mbed library sources

Dependents:   Encrypted my_mbed lklk CyaSSL_DTLS_Cellular ... more

Superseded

This library was superseded by mbed-dev - https://os.mbed.com/users/mbed_official/code/mbed-dev/.

Development branch of the mbed library sources. This library is kept in synch with the latest changes from the mbed SDK and it is not guaranteed to work.

If you are looking for a stable and tested release, please import one of the official mbed library releases:

Import librarymbed

The official Mbed 2 C/C++ SDK provides the software platform and libraries to build your applications.

Committer:
mbed_official
Date:
Tue Feb 03 17:00:07 2015 +0000
Revision:
463:5c73c3744533
Parent:
227:7bd0639b8911
Synchronized with git revision 134a67aab259d410373367cb96b73420b390d385

Full URL: https://github.com/mbedmicro/mbed/commit/134a67aab259d410373367cb96b73420b390d385/

Who changed what in which revision?

UserRevisionLine numberNew contents of line
emilmont 10:3bc89ef62ce7 1 /* mbed Microcontroller Library
emilmont 10:3bc89ef62ce7 2 * Copyright (c) 2006-2013 ARM Limited
emilmont 10:3bc89ef62ce7 3 *
emilmont 10:3bc89ef62ce7 4 * Licensed under the Apache License, Version 2.0 (the "License");
emilmont 10:3bc89ef62ce7 5 * you may not use this file except in compliance with the License.
emilmont 10:3bc89ef62ce7 6 * You may obtain a copy of the License at
emilmont 10:3bc89ef62ce7 7 *
emilmont 10:3bc89ef62ce7 8 * http://www.apache.org/licenses/LICENSE-2.0
emilmont 10:3bc89ef62ce7 9 *
emilmont 10:3bc89ef62ce7 10 * Unless required by applicable law or agreed to in writing, software
emilmont 10:3bc89ef62ce7 11 * distributed under the License is distributed on an "AS IS" BASIS,
emilmont 10:3bc89ef62ce7 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
emilmont 10:3bc89ef62ce7 13 * See the License for the specific language governing permissions and
emilmont 10:3bc89ef62ce7 14 * limitations under the License.
emilmont 10:3bc89ef62ce7 15 */
mbed_official 227:7bd0639b8911 16 #include "mbed_assert.h"
emilmont 10:3bc89ef62ce7 17 #include "analogin_api.h"
emilmont 10:3bc89ef62ce7 18 #include "cmsis.h"
emilmont 10:3bc89ef62ce7 19 #include "pinmap.h"
emilmont 10:3bc89ef62ce7 20
emilmont 10:3bc89ef62ce7 21 #define ANALOGIN_MEDIAN_FILTER 1
emilmont 10:3bc89ef62ce7 22
emilmont 10:3bc89ef62ce7 23 #define ADC_10BIT_RANGE 0x3FF
emilmont 10:3bc89ef62ce7 24 #define ADC_12BIT_RANGE 0xFFF
emilmont 10:3bc89ef62ce7 25
emilmont 10:3bc89ef62ce7 26 static inline int div_round_up(int x, int y) {
emilmont 10:3bc89ef62ce7 27 return (x + (y - 1)) / y;
emilmont 10:3bc89ef62ce7 28 }
emilmont 10:3bc89ef62ce7 29
emilmont 10:3bc89ef62ce7 30 static const PinMap PinMap_ADC[] = {
emilmont 10:3bc89ef62ce7 31 {P0_23, ADC0_0, 1},
emilmont 10:3bc89ef62ce7 32 {P0_24, ADC0_1, 1},
emilmont 10:3bc89ef62ce7 33 {P0_25, ADC0_2, 1},
emilmont 10:3bc89ef62ce7 34 {P0_26, ADC0_3, 1},
emilmont 10:3bc89ef62ce7 35 {P1_30, ADC0_4, 3},
emilmont 10:3bc89ef62ce7 36 {P1_31, ADC0_5, 3},
emilmont 10:3bc89ef62ce7 37 {NC, NC, 0}
emilmont 10:3bc89ef62ce7 38 };
emilmont 10:3bc89ef62ce7 39
emilmont 10:3bc89ef62ce7 40 #define ADC_RANGE ADC_10BIT_RANGE
emilmont 10:3bc89ef62ce7 41
emilmont 10:3bc89ef62ce7 42
emilmont 10:3bc89ef62ce7 43 void analogin_init(analogin_t *obj, PinName pin) {
emilmont 10:3bc89ef62ce7 44 obj->adc = (ADCName)pinmap_peripheral(pin, PinMap_ADC);
mbed_official 227:7bd0639b8911 45 MBED_ASSERT(obj->adc != (ADCName)NC);
emilmont 10:3bc89ef62ce7 46
emilmont 10:3bc89ef62ce7 47 // ensure power is turned on
emilmont 10:3bc89ef62ce7 48 LPC_SC->PCONP |= (1 << 12);
emilmont 10:3bc89ef62ce7 49
emilmont 10:3bc89ef62ce7 50 // set PCLK of ADC to /1
emilmont 10:3bc89ef62ce7 51 LPC_SC->PCLKSEL0 &= ~(0x3 << 24);
emilmont 10:3bc89ef62ce7 52 LPC_SC->PCLKSEL0 |= (0x1 << 24);
emilmont 10:3bc89ef62ce7 53 uint32_t PCLK = SystemCoreClock;
emilmont 10:3bc89ef62ce7 54
emilmont 10:3bc89ef62ce7 55 // calculate minimum clock divider
emilmont 10:3bc89ef62ce7 56 // clkdiv = divider - 1
emilmont 10:3bc89ef62ce7 57 uint32_t MAX_ADC_CLK = 13000000;
emilmont 10:3bc89ef62ce7 58 uint32_t clkdiv = div_round_up(PCLK, MAX_ADC_CLK) - 1;
emilmont 10:3bc89ef62ce7 59
emilmont 10:3bc89ef62ce7 60 // Set the generic software-controlled ADC settings
emilmont 10:3bc89ef62ce7 61 LPC_ADC->ADCR = (0 << 0) // SEL: 0 = no channels selected
emilmont 10:3bc89ef62ce7 62 | (clkdiv << 8) // CLKDIV: PCLK max ~= 25MHz, /25 to give safe 1MHz at fastest
emilmont 10:3bc89ef62ce7 63 | (0 << 16) // BURST: 0 = software control
emilmont 10:3bc89ef62ce7 64 | (0 << 17) // CLKS: not applicable
emilmont 10:3bc89ef62ce7 65 | (1 << 21) // PDN: 1 = operational
emilmont 10:3bc89ef62ce7 66 | (0 << 24) // START: 0 = no start
emilmont 10:3bc89ef62ce7 67 | (0 << 27); // EDGE: not applicable
emilmont 10:3bc89ef62ce7 68
emilmont 10:3bc89ef62ce7 69 pinmap_pinout(pin, PinMap_ADC);
emilmont 10:3bc89ef62ce7 70 }
emilmont 10:3bc89ef62ce7 71
emilmont 10:3bc89ef62ce7 72 static inline uint32_t adc_read(analogin_t *obj) {
emilmont 10:3bc89ef62ce7 73 // Select the appropriate channel and start conversion
emilmont 10:3bc89ef62ce7 74 LPC_ADC->ADCR &= ~0xFF;
emilmont 10:3bc89ef62ce7 75 LPC_ADC->ADCR |= 1 << (int)obj->adc;
emilmont 10:3bc89ef62ce7 76 LPC_ADC->ADCR |= 1 << 24;
emilmont 10:3bc89ef62ce7 77
emilmont 10:3bc89ef62ce7 78 // Repeatedly get the sample data until DONE bit
emilmont 10:3bc89ef62ce7 79 unsigned int data;
emilmont 10:3bc89ef62ce7 80 do {
emilmont 10:3bc89ef62ce7 81 data = LPC_ADC->ADGDR;
emilmont 10:3bc89ef62ce7 82 } while ((data & ((unsigned int)1 << 31)) == 0);
emilmont 10:3bc89ef62ce7 83
emilmont 10:3bc89ef62ce7 84 // Stop conversion
emilmont 10:3bc89ef62ce7 85 LPC_ADC->ADCR &= ~(1 << 24);
emilmont 10:3bc89ef62ce7 86
emilmont 10:3bc89ef62ce7 87 return (data >> 6) & ADC_RANGE; // 10 bit
emilmont 10:3bc89ef62ce7 88 }
emilmont 10:3bc89ef62ce7 89
emilmont 10:3bc89ef62ce7 90 static inline void order(uint32_t *a, uint32_t *b) {
emilmont 10:3bc89ef62ce7 91 if (*a > *b) {
emilmont 10:3bc89ef62ce7 92 uint32_t t = *a;
emilmont 10:3bc89ef62ce7 93 *a = *b;
emilmont 10:3bc89ef62ce7 94 *b = t;
emilmont 10:3bc89ef62ce7 95 }
emilmont 10:3bc89ef62ce7 96 }
emilmont 10:3bc89ef62ce7 97
emilmont 10:3bc89ef62ce7 98 static inline uint32_t adc_read_u32(analogin_t *obj) {
emilmont 10:3bc89ef62ce7 99 uint32_t value;
emilmont 10:3bc89ef62ce7 100 #if ANALOGIN_MEDIAN_FILTER
emilmont 10:3bc89ef62ce7 101 uint32_t v1 = adc_read(obj);
emilmont 10:3bc89ef62ce7 102 uint32_t v2 = adc_read(obj);
emilmont 10:3bc89ef62ce7 103 uint32_t v3 = adc_read(obj);
emilmont 10:3bc89ef62ce7 104 order(&v1, &v2);
emilmont 10:3bc89ef62ce7 105 order(&v2, &v3);
emilmont 10:3bc89ef62ce7 106 order(&v1, &v2);
emilmont 10:3bc89ef62ce7 107 value = v2;
emilmont 10:3bc89ef62ce7 108 #else
emilmont 10:3bc89ef62ce7 109 value = adc_read(obj);
emilmont 10:3bc89ef62ce7 110 #endif
emilmont 10:3bc89ef62ce7 111 return value;
emilmont 10:3bc89ef62ce7 112 }
emilmont 10:3bc89ef62ce7 113
emilmont 10:3bc89ef62ce7 114 uint16_t analogin_read_u16(analogin_t *obj) {
emilmont 10:3bc89ef62ce7 115 uint32_t value = adc_read_u32(obj);
emilmont 10:3bc89ef62ce7 116
emilmont 10:3bc89ef62ce7 117 return (value << 6) | ((value >> 4) & 0x003F); // 10 bit
emilmont 10:3bc89ef62ce7 118 }
emilmont 10:3bc89ef62ce7 119
emilmont 10:3bc89ef62ce7 120 float analogin_read(analogin_t *obj) {
emilmont 10:3bc89ef62ce7 121 uint32_t value = adc_read_u32(obj);
emilmont 10:3bc89ef62ce7 122 return (float)value * (1.0f / (float)ADC_RANGE);
emilmont 10:3bc89ef62ce7 123 }