mbed library sources. Supersedes mbed-src.

Dependents:   Nucleo_Hello_Encoder BLE_iBeaconScan AM1805_DEMO DISCO-F429ZI_ExportTemplate1 ... more

Committer:
AnnaBridge
Date:
Wed Feb 20 22:31:08 2019 +0000
Revision:
189:f392fc9709a3
Parent:
167:e84263d55307
mbed library release version 165

Who changed what in which revision?

UserRevisionLine numberNew contents of line
<> 144:ef7eb2e8f9f7 1 /**
<> 144:ef7eb2e8f9f7 2 ******************************************************************************
<> 144:ef7eb2e8f9f7 3 * @file stm32f2xx_hal_tim.c
<> 144:ef7eb2e8f9f7 4 * @author MCD Application Team
AnnaBridge 167:e84263d55307 5 * @version V1.2.1
AnnaBridge 167:e84263d55307 6 * @date 14-April-2017
<> 144:ef7eb2e8f9f7 7 * @brief TIM HAL module driver.
<> 144:ef7eb2e8f9f7 8 * This file provides firmware functions to manage the following
<> 144:ef7eb2e8f9f7 9 * functionalities of the Timer (TIM) peripheral:
<> 144:ef7eb2e8f9f7 10 * + Time Base Initialization
<> 144:ef7eb2e8f9f7 11 * + Time Base Start
<> 144:ef7eb2e8f9f7 12 * + Time Base Start Interruption
<> 144:ef7eb2e8f9f7 13 * + Time Base Start DMA
<> 144:ef7eb2e8f9f7 14 * + Time Output Compare/PWM Initialization
<> 144:ef7eb2e8f9f7 15 * + Time Output Compare/PWM Channel Configuration
<> 144:ef7eb2e8f9f7 16 * + Time Output Compare/PWM Start
<> 144:ef7eb2e8f9f7 17 * + Time Output Compare/PWM Start Interruption
<> 144:ef7eb2e8f9f7 18 * + Time Output Compare/PWM Start DMA
<> 144:ef7eb2e8f9f7 19 * + Time Input Capture Initialization
<> 144:ef7eb2e8f9f7 20 * + Time Input Capture Channel Configuration
<> 144:ef7eb2e8f9f7 21 * + Time Input Capture Start
<> 144:ef7eb2e8f9f7 22 * + Time Input Capture Start Interruption
<> 144:ef7eb2e8f9f7 23 * + Time Input Capture Start DMA
<> 144:ef7eb2e8f9f7 24 * + Time One Pulse Initialization
<> 144:ef7eb2e8f9f7 25 * + Time One Pulse Channel Configuration
<> 144:ef7eb2e8f9f7 26 * + Time One Pulse Start
<> 144:ef7eb2e8f9f7 27 * + Time Encoder Interface Initialization
<> 144:ef7eb2e8f9f7 28 * + Time Encoder Interface Start
<> 144:ef7eb2e8f9f7 29 * + Time Encoder Interface Start Interruption
<> 144:ef7eb2e8f9f7 30 * + Time Encoder Interface Start DMA
<> 144:ef7eb2e8f9f7 31 * + Commutation Event configuration with Interruption and DMA
<> 144:ef7eb2e8f9f7 32 * + Time OCRef clear configuration
<> 144:ef7eb2e8f9f7 33 * + Time External Clock configuration
<> 144:ef7eb2e8f9f7 34 @verbatim
<> 144:ef7eb2e8f9f7 35 ==============================================================================
<> 144:ef7eb2e8f9f7 36 ##### TIMER Generic features #####
<> 144:ef7eb2e8f9f7 37 ==============================================================================
<> 144:ef7eb2e8f9f7 38 [..] The Timer features include:
<> 144:ef7eb2e8f9f7 39 (#) 16-bit up, down, up/down auto-reload counter.
<> 144:ef7eb2e8f9f7 40 (#) 16-bit programmable prescaler allowing dividing (also on the fly) the
<> 144:ef7eb2e8f9f7 41 counter clock frequency either by any factor between 1 and 65536.
<> 144:ef7eb2e8f9f7 42 (#) Up to 4 independent channels for:
<> 144:ef7eb2e8f9f7 43 (++) Input Capture
<> 144:ef7eb2e8f9f7 44 (++) Output Compare
<> 144:ef7eb2e8f9f7 45 (++) PWM generation (Edge and Center-aligned Mode)
<> 144:ef7eb2e8f9f7 46 (++) One-pulse mode output
<> 144:ef7eb2e8f9f7 47
<> 144:ef7eb2e8f9f7 48 ##### How to use this driver #####
<> 144:ef7eb2e8f9f7 49 ==============================================================================
<> 144:ef7eb2e8f9f7 50 [..]
<> 144:ef7eb2e8f9f7 51 (#) Initialize the TIM low level resources by implementing the following functions
<> 144:ef7eb2e8f9f7 52 depending from feature used :
<> 144:ef7eb2e8f9f7 53 (++) Time Base : HAL_TIM_Base_MspInit()
<> 144:ef7eb2e8f9f7 54 (++) Input Capture : HAL_TIM_IC_MspInit()
<> 144:ef7eb2e8f9f7 55 (++) Output Compare : HAL_TIM_OC_MspInit()
<> 144:ef7eb2e8f9f7 56 (++) PWM generation : HAL_TIM_PWM_MspInit()
<> 144:ef7eb2e8f9f7 57 (++) One-pulse mode output : HAL_TIM_OnePulse_MspInit()
<> 144:ef7eb2e8f9f7 58 (++) Encoder mode output : HAL_TIM_Encoder_MspInit()
<> 144:ef7eb2e8f9f7 59
<> 144:ef7eb2e8f9f7 60 (#) Initialize the TIM low level resources :
<> 144:ef7eb2e8f9f7 61 (##) Enable the TIM interface clock using __TIMx_CLK_ENABLE();
<> 144:ef7eb2e8f9f7 62 (##) TIM pins configuration
<> 144:ef7eb2e8f9f7 63 (+++) Enable the clock for the TIM GPIOs using the following function:
<> 144:ef7eb2e8f9f7 64 __GPIOx_CLK_ENABLE();
<> 144:ef7eb2e8f9f7 65 (+++) Configure these TIM pins in Alternate function mode using HAL_GPIO_Init();
<> 144:ef7eb2e8f9f7 66
<> 144:ef7eb2e8f9f7 67 (#) The external Clock can be configured, if needed (the default clock is the
<> 144:ef7eb2e8f9f7 68 internal clock from the APBx), using the following function:
<> 144:ef7eb2e8f9f7 69 HAL_TIM_ConfigClockSource, the clock configuration should be done before
<> 144:ef7eb2e8f9f7 70 any start function.
<> 144:ef7eb2e8f9f7 71
<> 144:ef7eb2e8f9f7 72 (#) Configure the TIM in the desired functioning mode using one of the
<> 144:ef7eb2e8f9f7 73 initialization function of this driver:
<> 144:ef7eb2e8f9f7 74 (++) HAL_TIM_Base_Init: to use the Timer to generate a simple time base
<> 144:ef7eb2e8f9f7 75 (++) HAL_TIM_OC_Init and HAL_TIM_OC_ConfigChannel: to use the Timer to generate an
<> 144:ef7eb2e8f9f7 76 Output Compare signal.
<> 144:ef7eb2e8f9f7 77 (++) HAL_TIM_PWM_Init and HAL_TIM_PWM_ConfigChannel: to use the Timer to generate a
<> 144:ef7eb2e8f9f7 78 PWM signal.
<> 144:ef7eb2e8f9f7 79 (++) HAL_TIM_IC_Init and HAL_TIM_IC_ConfigChannel: to use the Timer to measure an
<> 144:ef7eb2e8f9f7 80 external signal.
<> 144:ef7eb2e8f9f7 81 (++) HAL_TIM_OnePulse_Init and HAL_TIM_OnePulse_ConfigChannel: to use the Timer
<> 144:ef7eb2e8f9f7 82 in One Pulse Mode.
<> 144:ef7eb2e8f9f7 83 (++) HAL_TIM_Encoder_Init: to use the Timer Encoder Interface.
<> 144:ef7eb2e8f9f7 84
<> 144:ef7eb2e8f9f7 85 (#) Activate the TIM peripheral using one of the start functions depending from the feature used:
<> 144:ef7eb2e8f9f7 86 (++) Time Base : HAL_TIM_Base_Start(), HAL_TIM_Base_Start_DMA(), HAL_TIM_Base_Start_IT()
<> 144:ef7eb2e8f9f7 87 (++) Input Capture : HAL_TIM_IC_Start(), HAL_TIM_IC_Start_DMA(), HAL_TIM_IC_Start_IT()
<> 144:ef7eb2e8f9f7 88 (++) Output Compare : HAL_TIM_OC_Start(), HAL_TIM_OC_Start_DMA(), HAL_TIM_OC_Start_IT()
<> 144:ef7eb2e8f9f7 89 (++) PWM generation : HAL_TIM_PWM_Start(), HAL_TIM_PWM_Start_DMA(), HAL_TIM_PWM_Start_IT()
<> 144:ef7eb2e8f9f7 90 (++) One-pulse mode output : HAL_TIM_OnePulse_Start(), HAL_TIM_OnePulse_Start_IT()
<> 144:ef7eb2e8f9f7 91 (++) Encoder mode output : HAL_TIM_Encoder_Start(), HAL_TIM_Encoder_Start_DMA(), HAL_TIM_Encoder_Start_IT().
<> 144:ef7eb2e8f9f7 92
<> 144:ef7eb2e8f9f7 93 (#) The DMA Burst is managed with the two following functions:
<> 144:ef7eb2e8f9f7 94 HAL_TIM_DMABurst_WriteStart()
<> 144:ef7eb2e8f9f7 95 HAL_TIM_DMABurst_ReadStart()
<> 144:ef7eb2e8f9f7 96
<> 144:ef7eb2e8f9f7 97 @endverbatim
<> 144:ef7eb2e8f9f7 98 ******************************************************************************
<> 144:ef7eb2e8f9f7 99 * @attention
<> 144:ef7eb2e8f9f7 100 *
AnnaBridge 167:e84263d55307 101 * <h2><center>&copy; COPYRIGHT(c) 2017 STMicroelectronics</center></h2>
<> 144:ef7eb2e8f9f7 102 *
<> 144:ef7eb2e8f9f7 103 * Redistribution and use in source and binary forms, with or without modification,
<> 144:ef7eb2e8f9f7 104 * are permitted provided that the following conditions are met:
<> 144:ef7eb2e8f9f7 105 * 1. Redistributions of source code must retain the above copyright notice,
<> 144:ef7eb2e8f9f7 106 * this list of conditions and the following disclaimer.
<> 144:ef7eb2e8f9f7 107 * 2. Redistributions in binary form must reproduce the above copyright notice,
<> 144:ef7eb2e8f9f7 108 * this list of conditions and the following disclaimer in the documentation
<> 144:ef7eb2e8f9f7 109 * and/or other materials provided with the distribution.
<> 144:ef7eb2e8f9f7 110 * 3. Neither the name of STMicroelectronics nor the names of its contributors
<> 144:ef7eb2e8f9f7 111 * may be used to endorse or promote products derived from this software
<> 144:ef7eb2e8f9f7 112 * without specific prior written permission.
<> 144:ef7eb2e8f9f7 113 *
<> 144:ef7eb2e8f9f7 114 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
<> 144:ef7eb2e8f9f7 115 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
<> 144:ef7eb2e8f9f7 116 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
<> 144:ef7eb2e8f9f7 117 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
<> 144:ef7eb2e8f9f7 118 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
<> 144:ef7eb2e8f9f7 119 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
<> 144:ef7eb2e8f9f7 120 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
<> 144:ef7eb2e8f9f7 121 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
<> 144:ef7eb2e8f9f7 122 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
<> 144:ef7eb2e8f9f7 123 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
<> 144:ef7eb2e8f9f7 124 *
<> 144:ef7eb2e8f9f7 125 ******************************************************************************
<> 144:ef7eb2e8f9f7 126 */
<> 144:ef7eb2e8f9f7 127
<> 144:ef7eb2e8f9f7 128 /* Includes ------------------------------------------------------------------*/
<> 144:ef7eb2e8f9f7 129 #include "stm32f2xx_hal.h"
<> 144:ef7eb2e8f9f7 130
<> 144:ef7eb2e8f9f7 131 /** @addtogroup STM32F2xx_HAL_Driver
<> 144:ef7eb2e8f9f7 132 * @{
<> 144:ef7eb2e8f9f7 133 */
<> 144:ef7eb2e8f9f7 134
<> 144:ef7eb2e8f9f7 135 /** @defgroup TIM TIM
<> 144:ef7eb2e8f9f7 136 * @brief TIM HAL module driver
<> 144:ef7eb2e8f9f7 137 * @{
<> 144:ef7eb2e8f9f7 138 */
<> 144:ef7eb2e8f9f7 139
<> 144:ef7eb2e8f9f7 140 #ifdef HAL_TIM_MODULE_ENABLED
<> 144:ef7eb2e8f9f7 141
<> 144:ef7eb2e8f9f7 142 /* Private typedef -----------------------------------------------------------*/
<> 144:ef7eb2e8f9f7 143 /* Private define ------------------------------------------------------------*/
<> 144:ef7eb2e8f9f7 144 /* Private macro -------------------------------------------------------------*/
<> 144:ef7eb2e8f9f7 145 /* Private variables ---------------------------------------------------------*/
<> 144:ef7eb2e8f9f7 146 /** @addtogroup TIM_Private_Functions
<> 144:ef7eb2e8f9f7 147 * @{
<> 144:ef7eb2e8f9f7 148 */
<> 144:ef7eb2e8f9f7 149 /* Private function prototypes -----------------------------------------------*/
<> 144:ef7eb2e8f9f7 150 static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config);
<> 144:ef7eb2e8f9f7 151 static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config);
<> 144:ef7eb2e8f9f7 152 static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config);
<> 144:ef7eb2e8f9f7 153
<> 144:ef7eb2e8f9f7 154 static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter);
<> 144:ef7eb2e8f9f7 155 static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
<> 144:ef7eb2e8f9f7 156 uint32_t TIM_ICFilter);
<> 144:ef7eb2e8f9f7 157 static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter);
<> 144:ef7eb2e8f9f7 158 static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
<> 144:ef7eb2e8f9f7 159 uint32_t TIM_ICFilter);
<> 144:ef7eb2e8f9f7 160 static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
<> 144:ef7eb2e8f9f7 161 uint32_t TIM_ICFilter);
<> 144:ef7eb2e8f9f7 162
<> 144:ef7eb2e8f9f7 163 static void TIM_ETR_SetConfig(TIM_TypeDef* TIMx, uint32_t TIM_ExtTRGPrescaler,
<> 144:ef7eb2e8f9f7 164 uint32_t TIM_ExtTRGPolarity, uint32_t ExtTRGFilter);
<> 144:ef7eb2e8f9f7 165
<> 144:ef7eb2e8f9f7 166 static void TIM_ITRx_SetConfig(TIM_TypeDef* TIMx, uint16_t TIM_ITRx);
<> 144:ef7eb2e8f9f7 167 static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma);
<> 144:ef7eb2e8f9f7 168 static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma);
<> 144:ef7eb2e8f9f7 169 static void TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim,
<> 144:ef7eb2e8f9f7 170 TIM_SlaveConfigTypeDef * sSlaveConfig);
<> 144:ef7eb2e8f9f7 171 /**
<> 144:ef7eb2e8f9f7 172 * @}
<> 144:ef7eb2e8f9f7 173 */
<> 144:ef7eb2e8f9f7 174
<> 144:ef7eb2e8f9f7 175 /* Exported functions --------------------------------------------------------*/
<> 144:ef7eb2e8f9f7 176 /** @defgroup TIM_Exported_Functions TIM Exported Functions
<> 144:ef7eb2e8f9f7 177 * @{
<> 144:ef7eb2e8f9f7 178 */
<> 144:ef7eb2e8f9f7 179
<> 144:ef7eb2e8f9f7 180 /** @defgroup TIM_Exported_Functions_Group1 Time Base functions
<> 144:ef7eb2e8f9f7 181 * @brief Time Base functions
<> 144:ef7eb2e8f9f7 182 *
<> 144:ef7eb2e8f9f7 183 @verbatim
<> 144:ef7eb2e8f9f7 184 ==============================================================================
<> 144:ef7eb2e8f9f7 185 ##### Time Base functions #####
<> 144:ef7eb2e8f9f7 186 ==============================================================================
<> 144:ef7eb2e8f9f7 187 [..]
<> 144:ef7eb2e8f9f7 188 This section provides functions allowing to:
<> 144:ef7eb2e8f9f7 189 (+) Initialize and configure the TIM base.
<> 144:ef7eb2e8f9f7 190 (+) De-initialize the TIM base.
<> 144:ef7eb2e8f9f7 191 (+) Start the Time Base.
<> 144:ef7eb2e8f9f7 192 (+) Stop the Time Base.
<> 144:ef7eb2e8f9f7 193 (+) Start the Time Base and enable interrupt.
<> 144:ef7eb2e8f9f7 194 (+) Stop the Time Base and disable interrupt.
<> 144:ef7eb2e8f9f7 195 (+) Start the Time Base and enable DMA transfer.
<> 144:ef7eb2e8f9f7 196 (+) Stop the Time Base and disable DMA transfer.
<> 144:ef7eb2e8f9f7 197
<> 144:ef7eb2e8f9f7 198 @endverbatim
<> 144:ef7eb2e8f9f7 199 * @{
<> 144:ef7eb2e8f9f7 200 */
<> 144:ef7eb2e8f9f7 201 /**
<> 144:ef7eb2e8f9f7 202 * @brief Initializes the TIM Time base Unit according to the specified
<> 144:ef7eb2e8f9f7 203 * parameters in the TIM_HandleTypeDef and create the associated handle.
<> 144:ef7eb2e8f9f7 204 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 205 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 206 * @retval HAL status
<> 144:ef7eb2e8f9f7 207 */
<> 144:ef7eb2e8f9f7 208 HAL_StatusTypeDef HAL_TIM_Base_Init(TIM_HandleTypeDef *htim)
<> 144:ef7eb2e8f9f7 209 {
<> 144:ef7eb2e8f9f7 210 /* Check the TIM handle allocation */
<> 144:ef7eb2e8f9f7 211 if(htim == NULL)
<> 144:ef7eb2e8f9f7 212 {
<> 144:ef7eb2e8f9f7 213 return HAL_ERROR;
<> 144:ef7eb2e8f9f7 214 }
<> 144:ef7eb2e8f9f7 215
<> 144:ef7eb2e8f9f7 216 /* Check the parameters */
<> 144:ef7eb2e8f9f7 217 assert_param(IS_TIM_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 218 assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
<> 144:ef7eb2e8f9f7 219 assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
AnnaBridge 167:e84263d55307 220 assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
<> 144:ef7eb2e8f9f7 221
<> 144:ef7eb2e8f9f7 222 if(htim->State == HAL_TIM_STATE_RESET)
<> 144:ef7eb2e8f9f7 223 {
<> 144:ef7eb2e8f9f7 224 /* Allocate lock resource and initialize it */
<> 144:ef7eb2e8f9f7 225 htim->Lock = HAL_UNLOCKED;
<> 144:ef7eb2e8f9f7 226 /* Init the low level hardware : GPIO, CLOCK, NVIC */
<> 144:ef7eb2e8f9f7 227 HAL_TIM_Base_MspInit(htim);
<> 144:ef7eb2e8f9f7 228 }
<> 144:ef7eb2e8f9f7 229
<> 144:ef7eb2e8f9f7 230 /* Set the TIM state */
<> 144:ef7eb2e8f9f7 231 htim->State= HAL_TIM_STATE_BUSY;
<> 144:ef7eb2e8f9f7 232
<> 144:ef7eb2e8f9f7 233 /* Set the Time Base configuration */
<> 144:ef7eb2e8f9f7 234 TIM_Base_SetConfig(htim->Instance, &htim->Init);
<> 144:ef7eb2e8f9f7 235
<> 144:ef7eb2e8f9f7 236 /* Initialize the TIM state*/
<> 144:ef7eb2e8f9f7 237 htim->State= HAL_TIM_STATE_READY;
<> 144:ef7eb2e8f9f7 238
<> 144:ef7eb2e8f9f7 239 return HAL_OK;
<> 144:ef7eb2e8f9f7 240 }
<> 144:ef7eb2e8f9f7 241
<> 144:ef7eb2e8f9f7 242 /**
<> 144:ef7eb2e8f9f7 243 * @brief DeInitializes the TIM Base peripheral
<> 144:ef7eb2e8f9f7 244 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 245 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 246 * @retval HAL status
<> 144:ef7eb2e8f9f7 247 */
<> 144:ef7eb2e8f9f7 248 HAL_StatusTypeDef HAL_TIM_Base_DeInit(TIM_HandleTypeDef *htim)
<> 144:ef7eb2e8f9f7 249 {
<> 144:ef7eb2e8f9f7 250 /* Check the parameters */
<> 144:ef7eb2e8f9f7 251 assert_param(IS_TIM_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 252
<> 144:ef7eb2e8f9f7 253 htim->State = HAL_TIM_STATE_BUSY;
<> 144:ef7eb2e8f9f7 254
<> 144:ef7eb2e8f9f7 255 /* Disable the TIM Peripheral Clock */
<> 144:ef7eb2e8f9f7 256 __HAL_TIM_DISABLE(htim);
<> 144:ef7eb2e8f9f7 257
<> 144:ef7eb2e8f9f7 258 /* DeInit the low level hardware: GPIO, CLOCK, NVIC */
<> 144:ef7eb2e8f9f7 259 HAL_TIM_Base_MspDeInit(htim);
<> 144:ef7eb2e8f9f7 260
<> 144:ef7eb2e8f9f7 261 /* Change TIM state */
<> 144:ef7eb2e8f9f7 262 htim->State = HAL_TIM_STATE_RESET;
<> 144:ef7eb2e8f9f7 263
<> 144:ef7eb2e8f9f7 264 /* Release Lock */
<> 144:ef7eb2e8f9f7 265 __HAL_UNLOCK(htim);
<> 144:ef7eb2e8f9f7 266
<> 144:ef7eb2e8f9f7 267 return HAL_OK;
<> 144:ef7eb2e8f9f7 268 }
<> 144:ef7eb2e8f9f7 269
<> 144:ef7eb2e8f9f7 270 /**
<> 144:ef7eb2e8f9f7 271 * @brief Initializes the TIM Base MSP.
<> 144:ef7eb2e8f9f7 272 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 273 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 274 * @retval None
<> 144:ef7eb2e8f9f7 275 */
<> 144:ef7eb2e8f9f7 276 __weak void HAL_TIM_Base_MspInit(TIM_HandleTypeDef *htim)
<> 144:ef7eb2e8f9f7 277 {
<> 144:ef7eb2e8f9f7 278 /* Prevent unused argument(s) compilation warning */
<> 144:ef7eb2e8f9f7 279 UNUSED(htim);
<> 144:ef7eb2e8f9f7 280 /* NOTE : This function Should not be modified, when the callback is needed,
<> 144:ef7eb2e8f9f7 281 the HAL_TIM_Base_MspInit could be implemented in the user file
<> 144:ef7eb2e8f9f7 282 */
<> 144:ef7eb2e8f9f7 283 }
<> 144:ef7eb2e8f9f7 284
<> 144:ef7eb2e8f9f7 285 /**
<> 144:ef7eb2e8f9f7 286 * @brief DeInitializes TIM Base MSP.
<> 144:ef7eb2e8f9f7 287 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 288 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 289 * @retval None
<> 144:ef7eb2e8f9f7 290 */
<> 144:ef7eb2e8f9f7 291 __weak void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef *htim)
<> 144:ef7eb2e8f9f7 292 {
<> 144:ef7eb2e8f9f7 293 /* Prevent unused argument(s) compilation warning */
<> 144:ef7eb2e8f9f7 294 UNUSED(htim);
<> 144:ef7eb2e8f9f7 295 /* NOTE : This function Should not be modified, when the callback is needed,
<> 144:ef7eb2e8f9f7 296 the HAL_TIM_Base_MspDeInit could be implemented in the user file
<> 144:ef7eb2e8f9f7 297 */
<> 144:ef7eb2e8f9f7 298 }
<> 144:ef7eb2e8f9f7 299
<> 144:ef7eb2e8f9f7 300 /**
<> 144:ef7eb2e8f9f7 301 * @brief Starts the TIM Base generation.
<> 144:ef7eb2e8f9f7 302 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 303 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 304 * @retval HAL status
<> 144:ef7eb2e8f9f7 305 */
<> 144:ef7eb2e8f9f7 306 HAL_StatusTypeDef HAL_TIM_Base_Start(TIM_HandleTypeDef *htim)
<> 144:ef7eb2e8f9f7 307 {
<> 144:ef7eb2e8f9f7 308 /* Check the parameters */
<> 144:ef7eb2e8f9f7 309 assert_param(IS_TIM_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 310
<> 144:ef7eb2e8f9f7 311 /* Set the TIM state */
<> 144:ef7eb2e8f9f7 312 htim->State= HAL_TIM_STATE_BUSY;
<> 144:ef7eb2e8f9f7 313
<> 144:ef7eb2e8f9f7 314 /* Enable the Peripheral */
<> 144:ef7eb2e8f9f7 315 __HAL_TIM_ENABLE(htim);
<> 144:ef7eb2e8f9f7 316
<> 144:ef7eb2e8f9f7 317 /* Change the TIM state*/
<> 144:ef7eb2e8f9f7 318 htim->State= HAL_TIM_STATE_READY;
<> 144:ef7eb2e8f9f7 319
<> 144:ef7eb2e8f9f7 320 /* Return function status */
<> 144:ef7eb2e8f9f7 321 return HAL_OK;
<> 144:ef7eb2e8f9f7 322 }
<> 144:ef7eb2e8f9f7 323
<> 144:ef7eb2e8f9f7 324 /**
<> 144:ef7eb2e8f9f7 325 * @brief Stops the TIM Base generation.
<> 144:ef7eb2e8f9f7 326 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 327 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 328 * @retval HAL status
<> 144:ef7eb2e8f9f7 329 */
<> 144:ef7eb2e8f9f7 330 HAL_StatusTypeDef HAL_TIM_Base_Stop(TIM_HandleTypeDef *htim)
<> 144:ef7eb2e8f9f7 331 {
<> 144:ef7eb2e8f9f7 332 /* Check the parameters */
<> 144:ef7eb2e8f9f7 333 assert_param(IS_TIM_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 334
<> 144:ef7eb2e8f9f7 335 /* Set the TIM state */
<> 144:ef7eb2e8f9f7 336 htim->State= HAL_TIM_STATE_BUSY;
<> 144:ef7eb2e8f9f7 337
<> 144:ef7eb2e8f9f7 338 /* Disable the Peripheral */
<> 144:ef7eb2e8f9f7 339 __HAL_TIM_DISABLE(htim);
<> 144:ef7eb2e8f9f7 340
<> 144:ef7eb2e8f9f7 341 /* Change the TIM state*/
<> 144:ef7eb2e8f9f7 342 htim->State= HAL_TIM_STATE_READY;
<> 144:ef7eb2e8f9f7 343
<> 144:ef7eb2e8f9f7 344 /* Return function status */
<> 144:ef7eb2e8f9f7 345 return HAL_OK;
<> 144:ef7eb2e8f9f7 346 }
<> 144:ef7eb2e8f9f7 347
<> 144:ef7eb2e8f9f7 348 /**
<> 144:ef7eb2e8f9f7 349 * @brief Starts the TIM Base generation in interrupt mode.
<> 144:ef7eb2e8f9f7 350 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 351 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 352 * @retval HAL status
<> 144:ef7eb2e8f9f7 353 */
<> 144:ef7eb2e8f9f7 354 HAL_StatusTypeDef HAL_TIM_Base_Start_IT(TIM_HandleTypeDef *htim)
<> 144:ef7eb2e8f9f7 355 {
<> 144:ef7eb2e8f9f7 356 /* Check the parameters */
<> 144:ef7eb2e8f9f7 357 assert_param(IS_TIM_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 358
<> 144:ef7eb2e8f9f7 359 /* Enable the TIM Update interrupt */
<> 144:ef7eb2e8f9f7 360 __HAL_TIM_ENABLE_IT(htim, TIM_IT_UPDATE);
<> 144:ef7eb2e8f9f7 361
<> 144:ef7eb2e8f9f7 362 /* Enable the Peripheral */
<> 144:ef7eb2e8f9f7 363 __HAL_TIM_ENABLE(htim);
<> 144:ef7eb2e8f9f7 364
<> 144:ef7eb2e8f9f7 365 /* Return function status */
<> 144:ef7eb2e8f9f7 366 return HAL_OK;
<> 144:ef7eb2e8f9f7 367 }
<> 144:ef7eb2e8f9f7 368
<> 144:ef7eb2e8f9f7 369 /**
<> 144:ef7eb2e8f9f7 370 * @brief Stops the TIM Base generation in interrupt mode.
<> 144:ef7eb2e8f9f7 371 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 372 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 373 * @retval HAL status
<> 144:ef7eb2e8f9f7 374 */
<> 144:ef7eb2e8f9f7 375 HAL_StatusTypeDef HAL_TIM_Base_Stop_IT(TIM_HandleTypeDef *htim)
<> 144:ef7eb2e8f9f7 376 {
<> 144:ef7eb2e8f9f7 377 /* Check the parameters */
<> 144:ef7eb2e8f9f7 378 assert_param(IS_TIM_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 379 /* Disable the TIM Update interrupt */
<> 144:ef7eb2e8f9f7 380 __HAL_TIM_DISABLE_IT(htim, TIM_IT_UPDATE);
<> 144:ef7eb2e8f9f7 381
<> 144:ef7eb2e8f9f7 382 /* Disable the Peripheral */
<> 144:ef7eb2e8f9f7 383 __HAL_TIM_DISABLE(htim);
<> 144:ef7eb2e8f9f7 384
<> 144:ef7eb2e8f9f7 385 /* Return function status */
<> 144:ef7eb2e8f9f7 386 return HAL_OK;
<> 144:ef7eb2e8f9f7 387 }
<> 144:ef7eb2e8f9f7 388
<> 144:ef7eb2e8f9f7 389 /**
<> 144:ef7eb2e8f9f7 390 * @brief Starts the TIM Base generation in DMA mode.
<> 144:ef7eb2e8f9f7 391 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 392 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 393 * @param pData: The source Buffer address.
<> 144:ef7eb2e8f9f7 394 * @param Length: The length of data to be transferred from memory to peripheral.
<> 144:ef7eb2e8f9f7 395 * @retval HAL status
<> 144:ef7eb2e8f9f7 396 */
<> 144:ef7eb2e8f9f7 397 HAL_StatusTypeDef HAL_TIM_Base_Start_DMA(TIM_HandleTypeDef *htim, uint32_t *pData, uint16_t Length)
<> 144:ef7eb2e8f9f7 398 {
<> 144:ef7eb2e8f9f7 399 /* Check the parameters */
<> 144:ef7eb2e8f9f7 400 assert_param(IS_TIM_DMA_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 401
<> 144:ef7eb2e8f9f7 402 if((htim->State == HAL_TIM_STATE_BUSY))
<> 144:ef7eb2e8f9f7 403 {
<> 144:ef7eb2e8f9f7 404 return HAL_BUSY;
<> 144:ef7eb2e8f9f7 405 }
<> 144:ef7eb2e8f9f7 406 else if((htim->State == HAL_TIM_STATE_READY))
<> 144:ef7eb2e8f9f7 407 {
AnnaBridge 167:e84263d55307 408 if((pData == 0U ) && (Length > 0))
<> 144:ef7eb2e8f9f7 409 {
<> 144:ef7eb2e8f9f7 410 return HAL_ERROR;
<> 144:ef7eb2e8f9f7 411 }
<> 144:ef7eb2e8f9f7 412 else
<> 144:ef7eb2e8f9f7 413 {
<> 144:ef7eb2e8f9f7 414 htim->State = HAL_TIM_STATE_BUSY;
<> 144:ef7eb2e8f9f7 415 }
<> 144:ef7eb2e8f9f7 416 }
<> 144:ef7eb2e8f9f7 417 /* Set the DMA Period elapsed callback */
<> 144:ef7eb2e8f9f7 418 htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt;
<> 144:ef7eb2e8f9f7 419
<> 144:ef7eb2e8f9f7 420 /* Set the DMA error callback */
<> 144:ef7eb2e8f9f7 421 htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ;
<> 144:ef7eb2e8f9f7 422
<> 144:ef7eb2e8f9f7 423 /* Enable the DMA Stream */
<> 144:ef7eb2e8f9f7 424 HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)pData, (uint32_t)&htim->Instance->ARR, Length);
<> 144:ef7eb2e8f9f7 425
<> 144:ef7eb2e8f9f7 426 /* Enable the TIM Update DMA request */
<> 144:ef7eb2e8f9f7 427 __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_UPDATE);
<> 144:ef7eb2e8f9f7 428
<> 144:ef7eb2e8f9f7 429 /* Enable the Peripheral */
<> 144:ef7eb2e8f9f7 430 __HAL_TIM_ENABLE(htim);
<> 144:ef7eb2e8f9f7 431
<> 144:ef7eb2e8f9f7 432 /* Return function status */
<> 144:ef7eb2e8f9f7 433 return HAL_OK;
<> 144:ef7eb2e8f9f7 434 }
<> 144:ef7eb2e8f9f7 435
<> 144:ef7eb2e8f9f7 436 /**
<> 144:ef7eb2e8f9f7 437 * @brief Stops the TIM Base generation in DMA mode.
<> 144:ef7eb2e8f9f7 438 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 439 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 440 * @retval HAL status
<> 144:ef7eb2e8f9f7 441 */
<> 144:ef7eb2e8f9f7 442 HAL_StatusTypeDef HAL_TIM_Base_Stop_DMA(TIM_HandleTypeDef *htim)
<> 144:ef7eb2e8f9f7 443 {
<> 144:ef7eb2e8f9f7 444 /* Check the parameters */
<> 144:ef7eb2e8f9f7 445 assert_param(IS_TIM_DMA_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 446
<> 144:ef7eb2e8f9f7 447 /* Disable the TIM Update DMA request */
<> 144:ef7eb2e8f9f7 448 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_UPDATE);
<> 144:ef7eb2e8f9f7 449
<> 144:ef7eb2e8f9f7 450 /* Disable the Peripheral */
<> 144:ef7eb2e8f9f7 451 __HAL_TIM_DISABLE(htim);
<> 144:ef7eb2e8f9f7 452
<> 144:ef7eb2e8f9f7 453 /* Change the htim state */
<> 144:ef7eb2e8f9f7 454 htim->State = HAL_TIM_STATE_READY;
<> 144:ef7eb2e8f9f7 455
<> 144:ef7eb2e8f9f7 456 /* Return function status */
<> 144:ef7eb2e8f9f7 457 return HAL_OK;
<> 144:ef7eb2e8f9f7 458 }
<> 144:ef7eb2e8f9f7 459 /**
<> 144:ef7eb2e8f9f7 460 * @}
<> 144:ef7eb2e8f9f7 461 */
<> 144:ef7eb2e8f9f7 462
<> 144:ef7eb2e8f9f7 463 /** @defgroup TIM_Exported_Functions_Group2 Time Output Compare functions
<> 144:ef7eb2e8f9f7 464 * @brief Time Output Compare functions
<> 144:ef7eb2e8f9f7 465 *
<> 144:ef7eb2e8f9f7 466 @verbatim
<> 144:ef7eb2e8f9f7 467 ==============================================================================
<> 144:ef7eb2e8f9f7 468 ##### Time Output Compare functions #####
<> 144:ef7eb2e8f9f7 469 ==============================================================================
<> 144:ef7eb2e8f9f7 470 [..]
<> 144:ef7eb2e8f9f7 471 This section provides functions allowing to:
<> 144:ef7eb2e8f9f7 472 (+) Initialize and configure the TIM Output Compare.
<> 144:ef7eb2e8f9f7 473 (+) De-initialize the TIM Output Compare.
<> 144:ef7eb2e8f9f7 474 (+) Start the Time Output Compare.
<> 144:ef7eb2e8f9f7 475 (+) Stop the Time Output Compare.
<> 144:ef7eb2e8f9f7 476 (+) Start the Time Output Compare and enable interrupt.
<> 144:ef7eb2e8f9f7 477 (+) Stop the Time Output Compare and disable interrupt.
<> 144:ef7eb2e8f9f7 478 (+) Start the Time Output Compare and enable DMA transfer.
<> 144:ef7eb2e8f9f7 479 (+) Stop the Time Output Compare and disable DMA transfer.
<> 144:ef7eb2e8f9f7 480
<> 144:ef7eb2e8f9f7 481 @endverbatim
<> 144:ef7eb2e8f9f7 482 * @{
<> 144:ef7eb2e8f9f7 483 */
<> 144:ef7eb2e8f9f7 484 /**
<> 144:ef7eb2e8f9f7 485 * @brief Initializes the TIM Output Compare according to the specified
<> 144:ef7eb2e8f9f7 486 * parameters in the TIM_HandleTypeDef and create the associated handle.
<> 144:ef7eb2e8f9f7 487 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 488 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 489 * @retval HAL status
<> 144:ef7eb2e8f9f7 490 */
<> 144:ef7eb2e8f9f7 491 HAL_StatusTypeDef HAL_TIM_OC_Init(TIM_HandleTypeDef* htim)
<> 144:ef7eb2e8f9f7 492 {
<> 144:ef7eb2e8f9f7 493 /* Check the TIM handle allocation */
<> 144:ef7eb2e8f9f7 494 if(htim == NULL)
<> 144:ef7eb2e8f9f7 495 {
<> 144:ef7eb2e8f9f7 496 return HAL_ERROR;
<> 144:ef7eb2e8f9f7 497 }
<> 144:ef7eb2e8f9f7 498
<> 144:ef7eb2e8f9f7 499 /* Check the parameters */
<> 144:ef7eb2e8f9f7 500 assert_param(IS_TIM_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 501 assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
<> 144:ef7eb2e8f9f7 502 assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
AnnaBridge 167:e84263d55307 503 assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
AnnaBridge 167:e84263d55307 504
<> 144:ef7eb2e8f9f7 505 if(htim->State == HAL_TIM_STATE_RESET)
<> 144:ef7eb2e8f9f7 506 {
<> 144:ef7eb2e8f9f7 507 /* Allocate lock resource and initialize it */
<> 144:ef7eb2e8f9f7 508 htim->Lock = HAL_UNLOCKED;
<> 144:ef7eb2e8f9f7 509 /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
<> 144:ef7eb2e8f9f7 510 HAL_TIM_OC_MspInit(htim);
<> 144:ef7eb2e8f9f7 511 }
<> 144:ef7eb2e8f9f7 512
<> 144:ef7eb2e8f9f7 513 /* Set the TIM state */
<> 144:ef7eb2e8f9f7 514 htim->State= HAL_TIM_STATE_BUSY;
<> 144:ef7eb2e8f9f7 515
<> 144:ef7eb2e8f9f7 516 /* Init the base time for the Output Compare */
<> 144:ef7eb2e8f9f7 517 TIM_Base_SetConfig(htim->Instance, &htim->Init);
<> 144:ef7eb2e8f9f7 518
<> 144:ef7eb2e8f9f7 519 /* Initialize the TIM state*/
<> 144:ef7eb2e8f9f7 520 htim->State= HAL_TIM_STATE_READY;
<> 144:ef7eb2e8f9f7 521
<> 144:ef7eb2e8f9f7 522 return HAL_OK;
<> 144:ef7eb2e8f9f7 523 }
<> 144:ef7eb2e8f9f7 524
<> 144:ef7eb2e8f9f7 525 /**
<> 144:ef7eb2e8f9f7 526 * @brief DeInitializes the TIM peripheral
<> 144:ef7eb2e8f9f7 527 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 528 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 529 * @retval HAL status
<> 144:ef7eb2e8f9f7 530 */
<> 144:ef7eb2e8f9f7 531 HAL_StatusTypeDef HAL_TIM_OC_DeInit(TIM_HandleTypeDef *htim)
<> 144:ef7eb2e8f9f7 532 {
<> 144:ef7eb2e8f9f7 533 /* Check the parameters */
<> 144:ef7eb2e8f9f7 534 assert_param(IS_TIM_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 535
<> 144:ef7eb2e8f9f7 536 htim->State = HAL_TIM_STATE_BUSY;
<> 144:ef7eb2e8f9f7 537
<> 144:ef7eb2e8f9f7 538 /* Disable the TIM Peripheral Clock */
<> 144:ef7eb2e8f9f7 539 __HAL_TIM_DISABLE(htim);
<> 144:ef7eb2e8f9f7 540
<> 144:ef7eb2e8f9f7 541 /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */
<> 144:ef7eb2e8f9f7 542 HAL_TIM_OC_MspDeInit(htim);
<> 144:ef7eb2e8f9f7 543
<> 144:ef7eb2e8f9f7 544 /* Change TIM state */
<> 144:ef7eb2e8f9f7 545 htim->State = HAL_TIM_STATE_RESET;
<> 144:ef7eb2e8f9f7 546
<> 144:ef7eb2e8f9f7 547 /* Release Lock */
<> 144:ef7eb2e8f9f7 548 __HAL_UNLOCK(htim);
<> 144:ef7eb2e8f9f7 549
<> 144:ef7eb2e8f9f7 550 return HAL_OK;
<> 144:ef7eb2e8f9f7 551 }
<> 144:ef7eb2e8f9f7 552
<> 144:ef7eb2e8f9f7 553 /**
<> 144:ef7eb2e8f9f7 554 * @brief Initializes the TIM Output Compare MSP.
<> 144:ef7eb2e8f9f7 555 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 556 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 557 * @retval None
<> 144:ef7eb2e8f9f7 558 */
<> 144:ef7eb2e8f9f7 559 __weak void HAL_TIM_OC_MspInit(TIM_HandleTypeDef *htim)
<> 144:ef7eb2e8f9f7 560 {
<> 144:ef7eb2e8f9f7 561 /* Prevent unused argument(s) compilation warning */
<> 144:ef7eb2e8f9f7 562 UNUSED(htim);
<> 144:ef7eb2e8f9f7 563 /* NOTE : This function Should not be modified, when the callback is needed,
<> 144:ef7eb2e8f9f7 564 the HAL_TIM_OC_MspInit could be implemented in the user file
<> 144:ef7eb2e8f9f7 565 */
<> 144:ef7eb2e8f9f7 566 }
<> 144:ef7eb2e8f9f7 567
<> 144:ef7eb2e8f9f7 568 /**
<> 144:ef7eb2e8f9f7 569 * @brief DeInitializes TIM Output Compare MSP.
<> 144:ef7eb2e8f9f7 570 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 571 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 572 * @retval None
<> 144:ef7eb2e8f9f7 573 */
<> 144:ef7eb2e8f9f7 574 __weak void HAL_TIM_OC_MspDeInit(TIM_HandleTypeDef *htim)
<> 144:ef7eb2e8f9f7 575 {
<> 144:ef7eb2e8f9f7 576 /* Prevent unused argument(s) compilation warning */
<> 144:ef7eb2e8f9f7 577 UNUSED(htim);
<> 144:ef7eb2e8f9f7 578 /* NOTE : This function Should not be modified, when the callback is needed,
<> 144:ef7eb2e8f9f7 579 the HAL_TIM_OC_MspDeInit could be implemented in the user file
<> 144:ef7eb2e8f9f7 580 */
<> 144:ef7eb2e8f9f7 581 }
<> 144:ef7eb2e8f9f7 582
<> 144:ef7eb2e8f9f7 583 /**
<> 144:ef7eb2e8f9f7 584 * @brief Starts the TIM Output Compare signal generation.
<> 144:ef7eb2e8f9f7 585 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 586 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 587 * @param Channel: TIM Channel to be enabled.
<> 144:ef7eb2e8f9f7 588 * This parameter can be one of the following values:
<> 144:ef7eb2e8f9f7 589 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
<> 144:ef7eb2e8f9f7 590 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
<> 144:ef7eb2e8f9f7 591 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
<> 144:ef7eb2e8f9f7 592 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
<> 144:ef7eb2e8f9f7 593 * @retval HAL status
<> 144:ef7eb2e8f9f7 594 */
<> 144:ef7eb2e8f9f7 595 HAL_StatusTypeDef HAL_TIM_OC_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
<> 144:ef7eb2e8f9f7 596 {
<> 144:ef7eb2e8f9f7 597 /* Check the parameters */
<> 144:ef7eb2e8f9f7 598 assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
<> 144:ef7eb2e8f9f7 599
<> 144:ef7eb2e8f9f7 600 /* Enable the Output compare channel */
<> 144:ef7eb2e8f9f7 601 TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
<> 144:ef7eb2e8f9f7 602
<> 144:ef7eb2e8f9f7 603 if(IS_TIM_ADVANCED_INSTANCE(htim->Instance) != RESET)
<> 144:ef7eb2e8f9f7 604 {
<> 144:ef7eb2e8f9f7 605 /* Enable the main output */
<> 144:ef7eb2e8f9f7 606 __HAL_TIM_MOE_ENABLE(htim);
<> 144:ef7eb2e8f9f7 607 }
<> 144:ef7eb2e8f9f7 608
<> 144:ef7eb2e8f9f7 609 /* Enable the Peripheral */
<> 144:ef7eb2e8f9f7 610 __HAL_TIM_ENABLE(htim);
<> 144:ef7eb2e8f9f7 611
<> 144:ef7eb2e8f9f7 612 /* Return function status */
<> 144:ef7eb2e8f9f7 613 return HAL_OK;
<> 144:ef7eb2e8f9f7 614 }
<> 144:ef7eb2e8f9f7 615
<> 144:ef7eb2e8f9f7 616 /**
<> 144:ef7eb2e8f9f7 617 * @brief Stops the TIM Output Compare signal generation.
<> 144:ef7eb2e8f9f7 618 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 619 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 620 * @param Channel: TIM Channel to be disabled.
<> 144:ef7eb2e8f9f7 621 * This parameter can be one of the following values:
<> 144:ef7eb2e8f9f7 622 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
<> 144:ef7eb2e8f9f7 623 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
<> 144:ef7eb2e8f9f7 624 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
<> 144:ef7eb2e8f9f7 625 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
<> 144:ef7eb2e8f9f7 626 * @retval HAL status
<> 144:ef7eb2e8f9f7 627 */
<> 144:ef7eb2e8f9f7 628 HAL_StatusTypeDef HAL_TIM_OC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
<> 144:ef7eb2e8f9f7 629 {
<> 144:ef7eb2e8f9f7 630 /* Check the parameters */
<> 144:ef7eb2e8f9f7 631 assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
<> 144:ef7eb2e8f9f7 632
<> 144:ef7eb2e8f9f7 633 /* Disable the Output compare channel */
<> 144:ef7eb2e8f9f7 634 TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
<> 144:ef7eb2e8f9f7 635
<> 144:ef7eb2e8f9f7 636 if(IS_TIM_ADVANCED_INSTANCE(htim->Instance) != RESET)
<> 144:ef7eb2e8f9f7 637 {
<> 144:ef7eb2e8f9f7 638 /* Disable the Main Output */
<> 144:ef7eb2e8f9f7 639 __HAL_TIM_MOE_DISABLE(htim);
<> 144:ef7eb2e8f9f7 640 }
<> 144:ef7eb2e8f9f7 641
<> 144:ef7eb2e8f9f7 642 /* Disable the Peripheral */
<> 144:ef7eb2e8f9f7 643 __HAL_TIM_DISABLE(htim);
<> 144:ef7eb2e8f9f7 644
<> 144:ef7eb2e8f9f7 645 /* Return function status */
<> 144:ef7eb2e8f9f7 646 return HAL_OK;
<> 144:ef7eb2e8f9f7 647 }
<> 144:ef7eb2e8f9f7 648
<> 144:ef7eb2e8f9f7 649 /**
<> 144:ef7eb2e8f9f7 650 * @brief Starts the TIM Output Compare signal generation in interrupt mode.
<> 144:ef7eb2e8f9f7 651 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 652 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 653 * @param Channel: TIM Channel to be enabled.
<> 144:ef7eb2e8f9f7 654 * This parameter can be one of the following values:
<> 144:ef7eb2e8f9f7 655 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
<> 144:ef7eb2e8f9f7 656 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
<> 144:ef7eb2e8f9f7 657 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
<> 144:ef7eb2e8f9f7 658 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
<> 144:ef7eb2e8f9f7 659 * @retval HAL status
<> 144:ef7eb2e8f9f7 660 */
<> 144:ef7eb2e8f9f7 661 HAL_StatusTypeDef HAL_TIM_OC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
<> 144:ef7eb2e8f9f7 662 {
<> 144:ef7eb2e8f9f7 663 /* Check the parameters */
<> 144:ef7eb2e8f9f7 664 assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
<> 144:ef7eb2e8f9f7 665
<> 144:ef7eb2e8f9f7 666 switch (Channel)
<> 144:ef7eb2e8f9f7 667 {
<> 144:ef7eb2e8f9f7 668 case TIM_CHANNEL_1:
<> 144:ef7eb2e8f9f7 669 {
<> 144:ef7eb2e8f9f7 670 /* Enable the TIM Capture/Compare 1 interrupt */
<> 144:ef7eb2e8f9f7 671 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
<> 144:ef7eb2e8f9f7 672 }
<> 144:ef7eb2e8f9f7 673 break;
<> 144:ef7eb2e8f9f7 674
<> 144:ef7eb2e8f9f7 675 case TIM_CHANNEL_2:
<> 144:ef7eb2e8f9f7 676 {
<> 144:ef7eb2e8f9f7 677 /* Enable the TIM Capture/Compare 2 interrupt */
<> 144:ef7eb2e8f9f7 678 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
<> 144:ef7eb2e8f9f7 679 }
<> 144:ef7eb2e8f9f7 680 break;
<> 144:ef7eb2e8f9f7 681
<> 144:ef7eb2e8f9f7 682 case TIM_CHANNEL_3:
<> 144:ef7eb2e8f9f7 683 {
<> 144:ef7eb2e8f9f7 684 /* Enable the TIM Capture/Compare 3 interrupt */
<> 144:ef7eb2e8f9f7 685 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
<> 144:ef7eb2e8f9f7 686 }
<> 144:ef7eb2e8f9f7 687 break;
<> 144:ef7eb2e8f9f7 688
<> 144:ef7eb2e8f9f7 689 case TIM_CHANNEL_4:
<> 144:ef7eb2e8f9f7 690 {
<> 144:ef7eb2e8f9f7 691 /* Enable the TIM Capture/Compare 4 interrupt */
<> 144:ef7eb2e8f9f7 692 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
<> 144:ef7eb2e8f9f7 693 }
<> 144:ef7eb2e8f9f7 694 break;
<> 144:ef7eb2e8f9f7 695
<> 144:ef7eb2e8f9f7 696 default:
<> 144:ef7eb2e8f9f7 697 break;
<> 144:ef7eb2e8f9f7 698 }
<> 144:ef7eb2e8f9f7 699
<> 144:ef7eb2e8f9f7 700 /* Enable the Output compare channel */
<> 144:ef7eb2e8f9f7 701 TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
<> 144:ef7eb2e8f9f7 702
<> 144:ef7eb2e8f9f7 703 if(IS_TIM_ADVANCED_INSTANCE(htim->Instance) != RESET)
<> 144:ef7eb2e8f9f7 704 {
<> 144:ef7eb2e8f9f7 705 /* Enable the main output */
<> 144:ef7eb2e8f9f7 706 __HAL_TIM_MOE_ENABLE(htim);
<> 144:ef7eb2e8f9f7 707 }
<> 144:ef7eb2e8f9f7 708
<> 144:ef7eb2e8f9f7 709 /* Enable the Peripheral */
<> 144:ef7eb2e8f9f7 710 __HAL_TIM_ENABLE(htim);
<> 144:ef7eb2e8f9f7 711
<> 144:ef7eb2e8f9f7 712 /* Return function status */
<> 144:ef7eb2e8f9f7 713 return HAL_OK;
<> 144:ef7eb2e8f9f7 714 }
<> 144:ef7eb2e8f9f7 715
<> 144:ef7eb2e8f9f7 716 /**
<> 144:ef7eb2e8f9f7 717 * @brief Stops the TIM Output Compare signal generation in interrupt mode.
<> 144:ef7eb2e8f9f7 718 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 719 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 720 * @param Channel: TIM Channel to be disabled.
<> 144:ef7eb2e8f9f7 721 * This parameter can be one of the following values:
<> 144:ef7eb2e8f9f7 722 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
<> 144:ef7eb2e8f9f7 723 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
<> 144:ef7eb2e8f9f7 724 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
<> 144:ef7eb2e8f9f7 725 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
<> 144:ef7eb2e8f9f7 726 * @retval HAL status
<> 144:ef7eb2e8f9f7 727 */
<> 144:ef7eb2e8f9f7 728 HAL_StatusTypeDef HAL_TIM_OC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
<> 144:ef7eb2e8f9f7 729 {
<> 144:ef7eb2e8f9f7 730 /* Check the parameters */
<> 144:ef7eb2e8f9f7 731 assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
<> 144:ef7eb2e8f9f7 732
<> 144:ef7eb2e8f9f7 733 switch (Channel)
<> 144:ef7eb2e8f9f7 734 {
<> 144:ef7eb2e8f9f7 735 case TIM_CHANNEL_1:
<> 144:ef7eb2e8f9f7 736 {
<> 144:ef7eb2e8f9f7 737 /* Disable the TIM Capture/Compare 1 interrupt */
<> 144:ef7eb2e8f9f7 738 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
<> 144:ef7eb2e8f9f7 739 }
<> 144:ef7eb2e8f9f7 740 break;
<> 144:ef7eb2e8f9f7 741
<> 144:ef7eb2e8f9f7 742 case TIM_CHANNEL_2:
<> 144:ef7eb2e8f9f7 743 {
<> 144:ef7eb2e8f9f7 744 /* Disable the TIM Capture/Compare 2 interrupt */
<> 144:ef7eb2e8f9f7 745 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
<> 144:ef7eb2e8f9f7 746 }
<> 144:ef7eb2e8f9f7 747 break;
<> 144:ef7eb2e8f9f7 748
<> 144:ef7eb2e8f9f7 749 case TIM_CHANNEL_3:
<> 144:ef7eb2e8f9f7 750 {
<> 144:ef7eb2e8f9f7 751 /* Disable the TIM Capture/Compare 3 interrupt */
<> 144:ef7eb2e8f9f7 752 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
<> 144:ef7eb2e8f9f7 753 }
<> 144:ef7eb2e8f9f7 754 break;
<> 144:ef7eb2e8f9f7 755
<> 144:ef7eb2e8f9f7 756 case TIM_CHANNEL_4:
<> 144:ef7eb2e8f9f7 757 {
<> 144:ef7eb2e8f9f7 758 /* Disable the TIM Capture/Compare 4 interrupt */
<> 144:ef7eb2e8f9f7 759 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
<> 144:ef7eb2e8f9f7 760 }
<> 144:ef7eb2e8f9f7 761 break;
<> 144:ef7eb2e8f9f7 762
<> 144:ef7eb2e8f9f7 763 default:
<> 144:ef7eb2e8f9f7 764 break;
<> 144:ef7eb2e8f9f7 765 }
<> 144:ef7eb2e8f9f7 766
<> 144:ef7eb2e8f9f7 767 /* Disable the Output compare channel */
<> 144:ef7eb2e8f9f7 768 TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
<> 144:ef7eb2e8f9f7 769
<> 144:ef7eb2e8f9f7 770 if(IS_TIM_ADVANCED_INSTANCE(htim->Instance) != RESET)
<> 144:ef7eb2e8f9f7 771 {
<> 144:ef7eb2e8f9f7 772 /* Disable the Main Output */
<> 144:ef7eb2e8f9f7 773 __HAL_TIM_MOE_DISABLE(htim);
<> 144:ef7eb2e8f9f7 774 }
<> 144:ef7eb2e8f9f7 775
<> 144:ef7eb2e8f9f7 776 /* Disable the Peripheral */
<> 144:ef7eb2e8f9f7 777 __HAL_TIM_DISABLE(htim);
<> 144:ef7eb2e8f9f7 778
<> 144:ef7eb2e8f9f7 779 /* Return function status */
<> 144:ef7eb2e8f9f7 780 return HAL_OK;
<> 144:ef7eb2e8f9f7 781 }
<> 144:ef7eb2e8f9f7 782
<> 144:ef7eb2e8f9f7 783 /**
<> 144:ef7eb2e8f9f7 784 * @brief Starts the TIM Output Compare signal generation in DMA mode.
<> 144:ef7eb2e8f9f7 785 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 786 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 787 * @param Channel: TIM Channel to be enabled.
<> 144:ef7eb2e8f9f7 788 * This parameter can be one of the following values:
<> 144:ef7eb2e8f9f7 789 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
<> 144:ef7eb2e8f9f7 790 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
<> 144:ef7eb2e8f9f7 791 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
<> 144:ef7eb2e8f9f7 792 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
<> 144:ef7eb2e8f9f7 793 * @param pData: The source Buffer address.
<> 144:ef7eb2e8f9f7 794 * @param Length: The length of data to be transferred from memory to TIM peripheral
<> 144:ef7eb2e8f9f7 795 * @retval HAL status
<> 144:ef7eb2e8f9f7 796 */
<> 144:ef7eb2e8f9f7 797 HAL_StatusTypeDef HAL_TIM_OC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length)
<> 144:ef7eb2e8f9f7 798 {
<> 144:ef7eb2e8f9f7 799 /* Check the parameters */
<> 144:ef7eb2e8f9f7 800 assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
<> 144:ef7eb2e8f9f7 801
<> 144:ef7eb2e8f9f7 802 if((htim->State == HAL_TIM_STATE_BUSY))
<> 144:ef7eb2e8f9f7 803 {
<> 144:ef7eb2e8f9f7 804 return HAL_BUSY;
<> 144:ef7eb2e8f9f7 805 }
<> 144:ef7eb2e8f9f7 806 else if((htim->State == HAL_TIM_STATE_READY))
<> 144:ef7eb2e8f9f7 807 {
AnnaBridge 167:e84263d55307 808 if(((uint32_t)pData == 0U ) && (Length > 0))
<> 144:ef7eb2e8f9f7 809 {
<> 144:ef7eb2e8f9f7 810 return HAL_ERROR;
<> 144:ef7eb2e8f9f7 811 }
<> 144:ef7eb2e8f9f7 812 else
<> 144:ef7eb2e8f9f7 813 {
<> 144:ef7eb2e8f9f7 814 htim->State = HAL_TIM_STATE_BUSY;
<> 144:ef7eb2e8f9f7 815 }
<> 144:ef7eb2e8f9f7 816 }
<> 144:ef7eb2e8f9f7 817 switch (Channel)
<> 144:ef7eb2e8f9f7 818 {
<> 144:ef7eb2e8f9f7 819 case TIM_CHANNEL_1:
<> 144:ef7eb2e8f9f7 820 {
<> 144:ef7eb2e8f9f7 821 /* Set the DMA Period elapsed callback */
<> 144:ef7eb2e8f9f7 822 htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt;
<> 144:ef7eb2e8f9f7 823
<> 144:ef7eb2e8f9f7 824 /* Set the DMA error callback */
<> 144:ef7eb2e8f9f7 825 htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
<> 144:ef7eb2e8f9f7 826
<> 144:ef7eb2e8f9f7 827 /* Enable the DMA Stream */
<> 144:ef7eb2e8f9f7 828 HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, Length);
<> 144:ef7eb2e8f9f7 829
<> 144:ef7eb2e8f9f7 830 /* Enable the TIM Capture/Compare 1 DMA request */
<> 144:ef7eb2e8f9f7 831 __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
<> 144:ef7eb2e8f9f7 832 }
<> 144:ef7eb2e8f9f7 833 break;
<> 144:ef7eb2e8f9f7 834
<> 144:ef7eb2e8f9f7 835 case TIM_CHANNEL_2:
<> 144:ef7eb2e8f9f7 836 {
<> 144:ef7eb2e8f9f7 837 /* Set the DMA Period elapsed callback */
<> 144:ef7eb2e8f9f7 838 htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt;
<> 144:ef7eb2e8f9f7 839
<> 144:ef7eb2e8f9f7 840 /* Set the DMA error callback */
<> 144:ef7eb2e8f9f7 841 htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
<> 144:ef7eb2e8f9f7 842
<> 144:ef7eb2e8f9f7 843 /* Enable the DMA Stream */
<> 144:ef7eb2e8f9f7 844 HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, Length);
<> 144:ef7eb2e8f9f7 845
<> 144:ef7eb2e8f9f7 846 /* Enable the TIM Capture/Compare 2 DMA request */
<> 144:ef7eb2e8f9f7 847 __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
<> 144:ef7eb2e8f9f7 848 }
<> 144:ef7eb2e8f9f7 849 break;
<> 144:ef7eb2e8f9f7 850
<> 144:ef7eb2e8f9f7 851 case TIM_CHANNEL_3:
<> 144:ef7eb2e8f9f7 852 {
<> 144:ef7eb2e8f9f7 853 /* Set the DMA Period elapsed callback */
<> 144:ef7eb2e8f9f7 854 htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt;
<> 144:ef7eb2e8f9f7 855
<> 144:ef7eb2e8f9f7 856 /* Set the DMA error callback */
<> 144:ef7eb2e8f9f7 857 htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
<> 144:ef7eb2e8f9f7 858
<> 144:ef7eb2e8f9f7 859 /* Enable the DMA Stream */
<> 144:ef7eb2e8f9f7 860 HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3,Length);
<> 144:ef7eb2e8f9f7 861
<> 144:ef7eb2e8f9f7 862 /* Enable the TIM Capture/Compare 3 DMA request */
<> 144:ef7eb2e8f9f7 863 __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
<> 144:ef7eb2e8f9f7 864 }
<> 144:ef7eb2e8f9f7 865 break;
<> 144:ef7eb2e8f9f7 866
<> 144:ef7eb2e8f9f7 867 case TIM_CHANNEL_4:
<> 144:ef7eb2e8f9f7 868 {
<> 144:ef7eb2e8f9f7 869 /* Set the DMA Period elapsed callback */
<> 144:ef7eb2e8f9f7 870 htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt;
<> 144:ef7eb2e8f9f7 871
<> 144:ef7eb2e8f9f7 872 /* Set the DMA error callback */
<> 144:ef7eb2e8f9f7 873 htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
<> 144:ef7eb2e8f9f7 874
<> 144:ef7eb2e8f9f7 875 /* Enable the DMA Stream */
<> 144:ef7eb2e8f9f7 876 HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, Length);
<> 144:ef7eb2e8f9f7 877
<> 144:ef7eb2e8f9f7 878 /* Enable the TIM Capture/Compare 4 DMA request */
<> 144:ef7eb2e8f9f7 879 __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
<> 144:ef7eb2e8f9f7 880 }
<> 144:ef7eb2e8f9f7 881 break;
<> 144:ef7eb2e8f9f7 882
<> 144:ef7eb2e8f9f7 883 default:
<> 144:ef7eb2e8f9f7 884 break;
<> 144:ef7eb2e8f9f7 885 }
<> 144:ef7eb2e8f9f7 886
<> 144:ef7eb2e8f9f7 887 /* Enable the Output compare channel */
<> 144:ef7eb2e8f9f7 888 TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
<> 144:ef7eb2e8f9f7 889
<> 144:ef7eb2e8f9f7 890 if(IS_TIM_ADVANCED_INSTANCE(htim->Instance) != RESET)
<> 144:ef7eb2e8f9f7 891 {
<> 144:ef7eb2e8f9f7 892 /* Enable the main output */
<> 144:ef7eb2e8f9f7 893 __HAL_TIM_MOE_ENABLE(htim);
<> 144:ef7eb2e8f9f7 894 }
<> 144:ef7eb2e8f9f7 895
<> 144:ef7eb2e8f9f7 896 /* Enable the Peripheral */
<> 144:ef7eb2e8f9f7 897 __HAL_TIM_ENABLE(htim);
<> 144:ef7eb2e8f9f7 898
<> 144:ef7eb2e8f9f7 899 /* Return function status */
<> 144:ef7eb2e8f9f7 900 return HAL_OK;
<> 144:ef7eb2e8f9f7 901 }
<> 144:ef7eb2e8f9f7 902
<> 144:ef7eb2e8f9f7 903 /**
<> 144:ef7eb2e8f9f7 904 * @brief Stops the TIM Output Compare signal generation in DMA mode.
<> 144:ef7eb2e8f9f7 905 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 906 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 907 * @param Channel: TIM Channel to be disabled.
<> 144:ef7eb2e8f9f7 908 * This parameter can be one of the following values:
<> 144:ef7eb2e8f9f7 909 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
<> 144:ef7eb2e8f9f7 910 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
<> 144:ef7eb2e8f9f7 911 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
<> 144:ef7eb2e8f9f7 912 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
<> 144:ef7eb2e8f9f7 913 * @retval HAL status
<> 144:ef7eb2e8f9f7 914 */
<> 144:ef7eb2e8f9f7 915 HAL_StatusTypeDef HAL_TIM_OC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
<> 144:ef7eb2e8f9f7 916 {
<> 144:ef7eb2e8f9f7 917 /* Check the parameters */
<> 144:ef7eb2e8f9f7 918 assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
<> 144:ef7eb2e8f9f7 919
<> 144:ef7eb2e8f9f7 920 switch (Channel)
<> 144:ef7eb2e8f9f7 921 {
<> 144:ef7eb2e8f9f7 922 case TIM_CHANNEL_1:
<> 144:ef7eb2e8f9f7 923 {
<> 144:ef7eb2e8f9f7 924 /* Disable the TIM Capture/Compare 1 DMA request */
<> 144:ef7eb2e8f9f7 925 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
<> 144:ef7eb2e8f9f7 926 }
<> 144:ef7eb2e8f9f7 927 break;
<> 144:ef7eb2e8f9f7 928
<> 144:ef7eb2e8f9f7 929 case TIM_CHANNEL_2:
<> 144:ef7eb2e8f9f7 930 {
<> 144:ef7eb2e8f9f7 931 /* Disable the TIM Capture/Compare 2 DMA request */
<> 144:ef7eb2e8f9f7 932 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
<> 144:ef7eb2e8f9f7 933 }
<> 144:ef7eb2e8f9f7 934 break;
<> 144:ef7eb2e8f9f7 935
<> 144:ef7eb2e8f9f7 936 case TIM_CHANNEL_3:
<> 144:ef7eb2e8f9f7 937 {
<> 144:ef7eb2e8f9f7 938 /* Disable the TIM Capture/Compare 3 DMA request */
<> 144:ef7eb2e8f9f7 939 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
<> 144:ef7eb2e8f9f7 940 }
<> 144:ef7eb2e8f9f7 941 break;
<> 144:ef7eb2e8f9f7 942
<> 144:ef7eb2e8f9f7 943 case TIM_CHANNEL_4:
<> 144:ef7eb2e8f9f7 944 {
<> 144:ef7eb2e8f9f7 945 /* Disable the TIM Capture/Compare 4 interrupt */
<> 144:ef7eb2e8f9f7 946 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
<> 144:ef7eb2e8f9f7 947 }
<> 144:ef7eb2e8f9f7 948 break;
<> 144:ef7eb2e8f9f7 949
<> 144:ef7eb2e8f9f7 950 default:
<> 144:ef7eb2e8f9f7 951 break;
<> 144:ef7eb2e8f9f7 952 }
<> 144:ef7eb2e8f9f7 953
<> 144:ef7eb2e8f9f7 954 /* Disable the Output compare channel */
<> 144:ef7eb2e8f9f7 955 TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
<> 144:ef7eb2e8f9f7 956
<> 144:ef7eb2e8f9f7 957 if(IS_TIM_ADVANCED_INSTANCE(htim->Instance) != RESET)
<> 144:ef7eb2e8f9f7 958 {
<> 144:ef7eb2e8f9f7 959 /* Disable the Main Output */
<> 144:ef7eb2e8f9f7 960 __HAL_TIM_MOE_DISABLE(htim);
<> 144:ef7eb2e8f9f7 961 }
<> 144:ef7eb2e8f9f7 962
<> 144:ef7eb2e8f9f7 963 /* Disable the Peripheral */
<> 144:ef7eb2e8f9f7 964 __HAL_TIM_DISABLE(htim);
<> 144:ef7eb2e8f9f7 965
<> 144:ef7eb2e8f9f7 966 /* Change the htim state */
<> 144:ef7eb2e8f9f7 967 htim->State = HAL_TIM_STATE_READY;
<> 144:ef7eb2e8f9f7 968
<> 144:ef7eb2e8f9f7 969 /* Return function status */
<> 144:ef7eb2e8f9f7 970 return HAL_OK;
<> 144:ef7eb2e8f9f7 971 }
<> 144:ef7eb2e8f9f7 972 /**
<> 144:ef7eb2e8f9f7 973 * @}
<> 144:ef7eb2e8f9f7 974 */
<> 144:ef7eb2e8f9f7 975
<> 144:ef7eb2e8f9f7 976 /** @defgroup TIM_Exported_Functions_Group3 Time PWM functions
<> 144:ef7eb2e8f9f7 977 * @brief Time PWM functions
<> 144:ef7eb2e8f9f7 978 *
<> 144:ef7eb2e8f9f7 979 @verbatim
<> 144:ef7eb2e8f9f7 980 ==============================================================================
<> 144:ef7eb2e8f9f7 981 ##### Time PWM functions #####
<> 144:ef7eb2e8f9f7 982 ==============================================================================
<> 144:ef7eb2e8f9f7 983 [..]
<> 144:ef7eb2e8f9f7 984 This section provides functions allowing to:
<> 144:ef7eb2e8f9f7 985 (+) Initialize and configure the TIM OPWM.
<> 144:ef7eb2e8f9f7 986 (+) De-initialize the TIM PWM.
<> 144:ef7eb2e8f9f7 987 (+) Start the Time PWM.
<> 144:ef7eb2e8f9f7 988 (+) Stop the Time PWM.
<> 144:ef7eb2e8f9f7 989 (+) Start the Time PWM and enable interrupt.
<> 144:ef7eb2e8f9f7 990 (+) Stop the Time PWM and disable interrupt.
<> 144:ef7eb2e8f9f7 991 (+) Start the Time PWM and enable DMA transfer.
<> 144:ef7eb2e8f9f7 992 (+) Stop the Time PWM and disable DMA transfer.
<> 144:ef7eb2e8f9f7 993
<> 144:ef7eb2e8f9f7 994 @endverbatim
<> 144:ef7eb2e8f9f7 995 * @{
<> 144:ef7eb2e8f9f7 996 */
<> 144:ef7eb2e8f9f7 997 /**
<> 144:ef7eb2e8f9f7 998 * @brief Initializes the TIM PWM Time Base according to the specified
<> 144:ef7eb2e8f9f7 999 * parameters in the TIM_HandleTypeDef and create the associated handle.
<> 144:ef7eb2e8f9f7 1000 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 1001 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 1002 * @retval HAL status
<> 144:ef7eb2e8f9f7 1003 */
<> 144:ef7eb2e8f9f7 1004 HAL_StatusTypeDef HAL_TIM_PWM_Init(TIM_HandleTypeDef *htim)
<> 144:ef7eb2e8f9f7 1005 {
<> 144:ef7eb2e8f9f7 1006 /* Check the TIM handle allocation */
<> 144:ef7eb2e8f9f7 1007 if(htim == NULL)
<> 144:ef7eb2e8f9f7 1008 {
<> 144:ef7eb2e8f9f7 1009 return HAL_ERROR;
<> 144:ef7eb2e8f9f7 1010 }
<> 144:ef7eb2e8f9f7 1011
<> 144:ef7eb2e8f9f7 1012 /* Check the parameters */
<> 144:ef7eb2e8f9f7 1013 assert_param(IS_TIM_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 1014 assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
<> 144:ef7eb2e8f9f7 1015 assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
AnnaBridge 167:e84263d55307 1016 assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
AnnaBridge 167:e84263d55307 1017
<> 144:ef7eb2e8f9f7 1018 if(htim->State == HAL_TIM_STATE_RESET)
<> 144:ef7eb2e8f9f7 1019 {
<> 144:ef7eb2e8f9f7 1020 /* Allocate lock resource and initialize it */
<> 144:ef7eb2e8f9f7 1021 htim->Lock = HAL_UNLOCKED;
<> 144:ef7eb2e8f9f7 1022 /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
<> 144:ef7eb2e8f9f7 1023 HAL_TIM_PWM_MspInit(htim);
<> 144:ef7eb2e8f9f7 1024 }
<> 144:ef7eb2e8f9f7 1025
<> 144:ef7eb2e8f9f7 1026 /* Set the TIM state */
<> 144:ef7eb2e8f9f7 1027 htim->State= HAL_TIM_STATE_BUSY;
<> 144:ef7eb2e8f9f7 1028
<> 144:ef7eb2e8f9f7 1029 /* Init the base time for the PWM */
<> 144:ef7eb2e8f9f7 1030 TIM_Base_SetConfig(htim->Instance, &htim->Init);
<> 144:ef7eb2e8f9f7 1031
<> 144:ef7eb2e8f9f7 1032 /* Initialize the TIM state*/
<> 144:ef7eb2e8f9f7 1033 htim->State= HAL_TIM_STATE_READY;
<> 144:ef7eb2e8f9f7 1034
<> 144:ef7eb2e8f9f7 1035 return HAL_OK;
<> 144:ef7eb2e8f9f7 1036 }
<> 144:ef7eb2e8f9f7 1037
<> 144:ef7eb2e8f9f7 1038 /**
<> 144:ef7eb2e8f9f7 1039 * @brief DeInitializes the TIM peripheral
<> 144:ef7eb2e8f9f7 1040 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 1041 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 1042 * @retval HAL status
<> 144:ef7eb2e8f9f7 1043 */
<> 144:ef7eb2e8f9f7 1044 HAL_StatusTypeDef HAL_TIM_PWM_DeInit(TIM_HandleTypeDef *htim)
<> 144:ef7eb2e8f9f7 1045 {
<> 144:ef7eb2e8f9f7 1046 /* Check the parameters */
<> 144:ef7eb2e8f9f7 1047 assert_param(IS_TIM_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 1048
<> 144:ef7eb2e8f9f7 1049 htim->State = HAL_TIM_STATE_BUSY;
<> 144:ef7eb2e8f9f7 1050
<> 144:ef7eb2e8f9f7 1051 /* Disable the TIM Peripheral Clock */
<> 144:ef7eb2e8f9f7 1052 __HAL_TIM_DISABLE(htim);
<> 144:ef7eb2e8f9f7 1053
<> 144:ef7eb2e8f9f7 1054 /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */
<> 144:ef7eb2e8f9f7 1055 HAL_TIM_PWM_MspDeInit(htim);
<> 144:ef7eb2e8f9f7 1056
<> 144:ef7eb2e8f9f7 1057 /* Change TIM state */
<> 144:ef7eb2e8f9f7 1058 htim->State = HAL_TIM_STATE_RESET;
<> 144:ef7eb2e8f9f7 1059
<> 144:ef7eb2e8f9f7 1060 /* Release Lock */
<> 144:ef7eb2e8f9f7 1061 __HAL_UNLOCK(htim);
<> 144:ef7eb2e8f9f7 1062
<> 144:ef7eb2e8f9f7 1063 return HAL_OK;
<> 144:ef7eb2e8f9f7 1064 }
<> 144:ef7eb2e8f9f7 1065
<> 144:ef7eb2e8f9f7 1066 /**
<> 144:ef7eb2e8f9f7 1067 * @brief Initializes the TIM PWM MSP.
<> 144:ef7eb2e8f9f7 1068 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 1069 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 1070 * @retval None
<> 144:ef7eb2e8f9f7 1071 */
<> 144:ef7eb2e8f9f7 1072 __weak void HAL_TIM_PWM_MspInit(TIM_HandleTypeDef *htim)
<> 144:ef7eb2e8f9f7 1073 {
<> 144:ef7eb2e8f9f7 1074 /* Prevent unused argument(s) compilation warning */
<> 144:ef7eb2e8f9f7 1075 UNUSED(htim);
<> 144:ef7eb2e8f9f7 1076 /* NOTE : This function Should not be modified, when the callback is needed,
<> 144:ef7eb2e8f9f7 1077 the HAL_TIM_PWM_MspInit could be implemented in the user file
<> 144:ef7eb2e8f9f7 1078 */
<> 144:ef7eb2e8f9f7 1079 }
<> 144:ef7eb2e8f9f7 1080
<> 144:ef7eb2e8f9f7 1081 /**
<> 144:ef7eb2e8f9f7 1082 * @brief DeInitializes TIM PWM MSP.
<> 144:ef7eb2e8f9f7 1083 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 1084 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 1085 * @retval None
<> 144:ef7eb2e8f9f7 1086 */
<> 144:ef7eb2e8f9f7 1087 __weak void HAL_TIM_PWM_MspDeInit(TIM_HandleTypeDef *htim)
<> 144:ef7eb2e8f9f7 1088 {
<> 144:ef7eb2e8f9f7 1089 /* Prevent unused argument(s) compilation warning */
<> 144:ef7eb2e8f9f7 1090 UNUSED(htim);
<> 144:ef7eb2e8f9f7 1091 /* NOTE : This function Should not be modified, when the callback is needed,
<> 144:ef7eb2e8f9f7 1092 the HAL_TIM_PWM_MspDeInit could be implemented in the user file
<> 144:ef7eb2e8f9f7 1093 */
<> 144:ef7eb2e8f9f7 1094 }
<> 144:ef7eb2e8f9f7 1095
<> 144:ef7eb2e8f9f7 1096 /**
<> 144:ef7eb2e8f9f7 1097 * @brief Starts the PWM signal generation.
<> 144:ef7eb2e8f9f7 1098 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 1099 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 1100 * @param Channel: TIM Channels to be enabled.
<> 144:ef7eb2e8f9f7 1101 * This parameter can be one of the following values:
<> 144:ef7eb2e8f9f7 1102 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
<> 144:ef7eb2e8f9f7 1103 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
<> 144:ef7eb2e8f9f7 1104 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
<> 144:ef7eb2e8f9f7 1105 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
<> 144:ef7eb2e8f9f7 1106 * @retval HAL status
<> 144:ef7eb2e8f9f7 1107 */
<> 144:ef7eb2e8f9f7 1108 HAL_StatusTypeDef HAL_TIM_PWM_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
<> 144:ef7eb2e8f9f7 1109 {
<> 144:ef7eb2e8f9f7 1110 /* Check the parameters */
<> 144:ef7eb2e8f9f7 1111 assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
<> 144:ef7eb2e8f9f7 1112
<> 144:ef7eb2e8f9f7 1113 /* Enable the Capture compare channel */
<> 144:ef7eb2e8f9f7 1114 TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
<> 144:ef7eb2e8f9f7 1115
<> 144:ef7eb2e8f9f7 1116 if(IS_TIM_ADVANCED_INSTANCE(htim->Instance) != RESET)
<> 144:ef7eb2e8f9f7 1117 {
<> 144:ef7eb2e8f9f7 1118 /* Enable the main output */
<> 144:ef7eb2e8f9f7 1119 __HAL_TIM_MOE_ENABLE(htim);
<> 144:ef7eb2e8f9f7 1120 }
<> 144:ef7eb2e8f9f7 1121
<> 144:ef7eb2e8f9f7 1122 /* Enable the Peripheral */
<> 144:ef7eb2e8f9f7 1123 __HAL_TIM_ENABLE(htim);
<> 144:ef7eb2e8f9f7 1124
<> 144:ef7eb2e8f9f7 1125 /* Return function status */
<> 144:ef7eb2e8f9f7 1126 return HAL_OK;
<> 144:ef7eb2e8f9f7 1127 }
<> 144:ef7eb2e8f9f7 1128
<> 144:ef7eb2e8f9f7 1129 /**
<> 144:ef7eb2e8f9f7 1130 * @brief Stops the PWM signal generation.
<> 144:ef7eb2e8f9f7 1131 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 1132 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 1133 * @param Channel: TIM Channels to be disabled.
<> 144:ef7eb2e8f9f7 1134 * This parameter can be one of the following values:
<> 144:ef7eb2e8f9f7 1135 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
<> 144:ef7eb2e8f9f7 1136 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
<> 144:ef7eb2e8f9f7 1137 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
<> 144:ef7eb2e8f9f7 1138 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
<> 144:ef7eb2e8f9f7 1139 * @retval HAL status
<> 144:ef7eb2e8f9f7 1140 */
<> 144:ef7eb2e8f9f7 1141 HAL_StatusTypeDef HAL_TIM_PWM_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
<> 144:ef7eb2e8f9f7 1142 {
<> 144:ef7eb2e8f9f7 1143 /* Check the parameters */
<> 144:ef7eb2e8f9f7 1144 assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
<> 144:ef7eb2e8f9f7 1145
<> 144:ef7eb2e8f9f7 1146 /* Disable the Capture compare channel */
<> 144:ef7eb2e8f9f7 1147 TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
<> 144:ef7eb2e8f9f7 1148
<> 144:ef7eb2e8f9f7 1149 if(IS_TIM_ADVANCED_INSTANCE(htim->Instance) != RESET)
<> 144:ef7eb2e8f9f7 1150 {
<> 144:ef7eb2e8f9f7 1151 /* Disable the Main Output */
<> 144:ef7eb2e8f9f7 1152 __HAL_TIM_MOE_DISABLE(htim);
<> 144:ef7eb2e8f9f7 1153 }
<> 144:ef7eb2e8f9f7 1154
<> 144:ef7eb2e8f9f7 1155 /* Disable the Peripheral */
<> 144:ef7eb2e8f9f7 1156 __HAL_TIM_DISABLE(htim);
<> 144:ef7eb2e8f9f7 1157
<> 144:ef7eb2e8f9f7 1158 /* Change the htim state */
<> 144:ef7eb2e8f9f7 1159 htim->State = HAL_TIM_STATE_READY;
<> 144:ef7eb2e8f9f7 1160
<> 144:ef7eb2e8f9f7 1161 /* Return function status */
<> 144:ef7eb2e8f9f7 1162 return HAL_OK;
<> 144:ef7eb2e8f9f7 1163 }
<> 144:ef7eb2e8f9f7 1164
<> 144:ef7eb2e8f9f7 1165 /**
<> 144:ef7eb2e8f9f7 1166 * @brief Starts the PWM signal generation in interrupt mode.
<> 144:ef7eb2e8f9f7 1167 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 1168 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 1169 * @param Channel: TIM Channel to be enabled.
<> 144:ef7eb2e8f9f7 1170 * This parameter can be one of the following values:
<> 144:ef7eb2e8f9f7 1171 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
<> 144:ef7eb2e8f9f7 1172 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
<> 144:ef7eb2e8f9f7 1173 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
<> 144:ef7eb2e8f9f7 1174 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
<> 144:ef7eb2e8f9f7 1175 * @retval HAL status
<> 144:ef7eb2e8f9f7 1176 */
<> 144:ef7eb2e8f9f7 1177 HAL_StatusTypeDef HAL_TIM_PWM_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
<> 144:ef7eb2e8f9f7 1178 {
<> 144:ef7eb2e8f9f7 1179 /* Check the parameters */
<> 144:ef7eb2e8f9f7 1180 assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
<> 144:ef7eb2e8f9f7 1181
<> 144:ef7eb2e8f9f7 1182 switch (Channel)
<> 144:ef7eb2e8f9f7 1183 {
<> 144:ef7eb2e8f9f7 1184 case TIM_CHANNEL_1:
<> 144:ef7eb2e8f9f7 1185 {
<> 144:ef7eb2e8f9f7 1186 /* Enable the TIM Capture/Compare 1 interrupt */
<> 144:ef7eb2e8f9f7 1187 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
<> 144:ef7eb2e8f9f7 1188 }
<> 144:ef7eb2e8f9f7 1189 break;
<> 144:ef7eb2e8f9f7 1190
<> 144:ef7eb2e8f9f7 1191 case TIM_CHANNEL_2:
<> 144:ef7eb2e8f9f7 1192 {
<> 144:ef7eb2e8f9f7 1193 /* Enable the TIM Capture/Compare 2 interrupt */
<> 144:ef7eb2e8f9f7 1194 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
<> 144:ef7eb2e8f9f7 1195 }
<> 144:ef7eb2e8f9f7 1196 break;
<> 144:ef7eb2e8f9f7 1197
<> 144:ef7eb2e8f9f7 1198 case TIM_CHANNEL_3:
<> 144:ef7eb2e8f9f7 1199 {
<> 144:ef7eb2e8f9f7 1200 /* Enable the TIM Capture/Compare 3 interrupt */
<> 144:ef7eb2e8f9f7 1201 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
<> 144:ef7eb2e8f9f7 1202 }
<> 144:ef7eb2e8f9f7 1203 break;
<> 144:ef7eb2e8f9f7 1204
<> 144:ef7eb2e8f9f7 1205 case TIM_CHANNEL_4:
<> 144:ef7eb2e8f9f7 1206 {
<> 144:ef7eb2e8f9f7 1207 /* Enable the TIM Capture/Compare 4 interrupt */
<> 144:ef7eb2e8f9f7 1208 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
<> 144:ef7eb2e8f9f7 1209 }
<> 144:ef7eb2e8f9f7 1210 break;
<> 144:ef7eb2e8f9f7 1211
<> 144:ef7eb2e8f9f7 1212 default:
<> 144:ef7eb2e8f9f7 1213 break;
<> 144:ef7eb2e8f9f7 1214 }
<> 144:ef7eb2e8f9f7 1215
<> 144:ef7eb2e8f9f7 1216 /* Enable the Capture compare channel */
<> 144:ef7eb2e8f9f7 1217 TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
<> 144:ef7eb2e8f9f7 1218
<> 144:ef7eb2e8f9f7 1219 if(IS_TIM_ADVANCED_INSTANCE(htim->Instance) != RESET)
<> 144:ef7eb2e8f9f7 1220 {
<> 144:ef7eb2e8f9f7 1221 /* Enable the main output */
<> 144:ef7eb2e8f9f7 1222 __HAL_TIM_MOE_ENABLE(htim);
<> 144:ef7eb2e8f9f7 1223 }
<> 144:ef7eb2e8f9f7 1224
<> 144:ef7eb2e8f9f7 1225 /* Enable the Peripheral */
<> 144:ef7eb2e8f9f7 1226 __HAL_TIM_ENABLE(htim);
<> 144:ef7eb2e8f9f7 1227
<> 144:ef7eb2e8f9f7 1228 /* Return function status */
<> 144:ef7eb2e8f9f7 1229 return HAL_OK;
<> 144:ef7eb2e8f9f7 1230 }
<> 144:ef7eb2e8f9f7 1231
<> 144:ef7eb2e8f9f7 1232 /**
<> 144:ef7eb2e8f9f7 1233 * @brief Stops the PWM signal generation in interrupt mode.
<> 144:ef7eb2e8f9f7 1234 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 1235 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 1236 * @param Channel: TIM Channels to be disabled.
<> 144:ef7eb2e8f9f7 1237 * This parameter can be one of the following values:
<> 144:ef7eb2e8f9f7 1238 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
<> 144:ef7eb2e8f9f7 1239 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
<> 144:ef7eb2e8f9f7 1240 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
<> 144:ef7eb2e8f9f7 1241 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
<> 144:ef7eb2e8f9f7 1242 * @retval HAL status
<> 144:ef7eb2e8f9f7 1243 */
<> 144:ef7eb2e8f9f7 1244 HAL_StatusTypeDef HAL_TIM_PWM_Stop_IT (TIM_HandleTypeDef *htim, uint32_t Channel)
<> 144:ef7eb2e8f9f7 1245 {
<> 144:ef7eb2e8f9f7 1246 /* Check the parameters */
<> 144:ef7eb2e8f9f7 1247 assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
<> 144:ef7eb2e8f9f7 1248
<> 144:ef7eb2e8f9f7 1249 switch (Channel)
<> 144:ef7eb2e8f9f7 1250 {
<> 144:ef7eb2e8f9f7 1251 case TIM_CHANNEL_1:
<> 144:ef7eb2e8f9f7 1252 {
<> 144:ef7eb2e8f9f7 1253 /* Disable the TIM Capture/Compare 1 interrupt */
<> 144:ef7eb2e8f9f7 1254 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
<> 144:ef7eb2e8f9f7 1255 }
<> 144:ef7eb2e8f9f7 1256 break;
<> 144:ef7eb2e8f9f7 1257
<> 144:ef7eb2e8f9f7 1258 case TIM_CHANNEL_2:
<> 144:ef7eb2e8f9f7 1259 {
<> 144:ef7eb2e8f9f7 1260 /* Disable the TIM Capture/Compare 2 interrupt */
<> 144:ef7eb2e8f9f7 1261 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
<> 144:ef7eb2e8f9f7 1262 }
<> 144:ef7eb2e8f9f7 1263 break;
<> 144:ef7eb2e8f9f7 1264
<> 144:ef7eb2e8f9f7 1265 case TIM_CHANNEL_3:
<> 144:ef7eb2e8f9f7 1266 {
<> 144:ef7eb2e8f9f7 1267 /* Disable the TIM Capture/Compare 3 interrupt */
<> 144:ef7eb2e8f9f7 1268 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
<> 144:ef7eb2e8f9f7 1269 }
<> 144:ef7eb2e8f9f7 1270 break;
<> 144:ef7eb2e8f9f7 1271
<> 144:ef7eb2e8f9f7 1272 case TIM_CHANNEL_4:
<> 144:ef7eb2e8f9f7 1273 {
<> 144:ef7eb2e8f9f7 1274 /* Disable the TIM Capture/Compare 4 interrupt */
<> 144:ef7eb2e8f9f7 1275 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
<> 144:ef7eb2e8f9f7 1276 }
<> 144:ef7eb2e8f9f7 1277 break;
<> 144:ef7eb2e8f9f7 1278
<> 144:ef7eb2e8f9f7 1279 default:
<> 144:ef7eb2e8f9f7 1280 break;
<> 144:ef7eb2e8f9f7 1281 }
<> 144:ef7eb2e8f9f7 1282
<> 144:ef7eb2e8f9f7 1283 /* Disable the Capture compare channel */
<> 144:ef7eb2e8f9f7 1284 TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
<> 144:ef7eb2e8f9f7 1285
<> 144:ef7eb2e8f9f7 1286 if(IS_TIM_ADVANCED_INSTANCE(htim->Instance) != RESET)
<> 144:ef7eb2e8f9f7 1287 {
<> 144:ef7eb2e8f9f7 1288 /* Disable the Main Output */
<> 144:ef7eb2e8f9f7 1289 __HAL_TIM_MOE_DISABLE(htim);
<> 144:ef7eb2e8f9f7 1290 }
<> 144:ef7eb2e8f9f7 1291
<> 144:ef7eb2e8f9f7 1292 /* Disable the Peripheral */
<> 144:ef7eb2e8f9f7 1293 __HAL_TIM_DISABLE(htim);
<> 144:ef7eb2e8f9f7 1294
<> 144:ef7eb2e8f9f7 1295 /* Return function status */
<> 144:ef7eb2e8f9f7 1296 return HAL_OK;
<> 144:ef7eb2e8f9f7 1297 }
<> 144:ef7eb2e8f9f7 1298
<> 144:ef7eb2e8f9f7 1299 /**
<> 144:ef7eb2e8f9f7 1300 * @brief Starts the TIM PWM signal generation in DMA mode.
<> 144:ef7eb2e8f9f7 1301 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 1302 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 1303 * @param Channel: TIM Channels to be enabled.
<> 144:ef7eb2e8f9f7 1304 * This parameter can be one of the following values:
<> 144:ef7eb2e8f9f7 1305 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
<> 144:ef7eb2e8f9f7 1306 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
<> 144:ef7eb2e8f9f7 1307 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
<> 144:ef7eb2e8f9f7 1308 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
<> 144:ef7eb2e8f9f7 1309 * @param pData: The source Buffer address.
<> 144:ef7eb2e8f9f7 1310 * @param Length: The length of data to be transferred from memory to TIM peripheral
<> 144:ef7eb2e8f9f7 1311 * @retval HAL status
<> 144:ef7eb2e8f9f7 1312 */
<> 144:ef7eb2e8f9f7 1313 HAL_StatusTypeDef HAL_TIM_PWM_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length)
<> 144:ef7eb2e8f9f7 1314 {
<> 144:ef7eb2e8f9f7 1315 /* Check the parameters */
<> 144:ef7eb2e8f9f7 1316 assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
<> 144:ef7eb2e8f9f7 1317
<> 144:ef7eb2e8f9f7 1318 if((htim->State == HAL_TIM_STATE_BUSY))
<> 144:ef7eb2e8f9f7 1319 {
<> 144:ef7eb2e8f9f7 1320 return HAL_BUSY;
<> 144:ef7eb2e8f9f7 1321 }
<> 144:ef7eb2e8f9f7 1322 else if((htim->State == HAL_TIM_STATE_READY))
<> 144:ef7eb2e8f9f7 1323 {
AnnaBridge 167:e84263d55307 1324 if(((uint32_t)pData == 0U ) && (Length > 0))
<> 144:ef7eb2e8f9f7 1325 {
<> 144:ef7eb2e8f9f7 1326 return HAL_ERROR;
<> 144:ef7eb2e8f9f7 1327 }
<> 144:ef7eb2e8f9f7 1328 else
<> 144:ef7eb2e8f9f7 1329 {
<> 144:ef7eb2e8f9f7 1330 htim->State = HAL_TIM_STATE_BUSY;
<> 144:ef7eb2e8f9f7 1331 }
<> 144:ef7eb2e8f9f7 1332 }
<> 144:ef7eb2e8f9f7 1333 switch (Channel)
<> 144:ef7eb2e8f9f7 1334 {
<> 144:ef7eb2e8f9f7 1335 case TIM_CHANNEL_1:
<> 144:ef7eb2e8f9f7 1336 {
<> 144:ef7eb2e8f9f7 1337 /* Set the DMA Period elapsed callback */
<> 144:ef7eb2e8f9f7 1338 htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt;
<> 144:ef7eb2e8f9f7 1339
<> 144:ef7eb2e8f9f7 1340 /* Set the DMA error callback */
<> 144:ef7eb2e8f9f7 1341 htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
<> 144:ef7eb2e8f9f7 1342
<> 144:ef7eb2e8f9f7 1343 /* Enable the DMA Stream */
<> 144:ef7eb2e8f9f7 1344 HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, Length);
<> 144:ef7eb2e8f9f7 1345
<> 144:ef7eb2e8f9f7 1346 /* Enable the TIM Capture/Compare 1 DMA request */
<> 144:ef7eb2e8f9f7 1347 __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
<> 144:ef7eb2e8f9f7 1348 }
<> 144:ef7eb2e8f9f7 1349 break;
<> 144:ef7eb2e8f9f7 1350
<> 144:ef7eb2e8f9f7 1351 case TIM_CHANNEL_2:
<> 144:ef7eb2e8f9f7 1352 {
<> 144:ef7eb2e8f9f7 1353 /* Set the DMA Period elapsed callback */
<> 144:ef7eb2e8f9f7 1354 htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt;
<> 144:ef7eb2e8f9f7 1355
<> 144:ef7eb2e8f9f7 1356 /* Set the DMA error callback */
<> 144:ef7eb2e8f9f7 1357 htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
<> 144:ef7eb2e8f9f7 1358
<> 144:ef7eb2e8f9f7 1359 /* Enable the DMA Stream */
<> 144:ef7eb2e8f9f7 1360 HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, Length);
<> 144:ef7eb2e8f9f7 1361
<> 144:ef7eb2e8f9f7 1362 /* Enable the TIM Capture/Compare 2 DMA request */
<> 144:ef7eb2e8f9f7 1363 __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
<> 144:ef7eb2e8f9f7 1364 }
<> 144:ef7eb2e8f9f7 1365 break;
<> 144:ef7eb2e8f9f7 1366
<> 144:ef7eb2e8f9f7 1367 case TIM_CHANNEL_3:
<> 144:ef7eb2e8f9f7 1368 {
<> 144:ef7eb2e8f9f7 1369 /* Set the DMA Period elapsed callback */
<> 144:ef7eb2e8f9f7 1370 htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt;
<> 144:ef7eb2e8f9f7 1371
<> 144:ef7eb2e8f9f7 1372 /* Set the DMA error callback */
<> 144:ef7eb2e8f9f7 1373 htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
<> 144:ef7eb2e8f9f7 1374
<> 144:ef7eb2e8f9f7 1375 /* Enable the DMA Stream */
<> 144:ef7eb2e8f9f7 1376 HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3,Length);
<> 144:ef7eb2e8f9f7 1377
<> 144:ef7eb2e8f9f7 1378 /* Enable the TIM Output Capture/Compare 3 request */
<> 144:ef7eb2e8f9f7 1379 __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
<> 144:ef7eb2e8f9f7 1380 }
<> 144:ef7eb2e8f9f7 1381 break;
<> 144:ef7eb2e8f9f7 1382
<> 144:ef7eb2e8f9f7 1383 case TIM_CHANNEL_4:
<> 144:ef7eb2e8f9f7 1384 {
<> 144:ef7eb2e8f9f7 1385 /* Set the DMA Period elapsed callback */
<> 144:ef7eb2e8f9f7 1386 htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt;
<> 144:ef7eb2e8f9f7 1387
<> 144:ef7eb2e8f9f7 1388 /* Set the DMA error callback */
<> 144:ef7eb2e8f9f7 1389 htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
<> 144:ef7eb2e8f9f7 1390
<> 144:ef7eb2e8f9f7 1391 /* Enable the DMA Stream */
<> 144:ef7eb2e8f9f7 1392 HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, Length);
<> 144:ef7eb2e8f9f7 1393
<> 144:ef7eb2e8f9f7 1394 /* Enable the TIM Capture/Compare 4 DMA request */
<> 144:ef7eb2e8f9f7 1395 __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
<> 144:ef7eb2e8f9f7 1396 }
<> 144:ef7eb2e8f9f7 1397 break;
<> 144:ef7eb2e8f9f7 1398
<> 144:ef7eb2e8f9f7 1399 default:
<> 144:ef7eb2e8f9f7 1400 break;
<> 144:ef7eb2e8f9f7 1401 }
<> 144:ef7eb2e8f9f7 1402
<> 144:ef7eb2e8f9f7 1403 /* Enable the Capture compare channel */
<> 144:ef7eb2e8f9f7 1404 TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
<> 144:ef7eb2e8f9f7 1405
<> 144:ef7eb2e8f9f7 1406 if(IS_TIM_ADVANCED_INSTANCE(htim->Instance) != RESET)
<> 144:ef7eb2e8f9f7 1407 {
<> 144:ef7eb2e8f9f7 1408 /* Enable the main output */
<> 144:ef7eb2e8f9f7 1409 __HAL_TIM_MOE_ENABLE(htim);
<> 144:ef7eb2e8f9f7 1410 }
<> 144:ef7eb2e8f9f7 1411
<> 144:ef7eb2e8f9f7 1412 /* Enable the Peripheral */
<> 144:ef7eb2e8f9f7 1413 __HAL_TIM_ENABLE(htim);
<> 144:ef7eb2e8f9f7 1414
<> 144:ef7eb2e8f9f7 1415 /* Return function status */
<> 144:ef7eb2e8f9f7 1416 return HAL_OK;
<> 144:ef7eb2e8f9f7 1417 }
<> 144:ef7eb2e8f9f7 1418
<> 144:ef7eb2e8f9f7 1419 /**
<> 144:ef7eb2e8f9f7 1420 * @brief Stops the TIM PWM signal generation in DMA mode.
<> 144:ef7eb2e8f9f7 1421 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 1422 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 1423 * @param Channel: TIM Channels to be disabled.
<> 144:ef7eb2e8f9f7 1424 * This parameter can be one of the following values:
<> 144:ef7eb2e8f9f7 1425 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
<> 144:ef7eb2e8f9f7 1426 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
<> 144:ef7eb2e8f9f7 1427 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
<> 144:ef7eb2e8f9f7 1428 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
<> 144:ef7eb2e8f9f7 1429 * @retval HAL status
<> 144:ef7eb2e8f9f7 1430 */
<> 144:ef7eb2e8f9f7 1431 HAL_StatusTypeDef HAL_TIM_PWM_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
<> 144:ef7eb2e8f9f7 1432 {
<> 144:ef7eb2e8f9f7 1433 /* Check the parameters */
<> 144:ef7eb2e8f9f7 1434 assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
<> 144:ef7eb2e8f9f7 1435
<> 144:ef7eb2e8f9f7 1436 switch (Channel)
<> 144:ef7eb2e8f9f7 1437 {
<> 144:ef7eb2e8f9f7 1438 case TIM_CHANNEL_1:
<> 144:ef7eb2e8f9f7 1439 {
<> 144:ef7eb2e8f9f7 1440 /* Disable the TIM Capture/Compare 1 DMA request */
<> 144:ef7eb2e8f9f7 1441 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
<> 144:ef7eb2e8f9f7 1442 }
<> 144:ef7eb2e8f9f7 1443 break;
<> 144:ef7eb2e8f9f7 1444
<> 144:ef7eb2e8f9f7 1445 case TIM_CHANNEL_2:
<> 144:ef7eb2e8f9f7 1446 {
<> 144:ef7eb2e8f9f7 1447 /* Disable the TIM Capture/Compare 2 DMA request */
<> 144:ef7eb2e8f9f7 1448 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
<> 144:ef7eb2e8f9f7 1449 }
<> 144:ef7eb2e8f9f7 1450 break;
<> 144:ef7eb2e8f9f7 1451
<> 144:ef7eb2e8f9f7 1452 case TIM_CHANNEL_3:
<> 144:ef7eb2e8f9f7 1453 {
<> 144:ef7eb2e8f9f7 1454 /* Disable the TIM Capture/Compare 3 DMA request */
<> 144:ef7eb2e8f9f7 1455 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
<> 144:ef7eb2e8f9f7 1456 }
<> 144:ef7eb2e8f9f7 1457 break;
<> 144:ef7eb2e8f9f7 1458
<> 144:ef7eb2e8f9f7 1459 case TIM_CHANNEL_4:
<> 144:ef7eb2e8f9f7 1460 {
<> 144:ef7eb2e8f9f7 1461 /* Disable the TIM Capture/Compare 4 interrupt */
<> 144:ef7eb2e8f9f7 1462 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
<> 144:ef7eb2e8f9f7 1463 }
<> 144:ef7eb2e8f9f7 1464 break;
<> 144:ef7eb2e8f9f7 1465
<> 144:ef7eb2e8f9f7 1466 default:
<> 144:ef7eb2e8f9f7 1467 break;
<> 144:ef7eb2e8f9f7 1468 }
<> 144:ef7eb2e8f9f7 1469
<> 144:ef7eb2e8f9f7 1470 /* Disable the Capture compare channel */
<> 144:ef7eb2e8f9f7 1471 TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
<> 144:ef7eb2e8f9f7 1472
<> 144:ef7eb2e8f9f7 1473 if(IS_TIM_ADVANCED_INSTANCE(htim->Instance) != RESET)
<> 144:ef7eb2e8f9f7 1474 {
<> 144:ef7eb2e8f9f7 1475 /* Disable the Main Output */
<> 144:ef7eb2e8f9f7 1476 __HAL_TIM_MOE_DISABLE(htim);
<> 144:ef7eb2e8f9f7 1477 }
<> 144:ef7eb2e8f9f7 1478
<> 144:ef7eb2e8f9f7 1479 /* Disable the Peripheral */
<> 144:ef7eb2e8f9f7 1480 __HAL_TIM_DISABLE(htim);
<> 144:ef7eb2e8f9f7 1481
<> 144:ef7eb2e8f9f7 1482 /* Change the htim state */
<> 144:ef7eb2e8f9f7 1483 htim->State = HAL_TIM_STATE_READY;
<> 144:ef7eb2e8f9f7 1484
<> 144:ef7eb2e8f9f7 1485 /* Return function status */
<> 144:ef7eb2e8f9f7 1486 return HAL_OK;
<> 144:ef7eb2e8f9f7 1487 }
<> 144:ef7eb2e8f9f7 1488 /**
<> 144:ef7eb2e8f9f7 1489 * @}
<> 144:ef7eb2e8f9f7 1490 */
<> 144:ef7eb2e8f9f7 1491
<> 144:ef7eb2e8f9f7 1492 /** @defgroup TIM_Exported_Functions_Group4 Time Input Capture functions
<> 144:ef7eb2e8f9f7 1493 * @brief Time Input Capture functions
<> 144:ef7eb2e8f9f7 1494 *
<> 144:ef7eb2e8f9f7 1495 @verbatim
<> 144:ef7eb2e8f9f7 1496 ==============================================================================
<> 144:ef7eb2e8f9f7 1497 ##### Time Input Capture functions #####
<> 144:ef7eb2e8f9f7 1498 ==============================================================================
<> 144:ef7eb2e8f9f7 1499 [..]
<> 144:ef7eb2e8f9f7 1500 This section provides functions allowing to:
<> 144:ef7eb2e8f9f7 1501 (+) Initialize and configure the TIM Input Capture.
<> 144:ef7eb2e8f9f7 1502 (+) De-initialize the TIM Input Capture.
<> 144:ef7eb2e8f9f7 1503 (+) Start the Time Input Capture.
<> 144:ef7eb2e8f9f7 1504 (+) Stop the Time Input Capture.
<> 144:ef7eb2e8f9f7 1505 (+) Start the Time Input Capture and enable interrupt.
<> 144:ef7eb2e8f9f7 1506 (+) Stop the Time Input Capture and disable interrupt.
<> 144:ef7eb2e8f9f7 1507 (+) Start the Time Input Capture and enable DMA transfer.
<> 144:ef7eb2e8f9f7 1508 (+) Stop the Time Input Capture and disable DMA transfer.
<> 144:ef7eb2e8f9f7 1509
<> 144:ef7eb2e8f9f7 1510 @endverbatim
<> 144:ef7eb2e8f9f7 1511 * @{
<> 144:ef7eb2e8f9f7 1512 */
<> 144:ef7eb2e8f9f7 1513 /**
<> 144:ef7eb2e8f9f7 1514 * @brief Initializes the TIM Input Capture Time base according to the specified
<> 144:ef7eb2e8f9f7 1515 * parameters in the TIM_HandleTypeDef and create the associated handle.
<> 144:ef7eb2e8f9f7 1516 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 1517 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 1518 * @retval HAL status
<> 144:ef7eb2e8f9f7 1519 */
<> 144:ef7eb2e8f9f7 1520 HAL_StatusTypeDef HAL_TIM_IC_Init(TIM_HandleTypeDef *htim)
<> 144:ef7eb2e8f9f7 1521 {
<> 144:ef7eb2e8f9f7 1522 /* Check the TIM handle allocation */
<> 144:ef7eb2e8f9f7 1523 if(htim == NULL)
<> 144:ef7eb2e8f9f7 1524 {
<> 144:ef7eb2e8f9f7 1525 return HAL_ERROR;
<> 144:ef7eb2e8f9f7 1526 }
<> 144:ef7eb2e8f9f7 1527
<> 144:ef7eb2e8f9f7 1528 /* Check the parameters */
<> 144:ef7eb2e8f9f7 1529 assert_param(IS_TIM_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 1530 assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
<> 144:ef7eb2e8f9f7 1531 assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
AnnaBridge 167:e84263d55307 1532 assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
AnnaBridge 167:e84263d55307 1533
<> 144:ef7eb2e8f9f7 1534 if(htim->State == HAL_TIM_STATE_RESET)
<> 144:ef7eb2e8f9f7 1535 {
<> 144:ef7eb2e8f9f7 1536 /* Allocate lock resource and initialize it */
<> 144:ef7eb2e8f9f7 1537 htim->Lock = HAL_UNLOCKED;
<> 144:ef7eb2e8f9f7 1538 /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
<> 144:ef7eb2e8f9f7 1539 HAL_TIM_IC_MspInit(htim);
<> 144:ef7eb2e8f9f7 1540 }
<> 144:ef7eb2e8f9f7 1541
<> 144:ef7eb2e8f9f7 1542 /* Set the TIM state */
<> 144:ef7eb2e8f9f7 1543 htim->State= HAL_TIM_STATE_BUSY;
<> 144:ef7eb2e8f9f7 1544
<> 144:ef7eb2e8f9f7 1545 /* Init the base time for the input capture */
<> 144:ef7eb2e8f9f7 1546 TIM_Base_SetConfig(htim->Instance, &htim->Init);
<> 144:ef7eb2e8f9f7 1547
<> 144:ef7eb2e8f9f7 1548 /* Initialize the TIM state*/
<> 144:ef7eb2e8f9f7 1549 htim->State= HAL_TIM_STATE_READY;
<> 144:ef7eb2e8f9f7 1550
<> 144:ef7eb2e8f9f7 1551 return HAL_OK;
<> 144:ef7eb2e8f9f7 1552 }
<> 144:ef7eb2e8f9f7 1553
<> 144:ef7eb2e8f9f7 1554 /**
<> 144:ef7eb2e8f9f7 1555 * @brief DeInitializes the TIM peripheral
<> 144:ef7eb2e8f9f7 1556 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 1557 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 1558 * @retval HAL status
<> 144:ef7eb2e8f9f7 1559 */
<> 144:ef7eb2e8f9f7 1560 HAL_StatusTypeDef HAL_TIM_IC_DeInit(TIM_HandleTypeDef *htim)
<> 144:ef7eb2e8f9f7 1561 {
<> 144:ef7eb2e8f9f7 1562 /* Check the parameters */
<> 144:ef7eb2e8f9f7 1563 assert_param(IS_TIM_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 1564
<> 144:ef7eb2e8f9f7 1565 htim->State = HAL_TIM_STATE_BUSY;
<> 144:ef7eb2e8f9f7 1566
<> 144:ef7eb2e8f9f7 1567 /* Disable the TIM Peripheral Clock */
<> 144:ef7eb2e8f9f7 1568 __HAL_TIM_DISABLE(htim);
<> 144:ef7eb2e8f9f7 1569
<> 144:ef7eb2e8f9f7 1570 /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */
<> 144:ef7eb2e8f9f7 1571 HAL_TIM_IC_MspDeInit(htim);
<> 144:ef7eb2e8f9f7 1572
<> 144:ef7eb2e8f9f7 1573 /* Change TIM state */
<> 144:ef7eb2e8f9f7 1574 htim->State = HAL_TIM_STATE_RESET;
<> 144:ef7eb2e8f9f7 1575
<> 144:ef7eb2e8f9f7 1576 /* Release Lock */
<> 144:ef7eb2e8f9f7 1577 __HAL_UNLOCK(htim);
<> 144:ef7eb2e8f9f7 1578
<> 144:ef7eb2e8f9f7 1579 return HAL_OK;
<> 144:ef7eb2e8f9f7 1580 }
<> 144:ef7eb2e8f9f7 1581
<> 144:ef7eb2e8f9f7 1582 /**
<> 144:ef7eb2e8f9f7 1583 * @brief Initializes the TIM INput Capture MSP.
<> 144:ef7eb2e8f9f7 1584 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 1585 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 1586 * @retval None
<> 144:ef7eb2e8f9f7 1587 */
<> 144:ef7eb2e8f9f7 1588 __weak void HAL_TIM_IC_MspInit(TIM_HandleTypeDef *htim)
<> 144:ef7eb2e8f9f7 1589 {
<> 144:ef7eb2e8f9f7 1590 /* Prevent unused argument(s) compilation warning */
<> 144:ef7eb2e8f9f7 1591 UNUSED(htim);
<> 144:ef7eb2e8f9f7 1592 /* NOTE : This function Should not be modified, when the callback is needed,
<> 144:ef7eb2e8f9f7 1593 the HAL_TIM_IC_MspInit could be implemented in the user file
<> 144:ef7eb2e8f9f7 1594 */
<> 144:ef7eb2e8f9f7 1595 }
<> 144:ef7eb2e8f9f7 1596
<> 144:ef7eb2e8f9f7 1597 /**
<> 144:ef7eb2e8f9f7 1598 * @brief DeInitializes TIM Input Capture MSP.
<> 144:ef7eb2e8f9f7 1599 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 1600 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 1601 * @retval None
<> 144:ef7eb2e8f9f7 1602 */
<> 144:ef7eb2e8f9f7 1603 __weak void HAL_TIM_IC_MspDeInit(TIM_HandleTypeDef *htim)
<> 144:ef7eb2e8f9f7 1604 {
<> 144:ef7eb2e8f9f7 1605 /* Prevent unused argument(s) compilation warning */
<> 144:ef7eb2e8f9f7 1606 UNUSED(htim);
<> 144:ef7eb2e8f9f7 1607 /* NOTE : This function Should not be modified, when the callback is needed,
<> 144:ef7eb2e8f9f7 1608 the HAL_TIM_IC_MspDeInit could be implemented in the user file
<> 144:ef7eb2e8f9f7 1609 */
<> 144:ef7eb2e8f9f7 1610 }
<> 144:ef7eb2e8f9f7 1611
<> 144:ef7eb2e8f9f7 1612 /**
<> 144:ef7eb2e8f9f7 1613 * @brief Starts the TIM Input Capture measurement.
<> 144:ef7eb2e8f9f7 1614 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 1615 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 1616 * @param Channel: TIM Channels to be enabled.
<> 144:ef7eb2e8f9f7 1617 * This parameter can be one of the following values:
<> 144:ef7eb2e8f9f7 1618 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
<> 144:ef7eb2e8f9f7 1619 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
<> 144:ef7eb2e8f9f7 1620 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
<> 144:ef7eb2e8f9f7 1621 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
<> 144:ef7eb2e8f9f7 1622 * @retval HAL status
<> 144:ef7eb2e8f9f7 1623 */
<> 144:ef7eb2e8f9f7 1624 HAL_StatusTypeDef HAL_TIM_IC_Start (TIM_HandleTypeDef *htim, uint32_t Channel)
<> 144:ef7eb2e8f9f7 1625 {
<> 144:ef7eb2e8f9f7 1626 /* Check the parameters */
<> 144:ef7eb2e8f9f7 1627 assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
<> 144:ef7eb2e8f9f7 1628
<> 144:ef7eb2e8f9f7 1629 /* Enable the Input Capture channel */
<> 144:ef7eb2e8f9f7 1630 TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
<> 144:ef7eb2e8f9f7 1631
<> 144:ef7eb2e8f9f7 1632 /* Enable the Peripheral */
<> 144:ef7eb2e8f9f7 1633 __HAL_TIM_ENABLE(htim);
<> 144:ef7eb2e8f9f7 1634
<> 144:ef7eb2e8f9f7 1635 /* Return function status */
<> 144:ef7eb2e8f9f7 1636 return HAL_OK;
<> 144:ef7eb2e8f9f7 1637 }
<> 144:ef7eb2e8f9f7 1638
<> 144:ef7eb2e8f9f7 1639 /**
<> 144:ef7eb2e8f9f7 1640 * @brief Stops the TIM Input Capture measurement.
<> 144:ef7eb2e8f9f7 1641 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 1642 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 1643 * @param Channel: TIM Channels to be disabled.
<> 144:ef7eb2e8f9f7 1644 * This parameter can be one of the following values:
<> 144:ef7eb2e8f9f7 1645 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
<> 144:ef7eb2e8f9f7 1646 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
<> 144:ef7eb2e8f9f7 1647 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
<> 144:ef7eb2e8f9f7 1648 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
<> 144:ef7eb2e8f9f7 1649 * @retval HAL status
<> 144:ef7eb2e8f9f7 1650 */
<> 144:ef7eb2e8f9f7 1651 HAL_StatusTypeDef HAL_TIM_IC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
<> 144:ef7eb2e8f9f7 1652 {
<> 144:ef7eb2e8f9f7 1653 /* Check the parameters */
<> 144:ef7eb2e8f9f7 1654 assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
<> 144:ef7eb2e8f9f7 1655
<> 144:ef7eb2e8f9f7 1656 /* Disable the Input Capture channel */
<> 144:ef7eb2e8f9f7 1657 TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
<> 144:ef7eb2e8f9f7 1658
<> 144:ef7eb2e8f9f7 1659 /* Disable the Peripheral */
<> 144:ef7eb2e8f9f7 1660 __HAL_TIM_DISABLE(htim);
<> 144:ef7eb2e8f9f7 1661
<> 144:ef7eb2e8f9f7 1662 /* Return function status */
<> 144:ef7eb2e8f9f7 1663 return HAL_OK;
<> 144:ef7eb2e8f9f7 1664 }
<> 144:ef7eb2e8f9f7 1665
<> 144:ef7eb2e8f9f7 1666 /**
<> 144:ef7eb2e8f9f7 1667 * @brief Starts the TIM Input Capture measurement in interrupt mode.
<> 144:ef7eb2e8f9f7 1668 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 1669 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 1670 * @param Channel: TIM Channels to be enabled.
<> 144:ef7eb2e8f9f7 1671 * This parameter can be one of the following values:
<> 144:ef7eb2e8f9f7 1672 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
<> 144:ef7eb2e8f9f7 1673 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
<> 144:ef7eb2e8f9f7 1674 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
<> 144:ef7eb2e8f9f7 1675 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
<> 144:ef7eb2e8f9f7 1676 * @retval HAL status
<> 144:ef7eb2e8f9f7 1677 */
<> 144:ef7eb2e8f9f7 1678 HAL_StatusTypeDef HAL_TIM_IC_Start_IT (TIM_HandleTypeDef *htim, uint32_t Channel)
<> 144:ef7eb2e8f9f7 1679 {
<> 144:ef7eb2e8f9f7 1680 /* Check the parameters */
<> 144:ef7eb2e8f9f7 1681 assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
<> 144:ef7eb2e8f9f7 1682
<> 144:ef7eb2e8f9f7 1683 switch (Channel)
<> 144:ef7eb2e8f9f7 1684 {
<> 144:ef7eb2e8f9f7 1685 case TIM_CHANNEL_1:
<> 144:ef7eb2e8f9f7 1686 {
<> 144:ef7eb2e8f9f7 1687 /* Enable the TIM Capture/Compare 1 interrupt */
<> 144:ef7eb2e8f9f7 1688 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
<> 144:ef7eb2e8f9f7 1689 }
<> 144:ef7eb2e8f9f7 1690 break;
<> 144:ef7eb2e8f9f7 1691
<> 144:ef7eb2e8f9f7 1692 case TIM_CHANNEL_2:
<> 144:ef7eb2e8f9f7 1693 {
<> 144:ef7eb2e8f9f7 1694 /* Enable the TIM Capture/Compare 2 interrupt */
<> 144:ef7eb2e8f9f7 1695 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
<> 144:ef7eb2e8f9f7 1696 }
<> 144:ef7eb2e8f9f7 1697 break;
<> 144:ef7eb2e8f9f7 1698
<> 144:ef7eb2e8f9f7 1699 case TIM_CHANNEL_3:
<> 144:ef7eb2e8f9f7 1700 {
<> 144:ef7eb2e8f9f7 1701 /* Enable the TIM Capture/Compare 3 interrupt */
<> 144:ef7eb2e8f9f7 1702 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
<> 144:ef7eb2e8f9f7 1703 }
<> 144:ef7eb2e8f9f7 1704 break;
<> 144:ef7eb2e8f9f7 1705
<> 144:ef7eb2e8f9f7 1706 case TIM_CHANNEL_4:
<> 144:ef7eb2e8f9f7 1707 {
<> 144:ef7eb2e8f9f7 1708 /* Enable the TIM Capture/Compare 4 interrupt */
<> 144:ef7eb2e8f9f7 1709 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
<> 144:ef7eb2e8f9f7 1710 }
<> 144:ef7eb2e8f9f7 1711 break;
<> 144:ef7eb2e8f9f7 1712
<> 144:ef7eb2e8f9f7 1713 default:
<> 144:ef7eb2e8f9f7 1714 break;
<> 144:ef7eb2e8f9f7 1715 }
<> 144:ef7eb2e8f9f7 1716 /* Enable the Input Capture channel */
<> 144:ef7eb2e8f9f7 1717 TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
<> 144:ef7eb2e8f9f7 1718
<> 144:ef7eb2e8f9f7 1719 /* Enable the Peripheral */
<> 144:ef7eb2e8f9f7 1720 __HAL_TIM_ENABLE(htim);
<> 144:ef7eb2e8f9f7 1721
<> 144:ef7eb2e8f9f7 1722 /* Return function status */
<> 144:ef7eb2e8f9f7 1723 return HAL_OK;
<> 144:ef7eb2e8f9f7 1724 }
<> 144:ef7eb2e8f9f7 1725
<> 144:ef7eb2e8f9f7 1726 /**
<> 144:ef7eb2e8f9f7 1727 * @brief Stops the TIM Input Capture measurement in interrupt mode.
<> 144:ef7eb2e8f9f7 1728 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 1729 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 1730 * @param Channel: TIM Channels to be disabled.
<> 144:ef7eb2e8f9f7 1731 * This parameter can be one of the following values:
<> 144:ef7eb2e8f9f7 1732 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
<> 144:ef7eb2e8f9f7 1733 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
<> 144:ef7eb2e8f9f7 1734 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
<> 144:ef7eb2e8f9f7 1735 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
<> 144:ef7eb2e8f9f7 1736 * @retval HAL status
<> 144:ef7eb2e8f9f7 1737 */
<> 144:ef7eb2e8f9f7 1738 HAL_StatusTypeDef HAL_TIM_IC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
<> 144:ef7eb2e8f9f7 1739 {
<> 144:ef7eb2e8f9f7 1740 /* Check the parameters */
<> 144:ef7eb2e8f9f7 1741 assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
<> 144:ef7eb2e8f9f7 1742
<> 144:ef7eb2e8f9f7 1743 switch (Channel)
<> 144:ef7eb2e8f9f7 1744 {
<> 144:ef7eb2e8f9f7 1745 case TIM_CHANNEL_1:
<> 144:ef7eb2e8f9f7 1746 {
<> 144:ef7eb2e8f9f7 1747 /* Disable the TIM Capture/Compare 1 interrupt */
<> 144:ef7eb2e8f9f7 1748 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
<> 144:ef7eb2e8f9f7 1749 }
<> 144:ef7eb2e8f9f7 1750 break;
<> 144:ef7eb2e8f9f7 1751
<> 144:ef7eb2e8f9f7 1752 case TIM_CHANNEL_2:
<> 144:ef7eb2e8f9f7 1753 {
<> 144:ef7eb2e8f9f7 1754 /* Disable the TIM Capture/Compare 2 interrupt */
<> 144:ef7eb2e8f9f7 1755 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
<> 144:ef7eb2e8f9f7 1756 }
<> 144:ef7eb2e8f9f7 1757 break;
<> 144:ef7eb2e8f9f7 1758
<> 144:ef7eb2e8f9f7 1759 case TIM_CHANNEL_3:
<> 144:ef7eb2e8f9f7 1760 {
<> 144:ef7eb2e8f9f7 1761 /* Disable the TIM Capture/Compare 3 interrupt */
<> 144:ef7eb2e8f9f7 1762 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
<> 144:ef7eb2e8f9f7 1763 }
<> 144:ef7eb2e8f9f7 1764 break;
<> 144:ef7eb2e8f9f7 1765
<> 144:ef7eb2e8f9f7 1766 case TIM_CHANNEL_4:
<> 144:ef7eb2e8f9f7 1767 {
<> 144:ef7eb2e8f9f7 1768 /* Disable the TIM Capture/Compare 4 interrupt */
<> 144:ef7eb2e8f9f7 1769 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
<> 144:ef7eb2e8f9f7 1770 }
<> 144:ef7eb2e8f9f7 1771 break;
<> 144:ef7eb2e8f9f7 1772
<> 144:ef7eb2e8f9f7 1773 default:
<> 144:ef7eb2e8f9f7 1774 break;
<> 144:ef7eb2e8f9f7 1775 }
<> 144:ef7eb2e8f9f7 1776
<> 144:ef7eb2e8f9f7 1777 /* Disable the Input Capture channel */
<> 144:ef7eb2e8f9f7 1778 TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
<> 144:ef7eb2e8f9f7 1779
<> 144:ef7eb2e8f9f7 1780 /* Disable the Peripheral */
<> 144:ef7eb2e8f9f7 1781 __HAL_TIM_DISABLE(htim);
<> 144:ef7eb2e8f9f7 1782
<> 144:ef7eb2e8f9f7 1783 /* Return function status */
<> 144:ef7eb2e8f9f7 1784 return HAL_OK;
<> 144:ef7eb2e8f9f7 1785 }
<> 144:ef7eb2e8f9f7 1786
<> 144:ef7eb2e8f9f7 1787 /**
<> 144:ef7eb2e8f9f7 1788 * @brief Starts the TIM Input Capture measurement on in DMA mode.
<> 144:ef7eb2e8f9f7 1789 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 1790 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 1791 * @param Channel: TIM Channels to be enabled.
<> 144:ef7eb2e8f9f7 1792 * This parameter can be one of the following values:
<> 144:ef7eb2e8f9f7 1793 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
<> 144:ef7eb2e8f9f7 1794 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
<> 144:ef7eb2e8f9f7 1795 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
<> 144:ef7eb2e8f9f7 1796 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
<> 144:ef7eb2e8f9f7 1797 * @param pData: The destination Buffer address.
<> 144:ef7eb2e8f9f7 1798 * @param Length: The length of data to be transferred from TIM peripheral to memory.
<> 144:ef7eb2e8f9f7 1799 * @retval HAL status
<> 144:ef7eb2e8f9f7 1800 */
<> 144:ef7eb2e8f9f7 1801 HAL_StatusTypeDef HAL_TIM_IC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length)
<> 144:ef7eb2e8f9f7 1802 {
<> 144:ef7eb2e8f9f7 1803 /* Check the parameters */
<> 144:ef7eb2e8f9f7 1804 assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
<> 144:ef7eb2e8f9f7 1805 assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 1806
<> 144:ef7eb2e8f9f7 1807 if((htim->State == HAL_TIM_STATE_BUSY))
<> 144:ef7eb2e8f9f7 1808 {
<> 144:ef7eb2e8f9f7 1809 return HAL_BUSY;
<> 144:ef7eb2e8f9f7 1810 }
<> 144:ef7eb2e8f9f7 1811 else if((htim->State == HAL_TIM_STATE_READY))
<> 144:ef7eb2e8f9f7 1812 {
AnnaBridge 167:e84263d55307 1813 if((pData == 0U ) && (Length > 0))
<> 144:ef7eb2e8f9f7 1814 {
<> 144:ef7eb2e8f9f7 1815 return HAL_ERROR;
<> 144:ef7eb2e8f9f7 1816 }
<> 144:ef7eb2e8f9f7 1817 else
<> 144:ef7eb2e8f9f7 1818 {
<> 144:ef7eb2e8f9f7 1819 htim->State = HAL_TIM_STATE_BUSY;
<> 144:ef7eb2e8f9f7 1820 }
<> 144:ef7eb2e8f9f7 1821 }
<> 144:ef7eb2e8f9f7 1822
<> 144:ef7eb2e8f9f7 1823 switch (Channel)
<> 144:ef7eb2e8f9f7 1824 {
<> 144:ef7eb2e8f9f7 1825 case TIM_CHANNEL_1:
<> 144:ef7eb2e8f9f7 1826 {
<> 144:ef7eb2e8f9f7 1827 /* Set the DMA Period elapsed callback */
<> 144:ef7eb2e8f9f7 1828 htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
<> 144:ef7eb2e8f9f7 1829
<> 144:ef7eb2e8f9f7 1830 /* Set the DMA error callback */
<> 144:ef7eb2e8f9f7 1831 htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
<> 144:ef7eb2e8f9f7 1832
<> 144:ef7eb2e8f9f7 1833 /* Enable the DMA Stream */
<> 144:ef7eb2e8f9f7 1834 HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData, Length);
<> 144:ef7eb2e8f9f7 1835
<> 144:ef7eb2e8f9f7 1836 /* Enable the TIM Capture/Compare 1 DMA request */
<> 144:ef7eb2e8f9f7 1837 __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
<> 144:ef7eb2e8f9f7 1838 }
<> 144:ef7eb2e8f9f7 1839 break;
<> 144:ef7eb2e8f9f7 1840
<> 144:ef7eb2e8f9f7 1841 case TIM_CHANNEL_2:
<> 144:ef7eb2e8f9f7 1842 {
<> 144:ef7eb2e8f9f7 1843 /* Set the DMA Period elapsed callback */
<> 144:ef7eb2e8f9f7 1844 htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
<> 144:ef7eb2e8f9f7 1845
<> 144:ef7eb2e8f9f7 1846 /* Set the DMA error callback */
<> 144:ef7eb2e8f9f7 1847 htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
<> 144:ef7eb2e8f9f7 1848
<> 144:ef7eb2e8f9f7 1849 /* Enable the DMA Stream */
<> 144:ef7eb2e8f9f7 1850 HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData, Length);
<> 144:ef7eb2e8f9f7 1851
<> 144:ef7eb2e8f9f7 1852 /* Enable the TIM Capture/Compare 2 DMA request */
<> 144:ef7eb2e8f9f7 1853 __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
<> 144:ef7eb2e8f9f7 1854 }
<> 144:ef7eb2e8f9f7 1855 break;
<> 144:ef7eb2e8f9f7 1856
<> 144:ef7eb2e8f9f7 1857 case TIM_CHANNEL_3:
<> 144:ef7eb2e8f9f7 1858 {
<> 144:ef7eb2e8f9f7 1859 /* Set the DMA Period elapsed callback */
<> 144:ef7eb2e8f9f7 1860 htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt;
<> 144:ef7eb2e8f9f7 1861
<> 144:ef7eb2e8f9f7 1862 /* Set the DMA error callback */
<> 144:ef7eb2e8f9f7 1863 htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
<> 144:ef7eb2e8f9f7 1864
<> 144:ef7eb2e8f9f7 1865 /* Enable the DMA Stream */
<> 144:ef7eb2e8f9f7 1866 HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->CCR3, (uint32_t)pData, Length);
<> 144:ef7eb2e8f9f7 1867
<> 144:ef7eb2e8f9f7 1868 /* Enable the TIM Capture/Compare 3 DMA request */
<> 144:ef7eb2e8f9f7 1869 __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
<> 144:ef7eb2e8f9f7 1870 }
<> 144:ef7eb2e8f9f7 1871 break;
<> 144:ef7eb2e8f9f7 1872
<> 144:ef7eb2e8f9f7 1873 case TIM_CHANNEL_4:
<> 144:ef7eb2e8f9f7 1874 {
<> 144:ef7eb2e8f9f7 1875 /* Set the DMA Period elapsed callback */
<> 144:ef7eb2e8f9f7 1876 htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt;
<> 144:ef7eb2e8f9f7 1877
<> 144:ef7eb2e8f9f7 1878 /* Set the DMA error callback */
<> 144:ef7eb2e8f9f7 1879 htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
<> 144:ef7eb2e8f9f7 1880
<> 144:ef7eb2e8f9f7 1881 /* Enable the DMA Stream */
<> 144:ef7eb2e8f9f7 1882 HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->CCR4, (uint32_t)pData, Length);
<> 144:ef7eb2e8f9f7 1883
<> 144:ef7eb2e8f9f7 1884 /* Enable the TIM Capture/Compare 4 DMA request */
<> 144:ef7eb2e8f9f7 1885 __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
<> 144:ef7eb2e8f9f7 1886 }
<> 144:ef7eb2e8f9f7 1887 break;
<> 144:ef7eb2e8f9f7 1888
<> 144:ef7eb2e8f9f7 1889 default:
<> 144:ef7eb2e8f9f7 1890 break;
<> 144:ef7eb2e8f9f7 1891 }
<> 144:ef7eb2e8f9f7 1892
<> 144:ef7eb2e8f9f7 1893 /* Enable the Input Capture channel */
<> 144:ef7eb2e8f9f7 1894 TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
<> 144:ef7eb2e8f9f7 1895
<> 144:ef7eb2e8f9f7 1896 /* Enable the Peripheral */
<> 144:ef7eb2e8f9f7 1897 __HAL_TIM_ENABLE(htim);
<> 144:ef7eb2e8f9f7 1898
<> 144:ef7eb2e8f9f7 1899 /* Return function status */
<> 144:ef7eb2e8f9f7 1900 return HAL_OK;
<> 144:ef7eb2e8f9f7 1901 }
<> 144:ef7eb2e8f9f7 1902
<> 144:ef7eb2e8f9f7 1903 /**
<> 144:ef7eb2e8f9f7 1904 * @brief Stops the TIM Input Capture measurement on in DMA mode.
<> 144:ef7eb2e8f9f7 1905 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 1906 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 1907 * @param Channel: TIM Channels to be disabled.
<> 144:ef7eb2e8f9f7 1908 * This parameter can be one of the following values:
<> 144:ef7eb2e8f9f7 1909 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
<> 144:ef7eb2e8f9f7 1910 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
<> 144:ef7eb2e8f9f7 1911 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
<> 144:ef7eb2e8f9f7 1912 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
<> 144:ef7eb2e8f9f7 1913 * @retval HAL status
<> 144:ef7eb2e8f9f7 1914 */
<> 144:ef7eb2e8f9f7 1915 HAL_StatusTypeDef HAL_TIM_IC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
<> 144:ef7eb2e8f9f7 1916 {
<> 144:ef7eb2e8f9f7 1917 /* Check the parameters */
<> 144:ef7eb2e8f9f7 1918 assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
<> 144:ef7eb2e8f9f7 1919 assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 1920
<> 144:ef7eb2e8f9f7 1921 switch (Channel)
<> 144:ef7eb2e8f9f7 1922 {
<> 144:ef7eb2e8f9f7 1923 case TIM_CHANNEL_1:
<> 144:ef7eb2e8f9f7 1924 {
<> 144:ef7eb2e8f9f7 1925 /* Disable the TIM Capture/Compare 1 DMA request */
<> 144:ef7eb2e8f9f7 1926 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
<> 144:ef7eb2e8f9f7 1927 }
<> 144:ef7eb2e8f9f7 1928 break;
<> 144:ef7eb2e8f9f7 1929
<> 144:ef7eb2e8f9f7 1930 case TIM_CHANNEL_2:
<> 144:ef7eb2e8f9f7 1931 {
<> 144:ef7eb2e8f9f7 1932 /* Disable the TIM Capture/Compare 2 DMA request */
<> 144:ef7eb2e8f9f7 1933 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
<> 144:ef7eb2e8f9f7 1934 }
<> 144:ef7eb2e8f9f7 1935 break;
<> 144:ef7eb2e8f9f7 1936
<> 144:ef7eb2e8f9f7 1937 case TIM_CHANNEL_3:
<> 144:ef7eb2e8f9f7 1938 {
<> 144:ef7eb2e8f9f7 1939 /* Disable the TIM Capture/Compare 3 DMA request */
<> 144:ef7eb2e8f9f7 1940 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
<> 144:ef7eb2e8f9f7 1941 }
<> 144:ef7eb2e8f9f7 1942 break;
<> 144:ef7eb2e8f9f7 1943
<> 144:ef7eb2e8f9f7 1944 case TIM_CHANNEL_4:
<> 144:ef7eb2e8f9f7 1945 {
<> 144:ef7eb2e8f9f7 1946 /* Disable the TIM Capture/Compare 4 DMA request */
<> 144:ef7eb2e8f9f7 1947 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
<> 144:ef7eb2e8f9f7 1948 }
<> 144:ef7eb2e8f9f7 1949 break;
<> 144:ef7eb2e8f9f7 1950
<> 144:ef7eb2e8f9f7 1951 default:
<> 144:ef7eb2e8f9f7 1952 break;
<> 144:ef7eb2e8f9f7 1953 }
<> 144:ef7eb2e8f9f7 1954
<> 144:ef7eb2e8f9f7 1955 /* Disable the Input Capture channel */
<> 144:ef7eb2e8f9f7 1956 TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
<> 144:ef7eb2e8f9f7 1957
<> 144:ef7eb2e8f9f7 1958 /* Disable the Peripheral */
<> 144:ef7eb2e8f9f7 1959 __HAL_TIM_DISABLE(htim);
<> 144:ef7eb2e8f9f7 1960
<> 144:ef7eb2e8f9f7 1961 /* Change the htim state */
<> 144:ef7eb2e8f9f7 1962 htim->State = HAL_TIM_STATE_READY;
<> 144:ef7eb2e8f9f7 1963
<> 144:ef7eb2e8f9f7 1964 /* Return function status */
<> 144:ef7eb2e8f9f7 1965 return HAL_OK;
<> 144:ef7eb2e8f9f7 1966 }
<> 144:ef7eb2e8f9f7 1967 /**
<> 144:ef7eb2e8f9f7 1968 * @}
<> 144:ef7eb2e8f9f7 1969 */
<> 144:ef7eb2e8f9f7 1970
<> 144:ef7eb2e8f9f7 1971 /** @defgroup TIM_Exported_Functions_Group5 Time One Pulse functions
<> 144:ef7eb2e8f9f7 1972 * @brief Time One Pulse functions
<> 144:ef7eb2e8f9f7 1973 *
<> 144:ef7eb2e8f9f7 1974 @verbatim
<> 144:ef7eb2e8f9f7 1975 ==============================================================================
<> 144:ef7eb2e8f9f7 1976 ##### Time One Pulse functions #####
<> 144:ef7eb2e8f9f7 1977 ==============================================================================
<> 144:ef7eb2e8f9f7 1978 [..]
<> 144:ef7eb2e8f9f7 1979 This section provides functions allowing to:
<> 144:ef7eb2e8f9f7 1980 (+) Initialize and configure the TIM One Pulse.
<> 144:ef7eb2e8f9f7 1981 (+) De-initialize the TIM One Pulse.
<> 144:ef7eb2e8f9f7 1982 (+) Start the Time One Pulse.
<> 144:ef7eb2e8f9f7 1983 (+) Stop the Time One Pulse.
<> 144:ef7eb2e8f9f7 1984 (+) Start the Time One Pulse and enable interrupt.
<> 144:ef7eb2e8f9f7 1985 (+) Stop the Time One Pulse and disable interrupt.
<> 144:ef7eb2e8f9f7 1986 (+) Start the Time One Pulse and enable DMA transfer.
<> 144:ef7eb2e8f9f7 1987 (+) Stop the Time One Pulse and disable DMA transfer.
<> 144:ef7eb2e8f9f7 1988
<> 144:ef7eb2e8f9f7 1989 @endverbatim
<> 144:ef7eb2e8f9f7 1990 * @{
<> 144:ef7eb2e8f9f7 1991 */
<> 144:ef7eb2e8f9f7 1992 /**
<> 144:ef7eb2e8f9f7 1993 * @brief Initializes the TIM One Pulse Time Base according to the specified
<> 144:ef7eb2e8f9f7 1994 * parameters in the TIM_HandleTypeDef and create the associated handle.
<> 144:ef7eb2e8f9f7 1995 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 1996 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 1997 * @param OnePulseMode: Select the One pulse mode.
<> 144:ef7eb2e8f9f7 1998 * This parameter can be one of the following values:
<> 144:ef7eb2e8f9f7 1999 * @arg TIM_OPMODE_SINGLE: Only one pulse will be generated.
<> 144:ef7eb2e8f9f7 2000 * @arg TIM_OPMODE_REPETITIVE: Repetitive pulses will be generated.
<> 144:ef7eb2e8f9f7 2001 * @retval HAL status
<> 144:ef7eb2e8f9f7 2002 */
<> 144:ef7eb2e8f9f7 2003 HAL_StatusTypeDef HAL_TIM_OnePulse_Init(TIM_HandleTypeDef *htim, uint32_t OnePulseMode)
<> 144:ef7eb2e8f9f7 2004 {
<> 144:ef7eb2e8f9f7 2005 /* Check the TIM handle allocation */
<> 144:ef7eb2e8f9f7 2006 if(htim == NULL)
<> 144:ef7eb2e8f9f7 2007 {
<> 144:ef7eb2e8f9f7 2008 return HAL_ERROR;
<> 144:ef7eb2e8f9f7 2009 }
<> 144:ef7eb2e8f9f7 2010
<> 144:ef7eb2e8f9f7 2011 /* Check the parameters */
<> 144:ef7eb2e8f9f7 2012 assert_param(IS_TIM_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 2013 assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
<> 144:ef7eb2e8f9f7 2014 assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
AnnaBridge 167:e84263d55307 2015 assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
<> 144:ef7eb2e8f9f7 2016 assert_param(IS_TIM_OPM_MODE(OnePulseMode));
<> 144:ef7eb2e8f9f7 2017
<> 144:ef7eb2e8f9f7 2018 if(htim->State == HAL_TIM_STATE_RESET)
<> 144:ef7eb2e8f9f7 2019 {
<> 144:ef7eb2e8f9f7 2020 /* Allocate lock resource and initialize it */
<> 144:ef7eb2e8f9f7 2021 htim->Lock = HAL_UNLOCKED;
<> 144:ef7eb2e8f9f7 2022 /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
<> 144:ef7eb2e8f9f7 2023 HAL_TIM_OnePulse_MspInit(htim);
<> 144:ef7eb2e8f9f7 2024 }
<> 144:ef7eb2e8f9f7 2025
<> 144:ef7eb2e8f9f7 2026 /* Set the TIM state */
<> 144:ef7eb2e8f9f7 2027 htim->State= HAL_TIM_STATE_BUSY;
<> 144:ef7eb2e8f9f7 2028
<> 144:ef7eb2e8f9f7 2029 /* Configure the Time base in the One Pulse Mode */
<> 144:ef7eb2e8f9f7 2030 TIM_Base_SetConfig(htim->Instance, &htim->Init);
<> 144:ef7eb2e8f9f7 2031
<> 144:ef7eb2e8f9f7 2032 /* Reset the OPM Bit */
<> 144:ef7eb2e8f9f7 2033 htim->Instance->CR1 &= ~TIM_CR1_OPM;
<> 144:ef7eb2e8f9f7 2034
<> 144:ef7eb2e8f9f7 2035 /* Configure the OPM Mode */
<> 144:ef7eb2e8f9f7 2036 htim->Instance->CR1 |= OnePulseMode;
<> 144:ef7eb2e8f9f7 2037
<> 144:ef7eb2e8f9f7 2038 /* Initialize the TIM state*/
<> 144:ef7eb2e8f9f7 2039 htim->State= HAL_TIM_STATE_READY;
<> 144:ef7eb2e8f9f7 2040
<> 144:ef7eb2e8f9f7 2041 return HAL_OK;
<> 144:ef7eb2e8f9f7 2042 }
<> 144:ef7eb2e8f9f7 2043
<> 144:ef7eb2e8f9f7 2044 /**
<> 144:ef7eb2e8f9f7 2045 * @brief DeInitializes the TIM One Pulse
<> 144:ef7eb2e8f9f7 2046 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 2047 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 2048 * @retval HAL status
<> 144:ef7eb2e8f9f7 2049 */
<> 144:ef7eb2e8f9f7 2050 HAL_StatusTypeDef HAL_TIM_OnePulse_DeInit(TIM_HandleTypeDef *htim)
<> 144:ef7eb2e8f9f7 2051 {
<> 144:ef7eb2e8f9f7 2052 /* Check the parameters */
<> 144:ef7eb2e8f9f7 2053 assert_param(IS_TIM_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 2054
<> 144:ef7eb2e8f9f7 2055 htim->State = HAL_TIM_STATE_BUSY;
<> 144:ef7eb2e8f9f7 2056
<> 144:ef7eb2e8f9f7 2057 /* Disable the TIM Peripheral Clock */
<> 144:ef7eb2e8f9f7 2058 __HAL_TIM_DISABLE(htim);
<> 144:ef7eb2e8f9f7 2059
<> 144:ef7eb2e8f9f7 2060 /* DeInit the low level hardware: GPIO, CLOCK, NVIC */
<> 144:ef7eb2e8f9f7 2061 HAL_TIM_OnePulse_MspDeInit(htim);
<> 144:ef7eb2e8f9f7 2062
<> 144:ef7eb2e8f9f7 2063 /* Change TIM state */
<> 144:ef7eb2e8f9f7 2064 htim->State = HAL_TIM_STATE_RESET;
<> 144:ef7eb2e8f9f7 2065
<> 144:ef7eb2e8f9f7 2066 /* Release Lock */
<> 144:ef7eb2e8f9f7 2067 __HAL_UNLOCK(htim);
<> 144:ef7eb2e8f9f7 2068
<> 144:ef7eb2e8f9f7 2069 return HAL_OK;
<> 144:ef7eb2e8f9f7 2070 }
<> 144:ef7eb2e8f9f7 2071
<> 144:ef7eb2e8f9f7 2072 /**
<> 144:ef7eb2e8f9f7 2073 * @brief Initializes the TIM One Pulse MSP.
<> 144:ef7eb2e8f9f7 2074 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 2075 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 2076 * @retval None
<> 144:ef7eb2e8f9f7 2077 */
<> 144:ef7eb2e8f9f7 2078 __weak void HAL_TIM_OnePulse_MspInit(TIM_HandleTypeDef *htim)
<> 144:ef7eb2e8f9f7 2079 {
<> 144:ef7eb2e8f9f7 2080 /* Prevent unused argument(s) compilation warning */
<> 144:ef7eb2e8f9f7 2081 UNUSED(htim);
<> 144:ef7eb2e8f9f7 2082 /* NOTE : This function Should not be modified, when the callback is needed,
<> 144:ef7eb2e8f9f7 2083 the HAL_TIM_OnePulse_MspInit could be implemented in the user file
<> 144:ef7eb2e8f9f7 2084 */
<> 144:ef7eb2e8f9f7 2085 }
<> 144:ef7eb2e8f9f7 2086
<> 144:ef7eb2e8f9f7 2087 /**
<> 144:ef7eb2e8f9f7 2088 * @brief DeInitializes TIM One Pulse MSP.
<> 144:ef7eb2e8f9f7 2089 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 2090 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 2091 * @retval None
<> 144:ef7eb2e8f9f7 2092 */
<> 144:ef7eb2e8f9f7 2093 __weak void HAL_TIM_OnePulse_MspDeInit(TIM_HandleTypeDef *htim)
<> 144:ef7eb2e8f9f7 2094 {
<> 144:ef7eb2e8f9f7 2095 /* Prevent unused argument(s) compilation warning */
<> 144:ef7eb2e8f9f7 2096 UNUSED(htim);
<> 144:ef7eb2e8f9f7 2097 /* NOTE : This function Should not be modified, when the callback is needed,
<> 144:ef7eb2e8f9f7 2098 the HAL_TIM_OnePulse_MspDeInit could be implemented in the user file
<> 144:ef7eb2e8f9f7 2099 */
<> 144:ef7eb2e8f9f7 2100 }
<> 144:ef7eb2e8f9f7 2101
<> 144:ef7eb2e8f9f7 2102 /**
<> 144:ef7eb2e8f9f7 2103 * @brief Starts the TIM One Pulse signal generation.
<> 144:ef7eb2e8f9f7 2104 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 2105 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 2106 * @param OutputChannel : TIM Channels to be enabled.
<> 144:ef7eb2e8f9f7 2107 * This parameter can be one of the following values:
<> 144:ef7eb2e8f9f7 2108 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
<> 144:ef7eb2e8f9f7 2109 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
<> 144:ef7eb2e8f9f7 2110 * @retval HAL status
<> 144:ef7eb2e8f9f7 2111 */
<> 144:ef7eb2e8f9f7 2112 HAL_StatusTypeDef HAL_TIM_OnePulse_Start(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
<> 144:ef7eb2e8f9f7 2113 {
<> 144:ef7eb2e8f9f7 2114 /* Enable the Capture compare and the Input Capture channels
<> 144:ef7eb2e8f9f7 2115 (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
<> 144:ef7eb2e8f9f7 2116 if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
<> 144:ef7eb2e8f9f7 2117 if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output
<> 144:ef7eb2e8f9f7 2118 in all combinations, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be enabled together
<> 144:ef7eb2e8f9f7 2119
<> 144:ef7eb2e8f9f7 2120 No need to enable the counter, it's enabled automatically by hardware
<> 144:ef7eb2e8f9f7 2121 (the counter starts in response to a stimulus and generate a pulse */
<> 144:ef7eb2e8f9f7 2122
AnnaBridge 167:e84263d55307 2123 /* Prevent unused argument(s) compilation warning */
AnnaBridge 167:e84263d55307 2124 UNUSED(OutputChannel);
AnnaBridge 167:e84263d55307 2125
<> 144:ef7eb2e8f9f7 2126 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
<> 144:ef7eb2e8f9f7 2127 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
<> 144:ef7eb2e8f9f7 2128
<> 144:ef7eb2e8f9f7 2129 if(IS_TIM_ADVANCED_INSTANCE(htim->Instance) != RESET)
<> 144:ef7eb2e8f9f7 2130 {
<> 144:ef7eb2e8f9f7 2131 /* Enable the main output */
<> 144:ef7eb2e8f9f7 2132 __HAL_TIM_MOE_ENABLE(htim);
<> 144:ef7eb2e8f9f7 2133 }
<> 144:ef7eb2e8f9f7 2134
<> 144:ef7eb2e8f9f7 2135 /* Return function status */
<> 144:ef7eb2e8f9f7 2136 return HAL_OK;
<> 144:ef7eb2e8f9f7 2137 }
<> 144:ef7eb2e8f9f7 2138
<> 144:ef7eb2e8f9f7 2139 /**
<> 144:ef7eb2e8f9f7 2140 * @brief Stops the TIM One Pulse signal generation.
<> 144:ef7eb2e8f9f7 2141 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 2142 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 2143 * @param OutputChannel : TIM Channels to be disable.
<> 144:ef7eb2e8f9f7 2144 * This parameter can be one of the following values:
<> 144:ef7eb2e8f9f7 2145 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
<> 144:ef7eb2e8f9f7 2146 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
<> 144:ef7eb2e8f9f7 2147 * @retval HAL status
<> 144:ef7eb2e8f9f7 2148 */
<> 144:ef7eb2e8f9f7 2149 HAL_StatusTypeDef HAL_TIM_OnePulse_Stop(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
<> 144:ef7eb2e8f9f7 2150 {
<> 144:ef7eb2e8f9f7 2151 /* Disable the Capture compare and the Input Capture channels
<> 144:ef7eb2e8f9f7 2152 (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
<> 144:ef7eb2e8f9f7 2153 if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
<> 144:ef7eb2e8f9f7 2154 if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output
<> 144:ef7eb2e8f9f7 2155 in all combinations, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be disabled together */
AnnaBridge 167:e84263d55307 2156
AnnaBridge 167:e84263d55307 2157 /* Prevent unused argument(s) compilation warning */
AnnaBridge 167:e84263d55307 2158 UNUSED(OutputChannel);
AnnaBridge 167:e84263d55307 2159
<> 144:ef7eb2e8f9f7 2160 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
<> 144:ef7eb2e8f9f7 2161 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
<> 144:ef7eb2e8f9f7 2162
<> 144:ef7eb2e8f9f7 2163 if(IS_TIM_ADVANCED_INSTANCE(htim->Instance) != RESET)
<> 144:ef7eb2e8f9f7 2164 {
<> 144:ef7eb2e8f9f7 2165 /* Disable the Main Output */
<> 144:ef7eb2e8f9f7 2166 __HAL_TIM_MOE_DISABLE(htim);
<> 144:ef7eb2e8f9f7 2167 }
<> 144:ef7eb2e8f9f7 2168
<> 144:ef7eb2e8f9f7 2169 /* Disable the Peripheral */
<> 144:ef7eb2e8f9f7 2170 __HAL_TIM_DISABLE(htim);
<> 144:ef7eb2e8f9f7 2171
<> 144:ef7eb2e8f9f7 2172 /* Return function status */
<> 144:ef7eb2e8f9f7 2173 return HAL_OK;
<> 144:ef7eb2e8f9f7 2174 }
<> 144:ef7eb2e8f9f7 2175
<> 144:ef7eb2e8f9f7 2176 /**
<> 144:ef7eb2e8f9f7 2177 * @brief Starts the TIM One Pulse signal generation in interrupt mode.
<> 144:ef7eb2e8f9f7 2178 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 2179 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 2180 * @param OutputChannel : TIM Channels to be enabled.
<> 144:ef7eb2e8f9f7 2181 * This parameter can be one of the following values:
<> 144:ef7eb2e8f9f7 2182 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
<> 144:ef7eb2e8f9f7 2183 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
<> 144:ef7eb2e8f9f7 2184 * @retval HAL status
<> 144:ef7eb2e8f9f7 2185 */
<> 144:ef7eb2e8f9f7 2186 HAL_StatusTypeDef HAL_TIM_OnePulse_Start_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
<> 144:ef7eb2e8f9f7 2187 {
<> 144:ef7eb2e8f9f7 2188 /* Enable the Capture compare and the Input Capture channels
<> 144:ef7eb2e8f9f7 2189 (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
<> 144:ef7eb2e8f9f7 2190 if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
<> 144:ef7eb2e8f9f7 2191 if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output
<> 144:ef7eb2e8f9f7 2192 in all combinations, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be enabled together
<> 144:ef7eb2e8f9f7 2193
<> 144:ef7eb2e8f9f7 2194 No need to enable the counter, it's enabled automatically by hardware
<> 144:ef7eb2e8f9f7 2195 (the counter starts in response to a stimulus and generate a pulse */
AnnaBridge 167:e84263d55307 2196
AnnaBridge 167:e84263d55307 2197 /* Prevent unused argument(s) compilation warning */
AnnaBridge 167:e84263d55307 2198 UNUSED(OutputChannel);
AnnaBridge 167:e84263d55307 2199
<> 144:ef7eb2e8f9f7 2200 /* Enable the TIM Capture/Compare 1 interrupt */
<> 144:ef7eb2e8f9f7 2201 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
<> 144:ef7eb2e8f9f7 2202
<> 144:ef7eb2e8f9f7 2203 /* Enable the TIM Capture/Compare 2 interrupt */
<> 144:ef7eb2e8f9f7 2204 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
<> 144:ef7eb2e8f9f7 2205
<> 144:ef7eb2e8f9f7 2206 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
<> 144:ef7eb2e8f9f7 2207 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
<> 144:ef7eb2e8f9f7 2208
<> 144:ef7eb2e8f9f7 2209 if(IS_TIM_ADVANCED_INSTANCE(htim->Instance) != RESET)
<> 144:ef7eb2e8f9f7 2210 {
<> 144:ef7eb2e8f9f7 2211 /* Enable the main output */
<> 144:ef7eb2e8f9f7 2212 __HAL_TIM_MOE_ENABLE(htim);
<> 144:ef7eb2e8f9f7 2213 }
<> 144:ef7eb2e8f9f7 2214
<> 144:ef7eb2e8f9f7 2215 /* Return function status */
<> 144:ef7eb2e8f9f7 2216 return HAL_OK;
<> 144:ef7eb2e8f9f7 2217 }
<> 144:ef7eb2e8f9f7 2218
<> 144:ef7eb2e8f9f7 2219 /**
<> 144:ef7eb2e8f9f7 2220 * @brief Stops the TIM One Pulse signal generation in interrupt mode.
<> 144:ef7eb2e8f9f7 2221 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 2222 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 2223 * @param OutputChannel : TIM Channels to be enabled.
<> 144:ef7eb2e8f9f7 2224 * This parameter can be one of the following values:
<> 144:ef7eb2e8f9f7 2225 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
<> 144:ef7eb2e8f9f7 2226 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
<> 144:ef7eb2e8f9f7 2227 * @retval HAL status
<> 144:ef7eb2e8f9f7 2228 */
<> 144:ef7eb2e8f9f7 2229 HAL_StatusTypeDef HAL_TIM_OnePulse_Stop_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
<> 144:ef7eb2e8f9f7 2230 {
AnnaBridge 167:e84263d55307 2231 /* Prevent unused argument(s) compilation warning */
AnnaBridge 167:e84263d55307 2232 UNUSED(OutputChannel);
AnnaBridge 167:e84263d55307 2233
<> 144:ef7eb2e8f9f7 2234 /* Disable the TIM Capture/Compare 1 interrupt */
<> 144:ef7eb2e8f9f7 2235 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
<> 144:ef7eb2e8f9f7 2236
<> 144:ef7eb2e8f9f7 2237 /* Disable the TIM Capture/Compare 2 interrupt */
<> 144:ef7eb2e8f9f7 2238 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
<> 144:ef7eb2e8f9f7 2239
<> 144:ef7eb2e8f9f7 2240 /* Disable the Capture compare and the Input Capture channels
<> 144:ef7eb2e8f9f7 2241 (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
<> 144:ef7eb2e8f9f7 2242 if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
<> 144:ef7eb2e8f9f7 2243 if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output
<> 144:ef7eb2e8f9f7 2244 in all combinations, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be disabled together */
<> 144:ef7eb2e8f9f7 2245 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
<> 144:ef7eb2e8f9f7 2246 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
<> 144:ef7eb2e8f9f7 2247
<> 144:ef7eb2e8f9f7 2248 if(IS_TIM_ADVANCED_INSTANCE(htim->Instance) != RESET)
<> 144:ef7eb2e8f9f7 2249 {
<> 144:ef7eb2e8f9f7 2250 /* Disable the Main Output */
<> 144:ef7eb2e8f9f7 2251 __HAL_TIM_MOE_DISABLE(htim);
<> 144:ef7eb2e8f9f7 2252 }
<> 144:ef7eb2e8f9f7 2253
<> 144:ef7eb2e8f9f7 2254 /* Disable the Peripheral */
<> 144:ef7eb2e8f9f7 2255 __HAL_TIM_DISABLE(htim);
<> 144:ef7eb2e8f9f7 2256
<> 144:ef7eb2e8f9f7 2257 /* Return function status */
<> 144:ef7eb2e8f9f7 2258 return HAL_OK;
<> 144:ef7eb2e8f9f7 2259 }
<> 144:ef7eb2e8f9f7 2260 /**
<> 144:ef7eb2e8f9f7 2261 * @}
<> 144:ef7eb2e8f9f7 2262 */
<> 144:ef7eb2e8f9f7 2263
<> 144:ef7eb2e8f9f7 2264 /** @defgroup TIM_Exported_Functions_Group6 Time Encoder functions
<> 144:ef7eb2e8f9f7 2265 * @brief Time Encoder functions
<> 144:ef7eb2e8f9f7 2266 *
<> 144:ef7eb2e8f9f7 2267 @verbatim
<> 144:ef7eb2e8f9f7 2268 ==============================================================================
<> 144:ef7eb2e8f9f7 2269 ##### Time Encoder functions #####
<> 144:ef7eb2e8f9f7 2270 ==============================================================================
<> 144:ef7eb2e8f9f7 2271 [..]
<> 144:ef7eb2e8f9f7 2272 This section provides functions allowing to:
<> 144:ef7eb2e8f9f7 2273 (+) Initialize and configure the TIM Encoder.
<> 144:ef7eb2e8f9f7 2274 (+) De-initialize the TIM Encoder.
<> 144:ef7eb2e8f9f7 2275 (+) Start the Time Encoder.
<> 144:ef7eb2e8f9f7 2276 (+) Stop the Time Encoder.
<> 144:ef7eb2e8f9f7 2277 (+) Start the Time Encoder and enable interrupt.
<> 144:ef7eb2e8f9f7 2278 (+) Stop the Time Encoder and disable interrupt.
<> 144:ef7eb2e8f9f7 2279 (+) Start the Time Encoder and enable DMA transfer.
<> 144:ef7eb2e8f9f7 2280 (+) Stop the Time Encoder and disable DMA transfer.
<> 144:ef7eb2e8f9f7 2281
<> 144:ef7eb2e8f9f7 2282 @endverbatim
<> 144:ef7eb2e8f9f7 2283 * @{
<> 144:ef7eb2e8f9f7 2284 */
<> 144:ef7eb2e8f9f7 2285 /**
<> 144:ef7eb2e8f9f7 2286 * @brief Initializes the TIM Encoder Interface and create the associated handle.
<> 144:ef7eb2e8f9f7 2287 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 2288 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 2289 * @param sConfig: TIM Encoder Interface configuration structure
<> 144:ef7eb2e8f9f7 2290 * @retval HAL status
<> 144:ef7eb2e8f9f7 2291 */
<> 144:ef7eb2e8f9f7 2292 HAL_StatusTypeDef HAL_TIM_Encoder_Init(TIM_HandleTypeDef *htim, TIM_Encoder_InitTypeDef* sConfig)
<> 144:ef7eb2e8f9f7 2293 {
<> 144:ef7eb2e8f9f7 2294 uint32_t tmpsmcr = 0U;
<> 144:ef7eb2e8f9f7 2295 uint32_t tmpccmr1 = 0U;
<> 144:ef7eb2e8f9f7 2296 uint32_t tmpccer = 0U;
<> 144:ef7eb2e8f9f7 2297
<> 144:ef7eb2e8f9f7 2298 /* Check the TIM handle allocation */
<> 144:ef7eb2e8f9f7 2299 if(htim == NULL)
<> 144:ef7eb2e8f9f7 2300 {
<> 144:ef7eb2e8f9f7 2301 return HAL_ERROR;
<> 144:ef7eb2e8f9f7 2302 }
<> 144:ef7eb2e8f9f7 2303
<> 144:ef7eb2e8f9f7 2304 /* Check the parameters */
<> 144:ef7eb2e8f9f7 2305 assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
AnnaBridge 167:e84263d55307 2306 assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
AnnaBridge 167:e84263d55307 2307 assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
AnnaBridge 167:e84263d55307 2308 assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
<> 144:ef7eb2e8f9f7 2309 assert_param(IS_TIM_ENCODER_MODE(sConfig->EncoderMode));
<> 144:ef7eb2e8f9f7 2310 assert_param(IS_TIM_IC_SELECTION(sConfig->IC1Selection));
<> 144:ef7eb2e8f9f7 2311 assert_param(IS_TIM_IC_SELECTION(sConfig->IC2Selection));
<> 144:ef7eb2e8f9f7 2312 assert_param(IS_TIM_IC_POLARITY(sConfig->IC1Polarity));
<> 144:ef7eb2e8f9f7 2313 assert_param(IS_TIM_IC_POLARITY(sConfig->IC2Polarity));
<> 144:ef7eb2e8f9f7 2314 assert_param(IS_TIM_IC_PRESCALER(sConfig->IC1Prescaler));
<> 144:ef7eb2e8f9f7 2315 assert_param(IS_TIM_IC_PRESCALER(sConfig->IC2Prescaler));
<> 144:ef7eb2e8f9f7 2316 assert_param(IS_TIM_IC_FILTER(sConfig->IC1Filter));
<> 144:ef7eb2e8f9f7 2317 assert_param(IS_TIM_IC_FILTER(sConfig->IC2Filter));
<> 144:ef7eb2e8f9f7 2318
<> 144:ef7eb2e8f9f7 2319 if(htim->State == HAL_TIM_STATE_RESET)
<> 144:ef7eb2e8f9f7 2320 {
<> 144:ef7eb2e8f9f7 2321 /* Allocate lock resource and initialize it */
<> 144:ef7eb2e8f9f7 2322 htim->Lock = HAL_UNLOCKED;
<> 144:ef7eb2e8f9f7 2323 /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
<> 144:ef7eb2e8f9f7 2324 HAL_TIM_Encoder_MspInit(htim);
<> 144:ef7eb2e8f9f7 2325 }
<> 144:ef7eb2e8f9f7 2326
<> 144:ef7eb2e8f9f7 2327 /* Set the TIM state */
<> 144:ef7eb2e8f9f7 2328 htim->State= HAL_TIM_STATE_BUSY;
<> 144:ef7eb2e8f9f7 2329
<> 144:ef7eb2e8f9f7 2330 /* Reset the SMS bits */
<> 144:ef7eb2e8f9f7 2331 htim->Instance->SMCR &= ~TIM_SMCR_SMS;
<> 144:ef7eb2e8f9f7 2332
<> 144:ef7eb2e8f9f7 2333 /* Configure the Time base in the Encoder Mode */
<> 144:ef7eb2e8f9f7 2334 TIM_Base_SetConfig(htim->Instance, &htim->Init);
<> 144:ef7eb2e8f9f7 2335
<> 144:ef7eb2e8f9f7 2336 /* Get the TIMx SMCR register value */
<> 144:ef7eb2e8f9f7 2337 tmpsmcr = htim->Instance->SMCR;
<> 144:ef7eb2e8f9f7 2338
<> 144:ef7eb2e8f9f7 2339 /* Get the TIMx CCMR1 register value */
<> 144:ef7eb2e8f9f7 2340 tmpccmr1 = htim->Instance->CCMR1;
<> 144:ef7eb2e8f9f7 2341
<> 144:ef7eb2e8f9f7 2342 /* Get the TIMx CCER register value */
<> 144:ef7eb2e8f9f7 2343 tmpccer = htim->Instance->CCER;
<> 144:ef7eb2e8f9f7 2344
<> 144:ef7eb2e8f9f7 2345 /* Set the encoder Mode */
<> 144:ef7eb2e8f9f7 2346 tmpsmcr |= sConfig->EncoderMode;
<> 144:ef7eb2e8f9f7 2347
<> 144:ef7eb2e8f9f7 2348 /* Select the Capture Compare 1 and the Capture Compare 2 as input */
<> 144:ef7eb2e8f9f7 2349 tmpccmr1 &= ~(TIM_CCMR1_CC1S | TIM_CCMR1_CC2S);
<> 144:ef7eb2e8f9f7 2350 tmpccmr1 |= (sConfig->IC1Selection | (sConfig->IC2Selection << 8U));
<> 144:ef7eb2e8f9f7 2351
<> 144:ef7eb2e8f9f7 2352 /* Set the Capture Compare 1 and the Capture Compare 2 prescalers and filters */
<> 144:ef7eb2e8f9f7 2353 tmpccmr1 &= ~(TIM_CCMR1_IC1PSC | TIM_CCMR1_IC2PSC);
<> 144:ef7eb2e8f9f7 2354 tmpccmr1 &= ~(TIM_CCMR1_IC1F | TIM_CCMR1_IC2F);
<> 144:ef7eb2e8f9f7 2355 tmpccmr1 |= sConfig->IC1Prescaler | (sConfig->IC2Prescaler << 8U);
<> 144:ef7eb2e8f9f7 2356 tmpccmr1 |= (sConfig->IC1Filter << 4U) | (sConfig->IC2Filter << 12U);
<> 144:ef7eb2e8f9f7 2357
<> 144:ef7eb2e8f9f7 2358 /* Set the TI1 and the TI2 Polarities */
<> 144:ef7eb2e8f9f7 2359 tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC2P);
<> 144:ef7eb2e8f9f7 2360 tmpccer &= ~(TIM_CCER_CC1NP | TIM_CCER_CC2NP);
<> 144:ef7eb2e8f9f7 2361 tmpccer |= sConfig->IC1Polarity | (sConfig->IC2Polarity << 4U);
<> 144:ef7eb2e8f9f7 2362
<> 144:ef7eb2e8f9f7 2363 /* Write to TIMx SMCR */
<> 144:ef7eb2e8f9f7 2364 htim->Instance->SMCR = tmpsmcr;
<> 144:ef7eb2e8f9f7 2365
<> 144:ef7eb2e8f9f7 2366 /* Write to TIMx CCMR1 */
<> 144:ef7eb2e8f9f7 2367 htim->Instance->CCMR1 = tmpccmr1;
<> 144:ef7eb2e8f9f7 2368
<> 144:ef7eb2e8f9f7 2369 /* Write to TIMx CCER */
<> 144:ef7eb2e8f9f7 2370 htim->Instance->CCER = tmpccer;
<> 144:ef7eb2e8f9f7 2371
<> 144:ef7eb2e8f9f7 2372 /* Initialize the TIM state*/
<> 144:ef7eb2e8f9f7 2373 htim->State= HAL_TIM_STATE_READY;
<> 144:ef7eb2e8f9f7 2374
<> 144:ef7eb2e8f9f7 2375 return HAL_OK;
<> 144:ef7eb2e8f9f7 2376 }
<> 144:ef7eb2e8f9f7 2377
<> 144:ef7eb2e8f9f7 2378 /**
<> 144:ef7eb2e8f9f7 2379 * @brief DeInitializes the TIM Encoder interface
<> 144:ef7eb2e8f9f7 2380 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 2381 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 2382 * @retval HAL status
<> 144:ef7eb2e8f9f7 2383 */
<> 144:ef7eb2e8f9f7 2384 HAL_StatusTypeDef HAL_TIM_Encoder_DeInit(TIM_HandleTypeDef *htim)
<> 144:ef7eb2e8f9f7 2385 {
<> 144:ef7eb2e8f9f7 2386 /* Check the parameters */
<> 144:ef7eb2e8f9f7 2387 assert_param(IS_TIM_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 2388
<> 144:ef7eb2e8f9f7 2389 htim->State = HAL_TIM_STATE_BUSY;
<> 144:ef7eb2e8f9f7 2390
<> 144:ef7eb2e8f9f7 2391 /* Disable the TIM Peripheral Clock */
<> 144:ef7eb2e8f9f7 2392 __HAL_TIM_DISABLE(htim);
<> 144:ef7eb2e8f9f7 2393
<> 144:ef7eb2e8f9f7 2394 /* DeInit the low level hardware: GPIO, CLOCK, NVIC */
<> 144:ef7eb2e8f9f7 2395 HAL_TIM_Encoder_MspDeInit(htim);
<> 144:ef7eb2e8f9f7 2396
<> 144:ef7eb2e8f9f7 2397 /* Change TIM state */
<> 144:ef7eb2e8f9f7 2398 htim->State = HAL_TIM_STATE_RESET;
<> 144:ef7eb2e8f9f7 2399
<> 144:ef7eb2e8f9f7 2400 /* Release Lock */
<> 144:ef7eb2e8f9f7 2401 __HAL_UNLOCK(htim);
<> 144:ef7eb2e8f9f7 2402
<> 144:ef7eb2e8f9f7 2403 return HAL_OK;
<> 144:ef7eb2e8f9f7 2404 }
<> 144:ef7eb2e8f9f7 2405
<> 144:ef7eb2e8f9f7 2406 /**
<> 144:ef7eb2e8f9f7 2407 * @brief Initializes the TIM Encoder Interface MSP.
<> 144:ef7eb2e8f9f7 2408 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 2409 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 2410 * @retval None
<> 144:ef7eb2e8f9f7 2411 */
<> 144:ef7eb2e8f9f7 2412 __weak void HAL_TIM_Encoder_MspInit(TIM_HandleTypeDef *htim)
<> 144:ef7eb2e8f9f7 2413 {
<> 144:ef7eb2e8f9f7 2414 /* Prevent unused argument(s) compilation warning */
<> 144:ef7eb2e8f9f7 2415 UNUSED(htim);
<> 144:ef7eb2e8f9f7 2416 /* NOTE : This function Should not be modified, when the callback is needed,
<> 144:ef7eb2e8f9f7 2417 the HAL_TIM_Encoder_MspInit could be implemented in the user file
<> 144:ef7eb2e8f9f7 2418 */
<> 144:ef7eb2e8f9f7 2419 }
<> 144:ef7eb2e8f9f7 2420
<> 144:ef7eb2e8f9f7 2421 /**
<> 144:ef7eb2e8f9f7 2422 * @brief DeInitializes TIM Encoder Interface MSP.
<> 144:ef7eb2e8f9f7 2423 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 2424 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 2425 * @retval None
<> 144:ef7eb2e8f9f7 2426 */
<> 144:ef7eb2e8f9f7 2427 __weak void HAL_TIM_Encoder_MspDeInit(TIM_HandleTypeDef *htim)
<> 144:ef7eb2e8f9f7 2428 {
<> 144:ef7eb2e8f9f7 2429 /* Prevent unused argument(s) compilation warning */
<> 144:ef7eb2e8f9f7 2430 UNUSED(htim);
<> 144:ef7eb2e8f9f7 2431 /* NOTE : This function Should not be modified, when the callback is needed,
<> 144:ef7eb2e8f9f7 2432 the HAL_TIM_Encoder_MspDeInit could be implemented in the user file
<> 144:ef7eb2e8f9f7 2433 */
<> 144:ef7eb2e8f9f7 2434 }
<> 144:ef7eb2e8f9f7 2435
<> 144:ef7eb2e8f9f7 2436 /**
<> 144:ef7eb2e8f9f7 2437 * @brief Starts the TIM Encoder Interface.
<> 144:ef7eb2e8f9f7 2438 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 2439 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 2440 * @param Channel: TIM Channels to be enabled.
<> 144:ef7eb2e8f9f7 2441 * This parameter can be one of the following values:
<> 144:ef7eb2e8f9f7 2442 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
<> 144:ef7eb2e8f9f7 2443 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
<> 144:ef7eb2e8f9f7 2444 * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
<> 144:ef7eb2e8f9f7 2445 * @retval HAL status
<> 144:ef7eb2e8f9f7 2446 */
<> 144:ef7eb2e8f9f7 2447 HAL_StatusTypeDef HAL_TIM_Encoder_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
<> 144:ef7eb2e8f9f7 2448 {
<> 144:ef7eb2e8f9f7 2449 /* Check the parameters */
<> 144:ef7eb2e8f9f7 2450 assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 2451
<> 144:ef7eb2e8f9f7 2452 /* Enable the encoder interface channels */
<> 144:ef7eb2e8f9f7 2453 switch (Channel)
<> 144:ef7eb2e8f9f7 2454 {
<> 144:ef7eb2e8f9f7 2455 case TIM_CHANNEL_1:
<> 144:ef7eb2e8f9f7 2456 {
<> 144:ef7eb2e8f9f7 2457 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
<> 144:ef7eb2e8f9f7 2458 break;
<> 144:ef7eb2e8f9f7 2459 }
<> 144:ef7eb2e8f9f7 2460 case TIM_CHANNEL_2:
<> 144:ef7eb2e8f9f7 2461 {
<> 144:ef7eb2e8f9f7 2462 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
<> 144:ef7eb2e8f9f7 2463 break;
<> 144:ef7eb2e8f9f7 2464 }
<> 144:ef7eb2e8f9f7 2465 default :
<> 144:ef7eb2e8f9f7 2466 {
<> 144:ef7eb2e8f9f7 2467 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
<> 144:ef7eb2e8f9f7 2468 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
<> 144:ef7eb2e8f9f7 2469 break;
<> 144:ef7eb2e8f9f7 2470 }
<> 144:ef7eb2e8f9f7 2471 }
<> 144:ef7eb2e8f9f7 2472 /* Enable the Peripheral */
<> 144:ef7eb2e8f9f7 2473 __HAL_TIM_ENABLE(htim);
<> 144:ef7eb2e8f9f7 2474
<> 144:ef7eb2e8f9f7 2475 /* Return function status */
<> 144:ef7eb2e8f9f7 2476 return HAL_OK;
<> 144:ef7eb2e8f9f7 2477 }
<> 144:ef7eb2e8f9f7 2478
<> 144:ef7eb2e8f9f7 2479 /**
<> 144:ef7eb2e8f9f7 2480 * @brief Stops the TIM Encoder Interface.
<> 144:ef7eb2e8f9f7 2481 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 2482 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 2483 * @param Channel: TIM Channels to be disabled.
<> 144:ef7eb2e8f9f7 2484 * This parameter can be one of the following values:
<> 144:ef7eb2e8f9f7 2485 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
<> 144:ef7eb2e8f9f7 2486 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
<> 144:ef7eb2e8f9f7 2487 * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
<> 144:ef7eb2e8f9f7 2488 * @retval HAL status
<> 144:ef7eb2e8f9f7 2489 */
<> 144:ef7eb2e8f9f7 2490 HAL_StatusTypeDef HAL_TIM_Encoder_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
<> 144:ef7eb2e8f9f7 2491 {
<> 144:ef7eb2e8f9f7 2492 /* Check the parameters */
<> 144:ef7eb2e8f9f7 2493 assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 2494
<> 144:ef7eb2e8f9f7 2495 /* Disable the Input Capture channels 1 and 2
<> 144:ef7eb2e8f9f7 2496 (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */
<> 144:ef7eb2e8f9f7 2497 switch (Channel)
<> 144:ef7eb2e8f9f7 2498 {
<> 144:ef7eb2e8f9f7 2499 case TIM_CHANNEL_1:
<> 144:ef7eb2e8f9f7 2500 {
<> 144:ef7eb2e8f9f7 2501 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
<> 144:ef7eb2e8f9f7 2502 break;
<> 144:ef7eb2e8f9f7 2503 }
<> 144:ef7eb2e8f9f7 2504 case TIM_CHANNEL_2:
<> 144:ef7eb2e8f9f7 2505 {
<> 144:ef7eb2e8f9f7 2506 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
<> 144:ef7eb2e8f9f7 2507 break;
<> 144:ef7eb2e8f9f7 2508 }
<> 144:ef7eb2e8f9f7 2509 default :
<> 144:ef7eb2e8f9f7 2510 {
<> 144:ef7eb2e8f9f7 2511 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
<> 144:ef7eb2e8f9f7 2512 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
<> 144:ef7eb2e8f9f7 2513 break;
<> 144:ef7eb2e8f9f7 2514 }
<> 144:ef7eb2e8f9f7 2515 }
<> 144:ef7eb2e8f9f7 2516 /* Disable the Peripheral */
<> 144:ef7eb2e8f9f7 2517 __HAL_TIM_DISABLE(htim);
<> 144:ef7eb2e8f9f7 2518
<> 144:ef7eb2e8f9f7 2519 /* Return function status */
<> 144:ef7eb2e8f9f7 2520 return HAL_OK;
<> 144:ef7eb2e8f9f7 2521 }
<> 144:ef7eb2e8f9f7 2522
<> 144:ef7eb2e8f9f7 2523 /**
<> 144:ef7eb2e8f9f7 2524 * @brief Starts the TIM Encoder Interface in interrupt mode.
<> 144:ef7eb2e8f9f7 2525 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 2526 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 2527 * @param Channel: TIM Channels to be enabled.
<> 144:ef7eb2e8f9f7 2528 * This parameter can be one of the following values:
<> 144:ef7eb2e8f9f7 2529 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
<> 144:ef7eb2e8f9f7 2530 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
<> 144:ef7eb2e8f9f7 2531 * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
<> 144:ef7eb2e8f9f7 2532 * @retval HAL status
<> 144:ef7eb2e8f9f7 2533 */
<> 144:ef7eb2e8f9f7 2534 HAL_StatusTypeDef HAL_TIM_Encoder_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
<> 144:ef7eb2e8f9f7 2535 {
<> 144:ef7eb2e8f9f7 2536 /* Check the parameters */
<> 144:ef7eb2e8f9f7 2537 assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 2538
<> 144:ef7eb2e8f9f7 2539 /* Enable the encoder interface channels */
<> 144:ef7eb2e8f9f7 2540 /* Enable the capture compare Interrupts 1 and/or 2 */
<> 144:ef7eb2e8f9f7 2541 switch (Channel)
<> 144:ef7eb2e8f9f7 2542 {
<> 144:ef7eb2e8f9f7 2543 case TIM_CHANNEL_1:
<> 144:ef7eb2e8f9f7 2544 {
<> 144:ef7eb2e8f9f7 2545 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
<> 144:ef7eb2e8f9f7 2546 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
<> 144:ef7eb2e8f9f7 2547 break;
<> 144:ef7eb2e8f9f7 2548 }
<> 144:ef7eb2e8f9f7 2549 case TIM_CHANNEL_2:
<> 144:ef7eb2e8f9f7 2550 {
<> 144:ef7eb2e8f9f7 2551 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
<> 144:ef7eb2e8f9f7 2552 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
<> 144:ef7eb2e8f9f7 2553 break;
<> 144:ef7eb2e8f9f7 2554 }
<> 144:ef7eb2e8f9f7 2555 default :
<> 144:ef7eb2e8f9f7 2556 {
<> 144:ef7eb2e8f9f7 2557 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
<> 144:ef7eb2e8f9f7 2558 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
<> 144:ef7eb2e8f9f7 2559 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
<> 144:ef7eb2e8f9f7 2560 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
<> 144:ef7eb2e8f9f7 2561 break;
<> 144:ef7eb2e8f9f7 2562 }
<> 144:ef7eb2e8f9f7 2563 }
<> 144:ef7eb2e8f9f7 2564
<> 144:ef7eb2e8f9f7 2565 /* Enable the Peripheral */
<> 144:ef7eb2e8f9f7 2566 __HAL_TIM_ENABLE(htim);
<> 144:ef7eb2e8f9f7 2567
<> 144:ef7eb2e8f9f7 2568 /* Return function status */
<> 144:ef7eb2e8f9f7 2569 return HAL_OK;
<> 144:ef7eb2e8f9f7 2570 }
<> 144:ef7eb2e8f9f7 2571
<> 144:ef7eb2e8f9f7 2572 /**
<> 144:ef7eb2e8f9f7 2573 * @brief Stops the TIM Encoder Interface in interrupt mode.
<> 144:ef7eb2e8f9f7 2574 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 2575 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 2576 * @param Channel: TIM Channels to be disabled.
<> 144:ef7eb2e8f9f7 2577 * This parameter can be one of the following values:
<> 144:ef7eb2e8f9f7 2578 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
<> 144:ef7eb2e8f9f7 2579 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
<> 144:ef7eb2e8f9f7 2580 * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
<> 144:ef7eb2e8f9f7 2581 * @retval HAL status
<> 144:ef7eb2e8f9f7 2582 */
<> 144:ef7eb2e8f9f7 2583 HAL_StatusTypeDef HAL_TIM_Encoder_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
<> 144:ef7eb2e8f9f7 2584 {
<> 144:ef7eb2e8f9f7 2585 /* Check the parameters */
<> 144:ef7eb2e8f9f7 2586 assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 2587
<> 144:ef7eb2e8f9f7 2588 /* Disable the Input Capture channels 1 and 2
<> 144:ef7eb2e8f9f7 2589 (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */
<> 144:ef7eb2e8f9f7 2590 if(Channel == TIM_CHANNEL_1)
<> 144:ef7eb2e8f9f7 2591 {
<> 144:ef7eb2e8f9f7 2592 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
<> 144:ef7eb2e8f9f7 2593
<> 144:ef7eb2e8f9f7 2594 /* Disable the capture compare Interrupts 1 */
<> 144:ef7eb2e8f9f7 2595 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
<> 144:ef7eb2e8f9f7 2596 }
<> 144:ef7eb2e8f9f7 2597 else if(Channel == TIM_CHANNEL_2)
<> 144:ef7eb2e8f9f7 2598 {
<> 144:ef7eb2e8f9f7 2599 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
<> 144:ef7eb2e8f9f7 2600
<> 144:ef7eb2e8f9f7 2601 /* Disable the capture compare Interrupts 2 */
<> 144:ef7eb2e8f9f7 2602 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
<> 144:ef7eb2e8f9f7 2603 }
<> 144:ef7eb2e8f9f7 2604 else
<> 144:ef7eb2e8f9f7 2605 {
<> 144:ef7eb2e8f9f7 2606 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
<> 144:ef7eb2e8f9f7 2607 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
<> 144:ef7eb2e8f9f7 2608
<> 144:ef7eb2e8f9f7 2609 /* Disable the capture compare Interrupts 1 and 2 */
<> 144:ef7eb2e8f9f7 2610 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
<> 144:ef7eb2e8f9f7 2611 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
<> 144:ef7eb2e8f9f7 2612 }
<> 144:ef7eb2e8f9f7 2613
<> 144:ef7eb2e8f9f7 2614 /* Disable the Peripheral */
<> 144:ef7eb2e8f9f7 2615 __HAL_TIM_DISABLE(htim);
<> 144:ef7eb2e8f9f7 2616
<> 144:ef7eb2e8f9f7 2617 /* Change the htim state */
<> 144:ef7eb2e8f9f7 2618 htim->State = HAL_TIM_STATE_READY;
<> 144:ef7eb2e8f9f7 2619
<> 144:ef7eb2e8f9f7 2620 /* Return function status */
<> 144:ef7eb2e8f9f7 2621 return HAL_OK;
<> 144:ef7eb2e8f9f7 2622 }
<> 144:ef7eb2e8f9f7 2623
<> 144:ef7eb2e8f9f7 2624 /**
<> 144:ef7eb2e8f9f7 2625 * @brief Starts the TIM Encoder Interface in DMA mode.
<> 144:ef7eb2e8f9f7 2626 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 2627 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 2628 * @param Channel: TIM Channels to be enabled.
<> 144:ef7eb2e8f9f7 2629 * This parameter can be one of the following values:
<> 144:ef7eb2e8f9f7 2630 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
<> 144:ef7eb2e8f9f7 2631 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
<> 144:ef7eb2e8f9f7 2632 * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
<> 144:ef7eb2e8f9f7 2633 * @param pData1: The destination Buffer address for IC1.
<> 144:ef7eb2e8f9f7 2634 * @param pData2: The destination Buffer address for IC2.
<> 144:ef7eb2e8f9f7 2635 * @param Length: The length of data to be transferred from TIM peripheral to memory.
<> 144:ef7eb2e8f9f7 2636 * @retval HAL status
<> 144:ef7eb2e8f9f7 2637 */
<> 144:ef7eb2e8f9f7 2638 HAL_StatusTypeDef HAL_TIM_Encoder_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData1, uint32_t *pData2, uint16_t Length)
<> 144:ef7eb2e8f9f7 2639 {
<> 144:ef7eb2e8f9f7 2640 /* Check the parameters */
<> 144:ef7eb2e8f9f7 2641 assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 2642
<> 144:ef7eb2e8f9f7 2643 if((htim->State == HAL_TIM_STATE_BUSY))
<> 144:ef7eb2e8f9f7 2644 {
<> 144:ef7eb2e8f9f7 2645 return HAL_BUSY;
<> 144:ef7eb2e8f9f7 2646 }
<> 144:ef7eb2e8f9f7 2647 else if((htim->State == HAL_TIM_STATE_READY))
<> 144:ef7eb2e8f9f7 2648 {
AnnaBridge 167:e84263d55307 2649 if((((pData1 == 0U) || (pData2 == 0U) )) && (Length > 0))
<> 144:ef7eb2e8f9f7 2650 {
<> 144:ef7eb2e8f9f7 2651 return HAL_ERROR;
<> 144:ef7eb2e8f9f7 2652 }
<> 144:ef7eb2e8f9f7 2653 else
<> 144:ef7eb2e8f9f7 2654 {
<> 144:ef7eb2e8f9f7 2655 htim->State = HAL_TIM_STATE_BUSY;
<> 144:ef7eb2e8f9f7 2656 }
<> 144:ef7eb2e8f9f7 2657 }
<> 144:ef7eb2e8f9f7 2658
<> 144:ef7eb2e8f9f7 2659 switch (Channel)
<> 144:ef7eb2e8f9f7 2660 {
<> 144:ef7eb2e8f9f7 2661 case TIM_CHANNEL_1:
<> 144:ef7eb2e8f9f7 2662 {
<> 144:ef7eb2e8f9f7 2663 /* Set the DMA Period elapsed callback */
<> 144:ef7eb2e8f9f7 2664 htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
<> 144:ef7eb2e8f9f7 2665
<> 144:ef7eb2e8f9f7 2666 /* Set the DMA error callback */
<> 144:ef7eb2e8f9f7 2667 htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
<> 144:ef7eb2e8f9f7 2668
<> 144:ef7eb2e8f9f7 2669 /* Enable the DMA Stream */
<> 144:ef7eb2e8f9f7 2670 HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t )pData1, Length);
<> 144:ef7eb2e8f9f7 2671
<> 144:ef7eb2e8f9f7 2672 /* Enable the TIM Input Capture DMA request */
<> 144:ef7eb2e8f9f7 2673 __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
<> 144:ef7eb2e8f9f7 2674
<> 144:ef7eb2e8f9f7 2675 /* Enable the Peripheral */
<> 144:ef7eb2e8f9f7 2676 __HAL_TIM_ENABLE(htim);
<> 144:ef7eb2e8f9f7 2677
<> 144:ef7eb2e8f9f7 2678 /* Enable the Capture compare channel */
<> 144:ef7eb2e8f9f7 2679 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
<> 144:ef7eb2e8f9f7 2680 }
<> 144:ef7eb2e8f9f7 2681 break;
<> 144:ef7eb2e8f9f7 2682
<> 144:ef7eb2e8f9f7 2683 case TIM_CHANNEL_2:
<> 144:ef7eb2e8f9f7 2684 {
<> 144:ef7eb2e8f9f7 2685 /* Set the DMA Period elapsed callback */
<> 144:ef7eb2e8f9f7 2686 htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
<> 144:ef7eb2e8f9f7 2687
<> 144:ef7eb2e8f9f7 2688 /* Set the DMA error callback */
<> 144:ef7eb2e8f9f7 2689 htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError;
<> 144:ef7eb2e8f9f7 2690 /* Enable the DMA Stream */
<> 144:ef7eb2e8f9f7 2691 HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2, Length);
<> 144:ef7eb2e8f9f7 2692
<> 144:ef7eb2e8f9f7 2693 /* Enable the TIM Input Capture DMA request */
<> 144:ef7eb2e8f9f7 2694 __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
<> 144:ef7eb2e8f9f7 2695
<> 144:ef7eb2e8f9f7 2696 /* Enable the Peripheral */
<> 144:ef7eb2e8f9f7 2697 __HAL_TIM_ENABLE(htim);
<> 144:ef7eb2e8f9f7 2698
<> 144:ef7eb2e8f9f7 2699 /* Enable the Capture compare channel */
<> 144:ef7eb2e8f9f7 2700 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
<> 144:ef7eb2e8f9f7 2701 }
<> 144:ef7eb2e8f9f7 2702 break;
<> 144:ef7eb2e8f9f7 2703
<> 144:ef7eb2e8f9f7 2704 case TIM_CHANNEL_ALL:
<> 144:ef7eb2e8f9f7 2705 {
<> 144:ef7eb2e8f9f7 2706 /* Set the DMA Period elapsed callback */
<> 144:ef7eb2e8f9f7 2707 htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
<> 144:ef7eb2e8f9f7 2708
<> 144:ef7eb2e8f9f7 2709 /* Set the DMA error callback */
<> 144:ef7eb2e8f9f7 2710 htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
<> 144:ef7eb2e8f9f7 2711
<> 144:ef7eb2e8f9f7 2712 /* Enable the DMA Stream */
<> 144:ef7eb2e8f9f7 2713 HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1, Length);
<> 144:ef7eb2e8f9f7 2714
<> 144:ef7eb2e8f9f7 2715 /* Set the DMA Period elapsed callback */
<> 144:ef7eb2e8f9f7 2716 htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
<> 144:ef7eb2e8f9f7 2717
<> 144:ef7eb2e8f9f7 2718 /* Set the DMA error callback */
<> 144:ef7eb2e8f9f7 2719 htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
<> 144:ef7eb2e8f9f7 2720
<> 144:ef7eb2e8f9f7 2721 /* Enable the DMA Stream */
<> 144:ef7eb2e8f9f7 2722 HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2, Length);
<> 144:ef7eb2e8f9f7 2723
<> 144:ef7eb2e8f9f7 2724 /* Enable the Peripheral */
<> 144:ef7eb2e8f9f7 2725 __HAL_TIM_ENABLE(htim);
<> 144:ef7eb2e8f9f7 2726
<> 144:ef7eb2e8f9f7 2727 /* Enable the Capture compare channel */
<> 144:ef7eb2e8f9f7 2728 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
<> 144:ef7eb2e8f9f7 2729 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
<> 144:ef7eb2e8f9f7 2730
<> 144:ef7eb2e8f9f7 2731 /* Enable the TIM Input Capture DMA request */
<> 144:ef7eb2e8f9f7 2732 __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
<> 144:ef7eb2e8f9f7 2733 /* Enable the TIM Input Capture DMA request */
<> 144:ef7eb2e8f9f7 2734 __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
<> 144:ef7eb2e8f9f7 2735 }
<> 144:ef7eb2e8f9f7 2736 break;
<> 144:ef7eb2e8f9f7 2737
<> 144:ef7eb2e8f9f7 2738 default:
<> 144:ef7eb2e8f9f7 2739 break;
<> 144:ef7eb2e8f9f7 2740 }
<> 144:ef7eb2e8f9f7 2741 /* Return function status */
<> 144:ef7eb2e8f9f7 2742 return HAL_OK;
<> 144:ef7eb2e8f9f7 2743 }
<> 144:ef7eb2e8f9f7 2744
<> 144:ef7eb2e8f9f7 2745 /**
<> 144:ef7eb2e8f9f7 2746 * @brief Stops the TIM Encoder Interface in DMA mode.
<> 144:ef7eb2e8f9f7 2747 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 2748 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 2749 * @param Channel: TIM Channels to be enabled.
<> 144:ef7eb2e8f9f7 2750 * This parameter can be one of the following values:
<> 144:ef7eb2e8f9f7 2751 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
<> 144:ef7eb2e8f9f7 2752 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
<> 144:ef7eb2e8f9f7 2753 * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
<> 144:ef7eb2e8f9f7 2754 * @retval HAL status
<> 144:ef7eb2e8f9f7 2755 */
<> 144:ef7eb2e8f9f7 2756 HAL_StatusTypeDef HAL_TIM_Encoder_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
<> 144:ef7eb2e8f9f7 2757 {
<> 144:ef7eb2e8f9f7 2758 /* Check the parameters */
<> 144:ef7eb2e8f9f7 2759 assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 2760
<> 144:ef7eb2e8f9f7 2761 /* Disable the Input Capture channels 1 and 2
<> 144:ef7eb2e8f9f7 2762 (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */
<> 144:ef7eb2e8f9f7 2763 if(Channel == TIM_CHANNEL_1)
<> 144:ef7eb2e8f9f7 2764 {
<> 144:ef7eb2e8f9f7 2765 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
<> 144:ef7eb2e8f9f7 2766
<> 144:ef7eb2e8f9f7 2767 /* Disable the capture compare DMA Request 1 */
<> 144:ef7eb2e8f9f7 2768 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
<> 144:ef7eb2e8f9f7 2769 }
<> 144:ef7eb2e8f9f7 2770 else if(Channel == TIM_CHANNEL_2)
<> 144:ef7eb2e8f9f7 2771 {
<> 144:ef7eb2e8f9f7 2772 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
<> 144:ef7eb2e8f9f7 2773
<> 144:ef7eb2e8f9f7 2774 /* Disable the capture compare DMA Request 2 */
<> 144:ef7eb2e8f9f7 2775 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
<> 144:ef7eb2e8f9f7 2776 }
<> 144:ef7eb2e8f9f7 2777 else
<> 144:ef7eb2e8f9f7 2778 {
<> 144:ef7eb2e8f9f7 2779 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
<> 144:ef7eb2e8f9f7 2780 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
<> 144:ef7eb2e8f9f7 2781
<> 144:ef7eb2e8f9f7 2782 /* Disable the capture compare DMA Request 1 and 2 */
<> 144:ef7eb2e8f9f7 2783 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
<> 144:ef7eb2e8f9f7 2784 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
<> 144:ef7eb2e8f9f7 2785 }
<> 144:ef7eb2e8f9f7 2786
<> 144:ef7eb2e8f9f7 2787 /* Disable the Peripheral */
<> 144:ef7eb2e8f9f7 2788 __HAL_TIM_DISABLE(htim);
<> 144:ef7eb2e8f9f7 2789
<> 144:ef7eb2e8f9f7 2790 /* Change the htim state */
<> 144:ef7eb2e8f9f7 2791 htim->State = HAL_TIM_STATE_READY;
<> 144:ef7eb2e8f9f7 2792
<> 144:ef7eb2e8f9f7 2793 /* Return function status */
<> 144:ef7eb2e8f9f7 2794 return HAL_OK;
<> 144:ef7eb2e8f9f7 2795 }
<> 144:ef7eb2e8f9f7 2796 /**
<> 144:ef7eb2e8f9f7 2797 * @}
<> 144:ef7eb2e8f9f7 2798 */
<> 144:ef7eb2e8f9f7 2799
<> 144:ef7eb2e8f9f7 2800 /** @defgroup TIM_Exported_Functions_Group7 TIM IRQ handler management
<> 144:ef7eb2e8f9f7 2801 * @brief IRQ handler management
<> 144:ef7eb2e8f9f7 2802 *
<> 144:ef7eb2e8f9f7 2803 @verbatim
<> 144:ef7eb2e8f9f7 2804 ==============================================================================
<> 144:ef7eb2e8f9f7 2805 ##### IRQ handler management #####
<> 144:ef7eb2e8f9f7 2806 ==============================================================================
<> 144:ef7eb2e8f9f7 2807 [..]
<> 144:ef7eb2e8f9f7 2808 This section provides Timer IRQ handler function.
<> 144:ef7eb2e8f9f7 2809
<> 144:ef7eb2e8f9f7 2810 @endverbatim
<> 144:ef7eb2e8f9f7 2811 * @{
<> 144:ef7eb2e8f9f7 2812 */
<> 144:ef7eb2e8f9f7 2813 /**
<> 144:ef7eb2e8f9f7 2814 * @brief This function handles TIM interrupts requests.
<> 144:ef7eb2e8f9f7 2815 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 2816 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 2817 * @retval None
<> 144:ef7eb2e8f9f7 2818 */
<> 144:ef7eb2e8f9f7 2819 void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim)
<> 144:ef7eb2e8f9f7 2820 {
<> 144:ef7eb2e8f9f7 2821 /* Capture compare 1 event */
<> 144:ef7eb2e8f9f7 2822 if(__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC1) != RESET)
<> 144:ef7eb2e8f9f7 2823 {
<> 144:ef7eb2e8f9f7 2824 if(__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC1) !=RESET)
<> 144:ef7eb2e8f9f7 2825 {
<> 144:ef7eb2e8f9f7 2826 {
<> 144:ef7eb2e8f9f7 2827 __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC1);
<> 144:ef7eb2e8f9f7 2828 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
<> 144:ef7eb2e8f9f7 2829
<> 144:ef7eb2e8f9f7 2830 /* Input capture event */
<> 144:ef7eb2e8f9f7 2831 if((htim->Instance->CCMR1 & TIM_CCMR1_CC1S) != 0x00U)
<> 144:ef7eb2e8f9f7 2832 {
<> 144:ef7eb2e8f9f7 2833 HAL_TIM_IC_CaptureCallback(htim);
<> 144:ef7eb2e8f9f7 2834 }
<> 144:ef7eb2e8f9f7 2835 /* Output compare event */
<> 144:ef7eb2e8f9f7 2836 else
<> 144:ef7eb2e8f9f7 2837 {
<> 144:ef7eb2e8f9f7 2838 HAL_TIM_OC_DelayElapsedCallback(htim);
<> 144:ef7eb2e8f9f7 2839 HAL_TIM_PWM_PulseFinishedCallback(htim);
<> 144:ef7eb2e8f9f7 2840 }
<> 144:ef7eb2e8f9f7 2841 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
<> 144:ef7eb2e8f9f7 2842 }
<> 144:ef7eb2e8f9f7 2843 }
<> 144:ef7eb2e8f9f7 2844 }
<> 144:ef7eb2e8f9f7 2845 /* Capture compare 2 event */
<> 144:ef7eb2e8f9f7 2846 if(__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC2) != RESET)
<> 144:ef7eb2e8f9f7 2847 {
<> 144:ef7eb2e8f9f7 2848 if(__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC2) !=RESET)
<> 144:ef7eb2e8f9f7 2849 {
<> 144:ef7eb2e8f9f7 2850 __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC2);
<> 144:ef7eb2e8f9f7 2851 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
<> 144:ef7eb2e8f9f7 2852 /* Input capture event */
<> 144:ef7eb2e8f9f7 2853 if((htim->Instance->CCMR1 & TIM_CCMR1_CC2S) != 0x00U)
<> 144:ef7eb2e8f9f7 2854 {
<> 144:ef7eb2e8f9f7 2855 HAL_TIM_IC_CaptureCallback(htim);
<> 144:ef7eb2e8f9f7 2856 }
<> 144:ef7eb2e8f9f7 2857 /* Output compare event */
<> 144:ef7eb2e8f9f7 2858 else
<> 144:ef7eb2e8f9f7 2859 {
<> 144:ef7eb2e8f9f7 2860 HAL_TIM_OC_DelayElapsedCallback(htim);
<> 144:ef7eb2e8f9f7 2861 HAL_TIM_PWM_PulseFinishedCallback(htim);
<> 144:ef7eb2e8f9f7 2862 }
<> 144:ef7eb2e8f9f7 2863 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
<> 144:ef7eb2e8f9f7 2864 }
<> 144:ef7eb2e8f9f7 2865 }
<> 144:ef7eb2e8f9f7 2866 /* Capture compare 3 event */
<> 144:ef7eb2e8f9f7 2867 if(__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC3) != RESET)
<> 144:ef7eb2e8f9f7 2868 {
<> 144:ef7eb2e8f9f7 2869 if(__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC3) !=RESET)
<> 144:ef7eb2e8f9f7 2870 {
<> 144:ef7eb2e8f9f7 2871 __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC3);
<> 144:ef7eb2e8f9f7 2872 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
<> 144:ef7eb2e8f9f7 2873 /* Input capture event */
<> 144:ef7eb2e8f9f7 2874 if((htim->Instance->CCMR2 & TIM_CCMR2_CC3S) != 0x00U)
<> 144:ef7eb2e8f9f7 2875 {
<> 144:ef7eb2e8f9f7 2876 HAL_TIM_IC_CaptureCallback(htim);
<> 144:ef7eb2e8f9f7 2877 }
<> 144:ef7eb2e8f9f7 2878 /* Output compare event */
<> 144:ef7eb2e8f9f7 2879 else
<> 144:ef7eb2e8f9f7 2880 {
<> 144:ef7eb2e8f9f7 2881 HAL_TIM_OC_DelayElapsedCallback(htim);
<> 144:ef7eb2e8f9f7 2882 HAL_TIM_PWM_PulseFinishedCallback(htim);
<> 144:ef7eb2e8f9f7 2883 }
<> 144:ef7eb2e8f9f7 2884 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
<> 144:ef7eb2e8f9f7 2885 }
<> 144:ef7eb2e8f9f7 2886 }
<> 144:ef7eb2e8f9f7 2887 /* Capture compare 4 event */
<> 144:ef7eb2e8f9f7 2888 if(__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC4) != RESET)
<> 144:ef7eb2e8f9f7 2889 {
<> 144:ef7eb2e8f9f7 2890 if(__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC4) !=RESET)
<> 144:ef7eb2e8f9f7 2891 {
<> 144:ef7eb2e8f9f7 2892 __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC4);
<> 144:ef7eb2e8f9f7 2893 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
<> 144:ef7eb2e8f9f7 2894 /* Input capture event */
<> 144:ef7eb2e8f9f7 2895 if((htim->Instance->CCMR2 & TIM_CCMR2_CC4S) != 0x00U)
<> 144:ef7eb2e8f9f7 2896 {
<> 144:ef7eb2e8f9f7 2897 HAL_TIM_IC_CaptureCallback(htim);
<> 144:ef7eb2e8f9f7 2898 }
<> 144:ef7eb2e8f9f7 2899 /* Output compare event */
<> 144:ef7eb2e8f9f7 2900 else
<> 144:ef7eb2e8f9f7 2901 {
<> 144:ef7eb2e8f9f7 2902 HAL_TIM_OC_DelayElapsedCallback(htim);
<> 144:ef7eb2e8f9f7 2903 HAL_TIM_PWM_PulseFinishedCallback(htim);
<> 144:ef7eb2e8f9f7 2904 }
<> 144:ef7eb2e8f9f7 2905 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
<> 144:ef7eb2e8f9f7 2906 }
<> 144:ef7eb2e8f9f7 2907 }
<> 144:ef7eb2e8f9f7 2908 /* TIM Update event */
<> 144:ef7eb2e8f9f7 2909 if(__HAL_TIM_GET_FLAG(htim, TIM_FLAG_UPDATE) != RESET)
<> 144:ef7eb2e8f9f7 2910 {
<> 144:ef7eb2e8f9f7 2911 if(__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_UPDATE) !=RESET)
<> 144:ef7eb2e8f9f7 2912 {
<> 144:ef7eb2e8f9f7 2913 __HAL_TIM_CLEAR_IT(htim, TIM_IT_UPDATE);
<> 144:ef7eb2e8f9f7 2914 HAL_TIM_PeriodElapsedCallback(htim);
<> 144:ef7eb2e8f9f7 2915 }
<> 144:ef7eb2e8f9f7 2916 }
<> 144:ef7eb2e8f9f7 2917 /* TIM Break input event */
<> 144:ef7eb2e8f9f7 2918 if(__HAL_TIM_GET_FLAG(htim, TIM_FLAG_BREAK) != RESET)
<> 144:ef7eb2e8f9f7 2919 {
<> 144:ef7eb2e8f9f7 2920 if(__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_BREAK) !=RESET)
<> 144:ef7eb2e8f9f7 2921 {
<> 144:ef7eb2e8f9f7 2922 __HAL_TIM_CLEAR_IT(htim, TIM_IT_BREAK);
<> 144:ef7eb2e8f9f7 2923 HAL_TIMEx_BreakCallback(htim);
<> 144:ef7eb2e8f9f7 2924 }
<> 144:ef7eb2e8f9f7 2925 }
<> 144:ef7eb2e8f9f7 2926 /* TIM Trigger detection event */
<> 144:ef7eb2e8f9f7 2927 if(__HAL_TIM_GET_FLAG(htim, TIM_FLAG_TRIGGER) != RESET)
<> 144:ef7eb2e8f9f7 2928 {
<> 144:ef7eb2e8f9f7 2929 if(__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_TRIGGER) !=RESET)
<> 144:ef7eb2e8f9f7 2930 {
<> 144:ef7eb2e8f9f7 2931 __HAL_TIM_CLEAR_IT(htim, TIM_IT_TRIGGER);
<> 144:ef7eb2e8f9f7 2932 HAL_TIM_TriggerCallback(htim);
<> 144:ef7eb2e8f9f7 2933 }
<> 144:ef7eb2e8f9f7 2934 }
<> 144:ef7eb2e8f9f7 2935 /* TIM commutation event */
<> 144:ef7eb2e8f9f7 2936 if(__HAL_TIM_GET_FLAG(htim, TIM_FLAG_COM) != RESET)
<> 144:ef7eb2e8f9f7 2937 {
<> 144:ef7eb2e8f9f7 2938 if(__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_COM) !=RESET)
<> 144:ef7eb2e8f9f7 2939 {
<> 144:ef7eb2e8f9f7 2940 __HAL_TIM_CLEAR_IT(htim, TIM_FLAG_COM);
<> 144:ef7eb2e8f9f7 2941 HAL_TIMEx_CommutationCallback(htim);
<> 144:ef7eb2e8f9f7 2942 }
<> 144:ef7eb2e8f9f7 2943 }
<> 144:ef7eb2e8f9f7 2944 }
<> 144:ef7eb2e8f9f7 2945 /**
<> 144:ef7eb2e8f9f7 2946 * @}
<> 144:ef7eb2e8f9f7 2947 */
<> 144:ef7eb2e8f9f7 2948
<> 144:ef7eb2e8f9f7 2949 /** @defgroup TIM_Exported_Functions_Group8 Peripheral Control functions
<> 144:ef7eb2e8f9f7 2950 * @brief Peripheral Control functions
<> 144:ef7eb2e8f9f7 2951 *
<> 144:ef7eb2e8f9f7 2952 @verbatim
<> 144:ef7eb2e8f9f7 2953 ==============================================================================
<> 144:ef7eb2e8f9f7 2954 ##### Peripheral Control functions #####
<> 144:ef7eb2e8f9f7 2955 ==============================================================================
<> 144:ef7eb2e8f9f7 2956 [..]
<> 144:ef7eb2e8f9f7 2957 This section provides functions allowing to:
<> 144:ef7eb2e8f9f7 2958 (+) Configure The Input Output channels for OC, PWM, IC or One Pulse mode.
<> 144:ef7eb2e8f9f7 2959 (+) Configure External Clock source.
<> 144:ef7eb2e8f9f7 2960 (+) Configure Complementary channels, break features and dead time.
<> 144:ef7eb2e8f9f7 2961 (+) Configure Master and the Slave synchronization.
<> 144:ef7eb2e8f9f7 2962 (+) Configure the DMA Burst Mode.
<> 144:ef7eb2e8f9f7 2963
<> 144:ef7eb2e8f9f7 2964 @endverbatim
<> 144:ef7eb2e8f9f7 2965 * @{
<> 144:ef7eb2e8f9f7 2966 */
<> 144:ef7eb2e8f9f7 2967
<> 144:ef7eb2e8f9f7 2968 /**
<> 144:ef7eb2e8f9f7 2969 * @brief Initializes the TIM Output Compare Channels according to the specified
<> 144:ef7eb2e8f9f7 2970 * parameters in the TIM_OC_InitTypeDef.
<> 144:ef7eb2e8f9f7 2971 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 2972 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 2973 * @param sConfig: TIM Output Compare configuration structure
<> 144:ef7eb2e8f9f7 2974 * @param Channel: TIM Channels to be enabled.
<> 144:ef7eb2e8f9f7 2975 * This parameter can be one of the following values:
<> 144:ef7eb2e8f9f7 2976 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
<> 144:ef7eb2e8f9f7 2977 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
<> 144:ef7eb2e8f9f7 2978 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
<> 144:ef7eb2e8f9f7 2979 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
<> 144:ef7eb2e8f9f7 2980 * @retval HAL status
<> 144:ef7eb2e8f9f7 2981 */
<> 144:ef7eb2e8f9f7 2982 HAL_StatusTypeDef HAL_TIM_OC_ConfigChannel(TIM_HandleTypeDef *htim, TIM_OC_InitTypeDef* sConfig, uint32_t Channel)
<> 144:ef7eb2e8f9f7 2983 {
<> 144:ef7eb2e8f9f7 2984 /* Check the parameters */
<> 144:ef7eb2e8f9f7 2985 assert_param(IS_TIM_CHANNELS(Channel));
<> 144:ef7eb2e8f9f7 2986 assert_param(IS_TIM_OC_MODE(sConfig->OCMode));
<> 144:ef7eb2e8f9f7 2987 assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity));
<> 144:ef7eb2e8f9f7 2988
<> 144:ef7eb2e8f9f7 2989 /* Check input state */
<> 144:ef7eb2e8f9f7 2990 __HAL_LOCK(htim);
<> 144:ef7eb2e8f9f7 2991
<> 144:ef7eb2e8f9f7 2992 htim->State = HAL_TIM_STATE_BUSY;
<> 144:ef7eb2e8f9f7 2993
<> 144:ef7eb2e8f9f7 2994 switch (Channel)
<> 144:ef7eb2e8f9f7 2995 {
<> 144:ef7eb2e8f9f7 2996 case TIM_CHANNEL_1:
<> 144:ef7eb2e8f9f7 2997 {
<> 144:ef7eb2e8f9f7 2998 assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 2999 /* Configure the TIM Channel 1 in Output Compare */
<> 144:ef7eb2e8f9f7 3000 TIM_OC1_SetConfig(htim->Instance, sConfig);
<> 144:ef7eb2e8f9f7 3001 }
<> 144:ef7eb2e8f9f7 3002 break;
<> 144:ef7eb2e8f9f7 3003
<> 144:ef7eb2e8f9f7 3004 case TIM_CHANNEL_2:
<> 144:ef7eb2e8f9f7 3005 {
<> 144:ef7eb2e8f9f7 3006 assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 3007 /* Configure the TIM Channel 2 in Output Compare */
<> 144:ef7eb2e8f9f7 3008 TIM_OC2_SetConfig(htim->Instance, sConfig);
<> 144:ef7eb2e8f9f7 3009 }
<> 144:ef7eb2e8f9f7 3010 break;
<> 144:ef7eb2e8f9f7 3011
<> 144:ef7eb2e8f9f7 3012 case TIM_CHANNEL_3:
<> 144:ef7eb2e8f9f7 3013 {
<> 144:ef7eb2e8f9f7 3014 assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 3015 /* Configure the TIM Channel 3 in Output Compare */
<> 144:ef7eb2e8f9f7 3016 TIM_OC3_SetConfig(htim->Instance, sConfig);
<> 144:ef7eb2e8f9f7 3017 }
<> 144:ef7eb2e8f9f7 3018 break;
<> 144:ef7eb2e8f9f7 3019
<> 144:ef7eb2e8f9f7 3020 case TIM_CHANNEL_4:
<> 144:ef7eb2e8f9f7 3021 {
<> 144:ef7eb2e8f9f7 3022 assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 3023 /* Configure the TIM Channel 4 in Output Compare */
<> 144:ef7eb2e8f9f7 3024 TIM_OC4_SetConfig(htim->Instance, sConfig);
<> 144:ef7eb2e8f9f7 3025 }
<> 144:ef7eb2e8f9f7 3026 break;
<> 144:ef7eb2e8f9f7 3027
<> 144:ef7eb2e8f9f7 3028 default:
<> 144:ef7eb2e8f9f7 3029 break;
<> 144:ef7eb2e8f9f7 3030 }
<> 144:ef7eb2e8f9f7 3031 htim->State = HAL_TIM_STATE_READY;
<> 144:ef7eb2e8f9f7 3032
<> 144:ef7eb2e8f9f7 3033 __HAL_UNLOCK(htim);
<> 144:ef7eb2e8f9f7 3034
<> 144:ef7eb2e8f9f7 3035 return HAL_OK;
<> 144:ef7eb2e8f9f7 3036 }
<> 144:ef7eb2e8f9f7 3037
<> 144:ef7eb2e8f9f7 3038 /**
<> 144:ef7eb2e8f9f7 3039 * @brief Initializes the TIM Input Capture Channels according to the specified
<> 144:ef7eb2e8f9f7 3040 * parameters in the TIM_IC_InitTypeDef.
<> 144:ef7eb2e8f9f7 3041 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 3042 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 3043 * @param sConfig: TIM Input Capture configuration structure
<> 144:ef7eb2e8f9f7 3044 * @param Channel: TIM Channels to be enabled.
<> 144:ef7eb2e8f9f7 3045 * This parameter can be one of the following values:
<> 144:ef7eb2e8f9f7 3046 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
<> 144:ef7eb2e8f9f7 3047 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
<> 144:ef7eb2e8f9f7 3048 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
<> 144:ef7eb2e8f9f7 3049 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
<> 144:ef7eb2e8f9f7 3050 * @retval HAL status
<> 144:ef7eb2e8f9f7 3051 */
<> 144:ef7eb2e8f9f7 3052 HAL_StatusTypeDef HAL_TIM_IC_ConfigChannel(TIM_HandleTypeDef *htim, TIM_IC_InitTypeDef* sConfig, uint32_t Channel)
<> 144:ef7eb2e8f9f7 3053 {
<> 144:ef7eb2e8f9f7 3054 /* Check the parameters */
<> 144:ef7eb2e8f9f7 3055 assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 3056 assert_param(IS_TIM_IC_POLARITY(sConfig->ICPolarity));
<> 144:ef7eb2e8f9f7 3057 assert_param(IS_TIM_IC_SELECTION(sConfig->ICSelection));
<> 144:ef7eb2e8f9f7 3058 assert_param(IS_TIM_IC_PRESCALER(sConfig->ICPrescaler));
<> 144:ef7eb2e8f9f7 3059 assert_param(IS_TIM_IC_FILTER(sConfig->ICFilter));
<> 144:ef7eb2e8f9f7 3060
<> 144:ef7eb2e8f9f7 3061 __HAL_LOCK(htim);
<> 144:ef7eb2e8f9f7 3062
<> 144:ef7eb2e8f9f7 3063 htim->State = HAL_TIM_STATE_BUSY;
<> 144:ef7eb2e8f9f7 3064
<> 144:ef7eb2e8f9f7 3065 if (Channel == TIM_CHANNEL_1)
<> 144:ef7eb2e8f9f7 3066 {
<> 144:ef7eb2e8f9f7 3067 /* TI1 Configuration */
<> 144:ef7eb2e8f9f7 3068 TIM_TI1_SetConfig(htim->Instance,
<> 144:ef7eb2e8f9f7 3069 sConfig->ICPolarity,
<> 144:ef7eb2e8f9f7 3070 sConfig->ICSelection,
<> 144:ef7eb2e8f9f7 3071 sConfig->ICFilter);
<> 144:ef7eb2e8f9f7 3072
<> 144:ef7eb2e8f9f7 3073 /* Reset the IC1PSC Bits */
<> 144:ef7eb2e8f9f7 3074 htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC;
<> 144:ef7eb2e8f9f7 3075
<> 144:ef7eb2e8f9f7 3076 /* Set the IC1PSC value */
<> 144:ef7eb2e8f9f7 3077 htim->Instance->CCMR1 |= sConfig->ICPrescaler;
<> 144:ef7eb2e8f9f7 3078 }
<> 144:ef7eb2e8f9f7 3079 else if (Channel == TIM_CHANNEL_2)
<> 144:ef7eb2e8f9f7 3080 {
<> 144:ef7eb2e8f9f7 3081 /* TI2 Configuration */
<> 144:ef7eb2e8f9f7 3082 assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 3083
<> 144:ef7eb2e8f9f7 3084 TIM_TI2_SetConfig(htim->Instance,
<> 144:ef7eb2e8f9f7 3085 sConfig->ICPolarity,
<> 144:ef7eb2e8f9f7 3086 sConfig->ICSelection,
<> 144:ef7eb2e8f9f7 3087 sConfig->ICFilter);
<> 144:ef7eb2e8f9f7 3088
<> 144:ef7eb2e8f9f7 3089 /* Reset the IC2PSC Bits */
<> 144:ef7eb2e8f9f7 3090 htim->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC;
<> 144:ef7eb2e8f9f7 3091
<> 144:ef7eb2e8f9f7 3092 /* Set the IC2PSC value */
<> 144:ef7eb2e8f9f7 3093 htim->Instance->CCMR1 |= (sConfig->ICPrescaler << 8U);
<> 144:ef7eb2e8f9f7 3094 }
<> 144:ef7eb2e8f9f7 3095 else if (Channel == TIM_CHANNEL_3)
<> 144:ef7eb2e8f9f7 3096 {
<> 144:ef7eb2e8f9f7 3097 /* TI3 Configuration */
<> 144:ef7eb2e8f9f7 3098 assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 3099
<> 144:ef7eb2e8f9f7 3100 TIM_TI3_SetConfig(htim->Instance,
<> 144:ef7eb2e8f9f7 3101 sConfig->ICPolarity,
<> 144:ef7eb2e8f9f7 3102 sConfig->ICSelection,
<> 144:ef7eb2e8f9f7 3103 sConfig->ICFilter);
<> 144:ef7eb2e8f9f7 3104
<> 144:ef7eb2e8f9f7 3105 /* Reset the IC3PSC Bits */
<> 144:ef7eb2e8f9f7 3106 htim->Instance->CCMR2 &= ~TIM_CCMR2_IC3PSC;
<> 144:ef7eb2e8f9f7 3107
<> 144:ef7eb2e8f9f7 3108 /* Set the IC3PSC value */
<> 144:ef7eb2e8f9f7 3109 htim->Instance->CCMR2 |= sConfig->ICPrescaler;
<> 144:ef7eb2e8f9f7 3110 }
<> 144:ef7eb2e8f9f7 3111 else
<> 144:ef7eb2e8f9f7 3112 {
<> 144:ef7eb2e8f9f7 3113 /* TI4 Configuration */
<> 144:ef7eb2e8f9f7 3114 assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 3115
<> 144:ef7eb2e8f9f7 3116 TIM_TI4_SetConfig(htim->Instance,
<> 144:ef7eb2e8f9f7 3117 sConfig->ICPolarity,
<> 144:ef7eb2e8f9f7 3118 sConfig->ICSelection,
<> 144:ef7eb2e8f9f7 3119 sConfig->ICFilter);
<> 144:ef7eb2e8f9f7 3120
<> 144:ef7eb2e8f9f7 3121 /* Reset the IC4PSC Bits */
<> 144:ef7eb2e8f9f7 3122 htim->Instance->CCMR2 &= ~TIM_CCMR2_IC4PSC;
<> 144:ef7eb2e8f9f7 3123
<> 144:ef7eb2e8f9f7 3124 /* Set the IC4PSC value */
<> 144:ef7eb2e8f9f7 3125 htim->Instance->CCMR2 |= (sConfig->ICPrescaler << 8U);
<> 144:ef7eb2e8f9f7 3126 }
<> 144:ef7eb2e8f9f7 3127
<> 144:ef7eb2e8f9f7 3128 htim->State = HAL_TIM_STATE_READY;
<> 144:ef7eb2e8f9f7 3129
<> 144:ef7eb2e8f9f7 3130 __HAL_UNLOCK(htim);
<> 144:ef7eb2e8f9f7 3131
<> 144:ef7eb2e8f9f7 3132 return HAL_OK;
<> 144:ef7eb2e8f9f7 3133 }
<> 144:ef7eb2e8f9f7 3134
<> 144:ef7eb2e8f9f7 3135 /**
<> 144:ef7eb2e8f9f7 3136 * @brief Initializes the TIM PWM channels according to the specified
<> 144:ef7eb2e8f9f7 3137 * parameters in the TIM_OC_InitTypeDef.
<> 144:ef7eb2e8f9f7 3138 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 3139 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 3140 * @param sConfig: TIM PWM configuration structure
<> 144:ef7eb2e8f9f7 3141 * @param Channel: TIM Channels to be enabled.
<> 144:ef7eb2e8f9f7 3142 * This parameter can be one of the following values:
<> 144:ef7eb2e8f9f7 3143 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
<> 144:ef7eb2e8f9f7 3144 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
<> 144:ef7eb2e8f9f7 3145 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
<> 144:ef7eb2e8f9f7 3146 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
<> 144:ef7eb2e8f9f7 3147 * @retval HAL status
<> 144:ef7eb2e8f9f7 3148 */
<> 144:ef7eb2e8f9f7 3149 HAL_StatusTypeDef HAL_TIM_PWM_ConfigChannel(TIM_HandleTypeDef *htim, TIM_OC_InitTypeDef* sConfig, uint32_t Channel)
<> 144:ef7eb2e8f9f7 3150 {
<> 144:ef7eb2e8f9f7 3151 __HAL_LOCK(htim);
<> 144:ef7eb2e8f9f7 3152
<> 144:ef7eb2e8f9f7 3153 /* Check the parameters */
<> 144:ef7eb2e8f9f7 3154 assert_param(IS_TIM_CHANNELS(Channel));
<> 144:ef7eb2e8f9f7 3155 assert_param(IS_TIM_PWM_MODE(sConfig->OCMode));
<> 144:ef7eb2e8f9f7 3156 assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity));
<> 144:ef7eb2e8f9f7 3157 assert_param(IS_TIM_FAST_STATE(sConfig->OCFastMode));
<> 144:ef7eb2e8f9f7 3158
<> 144:ef7eb2e8f9f7 3159 htim->State = HAL_TIM_STATE_BUSY;
<> 144:ef7eb2e8f9f7 3160
<> 144:ef7eb2e8f9f7 3161 switch (Channel)
<> 144:ef7eb2e8f9f7 3162 {
<> 144:ef7eb2e8f9f7 3163 case TIM_CHANNEL_1:
<> 144:ef7eb2e8f9f7 3164 {
<> 144:ef7eb2e8f9f7 3165 assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 3166 /* Configure the Channel 1 in PWM mode */
<> 144:ef7eb2e8f9f7 3167 TIM_OC1_SetConfig(htim->Instance, sConfig);
<> 144:ef7eb2e8f9f7 3168
<> 144:ef7eb2e8f9f7 3169 /* Set the Preload enable bit for channel1 */
<> 144:ef7eb2e8f9f7 3170 htim->Instance->CCMR1 |= TIM_CCMR1_OC1PE;
<> 144:ef7eb2e8f9f7 3171
<> 144:ef7eb2e8f9f7 3172 /* Configure the Output Fast mode */
<> 144:ef7eb2e8f9f7 3173 htim->Instance->CCMR1 &= ~TIM_CCMR1_OC1FE;
<> 144:ef7eb2e8f9f7 3174 htim->Instance->CCMR1 |= sConfig->OCFastMode;
<> 144:ef7eb2e8f9f7 3175 }
<> 144:ef7eb2e8f9f7 3176 break;
<> 144:ef7eb2e8f9f7 3177
<> 144:ef7eb2e8f9f7 3178 case TIM_CHANNEL_2:
<> 144:ef7eb2e8f9f7 3179 {
<> 144:ef7eb2e8f9f7 3180 assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 3181 /* Configure the Channel 2 in PWM mode */
<> 144:ef7eb2e8f9f7 3182 TIM_OC2_SetConfig(htim->Instance, sConfig);
<> 144:ef7eb2e8f9f7 3183
<> 144:ef7eb2e8f9f7 3184 /* Set the Preload enable bit for channel2 */
<> 144:ef7eb2e8f9f7 3185 htim->Instance->CCMR1 |= TIM_CCMR1_OC2PE;
<> 144:ef7eb2e8f9f7 3186
<> 144:ef7eb2e8f9f7 3187 /* Configure the Output Fast mode */
<> 144:ef7eb2e8f9f7 3188 htim->Instance->CCMR1 &= ~TIM_CCMR1_OC2FE;
<> 144:ef7eb2e8f9f7 3189 htim->Instance->CCMR1 |= sConfig->OCFastMode << 8U;
<> 144:ef7eb2e8f9f7 3190 }
<> 144:ef7eb2e8f9f7 3191 break;
<> 144:ef7eb2e8f9f7 3192
<> 144:ef7eb2e8f9f7 3193 case TIM_CHANNEL_3:
<> 144:ef7eb2e8f9f7 3194 {
<> 144:ef7eb2e8f9f7 3195 assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 3196 /* Configure the Channel 3 in PWM mode */
<> 144:ef7eb2e8f9f7 3197 TIM_OC3_SetConfig(htim->Instance, sConfig);
<> 144:ef7eb2e8f9f7 3198
<> 144:ef7eb2e8f9f7 3199 /* Set the Preload enable bit for channel3 */
<> 144:ef7eb2e8f9f7 3200 htim->Instance->CCMR2 |= TIM_CCMR2_OC3PE;
<> 144:ef7eb2e8f9f7 3201
<> 144:ef7eb2e8f9f7 3202 /* Configure the Output Fast mode */
<> 144:ef7eb2e8f9f7 3203 htim->Instance->CCMR2 &= ~TIM_CCMR2_OC3FE;
<> 144:ef7eb2e8f9f7 3204 htim->Instance->CCMR2 |= sConfig->OCFastMode;
<> 144:ef7eb2e8f9f7 3205 }
<> 144:ef7eb2e8f9f7 3206 break;
<> 144:ef7eb2e8f9f7 3207
<> 144:ef7eb2e8f9f7 3208 case TIM_CHANNEL_4:
<> 144:ef7eb2e8f9f7 3209 {
<> 144:ef7eb2e8f9f7 3210 assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 3211 /* Configure the Channel 4 in PWM mode */
<> 144:ef7eb2e8f9f7 3212 TIM_OC4_SetConfig(htim->Instance, sConfig);
<> 144:ef7eb2e8f9f7 3213
<> 144:ef7eb2e8f9f7 3214 /* Set the Preload enable bit for channel4 */
<> 144:ef7eb2e8f9f7 3215 htim->Instance->CCMR2 |= TIM_CCMR2_OC4PE;
<> 144:ef7eb2e8f9f7 3216
<> 144:ef7eb2e8f9f7 3217 /* Configure the Output Fast mode */
<> 144:ef7eb2e8f9f7 3218 htim->Instance->CCMR2 &= ~TIM_CCMR2_OC4FE;
<> 144:ef7eb2e8f9f7 3219 htim->Instance->CCMR2 |= sConfig->OCFastMode << 8U;
<> 144:ef7eb2e8f9f7 3220 }
<> 144:ef7eb2e8f9f7 3221 break;
<> 144:ef7eb2e8f9f7 3222
<> 144:ef7eb2e8f9f7 3223 default:
<> 144:ef7eb2e8f9f7 3224 break;
<> 144:ef7eb2e8f9f7 3225 }
<> 144:ef7eb2e8f9f7 3226
<> 144:ef7eb2e8f9f7 3227 htim->State = HAL_TIM_STATE_READY;
<> 144:ef7eb2e8f9f7 3228
<> 144:ef7eb2e8f9f7 3229 __HAL_UNLOCK(htim);
<> 144:ef7eb2e8f9f7 3230
<> 144:ef7eb2e8f9f7 3231 return HAL_OK;
<> 144:ef7eb2e8f9f7 3232 }
<> 144:ef7eb2e8f9f7 3233
<> 144:ef7eb2e8f9f7 3234 /**
<> 144:ef7eb2e8f9f7 3235 * @brief Initializes the TIM One Pulse Channels according to the specified
<> 144:ef7eb2e8f9f7 3236 * parameters in the TIM_OnePulse_InitTypeDef.
<> 144:ef7eb2e8f9f7 3237 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 3238 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 3239 * @param sConfig: TIM One Pulse configuration structure
<> 144:ef7eb2e8f9f7 3240 * @param OutputChannel: TIM Channels to be enabled.
<> 144:ef7eb2e8f9f7 3241 * This parameter can be one of the following values:
<> 144:ef7eb2e8f9f7 3242 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
<> 144:ef7eb2e8f9f7 3243 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
<> 144:ef7eb2e8f9f7 3244 * @param InputChannel: TIM Channels to be enabled.
<> 144:ef7eb2e8f9f7 3245 * This parameter can be one of the following values:
<> 144:ef7eb2e8f9f7 3246 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
<> 144:ef7eb2e8f9f7 3247 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
<> 144:ef7eb2e8f9f7 3248 * @retval HAL status
<> 144:ef7eb2e8f9f7 3249 */
<> 144:ef7eb2e8f9f7 3250 HAL_StatusTypeDef HAL_TIM_OnePulse_ConfigChannel(TIM_HandleTypeDef *htim, TIM_OnePulse_InitTypeDef* sConfig, uint32_t OutputChannel, uint32_t InputChannel)
<> 144:ef7eb2e8f9f7 3251 {
<> 144:ef7eb2e8f9f7 3252 TIM_OC_InitTypeDef temp1;
<> 144:ef7eb2e8f9f7 3253
<> 144:ef7eb2e8f9f7 3254 /* Check the parameters */
<> 144:ef7eb2e8f9f7 3255 assert_param(IS_TIM_OPM_CHANNELS(OutputChannel));
<> 144:ef7eb2e8f9f7 3256 assert_param(IS_TIM_OPM_CHANNELS(InputChannel));
<> 144:ef7eb2e8f9f7 3257
<> 144:ef7eb2e8f9f7 3258 if(OutputChannel != InputChannel)
<> 144:ef7eb2e8f9f7 3259 {
<> 144:ef7eb2e8f9f7 3260 __HAL_LOCK(htim);
<> 144:ef7eb2e8f9f7 3261
<> 144:ef7eb2e8f9f7 3262 htim->State = HAL_TIM_STATE_BUSY;
<> 144:ef7eb2e8f9f7 3263
<> 144:ef7eb2e8f9f7 3264 /* Extract the Output compare configuration from sConfig structure */
<> 144:ef7eb2e8f9f7 3265 temp1.OCMode = sConfig->OCMode;
<> 144:ef7eb2e8f9f7 3266 temp1.Pulse = sConfig->Pulse;
<> 144:ef7eb2e8f9f7 3267 temp1.OCPolarity = sConfig->OCPolarity;
<> 144:ef7eb2e8f9f7 3268 temp1.OCNPolarity = sConfig->OCNPolarity;
<> 144:ef7eb2e8f9f7 3269 temp1.OCIdleState = sConfig->OCIdleState;
<> 144:ef7eb2e8f9f7 3270 temp1.OCNIdleState = sConfig->OCNIdleState;
<> 144:ef7eb2e8f9f7 3271
<> 144:ef7eb2e8f9f7 3272 switch (OutputChannel)
<> 144:ef7eb2e8f9f7 3273 {
<> 144:ef7eb2e8f9f7 3274 case TIM_CHANNEL_1:
<> 144:ef7eb2e8f9f7 3275 {
<> 144:ef7eb2e8f9f7 3276 assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 3277
<> 144:ef7eb2e8f9f7 3278 TIM_OC1_SetConfig(htim->Instance, &temp1);
<> 144:ef7eb2e8f9f7 3279 }
<> 144:ef7eb2e8f9f7 3280 break;
<> 144:ef7eb2e8f9f7 3281 case TIM_CHANNEL_2:
<> 144:ef7eb2e8f9f7 3282 {
<> 144:ef7eb2e8f9f7 3283 assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 3284
<> 144:ef7eb2e8f9f7 3285 TIM_OC2_SetConfig(htim->Instance, &temp1);
<> 144:ef7eb2e8f9f7 3286 }
<> 144:ef7eb2e8f9f7 3287 break;
<> 144:ef7eb2e8f9f7 3288 default:
<> 144:ef7eb2e8f9f7 3289 break;
<> 144:ef7eb2e8f9f7 3290 }
<> 144:ef7eb2e8f9f7 3291 switch (InputChannel)
<> 144:ef7eb2e8f9f7 3292 {
<> 144:ef7eb2e8f9f7 3293 case TIM_CHANNEL_1:
<> 144:ef7eb2e8f9f7 3294 {
<> 144:ef7eb2e8f9f7 3295 assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 3296
<> 144:ef7eb2e8f9f7 3297 TIM_TI1_SetConfig(htim->Instance, sConfig->ICPolarity,
<> 144:ef7eb2e8f9f7 3298 sConfig->ICSelection, sConfig->ICFilter);
<> 144:ef7eb2e8f9f7 3299
<> 144:ef7eb2e8f9f7 3300 /* Reset the IC1PSC Bits */
<> 144:ef7eb2e8f9f7 3301 htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC;
<> 144:ef7eb2e8f9f7 3302
<> 144:ef7eb2e8f9f7 3303 /* Select the Trigger source */
<> 144:ef7eb2e8f9f7 3304 htim->Instance->SMCR &= ~TIM_SMCR_TS;
<> 144:ef7eb2e8f9f7 3305 htim->Instance->SMCR |= TIM_TS_TI1FP1;
<> 144:ef7eb2e8f9f7 3306
<> 144:ef7eb2e8f9f7 3307 /* Select the Slave Mode */
<> 144:ef7eb2e8f9f7 3308 htim->Instance->SMCR &= ~TIM_SMCR_SMS;
<> 144:ef7eb2e8f9f7 3309 htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER;
<> 144:ef7eb2e8f9f7 3310 }
<> 144:ef7eb2e8f9f7 3311 break;
<> 144:ef7eb2e8f9f7 3312 case TIM_CHANNEL_2:
<> 144:ef7eb2e8f9f7 3313 {
<> 144:ef7eb2e8f9f7 3314 assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 3315
<> 144:ef7eb2e8f9f7 3316 TIM_TI2_SetConfig(htim->Instance, sConfig->ICPolarity,
<> 144:ef7eb2e8f9f7 3317 sConfig->ICSelection, sConfig->ICFilter);
<> 144:ef7eb2e8f9f7 3318
<> 144:ef7eb2e8f9f7 3319 /* Reset the IC2PSC Bits */
<> 144:ef7eb2e8f9f7 3320 htim->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC;
<> 144:ef7eb2e8f9f7 3321
<> 144:ef7eb2e8f9f7 3322 /* Select the Trigger source */
<> 144:ef7eb2e8f9f7 3323 htim->Instance->SMCR &= ~TIM_SMCR_TS;
<> 144:ef7eb2e8f9f7 3324 htim->Instance->SMCR |= TIM_TS_TI2FP2;
<> 144:ef7eb2e8f9f7 3325
<> 144:ef7eb2e8f9f7 3326 /* Select the Slave Mode */
<> 144:ef7eb2e8f9f7 3327 htim->Instance->SMCR &= ~TIM_SMCR_SMS;
<> 144:ef7eb2e8f9f7 3328 htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER;
<> 144:ef7eb2e8f9f7 3329 }
<> 144:ef7eb2e8f9f7 3330 break;
<> 144:ef7eb2e8f9f7 3331
<> 144:ef7eb2e8f9f7 3332 default:
<> 144:ef7eb2e8f9f7 3333 break;
<> 144:ef7eb2e8f9f7 3334 }
<> 144:ef7eb2e8f9f7 3335
<> 144:ef7eb2e8f9f7 3336 htim->State = HAL_TIM_STATE_READY;
<> 144:ef7eb2e8f9f7 3337
<> 144:ef7eb2e8f9f7 3338 __HAL_UNLOCK(htim);
<> 144:ef7eb2e8f9f7 3339
<> 144:ef7eb2e8f9f7 3340 return HAL_OK;
<> 144:ef7eb2e8f9f7 3341 }
<> 144:ef7eb2e8f9f7 3342 else
<> 144:ef7eb2e8f9f7 3343 {
<> 144:ef7eb2e8f9f7 3344 return HAL_ERROR;
<> 144:ef7eb2e8f9f7 3345 }
<> 144:ef7eb2e8f9f7 3346 }
<> 144:ef7eb2e8f9f7 3347
<> 144:ef7eb2e8f9f7 3348 /**
<> 144:ef7eb2e8f9f7 3349 * @brief Configure the DMA Burst to transfer Data from the memory to the TIM peripheral
<> 144:ef7eb2e8f9f7 3350 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 3351 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 3352 * @param BurstBaseAddress: TIM Base address from when the DMA will starts the Data write.
<> 144:ef7eb2e8f9f7 3353 * This parameters can be on of the following values:
<> 144:ef7eb2e8f9f7 3354 * @arg TIM_DMABASE_CR1
<> 144:ef7eb2e8f9f7 3355 * @arg TIM_DMABASE_CR2
<> 144:ef7eb2e8f9f7 3356 * @arg TIM_DMABASE_SMCR
<> 144:ef7eb2e8f9f7 3357 * @arg TIM_DMABASE_DIER
<> 144:ef7eb2e8f9f7 3358 * @arg TIM_DMABASE_SR
<> 144:ef7eb2e8f9f7 3359 * @arg TIM_DMABASE_EGR
<> 144:ef7eb2e8f9f7 3360 * @arg TIM_DMABASE_CCMR1
<> 144:ef7eb2e8f9f7 3361 * @arg TIM_DMABASE_CCMR2
<> 144:ef7eb2e8f9f7 3362 * @arg TIM_DMABASE_CCER
<> 144:ef7eb2e8f9f7 3363 * @arg TIM_DMABASE_CNT
<> 144:ef7eb2e8f9f7 3364 * @arg TIM_DMABASE_PSC
<> 144:ef7eb2e8f9f7 3365 * @arg TIM_DMABASE_ARR
<> 144:ef7eb2e8f9f7 3366 * @arg TIM_DMABASE_RCR
<> 144:ef7eb2e8f9f7 3367 * @arg TIM_DMABASE_CCR1
<> 144:ef7eb2e8f9f7 3368 * @arg TIM_DMABASE_CCR2
<> 144:ef7eb2e8f9f7 3369 * @arg TIM_DMABASE_CCR3
<> 144:ef7eb2e8f9f7 3370 * @arg TIM_DMABASE_CCR4
<> 144:ef7eb2e8f9f7 3371 * @arg TIM_DMABASE_BDTR
<> 144:ef7eb2e8f9f7 3372 * @arg TIM_DMABASE_DCR
<> 144:ef7eb2e8f9f7 3373 * @param BurstRequestSrc: TIM DMA Request sources.
<> 144:ef7eb2e8f9f7 3374 * This parameters can be on of the following values:
<> 144:ef7eb2e8f9f7 3375 * @arg TIM_DMA_UPDATE: TIM update Interrupt source
<> 144:ef7eb2e8f9f7 3376 * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
<> 144:ef7eb2e8f9f7 3377 * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
<> 144:ef7eb2e8f9f7 3378 * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
<> 144:ef7eb2e8f9f7 3379 * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
<> 144:ef7eb2e8f9f7 3380 * @arg TIM_DMA_COM: TIM Commutation DMA source
<> 144:ef7eb2e8f9f7 3381 * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source
<> 144:ef7eb2e8f9f7 3382 * @param BurstBuffer: The Buffer address.
<> 144:ef7eb2e8f9f7 3383 * @param BurstLength: DMA Burst length. This parameter can be one value
<> 144:ef7eb2e8f9f7 3384 * between TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS.
<> 144:ef7eb2e8f9f7 3385 * @retval HAL status
<> 144:ef7eb2e8f9f7 3386 */
<> 144:ef7eb2e8f9f7 3387 HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, uint32_t BurstRequestSrc,
<> 144:ef7eb2e8f9f7 3388 uint32_t* BurstBuffer, uint32_t BurstLength)
<> 144:ef7eb2e8f9f7 3389 {
<> 144:ef7eb2e8f9f7 3390 /* Check the parameters */
<> 144:ef7eb2e8f9f7 3391 assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 3392 assert_param(IS_TIM_DMA_BASE(BurstBaseAddress));
<> 144:ef7eb2e8f9f7 3393 assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
<> 144:ef7eb2e8f9f7 3394 assert_param(IS_TIM_DMA_LENGTH(BurstLength));
<> 144:ef7eb2e8f9f7 3395
<> 144:ef7eb2e8f9f7 3396 if((htim->State == HAL_TIM_STATE_BUSY))
<> 144:ef7eb2e8f9f7 3397 {
<> 144:ef7eb2e8f9f7 3398 return HAL_BUSY;
<> 144:ef7eb2e8f9f7 3399 }
<> 144:ef7eb2e8f9f7 3400 else if((htim->State == HAL_TIM_STATE_READY))
<> 144:ef7eb2e8f9f7 3401 {
<> 144:ef7eb2e8f9f7 3402 if((BurstBuffer == 0U ) && (BurstLength > 0U))
<> 144:ef7eb2e8f9f7 3403 {
<> 144:ef7eb2e8f9f7 3404 return HAL_ERROR;
<> 144:ef7eb2e8f9f7 3405 }
<> 144:ef7eb2e8f9f7 3406 else
<> 144:ef7eb2e8f9f7 3407 {
<> 144:ef7eb2e8f9f7 3408 htim->State = HAL_TIM_STATE_BUSY;
<> 144:ef7eb2e8f9f7 3409 }
<> 144:ef7eb2e8f9f7 3410 }
<> 144:ef7eb2e8f9f7 3411 switch(BurstRequestSrc)
<> 144:ef7eb2e8f9f7 3412 {
<> 144:ef7eb2e8f9f7 3413 case TIM_DMA_UPDATE:
<> 144:ef7eb2e8f9f7 3414 {
<> 144:ef7eb2e8f9f7 3415 /* Set the DMA Period elapsed callback */
<> 144:ef7eb2e8f9f7 3416 htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt;
<> 144:ef7eb2e8f9f7 3417
<> 144:ef7eb2e8f9f7 3418 /* Set the DMA error callback */
<> 144:ef7eb2e8f9f7 3419 htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ;
<> 144:ef7eb2e8f9f7 3420
<> 144:ef7eb2e8f9f7 3421 /* Enable the DMA Stream */
<> 144:ef7eb2e8f9f7 3422 HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, ((BurstLength) >> 8U) + 1U);
<> 144:ef7eb2e8f9f7 3423 }
<> 144:ef7eb2e8f9f7 3424 break;
<> 144:ef7eb2e8f9f7 3425 case TIM_DMA_CC1:
<> 144:ef7eb2e8f9f7 3426 {
<> 144:ef7eb2e8f9f7 3427 /* Set the DMA Period elapsed callback */
<> 144:ef7eb2e8f9f7 3428 htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt;
<> 144:ef7eb2e8f9f7 3429
<> 144:ef7eb2e8f9f7 3430 /* Set the DMA error callback */
<> 144:ef7eb2e8f9f7 3431 htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
<> 144:ef7eb2e8f9f7 3432
<> 144:ef7eb2e8f9f7 3433 /* Enable the DMA Stream */
<> 144:ef7eb2e8f9f7 3434 HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, ((BurstLength) >> 8U) + 1U);
<> 144:ef7eb2e8f9f7 3435 }
<> 144:ef7eb2e8f9f7 3436 break;
<> 144:ef7eb2e8f9f7 3437 case TIM_DMA_CC2:
<> 144:ef7eb2e8f9f7 3438 {
<> 144:ef7eb2e8f9f7 3439 /* Set the DMA Period elapsed callback */
<> 144:ef7eb2e8f9f7 3440 htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt;
<> 144:ef7eb2e8f9f7 3441
<> 144:ef7eb2e8f9f7 3442 /* Set the DMA error callback */
<> 144:ef7eb2e8f9f7 3443 htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
<> 144:ef7eb2e8f9f7 3444
<> 144:ef7eb2e8f9f7 3445 /* Enable the DMA Stream */
<> 144:ef7eb2e8f9f7 3446 HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, ((BurstLength) >> 8U) + 1U);
<> 144:ef7eb2e8f9f7 3447 }
<> 144:ef7eb2e8f9f7 3448 break;
<> 144:ef7eb2e8f9f7 3449 case TIM_DMA_CC3:
<> 144:ef7eb2e8f9f7 3450 {
<> 144:ef7eb2e8f9f7 3451 /* Set the DMA Period elapsed callback */
<> 144:ef7eb2e8f9f7 3452 htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt;
<> 144:ef7eb2e8f9f7 3453
<> 144:ef7eb2e8f9f7 3454 /* Set the DMA error callback */
<> 144:ef7eb2e8f9f7 3455 htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
<> 144:ef7eb2e8f9f7 3456
<> 144:ef7eb2e8f9f7 3457 /* Enable the DMA Stream */
<> 144:ef7eb2e8f9f7 3458 HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, ((BurstLength) >> 8U) + 1U);
<> 144:ef7eb2e8f9f7 3459 }
<> 144:ef7eb2e8f9f7 3460 break;
<> 144:ef7eb2e8f9f7 3461 case TIM_DMA_CC4:
<> 144:ef7eb2e8f9f7 3462 {
<> 144:ef7eb2e8f9f7 3463 /* Set the DMA Period elapsed callback */
<> 144:ef7eb2e8f9f7 3464 htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt;
<> 144:ef7eb2e8f9f7 3465
<> 144:ef7eb2e8f9f7 3466 /* Set the DMA error callback */
<> 144:ef7eb2e8f9f7 3467 htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
<> 144:ef7eb2e8f9f7 3468
<> 144:ef7eb2e8f9f7 3469 /* Enable the DMA Stream */
<> 144:ef7eb2e8f9f7 3470 HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, ((BurstLength) >> 8U) + 1U);
<> 144:ef7eb2e8f9f7 3471 }
<> 144:ef7eb2e8f9f7 3472 break;
<> 144:ef7eb2e8f9f7 3473 case TIM_DMA_COM:
<> 144:ef7eb2e8f9f7 3474 {
<> 144:ef7eb2e8f9f7 3475 /* Set the DMA Period elapsed callback */
<> 144:ef7eb2e8f9f7 3476 htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = TIMEx_DMACommutationCplt;
<> 144:ef7eb2e8f9f7 3477
<> 144:ef7eb2e8f9f7 3478 /* Set the DMA error callback */
<> 144:ef7eb2e8f9f7 3479 htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError ;
<> 144:ef7eb2e8f9f7 3480
<> 144:ef7eb2e8f9f7 3481 /* Enable the DMA Stream */
<> 144:ef7eb2e8f9f7 3482 HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_COMMUTATION], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, ((BurstLength) >> 8U) + 1U);
<> 144:ef7eb2e8f9f7 3483 }
<> 144:ef7eb2e8f9f7 3484 break;
<> 144:ef7eb2e8f9f7 3485 case TIM_DMA_TRIGGER:
<> 144:ef7eb2e8f9f7 3486 {
<> 144:ef7eb2e8f9f7 3487 /* Set the DMA Period elapsed callback */
<> 144:ef7eb2e8f9f7 3488 htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt;
<> 144:ef7eb2e8f9f7 3489
<> 144:ef7eb2e8f9f7 3490 /* Set the DMA error callback */
<> 144:ef7eb2e8f9f7 3491 htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = TIM_DMAError ;
<> 144:ef7eb2e8f9f7 3492
<> 144:ef7eb2e8f9f7 3493 /* Enable the DMA Stream */
<> 144:ef7eb2e8f9f7 3494 HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, ((BurstLength) >> 8U) + 1U);
<> 144:ef7eb2e8f9f7 3495 }
<> 144:ef7eb2e8f9f7 3496 break;
<> 144:ef7eb2e8f9f7 3497 default:
<> 144:ef7eb2e8f9f7 3498 break;
<> 144:ef7eb2e8f9f7 3499 }
<> 144:ef7eb2e8f9f7 3500 /* configure the DMA Burst Mode */
<> 144:ef7eb2e8f9f7 3501 htim->Instance->DCR = BurstBaseAddress | BurstLength;
<> 144:ef7eb2e8f9f7 3502
<> 144:ef7eb2e8f9f7 3503 /* Enable the TIM DMA Request */
<> 144:ef7eb2e8f9f7 3504 __HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc);
<> 144:ef7eb2e8f9f7 3505
<> 144:ef7eb2e8f9f7 3506 htim->State = HAL_TIM_STATE_READY;
<> 144:ef7eb2e8f9f7 3507
<> 144:ef7eb2e8f9f7 3508 /* Return function status */
<> 144:ef7eb2e8f9f7 3509 return HAL_OK;
<> 144:ef7eb2e8f9f7 3510 }
<> 144:ef7eb2e8f9f7 3511
<> 144:ef7eb2e8f9f7 3512 /**
<> 144:ef7eb2e8f9f7 3513 * @brief Stops the TIM DMA Burst mode
<> 144:ef7eb2e8f9f7 3514 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 3515 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 3516 * @param BurstRequestSrc: TIM DMA Request sources to disable
<> 144:ef7eb2e8f9f7 3517 * @retval HAL status
<> 144:ef7eb2e8f9f7 3518 */
<> 144:ef7eb2e8f9f7 3519 HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc)
<> 144:ef7eb2e8f9f7 3520 {
<> 144:ef7eb2e8f9f7 3521 /* Check the parameters */
<> 144:ef7eb2e8f9f7 3522 assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
<> 144:ef7eb2e8f9f7 3523
<> 144:ef7eb2e8f9f7 3524 /* Abort the DMA transfer (at least disable the DMA channel) */
<> 144:ef7eb2e8f9f7 3525 switch(BurstRequestSrc)
<> 144:ef7eb2e8f9f7 3526 {
<> 144:ef7eb2e8f9f7 3527 case TIM_DMA_UPDATE:
<> 144:ef7eb2e8f9f7 3528 {
<> 144:ef7eb2e8f9f7 3529 HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_UPDATE]);
<> 144:ef7eb2e8f9f7 3530 }
<> 144:ef7eb2e8f9f7 3531 break;
<> 144:ef7eb2e8f9f7 3532 case TIM_DMA_CC1:
<> 144:ef7eb2e8f9f7 3533 {
<> 144:ef7eb2e8f9f7 3534 HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_CC1]);
<> 144:ef7eb2e8f9f7 3535 }
<> 144:ef7eb2e8f9f7 3536 break;
<> 144:ef7eb2e8f9f7 3537 case TIM_DMA_CC2:
<> 144:ef7eb2e8f9f7 3538 {
<> 144:ef7eb2e8f9f7 3539 HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_CC2]);
<> 144:ef7eb2e8f9f7 3540 }
<> 144:ef7eb2e8f9f7 3541 break;
<> 144:ef7eb2e8f9f7 3542 case TIM_DMA_CC3:
<> 144:ef7eb2e8f9f7 3543 {
<> 144:ef7eb2e8f9f7 3544 HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_CC3]);
<> 144:ef7eb2e8f9f7 3545 }
<> 144:ef7eb2e8f9f7 3546 break;
<> 144:ef7eb2e8f9f7 3547 case TIM_DMA_CC4:
<> 144:ef7eb2e8f9f7 3548 {
<> 144:ef7eb2e8f9f7 3549 HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_CC4]);
<> 144:ef7eb2e8f9f7 3550 }
<> 144:ef7eb2e8f9f7 3551 break;
<> 144:ef7eb2e8f9f7 3552 case TIM_DMA_COM:
<> 144:ef7eb2e8f9f7 3553 {
<> 144:ef7eb2e8f9f7 3554 HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_COMMUTATION]);
<> 144:ef7eb2e8f9f7 3555 }
<> 144:ef7eb2e8f9f7 3556 break;
<> 144:ef7eb2e8f9f7 3557 case TIM_DMA_TRIGGER:
<> 144:ef7eb2e8f9f7 3558 {
<> 144:ef7eb2e8f9f7 3559 HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_TRIGGER]);
<> 144:ef7eb2e8f9f7 3560 }
<> 144:ef7eb2e8f9f7 3561 break;
<> 144:ef7eb2e8f9f7 3562 default:
<> 144:ef7eb2e8f9f7 3563 break;
<> 144:ef7eb2e8f9f7 3564 }
<> 144:ef7eb2e8f9f7 3565
<> 144:ef7eb2e8f9f7 3566 /* Disable the TIM Update DMA request */
<> 144:ef7eb2e8f9f7 3567 __HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc);
<> 144:ef7eb2e8f9f7 3568
<> 144:ef7eb2e8f9f7 3569 /* Return function status */
<> 144:ef7eb2e8f9f7 3570 return HAL_OK;
<> 144:ef7eb2e8f9f7 3571 }
<> 144:ef7eb2e8f9f7 3572
<> 144:ef7eb2e8f9f7 3573 /**
<> 144:ef7eb2e8f9f7 3574 * @brief Configure the DMA Burst to transfer Data from the TIM peripheral to the memory
<> 144:ef7eb2e8f9f7 3575 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 3576 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 3577 * @param BurstBaseAddress: TIM Base address from when the DMA will starts the Data read.
<> 144:ef7eb2e8f9f7 3578 * This parameters can be on of the following values:
<> 144:ef7eb2e8f9f7 3579 * @arg TIM_DMABASE_CR1
<> 144:ef7eb2e8f9f7 3580 * @arg TIM_DMABASE_CR2
<> 144:ef7eb2e8f9f7 3581 * @arg TIM_DMABASE_SMCR
<> 144:ef7eb2e8f9f7 3582 * @arg TIM_DMABASE_DIER
<> 144:ef7eb2e8f9f7 3583 * @arg TIM_DMABASE_SR
<> 144:ef7eb2e8f9f7 3584 * @arg TIM_DMABASE_EGR
<> 144:ef7eb2e8f9f7 3585 * @arg TIM_DMABASE_CCMR1
<> 144:ef7eb2e8f9f7 3586 * @arg TIM_DMABASE_CCMR2
<> 144:ef7eb2e8f9f7 3587 * @arg TIM_DMABASE_CCER
<> 144:ef7eb2e8f9f7 3588 * @arg TIM_DMABASE_CNT
<> 144:ef7eb2e8f9f7 3589 * @arg TIM_DMABASE_PSC
<> 144:ef7eb2e8f9f7 3590 * @arg TIM_DMABASE_ARR
<> 144:ef7eb2e8f9f7 3591 * @arg TIM_DMABASE_RCR
<> 144:ef7eb2e8f9f7 3592 * @arg TIM_DMABASE_CCR1
<> 144:ef7eb2e8f9f7 3593 * @arg TIM_DMABASE_CCR2
<> 144:ef7eb2e8f9f7 3594 * @arg TIM_DMABASE_CCR3
<> 144:ef7eb2e8f9f7 3595 * @arg TIM_DMABASE_CCR4
<> 144:ef7eb2e8f9f7 3596 * @arg TIM_DMABASE_BDTR
<> 144:ef7eb2e8f9f7 3597 * @arg TIM_DMABASE_DCR
<> 144:ef7eb2e8f9f7 3598 * @param BurstRequestSrc: TIM DMA Request sources.
<> 144:ef7eb2e8f9f7 3599 * This parameters can be on of the following values:
<> 144:ef7eb2e8f9f7 3600 * @arg TIM_DMA_UPDATE: TIM update Interrupt source
<> 144:ef7eb2e8f9f7 3601 * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
<> 144:ef7eb2e8f9f7 3602 * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
<> 144:ef7eb2e8f9f7 3603 * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
<> 144:ef7eb2e8f9f7 3604 * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
<> 144:ef7eb2e8f9f7 3605 * @arg TIM_DMA_COM: TIM Commutation DMA source
<> 144:ef7eb2e8f9f7 3606 * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source
<> 144:ef7eb2e8f9f7 3607 * @param BurstBuffer: The Buffer address.
<> 144:ef7eb2e8f9f7 3608 * @param BurstLength: DMA Burst length. This parameter can be one value
<> 144:ef7eb2e8f9f7 3609 * between TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS.
<> 144:ef7eb2e8f9f7 3610 * @retval HAL status
<> 144:ef7eb2e8f9f7 3611 */
<> 144:ef7eb2e8f9f7 3612 HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, uint32_t BurstRequestSrc,
<> 144:ef7eb2e8f9f7 3613 uint32_t *BurstBuffer, uint32_t BurstLength)
<> 144:ef7eb2e8f9f7 3614 {
<> 144:ef7eb2e8f9f7 3615 /* Check the parameters */
<> 144:ef7eb2e8f9f7 3616 assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 3617 assert_param(IS_TIM_DMA_BASE(BurstBaseAddress));
<> 144:ef7eb2e8f9f7 3618 assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
<> 144:ef7eb2e8f9f7 3619 assert_param(IS_TIM_DMA_LENGTH(BurstLength));
<> 144:ef7eb2e8f9f7 3620
<> 144:ef7eb2e8f9f7 3621 if((htim->State == HAL_TIM_STATE_BUSY))
<> 144:ef7eb2e8f9f7 3622 {
<> 144:ef7eb2e8f9f7 3623 return HAL_BUSY;
<> 144:ef7eb2e8f9f7 3624 }
<> 144:ef7eb2e8f9f7 3625 else if((htim->State == HAL_TIM_STATE_READY))
<> 144:ef7eb2e8f9f7 3626 {
AnnaBridge 167:e84263d55307 3627 if((BurstBuffer == 0U ) && (BurstLength > 0U))
<> 144:ef7eb2e8f9f7 3628 {
<> 144:ef7eb2e8f9f7 3629 return HAL_ERROR;
<> 144:ef7eb2e8f9f7 3630 }
<> 144:ef7eb2e8f9f7 3631 else
<> 144:ef7eb2e8f9f7 3632 {
<> 144:ef7eb2e8f9f7 3633 htim->State = HAL_TIM_STATE_BUSY;
<> 144:ef7eb2e8f9f7 3634 }
<> 144:ef7eb2e8f9f7 3635 }
<> 144:ef7eb2e8f9f7 3636 switch(BurstRequestSrc)
<> 144:ef7eb2e8f9f7 3637 {
<> 144:ef7eb2e8f9f7 3638 case TIM_DMA_UPDATE:
<> 144:ef7eb2e8f9f7 3639 {
<> 144:ef7eb2e8f9f7 3640 /* Set the DMA Period elapsed callback */
<> 144:ef7eb2e8f9f7 3641 htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt;
<> 144:ef7eb2e8f9f7 3642
<> 144:ef7eb2e8f9f7 3643 /* Set the DMA error callback */
<> 144:ef7eb2e8f9f7 3644 htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ;
<> 144:ef7eb2e8f9f7 3645
<> 144:ef7eb2e8f9f7 3646 /* Enable the DMA Stream */
<> 144:ef7eb2e8f9f7 3647 HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, ((BurstLength) >> 8U) + 1U);
<> 144:ef7eb2e8f9f7 3648 }
<> 144:ef7eb2e8f9f7 3649 break;
<> 144:ef7eb2e8f9f7 3650 case TIM_DMA_CC1:
<> 144:ef7eb2e8f9f7 3651 {
<> 144:ef7eb2e8f9f7 3652 /* Set the DMA Period elapsed callback */
<> 144:ef7eb2e8f9f7 3653 htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
<> 144:ef7eb2e8f9f7 3654
<> 144:ef7eb2e8f9f7 3655 /* Set the DMA error callback */
<> 144:ef7eb2e8f9f7 3656 htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
<> 144:ef7eb2e8f9f7 3657
<> 144:ef7eb2e8f9f7 3658 /* Enable the DMA Stream */
<> 144:ef7eb2e8f9f7 3659 HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, ((BurstLength) >> 8U) + 1U);
<> 144:ef7eb2e8f9f7 3660 }
<> 144:ef7eb2e8f9f7 3661 break;
<> 144:ef7eb2e8f9f7 3662 case TIM_DMA_CC2:
<> 144:ef7eb2e8f9f7 3663 {
<> 144:ef7eb2e8f9f7 3664 /* Set the DMA Period elapsed callback */
<> 144:ef7eb2e8f9f7 3665 htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
<> 144:ef7eb2e8f9f7 3666
<> 144:ef7eb2e8f9f7 3667 /* Set the DMA error callback */
<> 144:ef7eb2e8f9f7 3668 htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
<> 144:ef7eb2e8f9f7 3669
<> 144:ef7eb2e8f9f7 3670 /* Enable the DMA Stream */
<> 144:ef7eb2e8f9f7 3671 HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, ((BurstLength) >> 8U) + 1U);
<> 144:ef7eb2e8f9f7 3672 }
<> 144:ef7eb2e8f9f7 3673 break;
<> 144:ef7eb2e8f9f7 3674 case TIM_DMA_CC3:
<> 144:ef7eb2e8f9f7 3675 {
<> 144:ef7eb2e8f9f7 3676 /* Set the DMA Period elapsed callback */
<> 144:ef7eb2e8f9f7 3677 htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt;
<> 144:ef7eb2e8f9f7 3678
<> 144:ef7eb2e8f9f7 3679 /* Set the DMA error callback */
<> 144:ef7eb2e8f9f7 3680 htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
<> 144:ef7eb2e8f9f7 3681
<> 144:ef7eb2e8f9f7 3682 /* Enable the DMA Stream */
<> 144:ef7eb2e8f9f7 3683 HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, ((BurstLength) >> 8U) + 1U);
<> 144:ef7eb2e8f9f7 3684 }
<> 144:ef7eb2e8f9f7 3685 break;
<> 144:ef7eb2e8f9f7 3686 case TIM_DMA_CC4:
<> 144:ef7eb2e8f9f7 3687 {
<> 144:ef7eb2e8f9f7 3688 /* Set the DMA Period elapsed callback */
<> 144:ef7eb2e8f9f7 3689 htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt;
<> 144:ef7eb2e8f9f7 3690
<> 144:ef7eb2e8f9f7 3691 /* Set the DMA error callback */
<> 144:ef7eb2e8f9f7 3692 htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
<> 144:ef7eb2e8f9f7 3693
<> 144:ef7eb2e8f9f7 3694 /* Enable the DMA Stream */
<> 144:ef7eb2e8f9f7 3695 HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, ((BurstLength) >> 8U) + 1U);
<> 144:ef7eb2e8f9f7 3696 }
<> 144:ef7eb2e8f9f7 3697 break;
<> 144:ef7eb2e8f9f7 3698 case TIM_DMA_COM:
<> 144:ef7eb2e8f9f7 3699 {
<> 144:ef7eb2e8f9f7 3700 /* Set the DMA Period elapsed callback */
<> 144:ef7eb2e8f9f7 3701 htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = TIMEx_DMACommutationCplt;
<> 144:ef7eb2e8f9f7 3702
<> 144:ef7eb2e8f9f7 3703 /* Set the DMA error callback */
<> 144:ef7eb2e8f9f7 3704 htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError ;
<> 144:ef7eb2e8f9f7 3705
<> 144:ef7eb2e8f9f7 3706 /* Enable the DMA Stream */
<> 144:ef7eb2e8f9f7 3707 HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_COMMUTATION], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, ((BurstLength) >> 8U) + 1U);
<> 144:ef7eb2e8f9f7 3708 }
<> 144:ef7eb2e8f9f7 3709 break;
<> 144:ef7eb2e8f9f7 3710 case TIM_DMA_TRIGGER:
<> 144:ef7eb2e8f9f7 3711 {
<> 144:ef7eb2e8f9f7 3712 /* Set the DMA Period elapsed callback */
<> 144:ef7eb2e8f9f7 3713 htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt;
<> 144:ef7eb2e8f9f7 3714
<> 144:ef7eb2e8f9f7 3715 /* Set the DMA error callback */
<> 144:ef7eb2e8f9f7 3716 htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = TIM_DMAError ;
<> 144:ef7eb2e8f9f7 3717
<> 144:ef7eb2e8f9f7 3718 /* Enable the DMA Stream */
<> 144:ef7eb2e8f9f7 3719 HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, ((BurstLength) >> 8U) + 1U);
<> 144:ef7eb2e8f9f7 3720 }
<> 144:ef7eb2e8f9f7 3721 break;
<> 144:ef7eb2e8f9f7 3722 default:
<> 144:ef7eb2e8f9f7 3723 break;
<> 144:ef7eb2e8f9f7 3724 }
<> 144:ef7eb2e8f9f7 3725
<> 144:ef7eb2e8f9f7 3726 /* configure the DMA Burst Mode */
<> 144:ef7eb2e8f9f7 3727 htim->Instance->DCR = BurstBaseAddress | BurstLength;
<> 144:ef7eb2e8f9f7 3728
<> 144:ef7eb2e8f9f7 3729 /* Enable the TIM DMA Request */
<> 144:ef7eb2e8f9f7 3730 __HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc);
<> 144:ef7eb2e8f9f7 3731
<> 144:ef7eb2e8f9f7 3732 htim->State = HAL_TIM_STATE_READY;
<> 144:ef7eb2e8f9f7 3733
<> 144:ef7eb2e8f9f7 3734 /* Return function status */
<> 144:ef7eb2e8f9f7 3735 return HAL_OK;
<> 144:ef7eb2e8f9f7 3736 }
<> 144:ef7eb2e8f9f7 3737
<> 144:ef7eb2e8f9f7 3738 /**
<> 144:ef7eb2e8f9f7 3739 * @brief Stop the DMA burst reading
<> 144:ef7eb2e8f9f7 3740 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 3741 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 3742 * @param BurstRequestSrc: TIM DMA Request sources to disable.
<> 144:ef7eb2e8f9f7 3743 * @retval HAL status
<> 144:ef7eb2e8f9f7 3744 */
<> 144:ef7eb2e8f9f7 3745 HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc)
<> 144:ef7eb2e8f9f7 3746 {
<> 144:ef7eb2e8f9f7 3747 /* Check the parameters */
<> 144:ef7eb2e8f9f7 3748 assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
<> 144:ef7eb2e8f9f7 3749
<> 144:ef7eb2e8f9f7 3750 /* Abort the DMA transfer (at least disable the DMA channel) */
<> 144:ef7eb2e8f9f7 3751 switch(BurstRequestSrc)
<> 144:ef7eb2e8f9f7 3752 {
<> 144:ef7eb2e8f9f7 3753 case TIM_DMA_UPDATE:
<> 144:ef7eb2e8f9f7 3754 {
<> 144:ef7eb2e8f9f7 3755 HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_UPDATE]);
<> 144:ef7eb2e8f9f7 3756 }
<> 144:ef7eb2e8f9f7 3757 break;
<> 144:ef7eb2e8f9f7 3758 case TIM_DMA_CC1:
<> 144:ef7eb2e8f9f7 3759 {
<> 144:ef7eb2e8f9f7 3760 HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_CC1]);
<> 144:ef7eb2e8f9f7 3761 }
<> 144:ef7eb2e8f9f7 3762 break;
<> 144:ef7eb2e8f9f7 3763 case TIM_DMA_CC2:
<> 144:ef7eb2e8f9f7 3764 {
<> 144:ef7eb2e8f9f7 3765 HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_CC2]);
<> 144:ef7eb2e8f9f7 3766 }
<> 144:ef7eb2e8f9f7 3767 break;
<> 144:ef7eb2e8f9f7 3768 case TIM_DMA_CC3:
<> 144:ef7eb2e8f9f7 3769 {
<> 144:ef7eb2e8f9f7 3770 HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_CC3]);
<> 144:ef7eb2e8f9f7 3771 }
<> 144:ef7eb2e8f9f7 3772 break;
<> 144:ef7eb2e8f9f7 3773 case TIM_DMA_CC4:
<> 144:ef7eb2e8f9f7 3774 {
<> 144:ef7eb2e8f9f7 3775 HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_CC4]);
<> 144:ef7eb2e8f9f7 3776 }
<> 144:ef7eb2e8f9f7 3777 break;
<> 144:ef7eb2e8f9f7 3778 case TIM_DMA_COM:
<> 144:ef7eb2e8f9f7 3779 {
<> 144:ef7eb2e8f9f7 3780 HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_COMMUTATION]);
<> 144:ef7eb2e8f9f7 3781 }
<> 144:ef7eb2e8f9f7 3782 break;
<> 144:ef7eb2e8f9f7 3783 case TIM_DMA_TRIGGER:
<> 144:ef7eb2e8f9f7 3784 {
<> 144:ef7eb2e8f9f7 3785 HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_TRIGGER]);
<> 144:ef7eb2e8f9f7 3786 }
<> 144:ef7eb2e8f9f7 3787 break;
<> 144:ef7eb2e8f9f7 3788 default:
<> 144:ef7eb2e8f9f7 3789 break;
<> 144:ef7eb2e8f9f7 3790 }
<> 144:ef7eb2e8f9f7 3791
<> 144:ef7eb2e8f9f7 3792 /* Disable the TIM Update DMA request */
<> 144:ef7eb2e8f9f7 3793 __HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc);
<> 144:ef7eb2e8f9f7 3794
<> 144:ef7eb2e8f9f7 3795 /* Return function status */
<> 144:ef7eb2e8f9f7 3796 return HAL_OK;
<> 144:ef7eb2e8f9f7 3797 }
<> 144:ef7eb2e8f9f7 3798
<> 144:ef7eb2e8f9f7 3799 /**
<> 144:ef7eb2e8f9f7 3800 * @brief Generate a software event
<> 144:ef7eb2e8f9f7 3801 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 3802 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 3803 * @param EventSource: specifies the event source.
<> 144:ef7eb2e8f9f7 3804 * This parameter can be one of the following values:
<> 144:ef7eb2e8f9f7 3805 * @arg TIM_EVENTSOURCE_UPDATE: Timer update Event source
<> 144:ef7eb2e8f9f7 3806 * @arg TIM_EVENTSOURCE_CC1: Timer Capture Compare 1 Event source
<> 144:ef7eb2e8f9f7 3807 * @arg TIM_EVENTSOURCE_CC2: Timer Capture Compare 2 Event source
<> 144:ef7eb2e8f9f7 3808 * @arg TIM_EVENTSOURCE_CC3: Timer Capture Compare 3 Event source
<> 144:ef7eb2e8f9f7 3809 * @arg TIM_EVENTSOURCE_CC4: Timer Capture Compare 4 Event source
<> 144:ef7eb2e8f9f7 3810 * @arg TIM_EVENTSOURCE_COM: Timer COM event source
<> 144:ef7eb2e8f9f7 3811 * @arg TIM_EVENTSOURCE_TRIGGER: Timer Trigger Event source
<> 144:ef7eb2e8f9f7 3812 * @arg TIM_EVENTSOURCE_BREAK: Timer Break event source
<> 144:ef7eb2e8f9f7 3813 * @note TIM6 and TIM7 can only generate an update event.
<> 144:ef7eb2e8f9f7 3814 * @note TIM_EVENTSOURCE_COM and TIM_EVENTSOURCE_BREAK are used only with TIM1 and TIM8.
<> 144:ef7eb2e8f9f7 3815 * @retval HAL status
<> 144:ef7eb2e8f9f7 3816 */
<> 144:ef7eb2e8f9f7 3817
<> 144:ef7eb2e8f9f7 3818 HAL_StatusTypeDef HAL_TIM_GenerateEvent(TIM_HandleTypeDef *htim, uint32_t EventSource)
<> 144:ef7eb2e8f9f7 3819 {
<> 144:ef7eb2e8f9f7 3820 /* Check the parameters */
<> 144:ef7eb2e8f9f7 3821 assert_param(IS_TIM_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 3822 assert_param(IS_TIM_EVENT_SOURCE(EventSource));
<> 144:ef7eb2e8f9f7 3823
<> 144:ef7eb2e8f9f7 3824 /* Process Locked */
<> 144:ef7eb2e8f9f7 3825 __HAL_LOCK(htim);
<> 144:ef7eb2e8f9f7 3826
<> 144:ef7eb2e8f9f7 3827 /* Change the TIM state */
<> 144:ef7eb2e8f9f7 3828 htim->State = HAL_TIM_STATE_BUSY;
<> 144:ef7eb2e8f9f7 3829
<> 144:ef7eb2e8f9f7 3830 /* Set the event sources */
<> 144:ef7eb2e8f9f7 3831 htim->Instance->EGR = EventSource;
<> 144:ef7eb2e8f9f7 3832
<> 144:ef7eb2e8f9f7 3833 /* Change the TIM state */
<> 144:ef7eb2e8f9f7 3834 htim->State = HAL_TIM_STATE_READY;
<> 144:ef7eb2e8f9f7 3835
<> 144:ef7eb2e8f9f7 3836 __HAL_UNLOCK(htim);
<> 144:ef7eb2e8f9f7 3837
<> 144:ef7eb2e8f9f7 3838 /* Return function status */
<> 144:ef7eb2e8f9f7 3839 return HAL_OK;
<> 144:ef7eb2e8f9f7 3840 }
<> 144:ef7eb2e8f9f7 3841
<> 144:ef7eb2e8f9f7 3842 /**
<> 144:ef7eb2e8f9f7 3843 * @brief Configures the OCRef clear feature
<> 144:ef7eb2e8f9f7 3844 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 3845 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 3846 * @param sClearInputConfig: pointer to a TIM_ClearInputConfigTypeDef structure that
<> 144:ef7eb2e8f9f7 3847 * contains the OCREF clear feature and parameters for the TIM peripheral.
<> 144:ef7eb2e8f9f7 3848 * @param Channel: specifies the TIM Channel.
<> 144:ef7eb2e8f9f7 3849 * This parameter can be one of the following values:
<> 144:ef7eb2e8f9f7 3850 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
<> 144:ef7eb2e8f9f7 3851 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
<> 144:ef7eb2e8f9f7 3852 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
<> 144:ef7eb2e8f9f7 3853 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
<> 144:ef7eb2e8f9f7 3854 * @retval HAL status
<> 144:ef7eb2e8f9f7 3855 */
<> 144:ef7eb2e8f9f7 3856 HAL_StatusTypeDef HAL_TIM_ConfigOCrefClear(TIM_HandleTypeDef *htim, TIM_ClearInputConfigTypeDef * sClearInputConfig, uint32_t Channel)
<> 144:ef7eb2e8f9f7 3857 {
<> 144:ef7eb2e8f9f7 3858 /* Check the parameters */
<> 144:ef7eb2e8f9f7 3859 assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 3860 assert_param(IS_TIM_CHANNELS(Channel));
<> 144:ef7eb2e8f9f7 3861 assert_param(IS_TIM_CLEARINPUT_SOURCE(sClearInputConfig->ClearInputSource));
<> 144:ef7eb2e8f9f7 3862 assert_param(IS_TIM_CLEARINPUT_POLARITY(sClearInputConfig->ClearInputPolarity));
<> 144:ef7eb2e8f9f7 3863 assert_param(IS_TIM_CLEARINPUT_PRESCALER(sClearInputConfig->ClearInputPrescaler));
<> 144:ef7eb2e8f9f7 3864 assert_param(IS_TIM_CLEARINPUT_FILTER(sClearInputConfig->ClearInputFilter));
<> 144:ef7eb2e8f9f7 3865
<> 144:ef7eb2e8f9f7 3866 /* Process Locked */
<> 144:ef7eb2e8f9f7 3867 __HAL_LOCK(htim);
<> 144:ef7eb2e8f9f7 3868
<> 144:ef7eb2e8f9f7 3869 htim->State = HAL_TIM_STATE_BUSY;
<> 144:ef7eb2e8f9f7 3870
<> 144:ef7eb2e8f9f7 3871 if(sClearInputConfig->ClearInputSource == TIM_CLEARINPUTSOURCE_ETR)
<> 144:ef7eb2e8f9f7 3872 {
<> 144:ef7eb2e8f9f7 3873 TIM_ETR_SetConfig(htim->Instance,
<> 144:ef7eb2e8f9f7 3874 sClearInputConfig->ClearInputPrescaler,
<> 144:ef7eb2e8f9f7 3875 sClearInputConfig->ClearInputPolarity,
<> 144:ef7eb2e8f9f7 3876 sClearInputConfig->ClearInputFilter);
<> 144:ef7eb2e8f9f7 3877 }
<> 144:ef7eb2e8f9f7 3878
<> 144:ef7eb2e8f9f7 3879 switch (Channel)
<> 144:ef7eb2e8f9f7 3880 {
<> 144:ef7eb2e8f9f7 3881 case TIM_CHANNEL_1:
<> 144:ef7eb2e8f9f7 3882 {
<> 144:ef7eb2e8f9f7 3883 if(sClearInputConfig->ClearInputState != RESET)
<> 144:ef7eb2e8f9f7 3884 {
<> 144:ef7eb2e8f9f7 3885 /* Enable the Ocref clear feature for Channel 1 */
<> 144:ef7eb2e8f9f7 3886 htim->Instance->CCMR1 |= TIM_CCMR1_OC1CE;
<> 144:ef7eb2e8f9f7 3887 }
<> 144:ef7eb2e8f9f7 3888 else
<> 144:ef7eb2e8f9f7 3889 {
<> 144:ef7eb2e8f9f7 3890 /* Disable the Ocref clear feature for Channel 1 */
<> 144:ef7eb2e8f9f7 3891 htim->Instance->CCMR1 &= ~TIM_CCMR1_OC1CE;
<> 144:ef7eb2e8f9f7 3892 }
<> 144:ef7eb2e8f9f7 3893 }
<> 144:ef7eb2e8f9f7 3894 break;
<> 144:ef7eb2e8f9f7 3895 case TIM_CHANNEL_2:
<> 144:ef7eb2e8f9f7 3896 {
<> 144:ef7eb2e8f9f7 3897 assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 3898 if(sClearInputConfig->ClearInputState != RESET)
<> 144:ef7eb2e8f9f7 3899 {
<> 144:ef7eb2e8f9f7 3900 /* Enable the Ocref clear feature for Channel 2 */
<> 144:ef7eb2e8f9f7 3901 htim->Instance->CCMR1 |= TIM_CCMR1_OC2CE;
<> 144:ef7eb2e8f9f7 3902 }
<> 144:ef7eb2e8f9f7 3903 else
<> 144:ef7eb2e8f9f7 3904 {
<> 144:ef7eb2e8f9f7 3905 /* Disable the Ocref clear feature for Channel 2 */
<> 144:ef7eb2e8f9f7 3906 htim->Instance->CCMR1 &= ~TIM_CCMR1_OC2CE;
<> 144:ef7eb2e8f9f7 3907 }
<> 144:ef7eb2e8f9f7 3908 }
<> 144:ef7eb2e8f9f7 3909 break;
<> 144:ef7eb2e8f9f7 3910 case TIM_CHANNEL_3:
<> 144:ef7eb2e8f9f7 3911 {
<> 144:ef7eb2e8f9f7 3912 assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 3913 if(sClearInputConfig->ClearInputState != RESET)
<> 144:ef7eb2e8f9f7 3914 {
<> 144:ef7eb2e8f9f7 3915 /* Enable the Ocref clear feature for Channel 3 */
<> 144:ef7eb2e8f9f7 3916 htim->Instance->CCMR2 |= TIM_CCMR2_OC3CE;
<> 144:ef7eb2e8f9f7 3917 }
<> 144:ef7eb2e8f9f7 3918 else
<> 144:ef7eb2e8f9f7 3919 {
<> 144:ef7eb2e8f9f7 3920 /* Disable the Ocref clear feature for Channel 3 */
<> 144:ef7eb2e8f9f7 3921 htim->Instance->CCMR2 &= ~TIM_CCMR2_OC3CE;
<> 144:ef7eb2e8f9f7 3922 }
<> 144:ef7eb2e8f9f7 3923 }
<> 144:ef7eb2e8f9f7 3924 break;
<> 144:ef7eb2e8f9f7 3925 case TIM_CHANNEL_4:
<> 144:ef7eb2e8f9f7 3926 {
<> 144:ef7eb2e8f9f7 3927 assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 3928 if(sClearInputConfig->ClearInputState != RESET)
<> 144:ef7eb2e8f9f7 3929 {
<> 144:ef7eb2e8f9f7 3930 /* Enable the Ocref clear feature for Channel 4 */
<> 144:ef7eb2e8f9f7 3931 htim->Instance->CCMR2 |= TIM_CCMR2_OC4CE;
<> 144:ef7eb2e8f9f7 3932 }
<> 144:ef7eb2e8f9f7 3933 else
<> 144:ef7eb2e8f9f7 3934 {
<> 144:ef7eb2e8f9f7 3935 /* Disable the Ocref clear feature for Channel 4 */
<> 144:ef7eb2e8f9f7 3936 htim->Instance->CCMR2 &= ~TIM_CCMR2_OC4CE;
<> 144:ef7eb2e8f9f7 3937 }
<> 144:ef7eb2e8f9f7 3938 }
<> 144:ef7eb2e8f9f7 3939 break;
<> 144:ef7eb2e8f9f7 3940 default:
<> 144:ef7eb2e8f9f7 3941 break;
<> 144:ef7eb2e8f9f7 3942 }
<> 144:ef7eb2e8f9f7 3943
<> 144:ef7eb2e8f9f7 3944 htim->State = HAL_TIM_STATE_READY;
<> 144:ef7eb2e8f9f7 3945
<> 144:ef7eb2e8f9f7 3946 __HAL_UNLOCK(htim);
<> 144:ef7eb2e8f9f7 3947
<> 144:ef7eb2e8f9f7 3948 return HAL_OK;
<> 144:ef7eb2e8f9f7 3949 }
<> 144:ef7eb2e8f9f7 3950
<> 144:ef7eb2e8f9f7 3951 /**
<> 144:ef7eb2e8f9f7 3952 * @brief Configures the clock source to be used
<> 144:ef7eb2e8f9f7 3953 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 3954 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 3955 * @param sClockSourceConfig: pointer to a TIM_ClockConfigTypeDef structure that
<> 144:ef7eb2e8f9f7 3956 * contains the clock source information for the TIM peripheral.
<> 144:ef7eb2e8f9f7 3957 * @retval HAL status
<> 144:ef7eb2e8f9f7 3958 */
<> 144:ef7eb2e8f9f7 3959 HAL_StatusTypeDef HAL_TIM_ConfigClockSource(TIM_HandleTypeDef *htim, TIM_ClockConfigTypeDef * sClockSourceConfig)
<> 144:ef7eb2e8f9f7 3960 {
<> 144:ef7eb2e8f9f7 3961 uint32_t tmpsmcr = 0U;
<> 144:ef7eb2e8f9f7 3962
<> 144:ef7eb2e8f9f7 3963 /* Process Locked */
<> 144:ef7eb2e8f9f7 3964 __HAL_LOCK(htim);
<> 144:ef7eb2e8f9f7 3965
<> 144:ef7eb2e8f9f7 3966 htim->State = HAL_TIM_STATE_BUSY;
<> 144:ef7eb2e8f9f7 3967
<> 144:ef7eb2e8f9f7 3968 /* Check the parameters */
<> 144:ef7eb2e8f9f7 3969 assert_param(IS_TIM_CLOCKSOURCE(sClockSourceConfig->ClockSource));
<> 144:ef7eb2e8f9f7 3970
<> 144:ef7eb2e8f9f7 3971 /* Reset the SMS, TS, ECE, ETPS and ETRF bits */
<> 144:ef7eb2e8f9f7 3972 tmpsmcr = htim->Instance->SMCR;
<> 144:ef7eb2e8f9f7 3973 tmpsmcr &= ~(TIM_SMCR_SMS | TIM_SMCR_TS);
<> 144:ef7eb2e8f9f7 3974 tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP);
<> 144:ef7eb2e8f9f7 3975 htim->Instance->SMCR = tmpsmcr;
<> 144:ef7eb2e8f9f7 3976
<> 144:ef7eb2e8f9f7 3977 switch (sClockSourceConfig->ClockSource)
<> 144:ef7eb2e8f9f7 3978 {
<> 144:ef7eb2e8f9f7 3979 case TIM_CLOCKSOURCE_INTERNAL:
<> 144:ef7eb2e8f9f7 3980 {
<> 144:ef7eb2e8f9f7 3981 assert_param(IS_TIM_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 3982
<> 144:ef7eb2e8f9f7 3983 /* Disable slave mode to clock the prescaler directly with the internal clock */
<> 144:ef7eb2e8f9f7 3984 htim->Instance->SMCR &= ~TIM_SMCR_SMS;
<> 144:ef7eb2e8f9f7 3985 }
<> 144:ef7eb2e8f9f7 3986 break;
<> 144:ef7eb2e8f9f7 3987
<> 144:ef7eb2e8f9f7 3988 case TIM_CLOCKSOURCE_ETRMODE1:
<> 144:ef7eb2e8f9f7 3989 {
<> 144:ef7eb2e8f9f7 3990 assert_param(IS_TIM_ETR_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 3991
<> 144:ef7eb2e8f9f7 3992 assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
<> 144:ef7eb2e8f9f7 3993 assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler));
<> 144:ef7eb2e8f9f7 3994 assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
<> 144:ef7eb2e8f9f7 3995
<> 144:ef7eb2e8f9f7 3996 /* Configure the ETR Clock source */
<> 144:ef7eb2e8f9f7 3997 TIM_ETR_SetConfig(htim->Instance,
<> 144:ef7eb2e8f9f7 3998 sClockSourceConfig->ClockPrescaler,
<> 144:ef7eb2e8f9f7 3999 sClockSourceConfig->ClockPolarity,
<> 144:ef7eb2e8f9f7 4000 sClockSourceConfig->ClockFilter);
<> 144:ef7eb2e8f9f7 4001 /* Get the TIMx SMCR register value */
<> 144:ef7eb2e8f9f7 4002 tmpsmcr = htim->Instance->SMCR;
<> 144:ef7eb2e8f9f7 4003 /* Reset the SMS and TS Bits */
<> 144:ef7eb2e8f9f7 4004 tmpsmcr &= ~(TIM_SMCR_SMS | TIM_SMCR_TS);
<> 144:ef7eb2e8f9f7 4005 /* Select the External clock mode1 and the ETRF trigger */
<> 144:ef7eb2e8f9f7 4006 tmpsmcr |= (TIM_SLAVEMODE_EXTERNAL1 | TIM_CLOCKSOURCE_ETRMODE1);
<> 144:ef7eb2e8f9f7 4007 /* Write to TIMx SMCR */
<> 144:ef7eb2e8f9f7 4008 htim->Instance->SMCR = tmpsmcr;
<> 144:ef7eb2e8f9f7 4009 }
<> 144:ef7eb2e8f9f7 4010 break;
<> 144:ef7eb2e8f9f7 4011
<> 144:ef7eb2e8f9f7 4012 case TIM_CLOCKSOURCE_ETRMODE2:
<> 144:ef7eb2e8f9f7 4013 {
<> 144:ef7eb2e8f9f7 4014 assert_param(IS_TIM_ETR_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 4015
<> 144:ef7eb2e8f9f7 4016 assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
<> 144:ef7eb2e8f9f7 4017 assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler));
<> 144:ef7eb2e8f9f7 4018 assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
<> 144:ef7eb2e8f9f7 4019
<> 144:ef7eb2e8f9f7 4020 /* Configure the ETR Clock source */
<> 144:ef7eb2e8f9f7 4021 TIM_ETR_SetConfig(htim->Instance,
<> 144:ef7eb2e8f9f7 4022 sClockSourceConfig->ClockPrescaler,
<> 144:ef7eb2e8f9f7 4023 sClockSourceConfig->ClockPolarity,
<> 144:ef7eb2e8f9f7 4024 sClockSourceConfig->ClockFilter);
<> 144:ef7eb2e8f9f7 4025 /* Enable the External clock mode2 */
<> 144:ef7eb2e8f9f7 4026 htim->Instance->SMCR |= TIM_SMCR_ECE;
<> 144:ef7eb2e8f9f7 4027 }
<> 144:ef7eb2e8f9f7 4028 break;
<> 144:ef7eb2e8f9f7 4029
<> 144:ef7eb2e8f9f7 4030 case TIM_CLOCKSOURCE_TI1:
<> 144:ef7eb2e8f9f7 4031 {
<> 144:ef7eb2e8f9f7 4032 assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 4033
<> 144:ef7eb2e8f9f7 4034 /* Check TI1 input conditioning related parameters */
<> 144:ef7eb2e8f9f7 4035 assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
<> 144:ef7eb2e8f9f7 4036 assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
<> 144:ef7eb2e8f9f7 4037
<> 144:ef7eb2e8f9f7 4038 TIM_TI1_ConfigInputStage(htim->Instance,
<> 144:ef7eb2e8f9f7 4039 sClockSourceConfig->ClockPolarity,
<> 144:ef7eb2e8f9f7 4040 sClockSourceConfig->ClockFilter);
<> 144:ef7eb2e8f9f7 4041 TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1);
<> 144:ef7eb2e8f9f7 4042 }
<> 144:ef7eb2e8f9f7 4043 break;
<> 144:ef7eb2e8f9f7 4044 case TIM_CLOCKSOURCE_TI2:
<> 144:ef7eb2e8f9f7 4045 {
<> 144:ef7eb2e8f9f7 4046 assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 4047
<> 144:ef7eb2e8f9f7 4048 /* Check TI1 input conditioning related parameters */
<> 144:ef7eb2e8f9f7 4049 assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
<> 144:ef7eb2e8f9f7 4050 assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
<> 144:ef7eb2e8f9f7 4051
<> 144:ef7eb2e8f9f7 4052 TIM_TI2_ConfigInputStage(htim->Instance,
<> 144:ef7eb2e8f9f7 4053 sClockSourceConfig->ClockPolarity,
<> 144:ef7eb2e8f9f7 4054 sClockSourceConfig->ClockFilter);
<> 144:ef7eb2e8f9f7 4055 TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI2);
<> 144:ef7eb2e8f9f7 4056 }
<> 144:ef7eb2e8f9f7 4057 break;
<> 144:ef7eb2e8f9f7 4058 case TIM_CLOCKSOURCE_TI1ED:
<> 144:ef7eb2e8f9f7 4059 {
<> 144:ef7eb2e8f9f7 4060 assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 4061
<> 144:ef7eb2e8f9f7 4062 /* Check TI1 input conditioning related parameters */
<> 144:ef7eb2e8f9f7 4063 assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
<> 144:ef7eb2e8f9f7 4064 assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
<> 144:ef7eb2e8f9f7 4065
<> 144:ef7eb2e8f9f7 4066 TIM_TI1_ConfigInputStage(htim->Instance,
<> 144:ef7eb2e8f9f7 4067 sClockSourceConfig->ClockPolarity,
<> 144:ef7eb2e8f9f7 4068 sClockSourceConfig->ClockFilter);
<> 144:ef7eb2e8f9f7 4069 TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1ED);
<> 144:ef7eb2e8f9f7 4070 }
<> 144:ef7eb2e8f9f7 4071 break;
<> 144:ef7eb2e8f9f7 4072 case TIM_CLOCKSOURCE_ITR0:
<> 144:ef7eb2e8f9f7 4073 {
<> 144:ef7eb2e8f9f7 4074 assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 4075 TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_ITR0);
<> 144:ef7eb2e8f9f7 4076 }
<> 144:ef7eb2e8f9f7 4077 break;
<> 144:ef7eb2e8f9f7 4078 case TIM_CLOCKSOURCE_ITR1:
<> 144:ef7eb2e8f9f7 4079 {
<> 144:ef7eb2e8f9f7 4080 assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 4081 TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_ITR1);
<> 144:ef7eb2e8f9f7 4082 }
<> 144:ef7eb2e8f9f7 4083 break;
<> 144:ef7eb2e8f9f7 4084 case TIM_CLOCKSOURCE_ITR2:
<> 144:ef7eb2e8f9f7 4085 {
<> 144:ef7eb2e8f9f7 4086 assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 4087 TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_ITR2);
<> 144:ef7eb2e8f9f7 4088 }
<> 144:ef7eb2e8f9f7 4089 break;
<> 144:ef7eb2e8f9f7 4090 case TIM_CLOCKSOURCE_ITR3:
<> 144:ef7eb2e8f9f7 4091 {
<> 144:ef7eb2e8f9f7 4092 assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 4093 TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_ITR3);
<> 144:ef7eb2e8f9f7 4094 }
<> 144:ef7eb2e8f9f7 4095 break;
<> 144:ef7eb2e8f9f7 4096
<> 144:ef7eb2e8f9f7 4097 default:
<> 144:ef7eb2e8f9f7 4098 break;
<> 144:ef7eb2e8f9f7 4099 }
<> 144:ef7eb2e8f9f7 4100 htim->State = HAL_TIM_STATE_READY;
<> 144:ef7eb2e8f9f7 4101
<> 144:ef7eb2e8f9f7 4102 __HAL_UNLOCK(htim);
<> 144:ef7eb2e8f9f7 4103
<> 144:ef7eb2e8f9f7 4104 return HAL_OK;
<> 144:ef7eb2e8f9f7 4105 }
<> 144:ef7eb2e8f9f7 4106
<> 144:ef7eb2e8f9f7 4107 /**
<> 144:ef7eb2e8f9f7 4108 * @brief Selects the signal connected to the TI1 input: direct from CH1_input
<> 144:ef7eb2e8f9f7 4109 * or a XOR combination between CH1_input, CH2_input & CH3_input
<> 144:ef7eb2e8f9f7 4110 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 4111 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 4112 * @param TI1_Selection: Indicate whether or not channel 1 is connected to the
<> 144:ef7eb2e8f9f7 4113 * output of a XOR gate.
<> 144:ef7eb2e8f9f7 4114 * This parameter can be one of the following values:
<> 144:ef7eb2e8f9f7 4115 * @arg TIM_TI1SELECTION_CH1: The TIMx_CH1 pin is connected to TI1 input
<> 144:ef7eb2e8f9f7 4116 * @arg TIM_TI1SELECTION_XORCOMBINATION: The TIMx_CH1, CH2 and CH3
<> 144:ef7eb2e8f9f7 4117 * pins are connected to the TI1 input (XOR combination)
<> 144:ef7eb2e8f9f7 4118 * @retval HAL status
<> 144:ef7eb2e8f9f7 4119 */
<> 144:ef7eb2e8f9f7 4120 HAL_StatusTypeDef HAL_TIM_ConfigTI1Input(TIM_HandleTypeDef *htim, uint32_t TI1_Selection)
<> 144:ef7eb2e8f9f7 4121 {
<> 144:ef7eb2e8f9f7 4122 uint32_t tmpcr2 = 0U;
<> 144:ef7eb2e8f9f7 4123
<> 144:ef7eb2e8f9f7 4124 /* Check the parameters */
<> 144:ef7eb2e8f9f7 4125 assert_param(IS_TIM_XOR_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 4126 assert_param(IS_TIM_TI1SELECTION(TI1_Selection));
<> 144:ef7eb2e8f9f7 4127
<> 144:ef7eb2e8f9f7 4128 /* Get the TIMx CR2 register value */
<> 144:ef7eb2e8f9f7 4129 tmpcr2 = htim->Instance->CR2;
<> 144:ef7eb2e8f9f7 4130
<> 144:ef7eb2e8f9f7 4131 /* Reset the TI1 selection */
<> 144:ef7eb2e8f9f7 4132 tmpcr2 &= ~TIM_CR2_TI1S;
<> 144:ef7eb2e8f9f7 4133
<> 144:ef7eb2e8f9f7 4134 /* Set the TI1 selection */
<> 144:ef7eb2e8f9f7 4135 tmpcr2 |= TI1_Selection;
<> 144:ef7eb2e8f9f7 4136
<> 144:ef7eb2e8f9f7 4137 /* Write to TIMxCR2 */
<> 144:ef7eb2e8f9f7 4138 htim->Instance->CR2 = tmpcr2;
<> 144:ef7eb2e8f9f7 4139
<> 144:ef7eb2e8f9f7 4140 return HAL_OK;
<> 144:ef7eb2e8f9f7 4141 }
<> 144:ef7eb2e8f9f7 4142
<> 144:ef7eb2e8f9f7 4143 /**
<> 144:ef7eb2e8f9f7 4144 * @brief Configures the TIM in Slave mode
<> 144:ef7eb2e8f9f7 4145 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 4146 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 4147 * @param sSlaveConfig: pointer to a TIM_SlaveConfigTypeDef structure that
<> 144:ef7eb2e8f9f7 4148 * contains the selected trigger (internal trigger input, filtered
<> 144:ef7eb2e8f9f7 4149 * timer input or external trigger input) and the ) and the Slave
<> 144:ef7eb2e8f9f7 4150 * mode (Disable, Reset, Gated, Trigger, External clock mode 1).
<> 144:ef7eb2e8f9f7 4151 * @retval HAL status
<> 144:ef7eb2e8f9f7 4152 */
<> 144:ef7eb2e8f9f7 4153 HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchronization(TIM_HandleTypeDef *htim, TIM_SlaveConfigTypeDef * sSlaveConfig)
<> 144:ef7eb2e8f9f7 4154 {
<> 144:ef7eb2e8f9f7 4155 /* Check the parameters */
<> 144:ef7eb2e8f9f7 4156 assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 4157 assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode));
<> 144:ef7eb2e8f9f7 4158 assert_param(IS_TIM_TRIGGER_SELECTION(sSlaveConfig->InputTrigger));
<> 144:ef7eb2e8f9f7 4159
<> 144:ef7eb2e8f9f7 4160 __HAL_LOCK(htim);
<> 144:ef7eb2e8f9f7 4161
<> 144:ef7eb2e8f9f7 4162 htim->State = HAL_TIM_STATE_BUSY;
<> 144:ef7eb2e8f9f7 4163
<> 144:ef7eb2e8f9f7 4164 TIM_SlaveTimer_SetConfig(htim, sSlaveConfig);
<> 144:ef7eb2e8f9f7 4165
<> 144:ef7eb2e8f9f7 4166 /* Disable Trigger Interrupt */
<> 144:ef7eb2e8f9f7 4167 __HAL_TIM_DISABLE_IT(htim, TIM_IT_TRIGGER);
<> 144:ef7eb2e8f9f7 4168
<> 144:ef7eb2e8f9f7 4169 /* Disable Trigger DMA request */
<> 144:ef7eb2e8f9f7 4170 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_TRIGGER);
<> 144:ef7eb2e8f9f7 4171
<> 144:ef7eb2e8f9f7 4172 htim->State = HAL_TIM_STATE_READY;
<> 144:ef7eb2e8f9f7 4173
<> 144:ef7eb2e8f9f7 4174 __HAL_UNLOCK(htim);
<> 144:ef7eb2e8f9f7 4175
<> 144:ef7eb2e8f9f7 4176 return HAL_OK;
<> 144:ef7eb2e8f9f7 4177 }
<> 144:ef7eb2e8f9f7 4178
<> 144:ef7eb2e8f9f7 4179 /**
<> 144:ef7eb2e8f9f7 4180 * @brief Configures the TIM in Slave mode in interrupt mode
<> 144:ef7eb2e8f9f7 4181 * @param htim: TIM handle.
<> 144:ef7eb2e8f9f7 4182 * @param sSlaveConfig: pointer to a TIM_SlaveConfigTypeDef structure that
<> 144:ef7eb2e8f9f7 4183 * contains the selected trigger (internal trigger input, filtered
<> 144:ef7eb2e8f9f7 4184 * timer input or external trigger input) and the ) and the Slave
<> 144:ef7eb2e8f9f7 4185 * mode (Disable, Reset, Gated, Trigger, External clock mode 1).
<> 144:ef7eb2e8f9f7 4186 * @retval HAL status
<> 144:ef7eb2e8f9f7 4187 */
<> 144:ef7eb2e8f9f7 4188 HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchronization_IT(TIM_HandleTypeDef *htim,
<> 144:ef7eb2e8f9f7 4189 TIM_SlaveConfigTypeDef * sSlaveConfig)
<> 144:ef7eb2e8f9f7 4190 {
<> 144:ef7eb2e8f9f7 4191 /* Check the parameters */
<> 144:ef7eb2e8f9f7 4192 assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 4193 assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode));
<> 144:ef7eb2e8f9f7 4194 assert_param(IS_TIM_TRIGGER_SELECTION(sSlaveConfig->InputTrigger));
<> 144:ef7eb2e8f9f7 4195
<> 144:ef7eb2e8f9f7 4196 __HAL_LOCK(htim);
<> 144:ef7eb2e8f9f7 4197
<> 144:ef7eb2e8f9f7 4198 htim->State = HAL_TIM_STATE_BUSY;
<> 144:ef7eb2e8f9f7 4199
<> 144:ef7eb2e8f9f7 4200 TIM_SlaveTimer_SetConfig(htim, sSlaveConfig);
<> 144:ef7eb2e8f9f7 4201
<> 144:ef7eb2e8f9f7 4202 /* Enable Trigger Interrupt */
<> 144:ef7eb2e8f9f7 4203 __HAL_TIM_ENABLE_IT(htim, TIM_IT_TRIGGER);
<> 144:ef7eb2e8f9f7 4204
<> 144:ef7eb2e8f9f7 4205 /* Disable Trigger DMA request */
<> 144:ef7eb2e8f9f7 4206 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_TRIGGER);
<> 144:ef7eb2e8f9f7 4207
<> 144:ef7eb2e8f9f7 4208 htim->State = HAL_TIM_STATE_READY;
<> 144:ef7eb2e8f9f7 4209
<> 144:ef7eb2e8f9f7 4210 __HAL_UNLOCK(htim);
<> 144:ef7eb2e8f9f7 4211
<> 144:ef7eb2e8f9f7 4212 return HAL_OK;
<> 144:ef7eb2e8f9f7 4213 }
<> 144:ef7eb2e8f9f7 4214
<> 144:ef7eb2e8f9f7 4215 /**
<> 144:ef7eb2e8f9f7 4216 * @brief Read the captured value from Capture Compare unit
<> 144:ef7eb2e8f9f7 4217 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 4218 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 4219 * @param Channel: TIM Channels to be enabled.
<> 144:ef7eb2e8f9f7 4220 * This parameter can be one of the following values:
<> 144:ef7eb2e8f9f7 4221 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
<> 144:ef7eb2e8f9f7 4222 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
<> 144:ef7eb2e8f9f7 4223 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
<> 144:ef7eb2e8f9f7 4224 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
<> 144:ef7eb2e8f9f7 4225 * @retval Captured value
<> 144:ef7eb2e8f9f7 4226 */
<> 144:ef7eb2e8f9f7 4227 uint32_t HAL_TIM_ReadCapturedValue(TIM_HandleTypeDef *htim, uint32_t Channel)
<> 144:ef7eb2e8f9f7 4228 {
<> 144:ef7eb2e8f9f7 4229 uint32_t tmpreg = 0U;
<> 144:ef7eb2e8f9f7 4230
<> 144:ef7eb2e8f9f7 4231 __HAL_LOCK(htim);
<> 144:ef7eb2e8f9f7 4232
<> 144:ef7eb2e8f9f7 4233 switch (Channel)
<> 144:ef7eb2e8f9f7 4234 {
<> 144:ef7eb2e8f9f7 4235 case TIM_CHANNEL_1:
<> 144:ef7eb2e8f9f7 4236 {
<> 144:ef7eb2e8f9f7 4237 /* Check the parameters */
<> 144:ef7eb2e8f9f7 4238 assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 4239
<> 144:ef7eb2e8f9f7 4240 /* Return the capture 1 value */
<> 144:ef7eb2e8f9f7 4241 tmpreg = htim->Instance->CCR1;
<> 144:ef7eb2e8f9f7 4242
<> 144:ef7eb2e8f9f7 4243 break;
<> 144:ef7eb2e8f9f7 4244 }
<> 144:ef7eb2e8f9f7 4245 case TIM_CHANNEL_2:
<> 144:ef7eb2e8f9f7 4246 {
<> 144:ef7eb2e8f9f7 4247 /* Check the parameters */
<> 144:ef7eb2e8f9f7 4248 assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 4249
<> 144:ef7eb2e8f9f7 4250 /* Return the capture 2 value */
<> 144:ef7eb2e8f9f7 4251 tmpreg = htim->Instance->CCR2;
<> 144:ef7eb2e8f9f7 4252
<> 144:ef7eb2e8f9f7 4253 break;
<> 144:ef7eb2e8f9f7 4254 }
<> 144:ef7eb2e8f9f7 4255
<> 144:ef7eb2e8f9f7 4256 case TIM_CHANNEL_3:
<> 144:ef7eb2e8f9f7 4257 {
<> 144:ef7eb2e8f9f7 4258 /* Check the parameters */
<> 144:ef7eb2e8f9f7 4259 assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 4260
<> 144:ef7eb2e8f9f7 4261 /* Return the capture 3 value */
<> 144:ef7eb2e8f9f7 4262 tmpreg = htim->Instance->CCR3;
<> 144:ef7eb2e8f9f7 4263
<> 144:ef7eb2e8f9f7 4264 break;
<> 144:ef7eb2e8f9f7 4265 }
<> 144:ef7eb2e8f9f7 4266
<> 144:ef7eb2e8f9f7 4267 case TIM_CHANNEL_4:
<> 144:ef7eb2e8f9f7 4268 {
<> 144:ef7eb2e8f9f7 4269 /* Check the parameters */
<> 144:ef7eb2e8f9f7 4270 assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 4271
<> 144:ef7eb2e8f9f7 4272 /* Return the capture 4 value */
<> 144:ef7eb2e8f9f7 4273 tmpreg = htim->Instance->CCR4;
<> 144:ef7eb2e8f9f7 4274
<> 144:ef7eb2e8f9f7 4275 break;
<> 144:ef7eb2e8f9f7 4276 }
<> 144:ef7eb2e8f9f7 4277
<> 144:ef7eb2e8f9f7 4278 default:
<> 144:ef7eb2e8f9f7 4279 break;
<> 144:ef7eb2e8f9f7 4280 }
<> 144:ef7eb2e8f9f7 4281
<> 144:ef7eb2e8f9f7 4282 __HAL_UNLOCK(htim);
<> 144:ef7eb2e8f9f7 4283 return tmpreg;
<> 144:ef7eb2e8f9f7 4284 }
<> 144:ef7eb2e8f9f7 4285 /**
<> 144:ef7eb2e8f9f7 4286 * @}
<> 144:ef7eb2e8f9f7 4287 */
<> 144:ef7eb2e8f9f7 4288
<> 144:ef7eb2e8f9f7 4289 /** @defgroup TIM_Exported_Functions_Group9 TIM Callbacks functions
<> 144:ef7eb2e8f9f7 4290 * @brief TIM Callbacks functions
<> 144:ef7eb2e8f9f7 4291 *
<> 144:ef7eb2e8f9f7 4292 @verbatim
<> 144:ef7eb2e8f9f7 4293 ==============================================================================
<> 144:ef7eb2e8f9f7 4294 ##### TIM Callbacks functions #####
<> 144:ef7eb2e8f9f7 4295 ==============================================================================
<> 144:ef7eb2e8f9f7 4296 [..]
<> 144:ef7eb2e8f9f7 4297 This section provides TIM callback functions:
<> 144:ef7eb2e8f9f7 4298 (+) Timer Period elapsed callback
<> 144:ef7eb2e8f9f7 4299 (+) Timer Output Compare callback
<> 144:ef7eb2e8f9f7 4300 (+) Timer Input capture callback
<> 144:ef7eb2e8f9f7 4301 (+) Timer Trigger callback
<> 144:ef7eb2e8f9f7 4302 (+) Timer Error callback
<> 144:ef7eb2e8f9f7 4303
<> 144:ef7eb2e8f9f7 4304 @endverbatim
<> 144:ef7eb2e8f9f7 4305 * @{
<> 144:ef7eb2e8f9f7 4306 */
<> 144:ef7eb2e8f9f7 4307
<> 144:ef7eb2e8f9f7 4308 /**
<> 144:ef7eb2e8f9f7 4309 * @brief Period elapsed callback in non blocking mode
<> 144:ef7eb2e8f9f7 4310 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 4311 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 4312 * @retval None
<> 144:ef7eb2e8f9f7 4313 */
<> 144:ef7eb2e8f9f7 4314 __weak void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
<> 144:ef7eb2e8f9f7 4315 {
<> 144:ef7eb2e8f9f7 4316 /* Prevent unused argument(s) compilation warning */
<> 144:ef7eb2e8f9f7 4317 UNUSED(htim);
<> 144:ef7eb2e8f9f7 4318 /* NOTE : This function Should not be modified, when the callback is needed,
<> 144:ef7eb2e8f9f7 4319 the __HAL_TIM_PeriodElapsedCallback could be implemented in the user file
<> 144:ef7eb2e8f9f7 4320 */
<> 144:ef7eb2e8f9f7 4321 }
<> 144:ef7eb2e8f9f7 4322
<> 144:ef7eb2e8f9f7 4323 /**
<> 144:ef7eb2e8f9f7 4324 * @brief Output Compare callback in non blocking mode
<> 144:ef7eb2e8f9f7 4325 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 4326 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 4327 * @retval None
<> 144:ef7eb2e8f9f7 4328 */
<> 144:ef7eb2e8f9f7 4329 __weak void HAL_TIM_OC_DelayElapsedCallback(TIM_HandleTypeDef *htim)
<> 144:ef7eb2e8f9f7 4330 {
<> 144:ef7eb2e8f9f7 4331 /* Prevent unused argument(s) compilation warning */
<> 144:ef7eb2e8f9f7 4332 UNUSED(htim);
<> 144:ef7eb2e8f9f7 4333 /* NOTE : This function Should not be modified, when the callback is needed,
<> 144:ef7eb2e8f9f7 4334 the __HAL_TIM_OC_DelayElapsedCallback could be implemented in the user file
<> 144:ef7eb2e8f9f7 4335 */
<> 144:ef7eb2e8f9f7 4336 }
<> 144:ef7eb2e8f9f7 4337
<> 144:ef7eb2e8f9f7 4338 /**
<> 144:ef7eb2e8f9f7 4339 * @brief Input Capture callback in non blocking mode
<> 144:ef7eb2e8f9f7 4340 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 4341 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 4342 * @retval None
<> 144:ef7eb2e8f9f7 4343 */
<> 144:ef7eb2e8f9f7 4344 __weak void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim)
<> 144:ef7eb2e8f9f7 4345 {
<> 144:ef7eb2e8f9f7 4346 /* Prevent unused argument(s) compilation warning */
<> 144:ef7eb2e8f9f7 4347 UNUSED(htim);
<> 144:ef7eb2e8f9f7 4348 /* NOTE : This function Should not be modified, when the callback is needed,
<> 144:ef7eb2e8f9f7 4349 the __HAL_TIM_IC_CaptureCallback could be implemented in the user file
<> 144:ef7eb2e8f9f7 4350 */
<> 144:ef7eb2e8f9f7 4351 }
<> 144:ef7eb2e8f9f7 4352
<> 144:ef7eb2e8f9f7 4353 /**
<> 144:ef7eb2e8f9f7 4354 * @brief PWM Pulse finished callback in non blocking mode
<> 144:ef7eb2e8f9f7 4355 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 4356 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 4357 * @retval None
<> 144:ef7eb2e8f9f7 4358 */
<> 144:ef7eb2e8f9f7 4359 __weak void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim)
<> 144:ef7eb2e8f9f7 4360 {
<> 144:ef7eb2e8f9f7 4361 /* Prevent unused argument(s) compilation warning */
<> 144:ef7eb2e8f9f7 4362 UNUSED(htim);
<> 144:ef7eb2e8f9f7 4363 /* NOTE : This function Should not be modified, when the callback is needed,
<> 144:ef7eb2e8f9f7 4364 the __HAL_TIM_PWM_PulseFinishedCallback could be implemented in the user file
<> 144:ef7eb2e8f9f7 4365 */
<> 144:ef7eb2e8f9f7 4366 }
<> 144:ef7eb2e8f9f7 4367
<> 144:ef7eb2e8f9f7 4368 /**
<> 144:ef7eb2e8f9f7 4369 * @brief Hall Trigger detection callback in non blocking mode
<> 144:ef7eb2e8f9f7 4370 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 4371 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 4372 * @retval None
<> 144:ef7eb2e8f9f7 4373 */
<> 144:ef7eb2e8f9f7 4374 __weak void HAL_TIM_TriggerCallback(TIM_HandleTypeDef *htim)
<> 144:ef7eb2e8f9f7 4375 {
<> 144:ef7eb2e8f9f7 4376 /* Prevent unused argument(s) compilation warning */
<> 144:ef7eb2e8f9f7 4377 UNUSED(htim);
<> 144:ef7eb2e8f9f7 4378 /* NOTE : This function Should not be modified, when the callback is needed,
<> 144:ef7eb2e8f9f7 4379 the HAL_TIM_TriggerCallback could be implemented in the user file
<> 144:ef7eb2e8f9f7 4380 */
<> 144:ef7eb2e8f9f7 4381 }
<> 144:ef7eb2e8f9f7 4382
<> 144:ef7eb2e8f9f7 4383 /**
<> 144:ef7eb2e8f9f7 4384 * @brief Timer error callback in non blocking mode
<> 144:ef7eb2e8f9f7 4385 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 4386 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 4387 * @retval None
<> 144:ef7eb2e8f9f7 4388 */
<> 144:ef7eb2e8f9f7 4389 __weak void HAL_TIM_ErrorCallback(TIM_HandleTypeDef *htim)
<> 144:ef7eb2e8f9f7 4390 {
<> 144:ef7eb2e8f9f7 4391 /* Prevent unused argument(s) compilation warning */
<> 144:ef7eb2e8f9f7 4392 UNUSED(htim);
<> 144:ef7eb2e8f9f7 4393 /* NOTE : This function Should not be modified, when the callback is needed,
<> 144:ef7eb2e8f9f7 4394 the HAL_TIM_ErrorCallback could be implemented in the user file
<> 144:ef7eb2e8f9f7 4395 */
<> 144:ef7eb2e8f9f7 4396 }
<> 144:ef7eb2e8f9f7 4397 /**
<> 144:ef7eb2e8f9f7 4398 * @}
<> 144:ef7eb2e8f9f7 4399 */
<> 144:ef7eb2e8f9f7 4400
<> 144:ef7eb2e8f9f7 4401 /** @defgroup TIM_Exported_Functions_Group10 Peripheral State functions
<> 144:ef7eb2e8f9f7 4402 * @brief Peripheral State functions
<> 144:ef7eb2e8f9f7 4403 *
<> 144:ef7eb2e8f9f7 4404 @verbatim
<> 144:ef7eb2e8f9f7 4405 ==============================================================================
<> 144:ef7eb2e8f9f7 4406 ##### Peripheral State functions #####
<> 144:ef7eb2e8f9f7 4407 ==============================================================================
<> 144:ef7eb2e8f9f7 4408 [..]
<> 144:ef7eb2e8f9f7 4409 This subsection permits to get in run-time the status of the peripheral
<> 144:ef7eb2e8f9f7 4410 and the data flow.
<> 144:ef7eb2e8f9f7 4411
<> 144:ef7eb2e8f9f7 4412 @endverbatim
<> 144:ef7eb2e8f9f7 4413 * @{
<> 144:ef7eb2e8f9f7 4414 */
<> 144:ef7eb2e8f9f7 4415
<> 144:ef7eb2e8f9f7 4416 /**
<> 144:ef7eb2e8f9f7 4417 * @brief Return the TIM Base state
<> 144:ef7eb2e8f9f7 4418 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 4419 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 4420 * @retval HAL state
<> 144:ef7eb2e8f9f7 4421 */
<> 144:ef7eb2e8f9f7 4422 HAL_TIM_StateTypeDef HAL_TIM_Base_GetState(TIM_HandleTypeDef *htim)
<> 144:ef7eb2e8f9f7 4423 {
<> 144:ef7eb2e8f9f7 4424 return htim->State;
<> 144:ef7eb2e8f9f7 4425 }
<> 144:ef7eb2e8f9f7 4426
<> 144:ef7eb2e8f9f7 4427 /**
<> 144:ef7eb2e8f9f7 4428 * @brief Return the TIM OC state
<> 144:ef7eb2e8f9f7 4429 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 4430 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 4431 * @retval HAL state
<> 144:ef7eb2e8f9f7 4432 */
<> 144:ef7eb2e8f9f7 4433 HAL_TIM_StateTypeDef HAL_TIM_OC_GetState(TIM_HandleTypeDef *htim)
<> 144:ef7eb2e8f9f7 4434 {
<> 144:ef7eb2e8f9f7 4435 return htim->State;
<> 144:ef7eb2e8f9f7 4436 }
<> 144:ef7eb2e8f9f7 4437
<> 144:ef7eb2e8f9f7 4438 /**
<> 144:ef7eb2e8f9f7 4439 * @brief Return the TIM PWM state
<> 144:ef7eb2e8f9f7 4440 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 4441 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 4442 * @retval HAL state
<> 144:ef7eb2e8f9f7 4443 */
<> 144:ef7eb2e8f9f7 4444 HAL_TIM_StateTypeDef HAL_TIM_PWM_GetState(TIM_HandleTypeDef *htim)
<> 144:ef7eb2e8f9f7 4445 {
<> 144:ef7eb2e8f9f7 4446 return htim->State;
<> 144:ef7eb2e8f9f7 4447 }
<> 144:ef7eb2e8f9f7 4448
<> 144:ef7eb2e8f9f7 4449 /**
<> 144:ef7eb2e8f9f7 4450 * @brief Return the TIM Input Capture state
<> 144:ef7eb2e8f9f7 4451 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 4452 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 4453 * @retval HAL state
<> 144:ef7eb2e8f9f7 4454 */
<> 144:ef7eb2e8f9f7 4455 HAL_TIM_StateTypeDef HAL_TIM_IC_GetState(TIM_HandleTypeDef *htim)
<> 144:ef7eb2e8f9f7 4456 {
<> 144:ef7eb2e8f9f7 4457 return htim->State;
<> 144:ef7eb2e8f9f7 4458 }
<> 144:ef7eb2e8f9f7 4459
<> 144:ef7eb2e8f9f7 4460 /**
<> 144:ef7eb2e8f9f7 4461 * @brief Return the TIM One Pulse Mode state
<> 144:ef7eb2e8f9f7 4462 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 4463 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 4464 * @retval HAL state
<> 144:ef7eb2e8f9f7 4465 */
<> 144:ef7eb2e8f9f7 4466 HAL_TIM_StateTypeDef HAL_TIM_OnePulse_GetState(TIM_HandleTypeDef *htim)
<> 144:ef7eb2e8f9f7 4467 {
<> 144:ef7eb2e8f9f7 4468 return htim->State;
<> 144:ef7eb2e8f9f7 4469 }
<> 144:ef7eb2e8f9f7 4470
<> 144:ef7eb2e8f9f7 4471 /**
<> 144:ef7eb2e8f9f7 4472 * @brief Return the TIM Encoder Mode state
<> 144:ef7eb2e8f9f7 4473 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 4474 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 4475 * @retval HAL state
<> 144:ef7eb2e8f9f7 4476 */
<> 144:ef7eb2e8f9f7 4477 HAL_TIM_StateTypeDef HAL_TIM_Encoder_GetState(TIM_HandleTypeDef *htim)
<> 144:ef7eb2e8f9f7 4478 {
<> 144:ef7eb2e8f9f7 4479 return htim->State;
<> 144:ef7eb2e8f9f7 4480 }
<> 144:ef7eb2e8f9f7 4481 /**
<> 144:ef7eb2e8f9f7 4482 * @}
<> 144:ef7eb2e8f9f7 4483 */
<> 144:ef7eb2e8f9f7 4484
<> 144:ef7eb2e8f9f7 4485 /**
<> 144:ef7eb2e8f9f7 4486 * @brief Time Base configuration
<> 144:ef7eb2e8f9f7 4487 * @param TIMx: TIM peripheral
<> 144:ef7eb2e8f9f7 4488 * @param Structure: pointer on TIM Time Base required parameters
<> 144:ef7eb2e8f9f7 4489 * @retval None
<> 144:ef7eb2e8f9f7 4490 */
<> 144:ef7eb2e8f9f7 4491 void TIM_Base_SetConfig(TIM_TypeDef *TIMx, TIM_Base_InitTypeDef *Structure)
<> 144:ef7eb2e8f9f7 4492 {
<> 144:ef7eb2e8f9f7 4493 uint32_t tmpcr1 = 0U;
<> 144:ef7eb2e8f9f7 4494 tmpcr1 = TIMx->CR1;
<> 144:ef7eb2e8f9f7 4495
<> 144:ef7eb2e8f9f7 4496 /* Set TIM Time Base Unit parameters ---------------------------------------*/
<> 144:ef7eb2e8f9f7 4497 if(IS_TIM_CC3_INSTANCE(TIMx) != RESET)
<> 144:ef7eb2e8f9f7 4498 {
<> 144:ef7eb2e8f9f7 4499 /* Select the Counter Mode */
<> 144:ef7eb2e8f9f7 4500 tmpcr1 &= ~(TIM_CR1_DIR | TIM_CR1_CMS);
<> 144:ef7eb2e8f9f7 4501 tmpcr1 |= Structure->CounterMode;
<> 144:ef7eb2e8f9f7 4502 }
<> 144:ef7eb2e8f9f7 4503
<> 144:ef7eb2e8f9f7 4504 if(IS_TIM_CC1_INSTANCE(TIMx) != RESET)
<> 144:ef7eb2e8f9f7 4505 {
<> 144:ef7eb2e8f9f7 4506 /* Set the clock division */
<> 144:ef7eb2e8f9f7 4507 tmpcr1 &= ~TIM_CR1_CKD;
<> 144:ef7eb2e8f9f7 4508 tmpcr1 |= (uint32_t)Structure->ClockDivision;
<> 144:ef7eb2e8f9f7 4509 }
<> 144:ef7eb2e8f9f7 4510
AnnaBridge 167:e84263d55307 4511 /* Set the auto-reload preload */
AnnaBridge 167:e84263d55307 4512 tmpcr1 &= ~TIM_CR1_ARPE;
AnnaBridge 167:e84263d55307 4513 tmpcr1 |= (uint32_t)Structure->AutoReloadPreload;
AnnaBridge 167:e84263d55307 4514
<> 144:ef7eb2e8f9f7 4515 TIMx->CR1 = tmpcr1;
<> 144:ef7eb2e8f9f7 4516
<> 144:ef7eb2e8f9f7 4517 /* Set the Auto-reload value */
<> 144:ef7eb2e8f9f7 4518 TIMx->ARR = (uint32_t)Structure->Period ;
<> 144:ef7eb2e8f9f7 4519
<> 144:ef7eb2e8f9f7 4520 /* Set the Prescaler value */
<> 144:ef7eb2e8f9f7 4521 TIMx->PSC = (uint32_t)Structure->Prescaler;
<> 144:ef7eb2e8f9f7 4522
<> 144:ef7eb2e8f9f7 4523 if(IS_TIM_ADVANCED_INSTANCE(TIMx) != RESET)
<> 144:ef7eb2e8f9f7 4524 {
<> 144:ef7eb2e8f9f7 4525 /* Set the Repetition Counter value */
<> 144:ef7eb2e8f9f7 4526 TIMx->RCR = Structure->RepetitionCounter;
<> 144:ef7eb2e8f9f7 4527 }
<> 144:ef7eb2e8f9f7 4528
<> 144:ef7eb2e8f9f7 4529 /* Generate an update event to reload the Prescaler
<> 144:ef7eb2e8f9f7 4530 and the repetition counter(only for TIM1 and TIM8) value immediately */
<> 144:ef7eb2e8f9f7 4531 TIMx->EGR = TIM_EGR_UG;
<> 144:ef7eb2e8f9f7 4532 }
<> 144:ef7eb2e8f9f7 4533
<> 144:ef7eb2e8f9f7 4534 /**
<> 144:ef7eb2e8f9f7 4535 * @brief Configure the TI1 as Input.
<> 144:ef7eb2e8f9f7 4536 * @param TIMx to select the TIM peripheral.
<> 144:ef7eb2e8f9f7 4537 * @param TIM_ICPolarity : The Input Polarity.
<> 144:ef7eb2e8f9f7 4538 * This parameter can be one of the following values:
<> 144:ef7eb2e8f9f7 4539 * @arg TIM_ICPolarity_Rising
<> 144:ef7eb2e8f9f7 4540 * @arg TIM_ICPolarity_Falling
<> 144:ef7eb2e8f9f7 4541 * @arg TIM_ICPolarity_BothEdge
<> 144:ef7eb2e8f9f7 4542 * @param TIM_ICSelection: specifies the input to be used.
<> 144:ef7eb2e8f9f7 4543 * This parameter can be one of the following values:
<> 144:ef7eb2e8f9f7 4544 * @arg TIM_ICSelection_DirectTI: TIM Input 1 is selected to be connected to IC1.
<> 144:ef7eb2e8f9f7 4545 * @arg TIM_ICSelection_IndirectTI: TIM Input 1 is selected to be connected to IC2.
<> 144:ef7eb2e8f9f7 4546 * @arg TIM_ICSelection_TRC: TIM Input 1 is selected to be connected to TRC.
<> 144:ef7eb2e8f9f7 4547 * @param TIM_ICFilter: Specifies the Input Capture Filter.
<> 144:ef7eb2e8f9f7 4548 * This parameter must be a value between 0x00 and 0x0F.
<> 144:ef7eb2e8f9f7 4549 * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI2FP1
<> 144:ef7eb2e8f9f7 4550 * (on channel2 path) is used as the input signal. Therefore CCMR1 must be
<> 144:ef7eb2e8f9f7 4551 * protected against un-initialized filter and polarity values.
<> 144:ef7eb2e8f9f7 4552 * @retval None
<> 144:ef7eb2e8f9f7 4553 */
<> 144:ef7eb2e8f9f7 4554 void TIM_TI1_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
<> 144:ef7eb2e8f9f7 4555 uint32_t TIM_ICFilter)
<> 144:ef7eb2e8f9f7 4556 {
<> 144:ef7eb2e8f9f7 4557 uint32_t tmpccmr1 = 0U;
<> 144:ef7eb2e8f9f7 4558 uint32_t tmpccer = 0U;
<> 144:ef7eb2e8f9f7 4559
<> 144:ef7eb2e8f9f7 4560 /* Disable the Channel 1: Reset the CC1E Bit */
<> 144:ef7eb2e8f9f7 4561 TIMx->CCER &= ~TIM_CCER_CC1E;
<> 144:ef7eb2e8f9f7 4562 tmpccmr1 = TIMx->CCMR1;
<> 144:ef7eb2e8f9f7 4563 tmpccer = TIMx->CCER;
<> 144:ef7eb2e8f9f7 4564
<> 144:ef7eb2e8f9f7 4565 /* Select the Input */
<> 144:ef7eb2e8f9f7 4566 if(IS_TIM_CC2_INSTANCE(TIMx) != RESET)
<> 144:ef7eb2e8f9f7 4567 {
<> 144:ef7eb2e8f9f7 4568 tmpccmr1 &= ~TIM_CCMR1_CC1S;
<> 144:ef7eb2e8f9f7 4569 tmpccmr1 |= TIM_ICSelection;
<> 144:ef7eb2e8f9f7 4570 }
<> 144:ef7eb2e8f9f7 4571 else
<> 144:ef7eb2e8f9f7 4572 {
<> 144:ef7eb2e8f9f7 4573 tmpccmr1 &= ~TIM_CCMR1_CC1S;
<> 144:ef7eb2e8f9f7 4574 tmpccmr1 |= TIM_CCMR1_CC1S_0;
<> 144:ef7eb2e8f9f7 4575 }
<> 144:ef7eb2e8f9f7 4576
<> 144:ef7eb2e8f9f7 4577 /* Set the filter */
<> 144:ef7eb2e8f9f7 4578 tmpccmr1 &= ~TIM_CCMR1_IC1F;
<> 144:ef7eb2e8f9f7 4579 tmpccmr1 |= ((TIM_ICFilter << 4U) & TIM_CCMR1_IC1F);
<> 144:ef7eb2e8f9f7 4580
<> 144:ef7eb2e8f9f7 4581 /* Select the Polarity and set the CC1E Bit */
<> 144:ef7eb2e8f9f7 4582 tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP);
<> 144:ef7eb2e8f9f7 4583 tmpccer |= (TIM_ICPolarity & (TIM_CCER_CC1P | TIM_CCER_CC1NP));
<> 144:ef7eb2e8f9f7 4584
<> 144:ef7eb2e8f9f7 4585 /* Write to TIMx CCMR1 and CCER registers */
<> 144:ef7eb2e8f9f7 4586 TIMx->CCMR1 = tmpccmr1;
<> 144:ef7eb2e8f9f7 4587 TIMx->CCER = tmpccer;
<> 144:ef7eb2e8f9f7 4588 }
<> 144:ef7eb2e8f9f7 4589
<> 144:ef7eb2e8f9f7 4590 /**
<> 144:ef7eb2e8f9f7 4591 * @brief Time Output Compare 2 configuration
<> 144:ef7eb2e8f9f7 4592 * @param TIMx to select the TIM peripheral
<> 144:ef7eb2e8f9f7 4593 * @param OC_Config: The output configuration structure
<> 144:ef7eb2e8f9f7 4594 * @retval None
<> 144:ef7eb2e8f9f7 4595 */
<> 144:ef7eb2e8f9f7 4596 void TIM_OC2_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config)
<> 144:ef7eb2e8f9f7 4597 {
<> 144:ef7eb2e8f9f7 4598 uint32_t tmpccmrx = 0U;
<> 144:ef7eb2e8f9f7 4599 uint32_t tmpccer = 0U;
<> 144:ef7eb2e8f9f7 4600 uint32_t tmpcr2 = 0U;
<> 144:ef7eb2e8f9f7 4601
<> 144:ef7eb2e8f9f7 4602 /* Disable the Channel 2: Reset the CC2E Bit */
<> 144:ef7eb2e8f9f7 4603 TIMx->CCER &= ~TIM_CCER_CC2E;
<> 144:ef7eb2e8f9f7 4604
<> 144:ef7eb2e8f9f7 4605 /* Get the TIMx CCER register value */
<> 144:ef7eb2e8f9f7 4606 tmpccer = TIMx->CCER;
<> 144:ef7eb2e8f9f7 4607 /* Get the TIMx CR2 register value */
<> 144:ef7eb2e8f9f7 4608 tmpcr2 = TIMx->CR2;
<> 144:ef7eb2e8f9f7 4609
<> 144:ef7eb2e8f9f7 4610 /* Get the TIMx CCMR1 register value */
<> 144:ef7eb2e8f9f7 4611 tmpccmrx = TIMx->CCMR1;
<> 144:ef7eb2e8f9f7 4612
<> 144:ef7eb2e8f9f7 4613 /* Reset the Output Compare mode and Capture/Compare selection Bits */
<> 144:ef7eb2e8f9f7 4614 tmpccmrx &= ~TIM_CCMR1_OC2M;
<> 144:ef7eb2e8f9f7 4615 tmpccmrx &= ~TIM_CCMR1_CC2S;
<> 144:ef7eb2e8f9f7 4616
<> 144:ef7eb2e8f9f7 4617 /* Select the Output Compare Mode */
<> 144:ef7eb2e8f9f7 4618 tmpccmrx |= (OC_Config->OCMode << 8U);
<> 144:ef7eb2e8f9f7 4619
<> 144:ef7eb2e8f9f7 4620 /* Reset the Output Polarity level */
<> 144:ef7eb2e8f9f7 4621 tmpccer &= ~TIM_CCER_CC2P;
<> 144:ef7eb2e8f9f7 4622 /* Set the Output Compare Polarity */
<> 144:ef7eb2e8f9f7 4623 tmpccer |= (OC_Config->OCPolarity << 4U);
<> 144:ef7eb2e8f9f7 4624
<> 144:ef7eb2e8f9f7 4625 if(IS_TIM_ADVANCED_INSTANCE(TIMx) != RESET)
<> 144:ef7eb2e8f9f7 4626 {
<> 144:ef7eb2e8f9f7 4627 assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity));
<> 144:ef7eb2e8f9f7 4628
<> 144:ef7eb2e8f9f7 4629 /* Reset the Output N Polarity level */
<> 144:ef7eb2e8f9f7 4630 tmpccer &= ~TIM_CCER_CC2NP;
<> 144:ef7eb2e8f9f7 4631 /* Set the Output N Polarity */
<> 144:ef7eb2e8f9f7 4632 tmpccer |= (OC_Config->OCNPolarity << 4U);
<> 144:ef7eb2e8f9f7 4633 /* Reset the Output N State */
<> 144:ef7eb2e8f9f7 4634 tmpccer &= ~TIM_CCER_CC2NE;
<> 144:ef7eb2e8f9f7 4635
<> 144:ef7eb2e8f9f7 4636 /* Reset the Output Compare and Output Compare N IDLE State */
<> 144:ef7eb2e8f9f7 4637 tmpcr2 &= ~TIM_CR2_OIS2;
<> 144:ef7eb2e8f9f7 4638 tmpcr2 &= ~TIM_CR2_OIS2N;
<> 144:ef7eb2e8f9f7 4639 /* Set the Output Idle state */
<> 144:ef7eb2e8f9f7 4640 tmpcr2 |= (OC_Config->OCIdleState << 2U);
<> 144:ef7eb2e8f9f7 4641 /* Set the Output N Idle state */
<> 144:ef7eb2e8f9f7 4642 tmpcr2 |= (OC_Config->OCNIdleState << 2U);
<> 144:ef7eb2e8f9f7 4643 }
<> 144:ef7eb2e8f9f7 4644 /* Write to TIMx CR2 */
<> 144:ef7eb2e8f9f7 4645 TIMx->CR2 = tmpcr2;
<> 144:ef7eb2e8f9f7 4646
<> 144:ef7eb2e8f9f7 4647 /* Write to TIMx CCMR1 */
<> 144:ef7eb2e8f9f7 4648 TIMx->CCMR1 = tmpccmrx;
<> 144:ef7eb2e8f9f7 4649
<> 144:ef7eb2e8f9f7 4650 /* Set the Capture Compare Register value */
<> 144:ef7eb2e8f9f7 4651 TIMx->CCR2 = OC_Config->Pulse;
<> 144:ef7eb2e8f9f7 4652
<> 144:ef7eb2e8f9f7 4653 /* Write to TIMx CCER */
<> 144:ef7eb2e8f9f7 4654 TIMx->CCER = tmpccer;
<> 144:ef7eb2e8f9f7 4655 }
<> 144:ef7eb2e8f9f7 4656
<> 144:ef7eb2e8f9f7 4657 /**
<> 144:ef7eb2e8f9f7 4658 * @brief TIM DMA Delay Pulse complete callback.
<> 144:ef7eb2e8f9f7 4659 * @param hdma: pointer to a DMA_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 4660 * the configuration information for the specified DMA module.
<> 144:ef7eb2e8f9f7 4661 * @retval None
<> 144:ef7eb2e8f9f7 4662 */
<> 144:ef7eb2e8f9f7 4663 void TIM_DMADelayPulseCplt(DMA_HandleTypeDef *hdma)
<> 144:ef7eb2e8f9f7 4664 {
<> 144:ef7eb2e8f9f7 4665 TIM_HandleTypeDef* htim = ( TIM_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
<> 144:ef7eb2e8f9f7 4666
<> 144:ef7eb2e8f9f7 4667 htim->State= HAL_TIM_STATE_READY;
<> 144:ef7eb2e8f9f7 4668
<> 144:ef7eb2e8f9f7 4669 if(hdma == htim->hdma[TIM_DMA_ID_CC1])
<> 144:ef7eb2e8f9f7 4670 {
<> 144:ef7eb2e8f9f7 4671 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
<> 144:ef7eb2e8f9f7 4672 }
<> 144:ef7eb2e8f9f7 4673 else if(hdma == htim->hdma[TIM_DMA_ID_CC2])
<> 144:ef7eb2e8f9f7 4674 {
<> 144:ef7eb2e8f9f7 4675 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
<> 144:ef7eb2e8f9f7 4676 }
<> 144:ef7eb2e8f9f7 4677 else if(hdma == htim->hdma[TIM_DMA_ID_CC3])
<> 144:ef7eb2e8f9f7 4678 {
<> 144:ef7eb2e8f9f7 4679 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
<> 144:ef7eb2e8f9f7 4680 }
<> 144:ef7eb2e8f9f7 4681 else if(hdma == htim->hdma[TIM_DMA_ID_CC4])
<> 144:ef7eb2e8f9f7 4682 {
<> 144:ef7eb2e8f9f7 4683 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
<> 144:ef7eb2e8f9f7 4684 }
<> 144:ef7eb2e8f9f7 4685
<> 144:ef7eb2e8f9f7 4686 HAL_TIM_PWM_PulseFinishedCallback(htim);
<> 144:ef7eb2e8f9f7 4687
<> 144:ef7eb2e8f9f7 4688 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
<> 144:ef7eb2e8f9f7 4689 }
<> 144:ef7eb2e8f9f7 4690
<> 144:ef7eb2e8f9f7 4691 /**
<> 144:ef7eb2e8f9f7 4692 * @brief TIM DMA error callback
<> 144:ef7eb2e8f9f7 4693 * @param hdma: pointer to a DMA_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 4694 * the configuration information for the specified DMA module.
<> 144:ef7eb2e8f9f7 4695 * @retval None
<> 144:ef7eb2e8f9f7 4696 */
<> 144:ef7eb2e8f9f7 4697 void TIM_DMAError(DMA_HandleTypeDef *hdma)
<> 144:ef7eb2e8f9f7 4698 {
<> 144:ef7eb2e8f9f7 4699 TIM_HandleTypeDef* htim = ( TIM_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
<> 144:ef7eb2e8f9f7 4700
<> 144:ef7eb2e8f9f7 4701 htim->State= HAL_TIM_STATE_READY;
<> 144:ef7eb2e8f9f7 4702
<> 144:ef7eb2e8f9f7 4703 HAL_TIM_ErrorCallback(htim);
<> 144:ef7eb2e8f9f7 4704 }
<> 144:ef7eb2e8f9f7 4705
<> 144:ef7eb2e8f9f7 4706 /**
<> 144:ef7eb2e8f9f7 4707 * @brief TIM DMA Capture complete callback.
<> 144:ef7eb2e8f9f7 4708 * @param hdma: pointer to a DMA_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 4709 * the configuration information for the specified DMA module.
<> 144:ef7eb2e8f9f7 4710 * @retval None
<> 144:ef7eb2e8f9f7 4711 */
<> 144:ef7eb2e8f9f7 4712 void TIM_DMACaptureCplt(DMA_HandleTypeDef *hdma)
<> 144:ef7eb2e8f9f7 4713 {
<> 144:ef7eb2e8f9f7 4714 TIM_HandleTypeDef* htim = ( TIM_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
<> 144:ef7eb2e8f9f7 4715
<> 144:ef7eb2e8f9f7 4716 htim->State= HAL_TIM_STATE_READY;
<> 144:ef7eb2e8f9f7 4717
<> 144:ef7eb2e8f9f7 4718 if(hdma == htim->hdma[TIM_DMA_ID_CC1])
<> 144:ef7eb2e8f9f7 4719 {
<> 144:ef7eb2e8f9f7 4720 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
<> 144:ef7eb2e8f9f7 4721 }
<> 144:ef7eb2e8f9f7 4722 else if(hdma == htim->hdma[TIM_DMA_ID_CC2])
<> 144:ef7eb2e8f9f7 4723 {
<> 144:ef7eb2e8f9f7 4724 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
<> 144:ef7eb2e8f9f7 4725 }
<> 144:ef7eb2e8f9f7 4726 else if(hdma == htim->hdma[TIM_DMA_ID_CC3])
<> 144:ef7eb2e8f9f7 4727 {
<> 144:ef7eb2e8f9f7 4728 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
<> 144:ef7eb2e8f9f7 4729 }
<> 144:ef7eb2e8f9f7 4730 else if(hdma == htim->hdma[TIM_DMA_ID_CC4])
<> 144:ef7eb2e8f9f7 4731 {
<> 144:ef7eb2e8f9f7 4732 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
<> 144:ef7eb2e8f9f7 4733 }
<> 144:ef7eb2e8f9f7 4734
<> 144:ef7eb2e8f9f7 4735 HAL_TIM_IC_CaptureCallback(htim);
<> 144:ef7eb2e8f9f7 4736
<> 144:ef7eb2e8f9f7 4737 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
<> 144:ef7eb2e8f9f7 4738 }
<> 144:ef7eb2e8f9f7 4739
<> 144:ef7eb2e8f9f7 4740 /**
<> 144:ef7eb2e8f9f7 4741 * @brief Enables or disables the TIM Capture Compare Channel x.
<> 144:ef7eb2e8f9f7 4742 * @param TIMx to select the TIM peripheral
<> 144:ef7eb2e8f9f7 4743 * @param Channel: specifies the TIM Channel
<> 144:ef7eb2e8f9f7 4744 * This parameter can be one of the following values:
<> 144:ef7eb2e8f9f7 4745 * @arg TIM_Channel_1: TIM Channel 1
<> 144:ef7eb2e8f9f7 4746 * @arg TIM_Channel_2: TIM Channel 2
<> 144:ef7eb2e8f9f7 4747 * @arg TIM_Channel_3: TIM Channel 3
<> 144:ef7eb2e8f9f7 4748 * @arg TIM_Channel_4: TIM Channel 4
<> 144:ef7eb2e8f9f7 4749 * @param ChannelState: specifies the TIM Channel CCxE bit new state.
<> 144:ef7eb2e8f9f7 4750 * This parameter can be: TIM_CCx_ENABLE or TIM_CCx_Disable.
<> 144:ef7eb2e8f9f7 4751 * @retval None
<> 144:ef7eb2e8f9f7 4752 */
<> 144:ef7eb2e8f9f7 4753 void TIM_CCxChannelCmd(TIM_TypeDef* TIMx, uint32_t Channel, uint32_t ChannelState)
<> 144:ef7eb2e8f9f7 4754 {
<> 144:ef7eb2e8f9f7 4755 uint32_t tmp = 0;
<> 144:ef7eb2e8f9f7 4756
<> 144:ef7eb2e8f9f7 4757 /* Check the parameters */
<> 144:ef7eb2e8f9f7 4758 assert_param(IS_TIM_CC1_INSTANCE(TIMx));
<> 144:ef7eb2e8f9f7 4759 assert_param(IS_TIM_CHANNELS(Channel));
<> 144:ef7eb2e8f9f7 4760
<> 144:ef7eb2e8f9f7 4761 tmp = TIM_CCER_CC1E << Channel;
<> 144:ef7eb2e8f9f7 4762
<> 144:ef7eb2e8f9f7 4763 /* Reset the CCxE Bit */
<> 144:ef7eb2e8f9f7 4764 TIMx->CCER &= ~tmp;
<> 144:ef7eb2e8f9f7 4765
<> 144:ef7eb2e8f9f7 4766 /* Set or reset the CCxE Bit */
<> 144:ef7eb2e8f9f7 4767 TIMx->CCER |= (uint32_t)(ChannelState << Channel);
<> 144:ef7eb2e8f9f7 4768 }
<> 144:ef7eb2e8f9f7 4769
<> 144:ef7eb2e8f9f7 4770 /**
<> 144:ef7eb2e8f9f7 4771 * @brief TIM DMA Period Elapse complete callback.
<> 144:ef7eb2e8f9f7 4772 * @param hdma: pointer to a DMA_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 4773 * the configuration information for the specified DMA module.
<> 144:ef7eb2e8f9f7 4774 * @retval None
<> 144:ef7eb2e8f9f7 4775 */
<> 144:ef7eb2e8f9f7 4776 static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma)
<> 144:ef7eb2e8f9f7 4777 {
<> 144:ef7eb2e8f9f7 4778 TIM_HandleTypeDef* htim = ( TIM_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
<> 144:ef7eb2e8f9f7 4779
<> 144:ef7eb2e8f9f7 4780 htim->State= HAL_TIM_STATE_READY;
<> 144:ef7eb2e8f9f7 4781
<> 144:ef7eb2e8f9f7 4782 HAL_TIM_PeriodElapsedCallback(htim);
<> 144:ef7eb2e8f9f7 4783 }
<> 144:ef7eb2e8f9f7 4784
<> 144:ef7eb2e8f9f7 4785 /**
<> 144:ef7eb2e8f9f7 4786 * @brief TIM DMA Trigger callback.
<> 144:ef7eb2e8f9f7 4787 * @param hdma: pointer to a DMA_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 4788 * the configuration information for the specified DMA module.
<> 144:ef7eb2e8f9f7 4789 * @retval None
<> 144:ef7eb2e8f9f7 4790 */
<> 144:ef7eb2e8f9f7 4791 static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma)
<> 144:ef7eb2e8f9f7 4792 {
<> 144:ef7eb2e8f9f7 4793 TIM_HandleTypeDef* htim = ( TIM_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
<> 144:ef7eb2e8f9f7 4794
<> 144:ef7eb2e8f9f7 4795 htim->State= HAL_TIM_STATE_READY;
<> 144:ef7eb2e8f9f7 4796
<> 144:ef7eb2e8f9f7 4797 HAL_TIM_TriggerCallback(htim);
<> 144:ef7eb2e8f9f7 4798 }
<> 144:ef7eb2e8f9f7 4799
<> 144:ef7eb2e8f9f7 4800 /**
<> 144:ef7eb2e8f9f7 4801 * @brief Time Output Compare 1 configuration
<> 144:ef7eb2e8f9f7 4802 * @param TIMx to select the TIM peripheral
<> 144:ef7eb2e8f9f7 4803 * @param OC_Config: The output configuration structure
<> 144:ef7eb2e8f9f7 4804 * @retval None
<> 144:ef7eb2e8f9f7 4805 */
<> 144:ef7eb2e8f9f7 4806 static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config)
<> 144:ef7eb2e8f9f7 4807 {
<> 144:ef7eb2e8f9f7 4808 uint32_t tmpccmrx = 0U;
<> 144:ef7eb2e8f9f7 4809 uint32_t tmpccer = 0U;
<> 144:ef7eb2e8f9f7 4810 uint32_t tmpcr2 = 0U;
<> 144:ef7eb2e8f9f7 4811
<> 144:ef7eb2e8f9f7 4812 /* Disable the Channel 1: Reset the CC1E Bit */
<> 144:ef7eb2e8f9f7 4813 TIMx->CCER &= ~TIM_CCER_CC1E;
<> 144:ef7eb2e8f9f7 4814
<> 144:ef7eb2e8f9f7 4815 /* Get the TIMx CCER register value */
<> 144:ef7eb2e8f9f7 4816 tmpccer = TIMx->CCER;
<> 144:ef7eb2e8f9f7 4817 /* Get the TIMx CR2 register value */
<> 144:ef7eb2e8f9f7 4818 tmpcr2 = TIMx->CR2;
<> 144:ef7eb2e8f9f7 4819
<> 144:ef7eb2e8f9f7 4820 /* Get the TIMx CCMR1 register value */
<> 144:ef7eb2e8f9f7 4821 tmpccmrx = TIMx->CCMR1;
<> 144:ef7eb2e8f9f7 4822
<> 144:ef7eb2e8f9f7 4823 /* Reset the Output Compare Mode Bits */
<> 144:ef7eb2e8f9f7 4824 tmpccmrx &= ~TIM_CCMR1_OC1M;
<> 144:ef7eb2e8f9f7 4825 tmpccmrx &= ~TIM_CCMR1_CC1S;
<> 144:ef7eb2e8f9f7 4826 /* Select the Output Compare Mode */
<> 144:ef7eb2e8f9f7 4827 tmpccmrx |= OC_Config->OCMode;
<> 144:ef7eb2e8f9f7 4828
<> 144:ef7eb2e8f9f7 4829 /* Reset the Output Polarity level */
<> 144:ef7eb2e8f9f7 4830 tmpccer &= ~TIM_CCER_CC1P;
<> 144:ef7eb2e8f9f7 4831 /* Set the Output Compare Polarity */
<> 144:ef7eb2e8f9f7 4832 tmpccer |= OC_Config->OCPolarity;
<> 144:ef7eb2e8f9f7 4833
<> 144:ef7eb2e8f9f7 4834
<> 144:ef7eb2e8f9f7 4835 if(IS_TIM_ADVANCED_INSTANCE(TIMx) != RESET)
<> 144:ef7eb2e8f9f7 4836 {
<> 144:ef7eb2e8f9f7 4837 /* Reset the Output N Polarity level */
<> 144:ef7eb2e8f9f7 4838 tmpccer &= ~TIM_CCER_CC1NP;
<> 144:ef7eb2e8f9f7 4839 /* Set the Output N Polarity */
<> 144:ef7eb2e8f9f7 4840 tmpccer |= OC_Config->OCNPolarity;
<> 144:ef7eb2e8f9f7 4841 /* Reset the Output N State */
<> 144:ef7eb2e8f9f7 4842 tmpccer &= ~TIM_CCER_CC1NE;
<> 144:ef7eb2e8f9f7 4843
<> 144:ef7eb2e8f9f7 4844 /* Reset the Output Compare and Output Compare N IDLE State */
<> 144:ef7eb2e8f9f7 4845 tmpcr2 &= ~TIM_CR2_OIS1;
<> 144:ef7eb2e8f9f7 4846 tmpcr2 &= ~TIM_CR2_OIS1N;
<> 144:ef7eb2e8f9f7 4847 /* Set the Output Idle state */
<> 144:ef7eb2e8f9f7 4848 tmpcr2 |= OC_Config->OCIdleState;
<> 144:ef7eb2e8f9f7 4849 /* Set the Output N Idle state */
<> 144:ef7eb2e8f9f7 4850 tmpcr2 |= OC_Config->OCNIdleState;
<> 144:ef7eb2e8f9f7 4851 }
<> 144:ef7eb2e8f9f7 4852 /* Write to TIMx CR2 */
<> 144:ef7eb2e8f9f7 4853 TIMx->CR2 = tmpcr2;
<> 144:ef7eb2e8f9f7 4854
<> 144:ef7eb2e8f9f7 4855 /* Write to TIMx CCMR1 */
<> 144:ef7eb2e8f9f7 4856 TIMx->CCMR1 = tmpccmrx;
<> 144:ef7eb2e8f9f7 4857
<> 144:ef7eb2e8f9f7 4858 /* Set the Capture Compare Register value */
<> 144:ef7eb2e8f9f7 4859 TIMx->CCR1 = OC_Config->Pulse;
<> 144:ef7eb2e8f9f7 4860
<> 144:ef7eb2e8f9f7 4861 /* Write to TIMx CCER */
<> 144:ef7eb2e8f9f7 4862 TIMx->CCER = tmpccer;
<> 144:ef7eb2e8f9f7 4863 }
<> 144:ef7eb2e8f9f7 4864
<> 144:ef7eb2e8f9f7 4865 /**
<> 144:ef7eb2e8f9f7 4866 * @brief Time Output Compare 3 configuration
<> 144:ef7eb2e8f9f7 4867 * @param TIMx to select the TIM peripheral
<> 144:ef7eb2e8f9f7 4868 * @param OC_Config: The output configuration structure
<> 144:ef7eb2e8f9f7 4869 * @retval None
<> 144:ef7eb2e8f9f7 4870 */
<> 144:ef7eb2e8f9f7 4871 static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config)
<> 144:ef7eb2e8f9f7 4872 {
<> 144:ef7eb2e8f9f7 4873 uint32_t tmpccmrx = 0U;
<> 144:ef7eb2e8f9f7 4874 uint32_t tmpccer = 0U;
<> 144:ef7eb2e8f9f7 4875 uint32_t tmpcr2 = 0U;
<> 144:ef7eb2e8f9f7 4876
<> 144:ef7eb2e8f9f7 4877 /* Disable the Channel 3: Reset the CC2E Bit */
<> 144:ef7eb2e8f9f7 4878 TIMx->CCER &= ~TIM_CCER_CC3E;
<> 144:ef7eb2e8f9f7 4879
<> 144:ef7eb2e8f9f7 4880 /* Get the TIMx CCER register value */
<> 144:ef7eb2e8f9f7 4881 tmpccer = TIMx->CCER;
<> 144:ef7eb2e8f9f7 4882 /* Get the TIMx CR2 register value */
<> 144:ef7eb2e8f9f7 4883 tmpcr2 = TIMx->CR2;
<> 144:ef7eb2e8f9f7 4884
<> 144:ef7eb2e8f9f7 4885 /* Get the TIMx CCMR2 register value */
<> 144:ef7eb2e8f9f7 4886 tmpccmrx = TIMx->CCMR2;
<> 144:ef7eb2e8f9f7 4887
<> 144:ef7eb2e8f9f7 4888 /* Reset the Output Compare mode and Capture/Compare selection Bits */
<> 144:ef7eb2e8f9f7 4889 tmpccmrx &= ~TIM_CCMR2_OC3M;
<> 144:ef7eb2e8f9f7 4890 tmpccmrx &= ~TIM_CCMR2_CC3S;
<> 144:ef7eb2e8f9f7 4891 /* Select the Output Compare Mode */
<> 144:ef7eb2e8f9f7 4892 tmpccmrx |= OC_Config->OCMode;
<> 144:ef7eb2e8f9f7 4893
<> 144:ef7eb2e8f9f7 4894 /* Reset the Output Polarity level */
<> 144:ef7eb2e8f9f7 4895 tmpccer &= ~TIM_CCER_CC3P;
<> 144:ef7eb2e8f9f7 4896 /* Set the Output Compare Polarity */
<> 144:ef7eb2e8f9f7 4897 tmpccer |= (OC_Config->OCPolarity << 8U);
<> 144:ef7eb2e8f9f7 4898
<> 144:ef7eb2e8f9f7 4899 if(IS_TIM_ADVANCED_INSTANCE(TIMx) != RESET)
<> 144:ef7eb2e8f9f7 4900 {
<> 144:ef7eb2e8f9f7 4901 assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity));
<> 144:ef7eb2e8f9f7 4902 assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState));
<> 144:ef7eb2e8f9f7 4903 assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState));
<> 144:ef7eb2e8f9f7 4904
<> 144:ef7eb2e8f9f7 4905 /* Reset the Output N Polarity level */
<> 144:ef7eb2e8f9f7 4906 tmpccer &= ~TIM_CCER_CC3NP;
<> 144:ef7eb2e8f9f7 4907 /* Set the Output N Polarity */
<> 144:ef7eb2e8f9f7 4908 tmpccer |= (OC_Config->OCNPolarity << 8U);
<> 144:ef7eb2e8f9f7 4909 /* Reset the Output N State */
<> 144:ef7eb2e8f9f7 4910 tmpccer &= ~TIM_CCER_CC3NE;
<> 144:ef7eb2e8f9f7 4911
<> 144:ef7eb2e8f9f7 4912 /* Reset the Output Compare and Output Compare N IDLE State */
<> 144:ef7eb2e8f9f7 4913 tmpcr2 &= ~TIM_CR2_OIS3;
<> 144:ef7eb2e8f9f7 4914 tmpcr2 &= ~TIM_CR2_OIS3N;
<> 144:ef7eb2e8f9f7 4915 /* Set the Output Idle state */
<> 144:ef7eb2e8f9f7 4916 tmpcr2 |= (OC_Config->OCIdleState << 4U);
<> 144:ef7eb2e8f9f7 4917 /* Set the Output N Idle state */
<> 144:ef7eb2e8f9f7 4918 tmpcr2 |= (OC_Config->OCNIdleState << 4U);
<> 144:ef7eb2e8f9f7 4919 }
<> 144:ef7eb2e8f9f7 4920 /* Write to TIMx CR2 */
<> 144:ef7eb2e8f9f7 4921 TIMx->CR2 = tmpcr2;
<> 144:ef7eb2e8f9f7 4922
<> 144:ef7eb2e8f9f7 4923 /* Write to TIMx CCMR2 */
<> 144:ef7eb2e8f9f7 4924 TIMx->CCMR2 = tmpccmrx;
<> 144:ef7eb2e8f9f7 4925
<> 144:ef7eb2e8f9f7 4926 /* Set the Capture Compare Register value */
<> 144:ef7eb2e8f9f7 4927 TIMx->CCR3 = OC_Config->Pulse;
<> 144:ef7eb2e8f9f7 4928
<> 144:ef7eb2e8f9f7 4929 /* Write to TIMx CCER */
<> 144:ef7eb2e8f9f7 4930 TIMx->CCER = tmpccer;
<> 144:ef7eb2e8f9f7 4931 }
<> 144:ef7eb2e8f9f7 4932
<> 144:ef7eb2e8f9f7 4933 /**
<> 144:ef7eb2e8f9f7 4934 * @brief Time Output Compare 4 configuration
<> 144:ef7eb2e8f9f7 4935 * @param TIMx to select the TIM peripheral
<> 144:ef7eb2e8f9f7 4936 * @param OC_Config: The output configuration structure
<> 144:ef7eb2e8f9f7 4937 * @retval None
<> 144:ef7eb2e8f9f7 4938 */
<> 144:ef7eb2e8f9f7 4939 static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config)
<> 144:ef7eb2e8f9f7 4940 {
<> 144:ef7eb2e8f9f7 4941 uint32_t tmpccmrx = 0U;
<> 144:ef7eb2e8f9f7 4942 uint32_t tmpccer = 0U;
<> 144:ef7eb2e8f9f7 4943 uint32_t tmpcr2 = 0U;
<> 144:ef7eb2e8f9f7 4944
<> 144:ef7eb2e8f9f7 4945 /* Disable the Channel 4: Reset the CC4E Bit */
<> 144:ef7eb2e8f9f7 4946 TIMx->CCER &= ~TIM_CCER_CC4E;
<> 144:ef7eb2e8f9f7 4947
<> 144:ef7eb2e8f9f7 4948 /* Get the TIMx CCER register value */
<> 144:ef7eb2e8f9f7 4949 tmpccer = TIMx->CCER;
<> 144:ef7eb2e8f9f7 4950 /* Get the TIMx CR2 register value */
<> 144:ef7eb2e8f9f7 4951 tmpcr2 = TIMx->CR2;
<> 144:ef7eb2e8f9f7 4952
<> 144:ef7eb2e8f9f7 4953 /* Get the TIMx CCMR2 register value */
<> 144:ef7eb2e8f9f7 4954 tmpccmrx = TIMx->CCMR2;
<> 144:ef7eb2e8f9f7 4955
<> 144:ef7eb2e8f9f7 4956 /* Reset the Output Compare mode and Capture/Compare selection Bits */
<> 144:ef7eb2e8f9f7 4957 tmpccmrx &= ~TIM_CCMR2_OC4M;
<> 144:ef7eb2e8f9f7 4958 tmpccmrx &= ~TIM_CCMR2_CC4S;
<> 144:ef7eb2e8f9f7 4959
<> 144:ef7eb2e8f9f7 4960 /* Select the Output Compare Mode */
<> 144:ef7eb2e8f9f7 4961 tmpccmrx |= (OC_Config->OCMode << 8U);
<> 144:ef7eb2e8f9f7 4962
<> 144:ef7eb2e8f9f7 4963 /* Reset the Output Polarity level */
<> 144:ef7eb2e8f9f7 4964 tmpccer &= ~TIM_CCER_CC4P;
<> 144:ef7eb2e8f9f7 4965 /* Set the Output Compare Polarity */
<> 144:ef7eb2e8f9f7 4966 tmpccer |= (OC_Config->OCPolarity << 12U);
<> 144:ef7eb2e8f9f7 4967
<> 144:ef7eb2e8f9f7 4968 /*if((TIMx == TIM1) || (TIMx == TIM8))*/
<> 144:ef7eb2e8f9f7 4969 if(IS_TIM_ADVANCED_INSTANCE(TIMx) != RESET)
<> 144:ef7eb2e8f9f7 4970 {
<> 144:ef7eb2e8f9f7 4971 assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState));
<> 144:ef7eb2e8f9f7 4972 /* Reset the Output Compare IDLE State */
<> 144:ef7eb2e8f9f7 4973 tmpcr2 &= ~TIM_CR2_OIS4;
<> 144:ef7eb2e8f9f7 4974 /* Set the Output Idle state */
<> 144:ef7eb2e8f9f7 4975 tmpcr2 |= (OC_Config->OCIdleState << 6U);
<> 144:ef7eb2e8f9f7 4976 }
<> 144:ef7eb2e8f9f7 4977 /* Write to TIMx CR2 */
<> 144:ef7eb2e8f9f7 4978 TIMx->CR2 = tmpcr2;
<> 144:ef7eb2e8f9f7 4979
<> 144:ef7eb2e8f9f7 4980 /* Write to TIMx CCMR2 */
<> 144:ef7eb2e8f9f7 4981 TIMx->CCMR2 = tmpccmrx;
<> 144:ef7eb2e8f9f7 4982
<> 144:ef7eb2e8f9f7 4983 /* Set the Capture Compare Register value */
<> 144:ef7eb2e8f9f7 4984 TIMx->CCR4 = OC_Config->Pulse;
<> 144:ef7eb2e8f9f7 4985
<> 144:ef7eb2e8f9f7 4986 /* Write to TIMx CCER */
<> 144:ef7eb2e8f9f7 4987 TIMx->CCER = tmpccer;
<> 144:ef7eb2e8f9f7 4988 }
<> 144:ef7eb2e8f9f7 4989
<> 144:ef7eb2e8f9f7 4990 /**
<> 144:ef7eb2e8f9f7 4991 * @brief Time Output Compare 4 configuration
<> 144:ef7eb2e8f9f7 4992 * @param htim: pointer to a TIM_HandleTypeDef structure that contains
<> 144:ef7eb2e8f9f7 4993 * the configuration information for TIM module.
<> 144:ef7eb2e8f9f7 4994 * @param sSlaveConfig: The slave configuration structure
<> 144:ef7eb2e8f9f7 4995 * @retval None
<> 144:ef7eb2e8f9f7 4996 */
<> 144:ef7eb2e8f9f7 4997 static void TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim,
<> 144:ef7eb2e8f9f7 4998 TIM_SlaveConfigTypeDef * sSlaveConfig)
<> 144:ef7eb2e8f9f7 4999 {
<> 144:ef7eb2e8f9f7 5000 uint32_t tmpsmcr = 0U;
<> 144:ef7eb2e8f9f7 5001 uint32_t tmpccmr1 = 0U;
<> 144:ef7eb2e8f9f7 5002 uint32_t tmpccer = 0U;
<> 144:ef7eb2e8f9f7 5003
<> 144:ef7eb2e8f9f7 5004 /* Get the TIMx SMCR register value */
<> 144:ef7eb2e8f9f7 5005 tmpsmcr = htim->Instance->SMCR;
<> 144:ef7eb2e8f9f7 5006
<> 144:ef7eb2e8f9f7 5007 /* Reset the Trigger Selection Bits */
<> 144:ef7eb2e8f9f7 5008 tmpsmcr &= ~TIM_SMCR_TS;
<> 144:ef7eb2e8f9f7 5009 /* Set the Input Trigger source */
<> 144:ef7eb2e8f9f7 5010 tmpsmcr |= sSlaveConfig->InputTrigger;
<> 144:ef7eb2e8f9f7 5011
<> 144:ef7eb2e8f9f7 5012 /* Reset the slave mode Bits */
<> 144:ef7eb2e8f9f7 5013 tmpsmcr &= ~TIM_SMCR_SMS;
<> 144:ef7eb2e8f9f7 5014 /* Set the slave mode */
<> 144:ef7eb2e8f9f7 5015 tmpsmcr |= sSlaveConfig->SlaveMode;
<> 144:ef7eb2e8f9f7 5016
<> 144:ef7eb2e8f9f7 5017 /* Write to TIMx SMCR */
<> 144:ef7eb2e8f9f7 5018 htim->Instance->SMCR = tmpsmcr;
<> 144:ef7eb2e8f9f7 5019
<> 144:ef7eb2e8f9f7 5020 /* Configure the trigger prescaler, filter, and polarity */
<> 144:ef7eb2e8f9f7 5021 switch (sSlaveConfig->InputTrigger)
<> 144:ef7eb2e8f9f7 5022 {
<> 144:ef7eb2e8f9f7 5023 case TIM_TS_ETRF:
<> 144:ef7eb2e8f9f7 5024 {
<> 144:ef7eb2e8f9f7 5025 /* Check the parameters */
<> 144:ef7eb2e8f9f7 5026 assert_param(IS_TIM_ETR_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 5027 assert_param(IS_TIM_TRIGGERPRESCALER(sSlaveConfig->TriggerPrescaler));
<> 144:ef7eb2e8f9f7 5028 assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity));
<> 144:ef7eb2e8f9f7 5029 assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
<> 144:ef7eb2e8f9f7 5030 /* Configure the ETR Trigger source */
<> 144:ef7eb2e8f9f7 5031 TIM_ETR_SetConfig(htim->Instance,
<> 144:ef7eb2e8f9f7 5032 sSlaveConfig->TriggerPrescaler,
<> 144:ef7eb2e8f9f7 5033 sSlaveConfig->TriggerPolarity,
<> 144:ef7eb2e8f9f7 5034 sSlaveConfig->TriggerFilter);
<> 144:ef7eb2e8f9f7 5035 }
<> 144:ef7eb2e8f9f7 5036 break;
<> 144:ef7eb2e8f9f7 5037
<> 144:ef7eb2e8f9f7 5038 case TIM_TS_TI1F_ED:
<> 144:ef7eb2e8f9f7 5039 {
<> 144:ef7eb2e8f9f7 5040 /* Check the parameters */
<> 144:ef7eb2e8f9f7 5041 assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 5042 assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
<> 144:ef7eb2e8f9f7 5043
<> 144:ef7eb2e8f9f7 5044 /* Disable the Channel 1: Reset the CC1E Bit */
<> 144:ef7eb2e8f9f7 5045 tmpccer = htim->Instance->CCER;
<> 144:ef7eb2e8f9f7 5046 htim->Instance->CCER &= ~TIM_CCER_CC1E;
<> 144:ef7eb2e8f9f7 5047 tmpccmr1 = htim->Instance->CCMR1;
<> 144:ef7eb2e8f9f7 5048
<> 144:ef7eb2e8f9f7 5049 /* Set the filter */
<> 144:ef7eb2e8f9f7 5050 tmpccmr1 &= ~TIM_CCMR1_IC1F;
AnnaBridge 167:e84263d55307 5051 tmpccmr1 |= ((sSlaveConfig->TriggerFilter) << 4U);
<> 144:ef7eb2e8f9f7 5052
<> 144:ef7eb2e8f9f7 5053 /* Write to TIMx CCMR1 and CCER registers */
<> 144:ef7eb2e8f9f7 5054 htim->Instance->CCMR1 = tmpccmr1;
<> 144:ef7eb2e8f9f7 5055 htim->Instance->CCER = tmpccer;
<> 144:ef7eb2e8f9f7 5056
<> 144:ef7eb2e8f9f7 5057 }
<> 144:ef7eb2e8f9f7 5058 break;
<> 144:ef7eb2e8f9f7 5059
<> 144:ef7eb2e8f9f7 5060 case TIM_TS_TI1FP1:
<> 144:ef7eb2e8f9f7 5061 {
<> 144:ef7eb2e8f9f7 5062 /* Check the parameters */
<> 144:ef7eb2e8f9f7 5063 assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 5064 assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity));
<> 144:ef7eb2e8f9f7 5065 assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
<> 144:ef7eb2e8f9f7 5066
<> 144:ef7eb2e8f9f7 5067 /* Configure TI1 Filter and Polarity */
<> 144:ef7eb2e8f9f7 5068 TIM_TI1_ConfigInputStage(htim->Instance,
<> 144:ef7eb2e8f9f7 5069 sSlaveConfig->TriggerPolarity,
<> 144:ef7eb2e8f9f7 5070 sSlaveConfig->TriggerFilter);
<> 144:ef7eb2e8f9f7 5071 }
<> 144:ef7eb2e8f9f7 5072 break;
<> 144:ef7eb2e8f9f7 5073
<> 144:ef7eb2e8f9f7 5074 case TIM_TS_TI2FP2:
<> 144:ef7eb2e8f9f7 5075 {
<> 144:ef7eb2e8f9f7 5076 /* Check the parameters */
<> 144:ef7eb2e8f9f7 5077 assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 5078 assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity));
<> 144:ef7eb2e8f9f7 5079 assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
<> 144:ef7eb2e8f9f7 5080
<> 144:ef7eb2e8f9f7 5081 /* Configure TI2 Filter and Polarity */
<> 144:ef7eb2e8f9f7 5082 TIM_TI2_ConfigInputStage(htim->Instance,
<> 144:ef7eb2e8f9f7 5083 sSlaveConfig->TriggerPolarity,
<> 144:ef7eb2e8f9f7 5084 sSlaveConfig->TriggerFilter);
<> 144:ef7eb2e8f9f7 5085 }
<> 144:ef7eb2e8f9f7 5086 break;
<> 144:ef7eb2e8f9f7 5087
<> 144:ef7eb2e8f9f7 5088 case TIM_TS_ITR0:
<> 144:ef7eb2e8f9f7 5089 {
<> 144:ef7eb2e8f9f7 5090 /* Check the parameter */
<> 144:ef7eb2e8f9f7 5091 assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 5092 }
<> 144:ef7eb2e8f9f7 5093 break;
<> 144:ef7eb2e8f9f7 5094
<> 144:ef7eb2e8f9f7 5095 case TIM_TS_ITR1:
<> 144:ef7eb2e8f9f7 5096 {
<> 144:ef7eb2e8f9f7 5097 /* Check the parameter */
<> 144:ef7eb2e8f9f7 5098 assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 5099 }
<> 144:ef7eb2e8f9f7 5100 break;
<> 144:ef7eb2e8f9f7 5101
<> 144:ef7eb2e8f9f7 5102 case TIM_TS_ITR2:
<> 144:ef7eb2e8f9f7 5103 {
<> 144:ef7eb2e8f9f7 5104 /* Check the parameter */
<> 144:ef7eb2e8f9f7 5105 assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 5106 }
<> 144:ef7eb2e8f9f7 5107 break;
<> 144:ef7eb2e8f9f7 5108
<> 144:ef7eb2e8f9f7 5109 case TIM_TS_ITR3:
<> 144:ef7eb2e8f9f7 5110 {
<> 144:ef7eb2e8f9f7 5111 /* Check the parameter */
<> 144:ef7eb2e8f9f7 5112 assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
<> 144:ef7eb2e8f9f7 5113 }
<> 144:ef7eb2e8f9f7 5114 break;
<> 144:ef7eb2e8f9f7 5115
<> 144:ef7eb2e8f9f7 5116 default:
<> 144:ef7eb2e8f9f7 5117 break;
<> 144:ef7eb2e8f9f7 5118 }
<> 144:ef7eb2e8f9f7 5119 }
<> 144:ef7eb2e8f9f7 5120
<> 144:ef7eb2e8f9f7 5121
<> 144:ef7eb2e8f9f7 5122 /**
<> 144:ef7eb2e8f9f7 5123 * @brief Configure the Polarity and Filter for TI1.
<> 144:ef7eb2e8f9f7 5124 * @param TIMx to select the TIM peripheral.
<> 144:ef7eb2e8f9f7 5125 * @param TIM_ICPolarity : The Input Polarity.
<> 144:ef7eb2e8f9f7 5126 * This parameter can be one of the following values:
<> 144:ef7eb2e8f9f7 5127 * @arg TIM_ICPolarity_Rising
<> 144:ef7eb2e8f9f7 5128 * @arg TIM_ICPolarity_Falling
<> 144:ef7eb2e8f9f7 5129 * @arg TIM_ICPolarity_BothEdge
<> 144:ef7eb2e8f9f7 5130 * @param TIM_ICFilter: Specifies the Input Capture Filter.
<> 144:ef7eb2e8f9f7 5131 * This parameter must be a value between 0x00 and 0x0F.
<> 144:ef7eb2e8f9f7 5132 * @retval None
<> 144:ef7eb2e8f9f7 5133 */
<> 144:ef7eb2e8f9f7 5134 static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter)
<> 144:ef7eb2e8f9f7 5135 {
<> 144:ef7eb2e8f9f7 5136 uint32_t tmpccmr1 = 0U;
<> 144:ef7eb2e8f9f7 5137 uint32_t tmpccer = 0U;
<> 144:ef7eb2e8f9f7 5138
<> 144:ef7eb2e8f9f7 5139 /* Disable the Channel 1: Reset the CC1E Bit */
<> 144:ef7eb2e8f9f7 5140 tmpccer = TIMx->CCER;
<> 144:ef7eb2e8f9f7 5141 TIMx->CCER &= ~TIM_CCER_CC1E;
<> 144:ef7eb2e8f9f7 5142 tmpccmr1 = TIMx->CCMR1;
<> 144:ef7eb2e8f9f7 5143
<> 144:ef7eb2e8f9f7 5144 /* Set the filter */
<> 144:ef7eb2e8f9f7 5145 tmpccmr1 &= ~TIM_CCMR1_IC1F;
<> 144:ef7eb2e8f9f7 5146 tmpccmr1 |= (TIM_ICFilter << 4U);
<> 144:ef7eb2e8f9f7 5147
<> 144:ef7eb2e8f9f7 5148 /* Select the Polarity and set the CC1E Bit */
<> 144:ef7eb2e8f9f7 5149 tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP);
<> 144:ef7eb2e8f9f7 5150 tmpccer |= TIM_ICPolarity;
<> 144:ef7eb2e8f9f7 5151
<> 144:ef7eb2e8f9f7 5152 /* Write to TIMx CCMR1 and CCER registers */
<> 144:ef7eb2e8f9f7 5153 TIMx->CCMR1 = tmpccmr1;
<> 144:ef7eb2e8f9f7 5154 TIMx->CCER = tmpccer;
<> 144:ef7eb2e8f9f7 5155 }
<> 144:ef7eb2e8f9f7 5156
<> 144:ef7eb2e8f9f7 5157 /**
<> 144:ef7eb2e8f9f7 5158 * @brief Configure the TI2 as Input.
<> 144:ef7eb2e8f9f7 5159 * @param TIMx to select the TIM peripheral
<> 144:ef7eb2e8f9f7 5160 * @param TIM_ICPolarity : The Input Polarity.
<> 144:ef7eb2e8f9f7 5161 * This parameter can be one of the following values:
<> 144:ef7eb2e8f9f7 5162 * @arg TIM_ICPolarity_Rising
<> 144:ef7eb2e8f9f7 5163 * @arg TIM_ICPolarity_Falling
<> 144:ef7eb2e8f9f7 5164 * @arg TIM_ICPolarity_BothEdge
<> 144:ef7eb2e8f9f7 5165 * @param TIM_ICSelection: specifies the input to be used.
<> 144:ef7eb2e8f9f7 5166 * This parameter can be one of the following values:
<> 144:ef7eb2e8f9f7 5167 * @arg TIM_ICSelection_DirectTI: TIM Input 2 is selected to be connected to IC2.
<> 144:ef7eb2e8f9f7 5168 * @arg TIM_ICSelection_IndirectTI: TIM Input 2 is selected to be connected to IC1.
<> 144:ef7eb2e8f9f7 5169 * @arg TIM_ICSelection_TRC: TIM Input 2 is selected to be connected to TRC.
<> 144:ef7eb2e8f9f7 5170 * @param TIM_ICFilter: Specifies the Input Capture Filter.
<> 144:ef7eb2e8f9f7 5171 * This parameter must be a value between 0x00 and 0x0F.
<> 144:ef7eb2e8f9f7 5172 * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI1FP2
<> 144:ef7eb2e8f9f7 5173 * (on channel1 path) is used as the input signal. Therefore CCMR1 must be
<> 144:ef7eb2e8f9f7 5174 * protected against un-initialized filter and polarity values.
<> 144:ef7eb2e8f9f7 5175 * @retval None
<> 144:ef7eb2e8f9f7 5176 */
<> 144:ef7eb2e8f9f7 5177 static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
<> 144:ef7eb2e8f9f7 5178 uint32_t TIM_ICFilter)
<> 144:ef7eb2e8f9f7 5179 {
<> 144:ef7eb2e8f9f7 5180 uint32_t tmpccmr1 = 0U;
<> 144:ef7eb2e8f9f7 5181 uint32_t tmpccer = 0U;
<> 144:ef7eb2e8f9f7 5182
<> 144:ef7eb2e8f9f7 5183 /* Disable the Channel 2: Reset the CC2E Bit */
<> 144:ef7eb2e8f9f7 5184 TIMx->CCER &= ~TIM_CCER_CC2E;
<> 144:ef7eb2e8f9f7 5185 tmpccmr1 = TIMx->CCMR1;
<> 144:ef7eb2e8f9f7 5186 tmpccer = TIMx->CCER;
<> 144:ef7eb2e8f9f7 5187
<> 144:ef7eb2e8f9f7 5188 /* Select the Input */
<> 144:ef7eb2e8f9f7 5189 tmpccmr1 &= ~TIM_CCMR1_CC2S;
<> 144:ef7eb2e8f9f7 5190 tmpccmr1 |= (TIM_ICSelection << 8U);
<> 144:ef7eb2e8f9f7 5191
<> 144:ef7eb2e8f9f7 5192 /* Set the filter */
<> 144:ef7eb2e8f9f7 5193 tmpccmr1 &= ~TIM_CCMR1_IC2F;
<> 144:ef7eb2e8f9f7 5194 tmpccmr1 |= ((TIM_ICFilter << 12U) & TIM_CCMR1_IC2F);
<> 144:ef7eb2e8f9f7 5195
<> 144:ef7eb2e8f9f7 5196 /* Select the Polarity and set the CC2E Bit */
<> 144:ef7eb2e8f9f7 5197 tmpccer &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP);
<> 144:ef7eb2e8f9f7 5198 tmpccer |= ((TIM_ICPolarity << 4U) & (TIM_CCER_CC2P | TIM_CCER_CC2NP));
<> 144:ef7eb2e8f9f7 5199
<> 144:ef7eb2e8f9f7 5200 /* Write to TIMx CCMR1 and CCER registers */
<> 144:ef7eb2e8f9f7 5201 TIMx->CCMR1 = tmpccmr1 ;
<> 144:ef7eb2e8f9f7 5202 TIMx->CCER = tmpccer;
<> 144:ef7eb2e8f9f7 5203 }
<> 144:ef7eb2e8f9f7 5204
<> 144:ef7eb2e8f9f7 5205 /**
<> 144:ef7eb2e8f9f7 5206 * @brief Configure the Polarity and Filter for TI2.
<> 144:ef7eb2e8f9f7 5207 * @param TIMx to select the TIM peripheral.
<> 144:ef7eb2e8f9f7 5208 * @param TIM_ICPolarity : The Input Polarity.
<> 144:ef7eb2e8f9f7 5209 * This parameter can be one of the following values:
<> 144:ef7eb2e8f9f7 5210 * @arg TIM_ICPolarity_Rising
<> 144:ef7eb2e8f9f7 5211 * @arg TIM_ICPolarity_Falling
<> 144:ef7eb2e8f9f7 5212 * @arg TIM_ICPolarity_BothEdge
<> 144:ef7eb2e8f9f7 5213 * @param TIM_ICFilter: Specifies the Input Capture Filter.
<> 144:ef7eb2e8f9f7 5214 * This parameter must be a value between 0x00 and 0x0F.
<> 144:ef7eb2e8f9f7 5215 * @retval None
<> 144:ef7eb2e8f9f7 5216 */
<> 144:ef7eb2e8f9f7 5217 static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter)
<> 144:ef7eb2e8f9f7 5218 {
<> 144:ef7eb2e8f9f7 5219 uint32_t tmpccmr1 = 0U;
<> 144:ef7eb2e8f9f7 5220 uint32_t tmpccer = 0U;
<> 144:ef7eb2e8f9f7 5221
<> 144:ef7eb2e8f9f7 5222 /* Disable the Channel 2: Reset the CC2E Bit */
<> 144:ef7eb2e8f9f7 5223 TIMx->CCER &= ~TIM_CCER_CC2E;
<> 144:ef7eb2e8f9f7 5224 tmpccmr1 = TIMx->CCMR1;
<> 144:ef7eb2e8f9f7 5225 tmpccer = TIMx->CCER;
<> 144:ef7eb2e8f9f7 5226
<> 144:ef7eb2e8f9f7 5227 /* Set the filter */
<> 144:ef7eb2e8f9f7 5228 tmpccmr1 &= ~TIM_CCMR1_IC2F;
<> 144:ef7eb2e8f9f7 5229 tmpccmr1 |= (TIM_ICFilter << 12U);
<> 144:ef7eb2e8f9f7 5230
<> 144:ef7eb2e8f9f7 5231 /* Select the Polarity and set the CC2E Bit */
<> 144:ef7eb2e8f9f7 5232 tmpccer &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP);
<> 144:ef7eb2e8f9f7 5233 tmpccer |= (TIM_ICPolarity << 4U);
<> 144:ef7eb2e8f9f7 5234
<> 144:ef7eb2e8f9f7 5235 /* Write to TIMx CCMR1 and CCER registers */
<> 144:ef7eb2e8f9f7 5236 TIMx->CCMR1 = tmpccmr1 ;
<> 144:ef7eb2e8f9f7 5237 TIMx->CCER = tmpccer;
<> 144:ef7eb2e8f9f7 5238 }
<> 144:ef7eb2e8f9f7 5239
<> 144:ef7eb2e8f9f7 5240 /**
<> 144:ef7eb2e8f9f7 5241 * @brief Configure the TI3 as Input.
<> 144:ef7eb2e8f9f7 5242 * @param TIMx to select the TIM peripheral
<> 144:ef7eb2e8f9f7 5243 * @param TIM_ICPolarity : The Input Polarity.
<> 144:ef7eb2e8f9f7 5244 * This parameter can be one of the following values:
<> 144:ef7eb2e8f9f7 5245 * @arg TIM_ICPolarity_Rising
<> 144:ef7eb2e8f9f7 5246 * @arg TIM_ICPolarity_Falling
<> 144:ef7eb2e8f9f7 5247 * @arg TIM_ICPolarity_BothEdge
<> 144:ef7eb2e8f9f7 5248 * @param TIM_ICSelection: specifies the input to be used.
<> 144:ef7eb2e8f9f7 5249 * This parameter can be one of the following values:
<> 144:ef7eb2e8f9f7 5250 * @arg TIM_ICSelection_DirectTI: TIM Input 3 is selected to be connected to IC3.
<> 144:ef7eb2e8f9f7 5251 * @arg TIM_ICSelection_IndirectTI: TIM Input 3 is selected to be connected to IC4.
<> 144:ef7eb2e8f9f7 5252 * @arg TIM_ICSelection_TRC: TIM Input 3 is selected to be connected to TRC.
<> 144:ef7eb2e8f9f7 5253 * @param TIM_ICFilter: Specifies the Input Capture Filter.
<> 144:ef7eb2e8f9f7 5254 * This parameter must be a value between 0x00 and 0x0F.
<> 144:ef7eb2e8f9f7 5255 * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI4FP3
<> 144:ef7eb2e8f9f7 5256 * (on channel4 path) is used as the input signal. Therefore CCMR2 must be
<> 144:ef7eb2e8f9f7 5257 * protected against un-initialized filter and polarity values.
<> 144:ef7eb2e8f9f7 5258 * @retval None
<> 144:ef7eb2e8f9f7 5259 */
<> 144:ef7eb2e8f9f7 5260 static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
<> 144:ef7eb2e8f9f7 5261 uint32_t TIM_ICFilter)
<> 144:ef7eb2e8f9f7 5262 {
<> 144:ef7eb2e8f9f7 5263 uint32_t tmpccmr2 = 0U;
<> 144:ef7eb2e8f9f7 5264 uint32_t tmpccer = 0U;
<> 144:ef7eb2e8f9f7 5265
<> 144:ef7eb2e8f9f7 5266 /* Disable the Channel 3: Reset the CC3E Bit */
<> 144:ef7eb2e8f9f7 5267 TIMx->CCER &= ~TIM_CCER_CC3E;
<> 144:ef7eb2e8f9f7 5268 tmpccmr2 = TIMx->CCMR2;
<> 144:ef7eb2e8f9f7 5269 tmpccer = TIMx->CCER;
<> 144:ef7eb2e8f9f7 5270
<> 144:ef7eb2e8f9f7 5271 /* Select the Input */
<> 144:ef7eb2e8f9f7 5272 tmpccmr2 &= ~TIM_CCMR2_CC3S;
<> 144:ef7eb2e8f9f7 5273 tmpccmr2 |= TIM_ICSelection;
<> 144:ef7eb2e8f9f7 5274
<> 144:ef7eb2e8f9f7 5275 /* Set the filter */
<> 144:ef7eb2e8f9f7 5276 tmpccmr2 &= ~TIM_CCMR2_IC3F;
<> 144:ef7eb2e8f9f7 5277 tmpccmr2 |= ((TIM_ICFilter << 4U) & TIM_CCMR2_IC3F);
<> 144:ef7eb2e8f9f7 5278
<> 144:ef7eb2e8f9f7 5279 /* Select the Polarity and set the CC3E Bit */
<> 144:ef7eb2e8f9f7 5280 tmpccer &= ~(TIM_CCER_CC3P | TIM_CCER_CC3NP);
<> 144:ef7eb2e8f9f7 5281 tmpccer |= ((TIM_ICPolarity << 8U) & (TIM_CCER_CC3P | TIM_CCER_CC3NP));
<> 144:ef7eb2e8f9f7 5282
<> 144:ef7eb2e8f9f7 5283 /* Write to TIMx CCMR2 and CCER registers */
<> 144:ef7eb2e8f9f7 5284 TIMx->CCMR2 = tmpccmr2;
<> 144:ef7eb2e8f9f7 5285 TIMx->CCER = tmpccer;
<> 144:ef7eb2e8f9f7 5286 }
<> 144:ef7eb2e8f9f7 5287
<> 144:ef7eb2e8f9f7 5288 /**
<> 144:ef7eb2e8f9f7 5289 * @brief Configure the TI4 as Input.
<> 144:ef7eb2e8f9f7 5290 * @param TIMx to select the TIM peripheral
<> 144:ef7eb2e8f9f7 5291 * @param TIM_ICPolarity : The Input Polarity.
<> 144:ef7eb2e8f9f7 5292 * This parameter can be one of the following values:
<> 144:ef7eb2e8f9f7 5293 * @arg TIM_ICPolarity_Rising
<> 144:ef7eb2e8f9f7 5294 * @arg TIM_ICPolarity_Falling
<> 144:ef7eb2e8f9f7 5295 * @arg TIM_ICPolarity_BothEdge
<> 144:ef7eb2e8f9f7 5296 * @param TIM_ICSelection: specifies the input to be used.
<> 144:ef7eb2e8f9f7 5297 * This parameter can be one of the following values:
<> 144:ef7eb2e8f9f7 5298 * @arg TIM_ICSelection_DirectTI: TIM Input 4 is selected to be connected to IC4.
<> 144:ef7eb2e8f9f7 5299 * @arg TIM_ICSelection_IndirectTI: TIM Input 4 is selected to be connected to IC3.
<> 144:ef7eb2e8f9f7 5300 * @arg TIM_ICSelection_TRC: TIM Input 4 is selected to be connected to TRC.
<> 144:ef7eb2e8f9f7 5301 * @param TIM_ICFilter: Specifies the Input Capture Filter.
<> 144:ef7eb2e8f9f7 5302 * This parameter must be a value between 0x00 and 0x0F.
<> 144:ef7eb2e8f9f7 5303 * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI3FP4
<> 144:ef7eb2e8f9f7 5304 * (on channel3 path) is used as the input signal. Therefore CCMR2 must be
<> 144:ef7eb2e8f9f7 5305 * protected against un-initialized filter and polarity values.
<> 144:ef7eb2e8f9f7 5306 * @retval None
<> 144:ef7eb2e8f9f7 5307 */
<> 144:ef7eb2e8f9f7 5308 static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
<> 144:ef7eb2e8f9f7 5309 uint32_t TIM_ICFilter)
<> 144:ef7eb2e8f9f7 5310 {
<> 144:ef7eb2e8f9f7 5311 uint32_t tmpccmr2 = 0U;
<> 144:ef7eb2e8f9f7 5312 uint32_t tmpccer = 0U;
<> 144:ef7eb2e8f9f7 5313
<> 144:ef7eb2e8f9f7 5314 /* Disable the Channel 4: Reset the CC4E Bit */
<> 144:ef7eb2e8f9f7 5315 TIMx->CCER &= ~TIM_CCER_CC4E;
<> 144:ef7eb2e8f9f7 5316 tmpccmr2 = TIMx->CCMR2;
<> 144:ef7eb2e8f9f7 5317 tmpccer = TIMx->CCER;
<> 144:ef7eb2e8f9f7 5318
<> 144:ef7eb2e8f9f7 5319 /* Select the Input */
<> 144:ef7eb2e8f9f7 5320 tmpccmr2 &= ~TIM_CCMR2_CC4S;
<> 144:ef7eb2e8f9f7 5321 tmpccmr2 |= (TIM_ICSelection << 8U);
<> 144:ef7eb2e8f9f7 5322
<> 144:ef7eb2e8f9f7 5323 /* Set the filter */
<> 144:ef7eb2e8f9f7 5324 tmpccmr2 &= ~TIM_CCMR2_IC4F;
<> 144:ef7eb2e8f9f7 5325 tmpccmr2 |= ((TIM_ICFilter << 12U) & TIM_CCMR2_IC4F);
<> 144:ef7eb2e8f9f7 5326
<> 144:ef7eb2e8f9f7 5327 /* Select the Polarity and set the CC4E Bit */
<> 144:ef7eb2e8f9f7 5328 tmpccer &= ~(TIM_CCER_CC4P | TIM_CCER_CC4NP);
<> 144:ef7eb2e8f9f7 5329 tmpccer |= ((TIM_ICPolarity << 12U) & (TIM_CCER_CC4P | TIM_CCER_CC4NP));
<> 144:ef7eb2e8f9f7 5330
<> 144:ef7eb2e8f9f7 5331 /* Write to TIMx CCMR2 and CCER registers */
<> 144:ef7eb2e8f9f7 5332 TIMx->CCMR2 = tmpccmr2;
<> 144:ef7eb2e8f9f7 5333 TIMx->CCER = tmpccer ;
<> 144:ef7eb2e8f9f7 5334 }
<> 144:ef7eb2e8f9f7 5335
<> 144:ef7eb2e8f9f7 5336 /**
<> 144:ef7eb2e8f9f7 5337 * @brief Selects the Input Trigger source
<> 144:ef7eb2e8f9f7 5338 * @param TIMx to select the TIM peripheral
<> 144:ef7eb2e8f9f7 5339 * @param TIM_ITRx: The Input Trigger source.
<> 144:ef7eb2e8f9f7 5340 * This parameter can be one of the following values:
<> 144:ef7eb2e8f9f7 5341 * @arg TIM_TS_ITR0: Internal Trigger 0
<> 144:ef7eb2e8f9f7 5342 * @arg TIM_TS_ITR1: Internal Trigger 1
<> 144:ef7eb2e8f9f7 5343 * @arg TIM_TS_ITR2: Internal Trigger 2
<> 144:ef7eb2e8f9f7 5344 * @arg TIM_TS_ITR3: Internal Trigger 3
<> 144:ef7eb2e8f9f7 5345 * @arg TIM_TS_TI1F_ED: TI1 Edge Detector
<> 144:ef7eb2e8f9f7 5346 * @arg TIM_TS_TI1FP1: Filtered Timer Input 1
<> 144:ef7eb2e8f9f7 5347 * @arg TIM_TS_TI2FP2: Filtered Timer Input 2
<> 144:ef7eb2e8f9f7 5348 * @arg TIM_TS_ETRF: External Trigger input
<> 144:ef7eb2e8f9f7 5349 * @retval None
<> 144:ef7eb2e8f9f7 5350 */
<> 144:ef7eb2e8f9f7 5351 static void TIM_ITRx_SetConfig(TIM_TypeDef *TIMx, uint16_t TIM_ITRx)
<> 144:ef7eb2e8f9f7 5352 {
<> 144:ef7eb2e8f9f7 5353 uint32_t tmpsmcr = 0U;
<> 144:ef7eb2e8f9f7 5354
<> 144:ef7eb2e8f9f7 5355 /* Get the TIMx SMCR register value */
<> 144:ef7eb2e8f9f7 5356 tmpsmcr = TIMx->SMCR;
<> 144:ef7eb2e8f9f7 5357 /* Reset the TS Bits */
<> 144:ef7eb2e8f9f7 5358 tmpsmcr &= ~TIM_SMCR_TS;
<> 144:ef7eb2e8f9f7 5359 /* Set the Input Trigger source and the slave mode*/
<> 144:ef7eb2e8f9f7 5360 tmpsmcr |= TIM_ITRx | TIM_SLAVEMODE_EXTERNAL1;
<> 144:ef7eb2e8f9f7 5361 /* Write to TIMx SMCR */
<> 144:ef7eb2e8f9f7 5362 TIMx->SMCR = tmpsmcr;
<> 144:ef7eb2e8f9f7 5363 }
<> 144:ef7eb2e8f9f7 5364
<> 144:ef7eb2e8f9f7 5365 /**
<> 144:ef7eb2e8f9f7 5366 * @brief Configures the TIMx External Trigger (ETR).
<> 144:ef7eb2e8f9f7 5367 * @param TIMx to select the TIM peripheral
<> 144:ef7eb2e8f9f7 5368 * @param TIM_ExtTRGPrescaler: The external Trigger Prescaler.
<> 144:ef7eb2e8f9f7 5369 * This parameter can be one of the following values:
<> 144:ef7eb2e8f9f7 5370 * @arg TIM_ETRPRESCALER_DIV1 : ETRP Prescaler OFF.
<> 144:ef7eb2e8f9f7 5371 * @arg TIM_ETRPRESCALER_DIV2 : ETRP frequency divided by 2.
<> 144:ef7eb2e8f9f7 5372 * @arg TIM_ETRPRESCALER_DIV4 : ETRP frequency divided by 4.
<> 144:ef7eb2e8f9f7 5373 * @arg TIM_ETRPRESCALER_DIV8 : ETRP frequency divided by 8.
<> 144:ef7eb2e8f9f7 5374 * @param TIM_ExtTRGPolarity: The external Trigger Polarity.
<> 144:ef7eb2e8f9f7 5375 * This parameter can be one of the following values:
<> 144:ef7eb2e8f9f7 5376 * @arg TIM_ETRPOLARITY_INVERTED : active low or falling edge active.
<> 144:ef7eb2e8f9f7 5377 * @arg TIM_ETRPOLARITY_NONINVERTED : active high or rising edge active.
<> 144:ef7eb2e8f9f7 5378 * @param ExtTRGFilter: External Trigger Filter.
<> 144:ef7eb2e8f9f7 5379 * This parameter must be a value between 0x00 and 0x0F
<> 144:ef7eb2e8f9f7 5380 * @retval None
<> 144:ef7eb2e8f9f7 5381 */
<> 144:ef7eb2e8f9f7 5382 static void TIM_ETR_SetConfig(TIM_TypeDef* TIMx, uint32_t TIM_ExtTRGPrescaler,
<> 144:ef7eb2e8f9f7 5383 uint32_t TIM_ExtTRGPolarity, uint32_t ExtTRGFilter)
<> 144:ef7eb2e8f9f7 5384 {
<> 144:ef7eb2e8f9f7 5385 uint32_t tmpsmcr = 0U;
<> 144:ef7eb2e8f9f7 5386
<> 144:ef7eb2e8f9f7 5387 tmpsmcr = TIMx->SMCR;
<> 144:ef7eb2e8f9f7 5388
<> 144:ef7eb2e8f9f7 5389 /* Reset the ETR Bits */
<> 144:ef7eb2e8f9f7 5390 tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP);
<> 144:ef7eb2e8f9f7 5391
<> 144:ef7eb2e8f9f7 5392 /* Set the Prescaler, the Filter value and the Polarity */
<> 144:ef7eb2e8f9f7 5393 tmpsmcr |= (uint32_t)(TIM_ExtTRGPrescaler | (TIM_ExtTRGPolarity | (ExtTRGFilter << 8U)));
<> 144:ef7eb2e8f9f7 5394
<> 144:ef7eb2e8f9f7 5395 /* Write to TIMx SMCR */
<> 144:ef7eb2e8f9f7 5396 TIMx->SMCR = tmpsmcr;
<> 144:ef7eb2e8f9f7 5397 }
<> 144:ef7eb2e8f9f7 5398
<> 144:ef7eb2e8f9f7 5399 /**
<> 144:ef7eb2e8f9f7 5400 * @}
<> 144:ef7eb2e8f9f7 5401 */
<> 144:ef7eb2e8f9f7 5402
<> 144:ef7eb2e8f9f7 5403 #endif /* HAL_TIM_MODULE_ENABLED */
<> 144:ef7eb2e8f9f7 5404 /**
<> 144:ef7eb2e8f9f7 5405 * @}
<> 144:ef7eb2e8f9f7 5406 */
<> 144:ef7eb2e8f9f7 5407
<> 144:ef7eb2e8f9f7 5408 /**
<> 144:ef7eb2e8f9f7 5409 * @}
<> 144:ef7eb2e8f9f7 5410 */
<> 144:ef7eb2e8f9f7 5411 /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/