5183dfb 6989 /**
Kojto 115:87f2f5183dfb 6990 * @brief Converts the elements of the floating-point vector to Q15 vector.
Kojto 115:87f2f5183dfb 6991 * @param[in] *pSrc points to the floating-point input vector
Kojto 115:87f2f5183dfb 6992 * @param[out] *pDst points to the Q15 output vector
Kojto 115:87f2f5183dfb 6993 * @param[in] blockSize length of the input vector
Kojto 115:87f2f5183dfb 6994 * @return none
Kojto 115:87f2f5183dfb 6995 */
Kojto 115:87f2f5183dfb 6996 void arm_float_to_q15(
Kojto 115:87f2f5183dfb 6997 float32_t * pSrc,
Kojto 115:87f2f5183dfb 6998 q15_t * pDst,
Kojto 115:87f2f5183dfb 6999 uint32_t blockSize);
Kojto 115:87f2f5183dfb 7000
Kojto 115:87f2f5183dfb 7001 /**
Kojto 115:87f2f5183dfb 7002 * @brief Converts the elements of the floating-point vector to Q7 vector.
Kojto 115:87f2f5183dfb 7003 * @param[in] *pSrc points to the floating-point input vector
Kojto 115:87f2f5183dfb 7004 * @param[out] *pDst points to the Q7 output vector
Kojto 115:87f2f5183dfb 7005 * @param[in] blockSize length of the input vector
Kojto 115:87f2f5183dfb 7006 * @return none
Kojto 115:87f2f5183dfb 7007 */
Kojto 115:87f2f5183dfb 7008 void arm_float_to_q7(
Kojto 115:87f2f5183dfb 7009 float32_t * pSrc,
Kojto 115:87f2f5183dfb 7010 q7_t * pDst,
Kojto 115:87f2f5183dfb 7011 uint32_t blockSize);
Kojto 115:87f2f5183dfb 7012
Kojto 115:87f2f5183dfb 7013
Kojto 115:87f2f5183dfb 7014 /**
Kojto 115:87f2f5183dfb 7015 * @brief Converts the elements of the Q31 vector to Q15 vector.
Kojto 115:87f2f5183dfb 7016 * @param[in] *pSrc is input pointer
Kojto 115:87f2f5183dfb 7017 * @param[out] *pDst is output pointer
Kojto 115:87f2f5183dfb 7018 * @param[in] blockSize is the number of samples to process
Kojto 115:87f2f5183dfb 7019 * @return none.
Kojto 115:87f2f5183dfb 7020 */
Kojto 115:87f2f5183dfb 7021 void arm_q31_to_q15(
Kojto 115:87f2f5183dfb 7022 q31_t * pSrc,
Kojto 115:87f2f5183dfb 7023 q15_t * pDst,
Kojto 115:87f2f5183dfb 7024 uint32_t blockSize);
Kojto 115:87f2f5183dfb 7025
Kojto 115:87f2f5183dfb 7026 /**
Kojto 115:87f2f5183dfb 7027 * @brief Converts the elements of the Q31 vector to Q7 vector.
Kojto 115:87f2f5183dfb 7028 * @param[in] *pSrc is input pointer
Kojto 115:87f2f5183dfb 7029 * @param[out] *pDst is output pointer
Kojto 115:87f2f5183dfb 7030 * @param[in] blockSize is the number of samples to process
Kojto 115:87f2f5183dfb 7031 * @return none.
Kojto 115:87f2f5183dfb 7032 */
Kojto 115:87f2f5183dfb 7033 void arm_q31_to_q7(
Kojto 115:87f2f5183dfb 7034 q31_t * pSrc,
Kojto 115:87f2f5183dfb 7035 q7_t * pDst,
Kojto 115:87f2f5183dfb 7036 uint32_t blockSize);
Kojto 115:87f2f5183dfb 7037
Kojto 115:87f2f5183dfb 7038 /**
Kojto 115:87f2f5183dfb 7039 * @brief Converts the elements of the Q15 vector to floating-point vector.
Kojto 115:87f2f5183dfb 7040 * @param[in] *pSrc is input pointer
Kojto 115:87f2f5183dfb 7041 * @param[out] *pDst is output pointer
Kojto 115:87f2f5183dfb 7042 * @param[in] blockSize is the number of samples to process
Kojto 115:87f2f5183dfb 7043 * @return none.
Kojto 115:87f2f5183dfb 7044 */
Kojto 115:87f2f5183dfb 7045 void arm_q15_to_float(
Kojto 115:87f2f5183dfb 7046 q15_t * pSrc,
Kojto 115:87f2f5183dfb 7047 float32_t * pDst,
Kojto 115:87f2f5183dfb 7048 uint32_t blockSize);
Kojto 115:87f2f5183dfb 7049
Kojto 115:87f2f5183dfb 7050
Kojto 115:87f2f5183dfb 7051 /**
Kojto 115:87f2f5183dfb 7052 * @brief Converts the elements of the Q15 vector to Q31 vector.
Kojto 115:87f2f5183dfb 7053 * @param[in] *pSrc is input pointer
Kojto 115:87f2f5183dfb 7054 * @param[out] *pDst is output pointer
Kojto 115:87f2f5183dfb 7055 * @param[in] blockSize is the number of samples to process
Kojto 115:87f2f5183dfb 7056 * @return none.
Kojto 115:87f2f5183dfb 7057 */
Kojto 115:87f2f5183dfb 7058 void arm_q15_to_q31(
Kojto 115:87f2f5183dfb 7059 q15_t * pSrc,
Kojto 115:87f2f5183dfb 7060 q31_t * pDst,
Kojto 115:87f2f5183dfb 7061 uint32_t blockSize);
Kojto 115:87f2f5183dfb 7062
Kojto 115:87f2f5183dfb 7063
Kojto 115:87f2f5183dfb 7064 /**
Kojto 115:87f2f5183dfb 7065 * @brief Converts the elements of the Q15 vector to Q7 vector.
Kojto 115:87f2f5183dfb 7066 * @param[in] *pSrc is input pointer
Kojto 115:87f2f5183dfb 7067 * @param[out] *pDst is output pointer
Kojto 115:87f2f5183dfb 7068 * @param[in] blockSize is the number of samples to process
Kojto 115:87f2f5183dfb 7069 * @return none.
Kojto 115:87f2f5183dfb 7070 */
Kojto 115:87f2f5183dfb 7071 void arm_q15_to_q7(
Kojto 115:87f2f5183dfb 7072 q15_t * pSrc,
Kojto 115:87f2f5183dfb 7073 q7_t * pDst,
Kojto 115:87f2f5183dfb 7074 uint32_t blockSize);
Kojto 115:87f2f5183dfb 7075
Kojto 115:87f2f5183dfb 7076
Kojto 115:87f2f5183dfb 7077 /**
Kojto 115:87f2f5183dfb 7078 * @ingroup groupInterpolation
Kojto 115:87f2f5183dfb 7079 */
Kojto 115:87f2f5183dfb 7080
Kojto 115:87f2f5183dfb 7081 /**
Kojto 115:87f2f5183dfb 7082 * @defgroup BilinearInterpolate Bilinear Interpolation
Kojto 115:87f2f5183dfb 7083 *
Kojto 115:87f2f5183dfb 7084 * Bilinear interpolation is an extension of linear interpolation applied to a two dimensional grid.
Kojto 115:87f2f5183dfb 7085 * The underlying function <code>f(x, y)</code> is sampled on a regular grid and the interpolation process
Kojto 115:87f2f5183dfb 7086 * determines values between the grid points.
Kojto 115:87f2f5183dfb 7087 * Bilinear interpolation is equivalent to two step linear interpolation, first in the x-dimension and then in the y-dimension.
Kojto 115:87f2f5183dfb 7088 * Bilinear interpolation is often used in image processing to rescale images.
Kojto 115:87f2f5183dfb 7089 * The CMSIS DSP library provides bilinear interpolation functions for Q7, Q15, Q31, and floating-point data types.
Kojto 115:87f2f5183dfb 7090 *
Kojto 115:87f2f5183dfb 7091 * <b>Algorithm</b>
Kojto 115:87f2f5183dfb 7092 * \par
Kojto 115:87f2f5183dfb 7093 * The instance structure used by the bilinear interpolation functions describes a two dimensional data table.
Kojto 115:87f2f5183dfb 7094 * For floating-point, the instance structure is defined as:
Kojto 115:87f2f5183dfb 7095 * <pre>
Kojto 115:87f2f5183dfb 7096 * typedef struct
Kojto 115:87f2f5183dfb 7097 * {
Kojto 115:87f2f5183dfb 7098 * uint16_t numRows;
Kojto 115:87f2f5183dfb 7099 * uint16_t numCols;
Kojto 115:87f2f5183dfb 7100 * float32_t *pData;
Kojto 115:87f2f5183dfb 7101 * } arm_bilinear_interp_instance_f32;
Kojto 115:87f2f5183dfb 7102 * </pre>
Kojto 115:87f2f5183dfb 7103 *
Kojto 115:87f2f5183dfb 7104 * \par
Kojto 115:87f2f5183dfb 7105 * where <code>numRows</code> specifies the number of rows in the table;
Kojto 115:87f2f5183dfb 7106 * <code>numCols</code> specifies the number of columns in the table;
Kojto 115:87f2f5183dfb 7107 * and <code>pData</code> points to an array of size <code>numRows*numCols</code> values.
Kojto 115:87f2f5183dfb 7108 * The data table <code>pTable</code> is organized in row order and the supplied data values fall on integer indexes.
Kojto 115:87f2f5183dfb 7109 * That is, table element (x,y) is located at <code>pTable[x + y*numCols]</code> where x and y are integers.
Kojto 115:87f2f5183dfb 7110 *
Kojto 115:87f2f5183dfb 7111 * \par
Kojto 115:87f2f5183dfb 7112 * Let <code>(x, y)</code> specify the desired interpolation point. Then define:
Kojto 115:87f2f5183dfb 7113 * <pre>
Kojto 115:87f2f5183dfb 7114 * XF = floor(x)
Kojto 115:87f2f5183dfb 7115 * YF = floor(y)
Kojto 115:87f2f5183dfb 7116 * </pre>
Kojto 115:87f2f5183dfb 7117 * \par
Kojto 115:87f2f5183dfb 7118 * The interpolated output point is computed as:
Kojto 115:87f2f5183dfb 7119 * <pre>
Kojto 115:87f2f5183dfb 7120 * f(x, y) = f(XF, YF) * (1-(x-XF)) * (1-(y-YF))
Kojto 115:87f2f5183dfb 7121 * + f(XF+1, YF) * (x-XF)*(1-(y-YF))
Kojto 115:87f2f5183dfb 7122 * + f(XF, YF+1) * (1-(x-XF))*(y-YF)
Kojto 115:87f2f5183dfb 7123 * + f(XF+1, YF+1) * (x-XF)*(y-YF)
Kojto 115:87f2f5183dfb 7124 * </pre>
Kojto 115:87f2f5183dfb 7125 * Note that the coordinates (x, y) contain integer and fractional components.
Kojto 115:87f2f5183dfb 7126 * The integer components specify which portion of the table to use while the
Kojto 115:87f2f5183dfb 7127 * fractional components control the interpolation processor.
Kojto 115:87f2f5183dfb 7128 *
Kojto 115:87f2f5183dfb 7129 * \par
Kojto 115:87f2f5183dfb 7130 * if (x,y) are outside of the table boundary, Bilinear interpolation returns zero output.
Kojto 115:87f2f5183dfb 7131 */
Kojto 115:87f2f5183dfb 7132
Kojto 115:87f2f5183dfb 7133 /**
Kojto 115:87f2f5183dfb 7134 * @addtogroup BilinearInterpolate
Kojto 115:87f2f5183dfb 7135 * @{
Kojto 115:87f2f5183dfb 7136 */
Kojto 115:87f2f5183dfb 7137
Kojto 115:87f2f5183dfb 7138 /**
Kojto 115:87f2f5183dfb 7139 *
Kojto 115:87f2f5183dfb 7140 * @brief Floating-point bilinear interpolation.
Kojto 115:87f2f5183dfb 7141 * @param[in,out] *S points to an instance of the interpolation structure.
Kojto 115:87f2f5183dfb 7142 * @param[in] X interpolation coordinate.
Kojto 115:87f2f5183dfb 7143 * @param[in] Y interpolation coordinate.
Kojto 115:87f2f5183dfb 7144 * @return out interpolated value.
Kojto 115:87f2f5183dfb 7145 */
Kojto 115:87f2f5183dfb 7146
Kojto 115:87f2f5183dfb 7147
Kojto 115:87f2f5183dfb 7148 static __INLINE float32_t arm_bilinear_interp_f32(
Kojto 115:87f2f5183dfb 7149 const arm_bilinear_interp_instance_f32 * S,
Kojto 115:87f2f5183dfb 7150 float32_t X,
Kojto 115:87f2f5183dfb 7151 float32_t Y)
Kojto 115:87f2f5183dfb 7152 {
Kojto 115:87f2f5183dfb 7153 float32_t out;
Kojto 115:87f2f5183dfb 7154 float32_t f00, f01, f10, f11;
Kojto 115:87f2f5183dfb 7155 float32_t *pData = S->pData;
Kojto 115:87f2f5183dfb 7156 int32_t xIndex, yIndex, index;
Kojto 115:87f2f5183dfb 7157 float32_t xdiff, ydiff;
Kojto 115:87f2f5183dfb 7158 float32_t b1, b2, b3, b4;
Kojto 115:87f2f5183dfb 7159
Kojto 115:87f2f5183dfb 7160 xIndex = (int32_t) X;
Kojto 115:87f2f5183dfb 7161 yIndex = (int32_t) Y;
Kojto 115:87f2f5183dfb 7162
Kojto 115:87f2f5183dfb 7163 /* Care taken for table outside boundary */
Kojto 115:87f2f5183dfb 7164 /* Returns zero output when values are outside table boundary */
Kojto 115:87f2f5183dfb 7165 if(xIndex < 0 || xIndex > (S->numRows - 1) || yIndex < 0
Kojto 115:87f2f5183dfb 7166 || yIndex > (S->numCols - 1))
Kojto 115:87f2f5183dfb 7167 {
Kojto 115:87f2f5183dfb 7168 return (0);
Kojto 115:87f2f5183dfb 7169 }
Kojto 115:87f2f5183dfb 7170
Kojto 115:87f2f5183dfb 7171 /* Calculation of index for two nearest points in X-direction */
Kojto 115:87f2f5183dfb 7172 index = (xIndex - 1) + (yIndex - 1) * S->numCols;
Kojto 115:87f2f5183dfb 7173
Kojto 115:87f2f5183dfb 7174
Kojto 115:87f2f5183dfb 7175 /* Read two nearest points in X-direction */
Kojto 115:87f2f5183dfb 7176 f00 = pData[index];
Kojto 115:87f2f5183dfb 7177 f01 = pData[index + 1];
Kojto 115:87f2f5183dfb 7178
Kojto 115:87f2f5183dfb 7179 /* Calculation of index for two nearest points in Y-direction */
Kojto 115:87f2f5183dfb 7180 index = (xIndex - 1) + (yIndex) * S->numCols;
Kojto 115:87f2f5183dfb 7181
Kojto 115:87f2f5183dfb 7182
Kojto 115:87f2f5183dfb 7183 /* Read two nearest points in Y-direction */
Kojto 115:87f2f5183dfb 7184 f10 = pData[index];
Kojto 115:87f2f5183dfb 7185 f11 = pData[index + 1];
Kojto 115:87f2f5183dfb 7186
Kojto 115:87f2f5183dfb 7187 /* Calculation of intermediate values */
Kojto 115:87f2f5183dfb 7188 b1 = f00;
Kojto 115:87f2f5183dfb 7189 b2 = f01 - f00;
Kojto 115:87f2f5183dfb 7190 b3 = f10 - f00;
Kojto 115:87f2f5183dfb 7191 b4 = f00 - f01 - f10 + f11;
Kojto 115:87f2f5183dfb 7192
Kojto 115:87f2f5183dfb 7193 /* Calculation of fractional part in X */
Kojto 115:87f2f5183dfb 7194 xdiff = X - xIndex;
Kojto 115:87f2f5183dfb 7195
Kojto 115:87f2f5183dfb 7196 /* Calculation of fractional part in Y */
Kojto 115:87f2f5183dfb 7197 ydiff = Y - yIndex;
Kojto 115:87f2f5183dfb 7198
Kojto 115:87f2f5183dfb 7199 /* Calculation of bi-linear interpolated output */
Kojto 115:87f2f5183dfb 7200 out = b1 + b2 * xdiff + b3 * ydiff + b4 * xdiff * ydiff;
Kojto 115:87f2f5183dfb 7201
Kojto 115:87f2f5183dfb 7202 /* return to application */
Kojto 115:87f2f5183dfb 7203 return (out);
Kojto 115:87f2f5183dfb 7204
Kojto 115:87f2f5183dfb 7205 }
Kojto 115:87f2f5183dfb 7206
Kojto 115:87f2f5183dfb 7207 /**
Kojto 115:87f2f5183dfb 7208 *
Kojto 115:87f2f5183dfb 7209 * @brief Q31 bilinear interpolation.
Kojto 115:87f2f5183dfb 7210 * @param[in,out] *S points to an instance of the interpolation structure.
Kojto 115:87f2f5183dfb 7211 * @param[in] X interpolation coordinate in 12.20 format.
Kojto 115:87f2f5183dfb 7212 * @param[in] Y interpolation coordinate in 12.20 format.
Kojto 115:87f2f5183dfb 7213 * @return out interpolated value.
Kojto 115:87f2f5183dfb 7214 */
Kojto 115:87f2f5183dfb 7215
Kojto 115:87f2f5183dfb 7216 static __INLINE q31_t arm_bilinear_interp_q31(
Kojto 115:87f2f5183dfb 7217 arm_bilinear_interp_instance_q31 * S,
Kojto 115:87f2f5183dfb 7218 q31_t X,
Kojto 115:87f2f5183dfb 7219 q31_t Y)
Kojto 115:87f2f5183dfb 7220 {
Kojto 115:87f2f5183dfb 7221 q31_t out; /* Temporary output */
Kojto 115:87f2f5183dfb 7222 q31_t acc = 0; /* output */
Kojto 115:87f2f5183dfb 7223 q31_t xfract, yfract; /* X, Y fractional parts */
Kojto 115:87f2f5183dfb 7224 q31_t x1, x2, y1, y2; /* Nearest output values */
Kojto 115:87f2f5183dfb 7225 int32_t rI, cI; /* Row and column indices */
Kojto 115:87f2f5183dfb 7226 q31_t *pYData = S->pData; /* pointer to output table values */
Kojto 115:87f2f5183dfb 7227 uint32_t nCols = S->numCols; /* num of rows */
Kojto 115:87f2f5183dfb 7228
Kojto 115:87f2f5183dfb 7229
Kojto 115:87f2f5183dfb 7230 /* Input is in 12.20 format */
Kojto 115:87f2f5183dfb 7231 /* 12 bits for the table index */
Kojto 115:87f2f5183dfb 7232 /* Index value calculation */
Kojto 115:87f2f5183dfb 7233 rI = ((X & 0xFFF00000) >> 20u);
Kojto 115:87f2f5183dfb 7234
Kojto 115:87f2f5183dfb 7235 /* Input is in 12.20 format */
Kojto 115:87f2f5183dfb 7236 /* 12 bits for the table index */
Kojto 115:87f2f5183dfb 7237 /* Index value calculation */
Kojto 115:87f2f5183dfb 7238 cI = ((Y & 0xFFF00000) >> 20u);
Kojto 115:87f2f5183dfb 7239
Kojto 115:87f2f5183dfb 7240 /* Care taken for table outside boundary */
Kojto 115:87f2f5183dfb 7241 /* Returns zero output when values are outside table boundary */
Kojto 115:87f2f5183dfb 7242 if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
Kojto 115:87f2f5183dfb 7243 {
Kojto 115:87f2f5183dfb 7244 return (0);
Kojto 115:87f2f5183dfb 7245 }
Kojto 115:87f2f5183dfb 7246
Kojto 115:87f2f5183dfb 7247 /* 20 bits for the fractional part */
Kojto 115:87f2f5183dfb 7248 /* shift left xfract by 11 to keep 1.31 format */
Kojto 115:87f2f5183dfb 7249 xfract = (X & 0x000FFFFF) << 11u;
Kojto 115:87f2f5183dfb 7250
Kojto 115:87f2f5183dfb 7251 /* Read two nearest output values from the index */
Kojto 115:87f2f5183dfb 7252 x1 = pYData[(rI) + nCols * (cI)];
Kojto 115:87f2f5183dfb 7253 x2 = pYData[(rI) + nCols * (cI) + 1u];
Kojto 115:87f2f5183dfb 7254
Kojto 115:87f2f5183dfb 7255 /* 20 bits for the fractional part */
Kojto 115:87f2f5183dfb 7256 /* shift left yfract by 11 to keep 1.31 format */
Kojto 115:87f2f5183dfb 7257 yfract = (Y & 0x000FFFFF) << 11u;
Kojto 115:87f2f5183dfb 7258
Kojto 115:87f2f5183dfb 7259 /* Read two nearest output values from the index */
Kojto 115:87f2f5183dfb 7260 y1 = pYData[(rI) + nCols * (cI + 1)];
Kojto 115:87f2f5183dfb 7261 y2 = pYData[(rI) + nCols * (cI + 1) + 1u];
Kojto 115:87f2f5183dfb 7262
Kojto 115:87f2f5183dfb 7263 /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 3.29(q29) format */
Kojto 115:87f2f5183dfb 7264 out = ((q31_t) (((q63_t) x1 * (0x7FFFFFFF - xfract)) >> 32));
Kojto 115:87f2f5183dfb 7265 acc = ((q31_t) (((q63_t) out * (0x7FFFFFFF - yfract)) >> 32));
Kojto 115:87f2f5183dfb 7266
Kojto 115:87f2f5183dfb 7267 /* x2 * (xfract) * (1-yfract) in 3.29(q29) and adding to acc */
Kojto 115:87f2f5183dfb 7268 out = ((q31_t) ((q63_t) x2 * (0x7FFFFFFF - yfract) >> 32));
Kojto 115:87f2f5183dfb 7269 acc += ((q31_t) ((q63_t) out * (xfract) >> 32));
Kojto 115:87f2f5183dfb 7270
Kojto 115:87f2f5183dfb 7271 /* y1 * (1 - xfract) * (yfract) in 3.29(q29) and adding to acc */
Kojto 115:87f2f5183dfb 7272 out = ((q31_t) ((q63_t) y1 * (0x7FFFFFFF - xfract) >> 32));
Kojto 115:87f2f5183dfb 7273 acc += ((q31_t) ((q63_t) out * (yfract) >> 32));
Kojto 115:87f2f5183dfb 7274
Kojto 115:87f2f5183dfb 7275 /* y2 * (xfract) * (yfract) in 3.29(q29) and adding to acc */
Kojto 115:87f2f5183dfb 7276 out = ((q31_t) ((q63_t) y2 * (xfract) >> 32));
Kojto 115:87f2f5183dfb 7277 acc += ((q31_t) ((q63_t) out * (yfract) >> 32));
Kojto 115:87f2f5183dfb 7278
Kojto 115:87f2f5183dfb 7279 /* Convert acc to 1.31(q31) format */
Kojto 115:87f2f5183dfb 7280 return (acc << 2u);
Kojto 115:87f2f5183dfb 7281
Kojto 115:87f2f5183dfb 7282 }
Kojto 115:87f2f5183dfb 7283
Kojto 115:87f2f5183dfb 7284 /**
Kojto 115:87f2f5183dfb 7285 * @brief Q15 bilinear interpolation.
Kojto 115:87f2f5183dfb 7286 * @param[in,out] *S points to an instance of the interpolation structure.
Kojto 115:87f2f5183dfb 7287 * @param[in] X interpolation coordinate in 12.20 format.
Kojto 115:87f2f5183dfb 7288 * @param[in] Y interpolation coordinate in 12.20 format.
Kojto 115:87f2f5183dfb 7289 * @return out interpolated value.
Kojto 115:87f2f5183dfb 7290 */
Kojto 115:87f2f5183dfb 7291
Kojto 115:87f2f5183dfb 7292 static __INLINE q15_t arm_bilinear_interp_q15(
Kojto 115:87f2f5183dfb 7293 arm_bilinear_interp_instance_q15 * S,
Kojto 115:87f2f5183dfb 7294 q31_t X,
Kojto 115:87f2f5183dfb 7295 q31_t Y)
Kojto 115:87f2f5183dfb 7296 {
Kojto 115:87f2f5183dfb 7297 q63_t acc = 0; /* output */
Kojto 115:87f2f5183dfb 7298 q31_t out; /* Temporary output */
Kojto 115:87f2f5183dfb 7299 q15_t x1, x2, y1, y2; /* Nearest output values */
Kojto 115:87f2f5183dfb 7300 q31_t xfract, yfract; /* X, Y fractional parts */
Kojto 115:87f2f5183dfb 7301 int32_t rI, cI; /* Row and column indices */
Kojto 115:87f2f5183dfb 7302 q15_t *pYData = S->pData; /* pointer to output table values */
Kojto 115:87f2f5183dfb 7303 uint32_t nCols = S->numCols; /* num of rows */
Kojto 115:87f2f5183dfb 7304
Kojto 115:87f2f5183dfb 7305 /* Input is in 12.20 format */
Kojto 115:87f2f5183dfb 7306 /* 12 bits for the table index */
Kojto 115:87f2f5183dfb 7307 /* Index value calculation */
Kojto 115:87f2f5183dfb 7308 rI = ((X & 0xFFF00000) >> 20);
Kojto 115:87f2f5183dfb 7309
Kojto 115:87f2f5183dfb 7310 /* Input is in 12.20 format */
Kojto 115:87f2f5183dfb 7311 /* 12 bits for the table index */
Kojto 115:87f2f5183dfb 7312 /* Index value calculation */
Kojto 115:87f2f5183dfb 7313 cI = ((Y & 0xFFF00000) >> 20);
Kojto 115:87f2f5183dfb 7314
Kojto 115:87f2f5183dfb 7315 /* Care taken for table outside boundary */
Kojto 115:87f2f5183dfb 7316 /* Returns zero output when values are outside table boundary */
Kojto 115:87f2f5183dfb 7317 if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
Kojto 115:87f2f5183dfb 7318 {
Kojto 115:87f2f5183dfb 7319 return (0);
Kojto 115:87f2f5183dfb 7320 }
Kojto 115:87f2f5183dfb 7321
Kojto 115:87f2f5183dfb 7322 /* 20 bits for the fractional part */
Kojto 115:87f2f5183dfb 7323 /* xfract should be in 12.20 format */
Kojto 115:87f2f5183dfb 7324 xfract = (X & 0x000FFFFF);
Kojto 115:87f2f5183dfb 7325
Kojto 115:87f2f5183dfb 7326 /* Read two nearest output values from the index */
Kojto 115:87f2f5183dfb 7327 x1 = pYData[(rI) + nCols * (cI)];
Kojto 115:87f2f5183dfb 7328 x2 = pYData[(rI) + nCols * (cI) + 1u];
Kojto 115:87f2f5183dfb 7329
Kojto 115:87f2f5183dfb 7330
Kojto 115:87f2f5183dfb 7331 /* 20 bits for the fractional part */
Kojto 115:87f2f5183dfb 7332 /* yfract should be in 12.20 format */
Kojto 115:87f2f5183dfb 7333 yfract = (Y & 0x000FFFFF);
Kojto 115:87f2f5183dfb 7334
Kojto 115:87f2f5183dfb 7335 /* Read two nearest output values from the index */
Kojto 115:87f2f5183dfb 7336 y1 = pYData[(rI) + nCols * (cI + 1)];
Kojto 115:87f2f5183dfb 7337 y2 = pYData[(rI) + nCols * (cI + 1) + 1u];
Kojto 115:87f2f5183dfb 7338
Kojto 115:87f2f5183dfb 7339 /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 13.51 format */
Kojto 115:87f2f5183dfb 7340
Kojto 115:87f2f5183dfb 7341 /* x1 is in 1.15(q15), xfract in 12.20 format and out is in 13.35 format */
Kojto 115:87f2f5183dfb 7342 /* convert 13.35 to 13.31 by right shifting and out is in 1.31 */
Kojto 115:87f2f5183dfb 7343 out = (q31_t) (((q63_t) x1 * (0xFFFFF - xfract)) >> 4u);
Kojto 115:87f2f5183dfb 7344 acc = ((q63_t) out * (0xFFFFF - yfract));
Kojto 115:87f2f5183dfb 7345
Kojto 115:87f2f5183dfb 7346 /* x2 * (xfract) * (1-yfract) in 1.51 and adding to acc */
Kojto 115:87f2f5183dfb 7347 out = (q31_t) (((q63_t) x2 * (0xFFFFF - yfract)) >> 4u);
Kojto 115:87f2f5183dfb 7348 acc += ((q63_t) out * (xfract));
Kojto 115:87f2f5183dfb 7349
Kojto 115:87f2f5183dfb 7350 /* y1 * (1 - xfract) * (yfract) in 1.51 and adding to acc */
Kojto 115:87f2f5183dfb 7351 out = (q31_t) (((q63_t) y1 * (0xFFFFF - xfract)) >> 4u);
Kojto 115:87f2f5183dfb 7352 acc += ((q63_t) out * (yfract));
Kojto 115:87f2f5183dfb 7353
Kojto 115:87f2f5183dfb 7354 /* y2 * (xfract) * (yfract) in 1.51 and adding to acc */
Kojto 115:87f2f5183dfb 7355 out = (q31_t) (((q63_t) y2 * (xfract)) >> 4u);
Kojto 115:87f2f5183dfb 7356 acc += ((q63_t) out * (yfract));
Kojto 115:87f2f5183dfb 7357
Kojto 115:87f2f5183dfb 7358 /* acc is in 13.51 format and down shift acc by 36 times */
Kojto 115:87f2f5183dfb 7359 /* Convert out to 1.15 format */
Kojto 115:87f2f5183dfb 7360 return (acc >> 36);
Kojto 115:87f2f5183dfb 7361
Kojto 115:87f2f5183dfb 7362 }
Kojto 115:87f2f5183dfb 7363
Kojto 115:87f2f5183dfb 7364 /**
Kojto 115:87f2f5183dfb 7365 * @brief Q7 bilinear interpolation.
Kojto 115:87f2f5183dfb 7366 * @param[in,out] *S points to an instance of the interpolation structure.
Kojto 115:87f2f5183dfb 7367 * @param[in] X interpolation coordinate in 12.20 format.
Kojto 115:87f2f5183dfb 7368 * @param[in] Y interpolation coordinate in 12.20 format.
Kojto 115:87f2f5183dfb 7369 * @return out interpolated value.
Kojto 115:87f2f5183dfb 7370 */
Kojto 115:87f2f5183dfb 7371
Kojto 115:87f2f5183dfb 7372 static __INLINE q7_t arm_bilinear_interp_q7(
Kojto 115:87f2f5183dfb 7373 arm_bilinear_interp_instance_q7 * S,
Kojto 115:87f2f5183dfb 7374 q31_t X,
Kojto 115:87f2f5183dfb 7375 q31_t Y)
Kojto 115:87f2f5183dfb 7376 {
Kojto 115:87f2f5183dfb 7377 q63_t acc = 0; /* output */
Kojto 115:87f2f5183dfb 7378 q31_t out; /* Temporary output */
Kojto 115:87f2f5183dfb 7379 q31_t xfract, yfract; /* X, Y fractional parts */
Kojto 115:87f2f5183dfb 7380 q7_t x1, x2, y1, y2; /* Nearest output values */
Kojto 115:87f2f5183dfb 7381 int32_t rI, cI; /* Row and column indices */
Kojto 115:87f2f5183dfb 7382 q7_t *pYData = S->pData; /* pointer to output table values */
Kojto 115:87f2f5183dfb 7383 uint32_t nCols = S->numCols; /* num of rows */
Kojto 115:87f2f5183dfb 7384
Kojto 115:87f2f5183dfb 7385 /* Input is in 12.20 format */
Kojto 115:87f2f5183dfb 7386 /* 12 bits for the table index */
Kojto 115:87f2f5183dfb 7387 /* Index value calculation */
Kojto 115:87f2f5183dfb 7388 rI = ((X & 0xFFF00000) >> 20);
Kojto 115:87f2f5183dfb 7389
Kojto 115:87f2f5183dfb 7390 /* Input is in 12.20 format */
Kojto 115:87f2f5183dfb 7391 /* 12 bits for the table index */
Kojto 115:87f2f5183dfb 7392 /* Index value calculation */
Kojto 115:87f2f5183dfb 7393 cI = ((Y & 0xFFF00000) >> 20);
Kojto 115:87f2f5183dfb 7394
Kojto 115:87f2f5183dfb 7395 /* Care taken for table outside boundary */
Kojto 115:87f2f5183dfb 7396 /* Returns zero output when values are outside table boundary */
Kojto 115:87f2f5183dfb 7397 if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
Kojto 115:87f2f5183dfb 7398 {
Kojto 115:87f2f5183dfb 7399 return (0);
Kojto 115:87f2f5183dfb 7400 }
Kojto 115:87f2f5183dfb 7401
Kojto 115:87f2f5183dfb 7402 /* 20 bits for the fractional part */
Kojto 115:87f2f5183dfb 7403 /* xfract should be in 12.20 format */
Kojto 115:87f2f5183dfb 7404 xfract = (X & 0x000FFFFF);
Kojto 115:87f2f5183dfb 7405
Kojto 115:87f2f5183dfb 7406 /* Read two nearest output values from the index */
Kojto 115:87f2f5183dfb 7407 x1 = pYData[(rI) + nCols * (cI)];
Kojto 115:87f2f5183dfb 7408 x2 = pYData[(rI) + nCols * (cI) + 1u];
Kojto 115:87f2f5183dfb 7409
Kojto 115:87f2f5183dfb 7410
Kojto 115:87f2f5183dfb 7411 /* 20 bits for the fractional part */
Kojto 115:87f2f5183dfb 7412 /* yfract should be in 12.20 format */
Kojto 115:87f2f5183dfb 7413 yfract = (Y & 0x000FFFFF);
Kojto 115:87f2f5183dfb 7414
Kojto 115:87f2f5183dfb 7415 /* Read two nearest output values from the index */
Kojto 115:87f2f5183dfb 7416 y1 = pYData[(rI) + nCols * (cI + 1)];
Kojto 115:87f2f5183dfb 7417 y2 = pYData[(rI) + nCols * (cI + 1) + 1u];
Kojto 115:87f2f5183dfb 7418
Kojto 115:87f2f5183dfb 7419 /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 16.47 format */
Kojto 115:87f2f5183dfb 7420 out = ((x1 * (0xFFFFF - xfract)));
Kojto 115:87f2f5183dfb 7421 acc = (((q63_t) out * (0xFFFFF - yfract)));
Kojto 115:87f2f5183dfb 7422
Kojto 115:87f2f5183dfb 7423 /* x2 * (xfract) * (1-yfract) in 2.22 and adding to acc */
Kojto 115:87f2f5183dfb 7424 out = ((x2 * (0xFFFFF - yfract)));
Kojto 115:87f2f5183dfb 7425 acc += (((q63_t) out * (xfract)));
Kojto 115:87f2f5183dfb 7426
Kojto 115:87f2f5183dfb 7427 /* y1 * (1 - xfract) * (yfract) in 2.22 and adding to acc */
Kojto 115:87f2f5183dfb 7428 out = ((y1 * (0xFFFFF - xfract)));
Kojto 115:87f2f5183dfb 7429 acc += (((q63_t) out * (yfract)));
Kojto 115:87f2f5183dfb 7430
Kojto 115:87f2f5183dfb 7431 /* y2 * (xfract) * (yfract) in 2.22 and adding to acc */
Kojto 115:87f2f5183dfb 7432 out = ((y2 * (yfract)));
Kojto 115:87f2f5183dfb 7433 acc += (((q63_t) out * (xfract)));
Kojto 115:87f2f5183dfb 7434
Kojto 115:87f2f5183dfb 7435 /* acc in 16.47 format and down shift by 40 to convert to 1.7 format */
Kojto 115:87f2f5183dfb 7436 return (acc >> 40);
Kojto 115:87f2f5183dfb 7437
Kojto 115:87f2f5183dfb 7438 }
Kojto 115:87f2f5183dfb 7439
Kojto 115:87f2f5183dfb 7440 /**
Kojto 115:87f2f5183dfb 7441 * @} end of BilinearInterpolate group
Kojto 115:87f2f5183dfb 7442 */
Kojto 115:87f2f5183dfb 7443
Kojto 115:87f2f5183dfb 7444
Kojto 115:87f2f5183dfb 7445 //SMMLAR
Kojto 115:87f2f5183dfb 7446 #define multAcc_32x32_keep32_R(a, x, y) \
Kojto 115:87f2f5183dfb 7447 a = (q31_t) (((((q63_t) a) << 32) + ((q63_t) x * y) + 0x80000000LL ) >> 32)
Kojto 115:87f2f5183dfb 7448
Kojto 115:87f2f5183dfb 7449 //SMMLSR
Kojto 115:87f2f5183dfb 7450 #define multSub_32x32_keep32_R(a, x, y) \
Kojto 115:87f2f5183dfb 7451 a = (q31_t) (((((q63_t) a) << 32) - ((q63_t) x * y) + 0x80000000LL ) >> 32)
Kojto 115:87f2f5183dfb 7452
Kojto 115:87f2f5183dfb 7453 //SMMULR
Kojto 115:87f2f5183dfb 7454 #define mult_32x32_keep32_R(a, x, y) \
Kojto 115:87f2f5183dfb 7455 a = (q31_t) (((q63_t) x * y + 0x80000000LL ) >> 32)
Kojto 115:87f2f5183dfb 7456
Kojto 115:87f2f5183dfb 7457 //SMMLA
Kojto 115:87f2f5183dfb 7458 #define multAcc_32x32_keep32(a, x, y) \
Kojto 115:87f2f5183dfb 7459 a += (q31_t) (((q63_t) x * y) >> 32)
Kojto 115:87f2f5183dfb 7460
Kojto 115:87f2f5183dfb 7461 //SMMLS
Kojto 115:87f2f5183dfb 7462 #define multSub_32x32_keep32(a, x, y) \
Kojto 115:87f2f5183dfb 7463 a -= (q31_t) (((q63_t) x * y) >> 32)
Kojto 115:87f2f5183dfb 7464
Kojto 115:87f2f5183dfb 7465 //SMMUL
Kojto 115:87f2f5183dfb 7466 #define mult_32x32_keep32(a, x, y) \
Kojto 115:87f2f5183dfb 7467 a = (q31_t) (((q63_t) x * y ) >> 32)
Kojto 115:87f2f5183dfb 7468
Kojto 115:87f2f5183dfb 7469
Kojto 115:87f2f5183dfb 7470 #if defined ( __CC_ARM ) //Keil
Kojto 115:87f2f5183dfb 7471
Kojto 115:87f2f5183dfb 7472 //Enter low optimization region - place directly above function definition
Kojto 115:87f2f5183dfb 7473 #ifdef ARM_MATH_CM4
Kojto 115:87f2f5183dfb 7474 #define LOW_OPTIMIZATION_ENTER \
Kojto 115:87f2f5183dfb 7475 _Pragma ("push") \
Kojto 115:87f2f5183dfb 7476 _Pragma ("O1")
Kojto 115:87f2f5183dfb 7477 #else
Kojto 115:87f2f5183dfb 7478 #define LOW_OPTIMIZATION_ENTER
Kojto 115:87f2f5183dfb 7479 #endif
Kojto 115:87f2f5183dfb 7480
Kojto 115:87f2f5183dfb 7481 //Exit low optimization region - place directly after end of function definition
Kojto 115:87f2f5183dfb 7482 #ifdef ARM_MATH_CM4
Kojto 115:87f2f5183dfb 7483 #define LOW_OPTIMIZATION_EXIT \
Kojto 115:87f2f5183dfb 7484 _Pragma ("pop")
Kojto 115:87f2f5183dfb 7485 #else
Kojto 115:87f2f5183dfb 7486 #define LOW_OPTIMIZATION_EXIT
Kojto 115:87f2f5183dfb 7487 #endif
Kojto 115:87f2f5183dfb 7488
Kojto 115:87f2f5183dfb 7489 //Enter low optimization region - place directly above function definition
Kojto 115:87f2f5183dfb 7490 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
Kojto 115:87f2f5183dfb 7491
Kojto 115:87f2f5183dfb 7492 //Exit low optimization region - place directly after end of function definition
Kojto 115:87f2f5183dfb 7493 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
Kojto 115:87f2f5183dfb 7494
Kojto 115:87f2f5183dfb 7495 #elif defined(__ICCARM__) //IAR
Kojto 115:87f2f5183dfb 7496
Kojto 115:87f2f5183dfb 7497 //Enter low optimization region - place directly above function definition
Kojto 115:87f2f5183dfb 7498 #ifdef ARM_MATH_CM4
Kojto 115:87f2f5183dfb 7499 #define LOW_OPTIMIZATION_ENTER \
Kojto 115:87f2f5183dfb 7500 _Pragma ("optimize=low")
Kojto 115:87f2f5183dfb 7501 #else
Kojto 115:87f2f5183dfb 7502 #define LOW_OPTIMIZATION_ENTER
Kojto 115:87f2f5183dfb 7503 #endif
Kojto 115:87f2f5183dfb 7504
Kojto 115:87f2f5183dfb 7505 //Exit low optimization region - place directly after end of function definition
Kojto 115:87f2f5183dfb 7506 #define LOW_OPTIMIZATION_EXIT
Kojto 115:87f2f5183dfb 7507
Kojto 115:87f2f5183dfb 7508 //Enter low optimization region - place directly above function definition
Kojto 115:87f2f5183dfb 7509 #ifdef ARM_MATH_CM4
Kojto 115:87f2f5183dfb 7510 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER \
Kojto 115:87f2f5183dfb 7511 _Pragma ("optimize=low")
Kojto 115:87f2f5183dfb 7512 #else
Kojto 115:87f2f5183dfb 7513 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
Kojto 115:87f2f5183dfb 7514 #endif
Kojto 115:87f2f5183dfb 7515
Kojto 115:87f2f5183dfb 7516 //Exit low optimization region - place directly after end of function definition
Kojto 115:87f2f5183dfb 7517 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
Kojto 115:87f2f5183dfb 7518
Kojto 115:87f2f5183dfb 7519 #elif defined(__GNUC__)
Kojto 115:87f2f5183dfb 7520
Kojto 115:87f2f5183dfb 7521 #define LOW_OPTIMIZATION_ENTER __attribute__(( optimize("-O1") ))
Kojto 115:87f2f5183dfb 7522
Kojto 115:87f2f5183dfb 7523 #define LOW_OPTIMIZATION_EXIT
Kojto 115:87f2f5183dfb 7524
Kojto 115:87f2f5183dfb 7525 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
Kojto 115:87f2f5183dfb 7526
Kojto 115:87f2f5183dfb 7527 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
Kojto 115:87f2f5183dfb 7528
Kojto 115:87f2f5183dfb 7529 #elif defined(__CSMC__) // Cosmic
Kojto 115:87f2f5183dfb 7530
Kojto 115:87f2f5183dfb 7531 #define LOW_OPTIMIZATION_ENTER
Kojto 115:87f2f5183dfb 7532 #define LOW_OPTIMIZATION_EXIT
Kojto 115:87f2f5183dfb 7533 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
Kojto 115:87f2f5183dfb 7534 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
Kojto 115:87f2f5183dfb 7535
Kojto 115:87f2f5183dfb 7536 #elif defined(__TASKING__) // TASKING
Kojto 115:87f2f5183dfb 7537
Kojto 115:87f2f5183dfb 7538 #define LOW_OPTIMIZATION_ENTER
Kojto 115:87f2f5183dfb 7539 #define LOW_OPTIMIZATION_EXIT
Kojto 115:87f2f5183dfb 7540 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
Kojto 115:87f2f5183dfb 7541 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
Kojto 115:87f2f5183dfb 7542
Kojto 115:87f2f5183dfb 7543 #endif
Kojto 115:87f2f5183dfb 7544
Kojto 115:87f2f5183dfb 7545
Kojto 115:87f2f5183dfb 7546 #ifdef __cplusplus
Kojto 115:87f2f5183dfb 7547 }
Kojto 115:87f2f5183dfb 7548 #endif
Kojto 115:87f2f5183dfb 7549
Kojto 115:87f2f5183dfb 7550
Kojto 115:87f2f5183dfb 7551 #endif /* _ARM_MATH_H */
Kojto 115:87f2f5183dfb 7552
Kojto 115:87f2f5183dfb 7553 /**
Kojto 115:87f2f5183dfb 7554 *
Kojto 115:87f2f5183dfb 7555 * End of file.
Kojto 115:87f2f5183dfb 7556 */