mbed library sources. Supersedes mbed-src.

Dependents:   Nucleo_Hello_Encoder BLE_iBeaconScan AM1805_DEMO DISCO-F429ZI_ExportTemplate1 ... more

Committer:
AnnaBridge
Date:
Wed Feb 20 22:31:08 2019 +0000
Revision:
189:f392fc9709a3
Parent:
167:e84263d55307
mbed library release version 165

Who changed what in which revision?

UserRevisionLine numberNew contents of line
<> 144:ef7eb2e8f9f7 1 /**
<> 144:ef7eb2e8f9f7 2 ******************************************************************************
<> 144:ef7eb2e8f9f7 3 * @file stm32f2xx_hal_rcc.c
<> 144:ef7eb2e8f9f7 4 * @author MCD Application Team
AnnaBridge 167:e84263d55307 5 * @version V1.2.1
AnnaBridge 167:e84263d55307 6 * @date 14-April-2017
<> 144:ef7eb2e8f9f7 7 * @brief RCC HAL module driver.
<> 144:ef7eb2e8f9f7 8 * This file provides firmware functions to manage the following
<> 144:ef7eb2e8f9f7 9 * functionalities of the Reset and Clock Control (RCC) peripheral:
<> 144:ef7eb2e8f9f7 10 * + Initialization and de-initialization functions
<> 144:ef7eb2e8f9f7 11 * + Peripheral Control functions
<> 144:ef7eb2e8f9f7 12 *
<> 144:ef7eb2e8f9f7 13 @verbatim
<> 144:ef7eb2e8f9f7 14 ==============================================================================
<> 144:ef7eb2e8f9f7 15 ##### RCC specific features #####
<> 144:ef7eb2e8f9f7 16 ==============================================================================
<> 144:ef7eb2e8f9f7 17 [..]
<> 144:ef7eb2e8f9f7 18 After reset the device is running from Internal High Speed oscillator
<> 144:ef7eb2e8f9f7 19 (HSI 16MHz) with Flash 0 wait state, Flash prefetch buffer, D-Cache
<> 144:ef7eb2e8f9f7 20 and I-Cache are disabled, and all peripherals are off except internal
<> 144:ef7eb2e8f9f7 21 SRAM, Flash and JTAG.
<> 144:ef7eb2e8f9f7 22 (+) There is no prescaler on High speed (AHB) and Low speed (APB) busses;
<> 144:ef7eb2e8f9f7 23 all peripherals mapped on these busses are running at HSI speed.
<> 144:ef7eb2e8f9f7 24 (+) The clock for all peripherals is switched off, except the SRAM and FLASH.
<> 144:ef7eb2e8f9f7 25 (+) All GPIOs are in input floating state, except the JTAG pins which
<> 144:ef7eb2e8f9f7 26 are assigned to be used for debug purpose.
<> 144:ef7eb2e8f9f7 27
<> 144:ef7eb2e8f9f7 28 [..]
<> 144:ef7eb2e8f9f7 29 Once the device started from reset, the user application has to:
<> 144:ef7eb2e8f9f7 30 (+) Configure the clock source to be used to drive the System clock
<> 144:ef7eb2e8f9f7 31 (if the application needs higher frequency/performance)
<> 144:ef7eb2e8f9f7 32 (+) Configure the System clock frequency and Flash settings
<> 144:ef7eb2e8f9f7 33 (+) Configure the AHB and APB busses prescalers
<> 144:ef7eb2e8f9f7 34 (+) Enable the clock for the peripheral(s) to be used
<> 144:ef7eb2e8f9f7 35 (+) Configure the clock source(s) for peripherals which clocks are not
<> 144:ef7eb2e8f9f7 36 derived from the System clock (I2S, RTC, ADC, USB OTG FS/SDIO/RNG)
<> 144:ef7eb2e8f9f7 37
<> 144:ef7eb2e8f9f7 38 ##### RCC Limitations #####
<> 144:ef7eb2e8f9f7 39 ==============================================================================
<> 144:ef7eb2e8f9f7 40 [..]
<> 144:ef7eb2e8f9f7 41 A delay between an RCC peripheral clock enable and the effective peripheral
<> 144:ef7eb2e8f9f7 42 enabling should be taken into account in order to manage the peripheral read/write
<> 144:ef7eb2e8f9f7 43 from/to registers.
<> 144:ef7eb2e8f9f7 44 (+) This delay depends on the peripheral mapping.
<> 144:ef7eb2e8f9f7 45 (+) If peripheral is mapped on AHB: the delay is 2 AHB clock cycle
<> 144:ef7eb2e8f9f7 46 after the clock enable bit is set on the hardware register
<> 144:ef7eb2e8f9f7 47 (+) If peripheral is mapped on APB: the delay is 2 APB clock cycle
<> 144:ef7eb2e8f9f7 48 after the clock enable bit is set on the hardware register
<> 144:ef7eb2e8f9f7 49
<> 144:ef7eb2e8f9f7 50 [..]
AnnaBridge 167:e84263d55307 51 Implemented Workaround:
AnnaBridge 167:e84263d55307 52 (+) For AHB & APB peripherals, a dummy read to the peripheral register has been
AnnaBridge 167:e84263d55307 53 inserted in each __HAL_RCC_PPP_CLK_ENABLE() macro.
<> 144:ef7eb2e8f9f7 54
<> 144:ef7eb2e8f9f7 55 @endverbatim
<> 144:ef7eb2e8f9f7 56 ******************************************************************************
<> 144:ef7eb2e8f9f7 57 * @attention
<> 144:ef7eb2e8f9f7 58 *
AnnaBridge 167:e84263d55307 59 * <h2><center>&copy; COPYRIGHT(c) 2017 STMicroelectronics</center></h2>
<> 144:ef7eb2e8f9f7 60 *
<> 144:ef7eb2e8f9f7 61 * Redistribution and use in source and binary forms, with or without modification,
<> 144:ef7eb2e8f9f7 62 * are permitted provided that the following conditions are met:
<> 144:ef7eb2e8f9f7 63 * 1. Redistributions of source code must retain the above copyright notice,
<> 144:ef7eb2e8f9f7 64 * this list of conditions and the following disclaimer.
<> 144:ef7eb2e8f9f7 65 * 2. Redistributions in binary form must reproduce the above copyright notice,
<> 144:ef7eb2e8f9f7 66 * this list of conditions and the following disclaimer in the documentation
<> 144:ef7eb2e8f9f7 67 * and/or other materials provided with the distribution.
<> 144:ef7eb2e8f9f7 68 * 3. Neither the name of STMicroelectronics nor the names of its contributors
<> 144:ef7eb2e8f9f7 69 * may be used to endorse or promote products derived from this software
<> 144:ef7eb2e8f9f7 70 * without specific prior written permission.
<> 144:ef7eb2e8f9f7 71 *
<> 144:ef7eb2e8f9f7 72 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
<> 144:ef7eb2e8f9f7 73 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
<> 144:ef7eb2e8f9f7 74 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
<> 144:ef7eb2e8f9f7 75 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
<> 144:ef7eb2e8f9f7 76 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
<> 144:ef7eb2e8f9f7 77 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
<> 144:ef7eb2e8f9f7 78 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
<> 144:ef7eb2e8f9f7 79 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
<> 144:ef7eb2e8f9f7 80 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
<> 144:ef7eb2e8f9f7 81 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
<> 144:ef7eb2e8f9f7 82 *
<> 144:ef7eb2e8f9f7 83 ******************************************************************************
<> 144:ef7eb2e8f9f7 84 */
<> 144:ef7eb2e8f9f7 85
<> 144:ef7eb2e8f9f7 86 /* Includes ------------------------------------------------------------------*/
<> 144:ef7eb2e8f9f7 87 #include "stm32f2xx_hal.h"
<> 144:ef7eb2e8f9f7 88
<> 144:ef7eb2e8f9f7 89 /** @addtogroup STM32F2xx_HAL_Driver
<> 144:ef7eb2e8f9f7 90 * @{
<> 144:ef7eb2e8f9f7 91 */
<> 144:ef7eb2e8f9f7 92
<> 144:ef7eb2e8f9f7 93 /** @defgroup RCC RCC
<> 144:ef7eb2e8f9f7 94 * @brief RCC HAL module driver
<> 144:ef7eb2e8f9f7 95 * @{
<> 144:ef7eb2e8f9f7 96 */
<> 144:ef7eb2e8f9f7 97
<> 144:ef7eb2e8f9f7 98 #ifdef HAL_RCC_MODULE_ENABLED
<> 144:ef7eb2e8f9f7 99
<> 144:ef7eb2e8f9f7 100 /* Private typedef -----------------------------------------------------------*/
<> 144:ef7eb2e8f9f7 101 /* Private define ------------------------------------------------------------*/
<> 144:ef7eb2e8f9f7 102 /** @addtogroup RCC_Private_Constants
<> 144:ef7eb2e8f9f7 103 * @{
<> 144:ef7eb2e8f9f7 104 */
AnnaBridge 167:e84263d55307 105 #define CLOCKSWITCH_TIMEOUT_VALUE 5000U /* 5 s */
<> 144:ef7eb2e8f9f7 106
<> 144:ef7eb2e8f9f7 107 /* Private macro -------------------------------------------------------------*/
<> 144:ef7eb2e8f9f7 108 #define __MCO1_CLK_ENABLE() __HAL_RCC_GPIOA_CLK_ENABLE()
<> 144:ef7eb2e8f9f7 109 #define MCO1_GPIO_PORT GPIOA
<> 144:ef7eb2e8f9f7 110 #define MCO1_PIN GPIO_PIN_8
<> 144:ef7eb2e8f9f7 111
<> 144:ef7eb2e8f9f7 112 #define __MCO2_CLK_ENABLE() __HAL_RCC_GPIOC_CLK_ENABLE()
<> 144:ef7eb2e8f9f7 113 #define MCO2_GPIO_PORT GPIOC
<> 144:ef7eb2e8f9f7 114 #define MCO2_PIN GPIO_PIN_9
<> 144:ef7eb2e8f9f7 115 /**
<> 144:ef7eb2e8f9f7 116 * @}
<> 144:ef7eb2e8f9f7 117 */
<> 144:ef7eb2e8f9f7 118
<> 144:ef7eb2e8f9f7 119 /* Private variables ---------------------------------------------------------*/
<> 144:ef7eb2e8f9f7 120 /** @defgroup RCC_Private_Variables RCC Private Variables
<> 144:ef7eb2e8f9f7 121 * @{
<> 144:ef7eb2e8f9f7 122 */
<> 144:ef7eb2e8f9f7 123 /**
<> 144:ef7eb2e8f9f7 124 * @}
<> 144:ef7eb2e8f9f7 125 */
<> 144:ef7eb2e8f9f7 126 /* Private function prototypes -----------------------------------------------*/
<> 144:ef7eb2e8f9f7 127 /* Private functions ---------------------------------------------------------*/
<> 144:ef7eb2e8f9f7 128
<> 144:ef7eb2e8f9f7 129 /** @defgroup RCC_Exported_Functions RCC Exported Functions
<> 144:ef7eb2e8f9f7 130 * @{
<> 144:ef7eb2e8f9f7 131 */
<> 144:ef7eb2e8f9f7 132
<> 144:ef7eb2e8f9f7 133 /** @defgroup RCC_Exported_Functions_Group1 Initialization and de-initialization functions
<> 144:ef7eb2e8f9f7 134 * @brief Initialization and Configuration functions
<> 144:ef7eb2e8f9f7 135 *
<> 144:ef7eb2e8f9f7 136 @verbatim
<> 144:ef7eb2e8f9f7 137 ===============================================================================
<> 144:ef7eb2e8f9f7 138 ##### Initialization and de-initialization functions #####
<> 144:ef7eb2e8f9f7 139 ===============================================================================
<> 144:ef7eb2e8f9f7 140 [..]
<> 144:ef7eb2e8f9f7 141 This section provides functions allowing to configure the internal/external oscillators
<> 144:ef7eb2e8f9f7 142 (HSE, HSI, LSE, LSI, PLL, CSS and MCO) and the System busses clocks (SYSCLK, AHB, APB1
<> 144:ef7eb2e8f9f7 143 and APB2).
<> 144:ef7eb2e8f9f7 144
<> 144:ef7eb2e8f9f7 145 [..] Internal/external clock and PLL configuration
<> 144:ef7eb2e8f9f7 146 (#) HSI (high-speed internal), 16 MHz factory-trimmed RC used directly or through
<> 144:ef7eb2e8f9f7 147 the PLL as System clock source.
<> 144:ef7eb2e8f9f7 148
<> 144:ef7eb2e8f9f7 149 (#) LSI (low-speed internal), 32 KHz low consumption RC used as IWDG and/or RTC
<> 144:ef7eb2e8f9f7 150 clock source.
<> 144:ef7eb2e8f9f7 151
<> 144:ef7eb2e8f9f7 152 (#) HSE (high-speed external), 4 to 26 MHz crystal oscillator used directly or
<> 144:ef7eb2e8f9f7 153 through the PLL as System clock source. Can be used also as RTC clock source.
<> 144:ef7eb2e8f9f7 154
<> 144:ef7eb2e8f9f7 155 (#) LSE (low-speed external), 32 KHz oscillator used as RTC clock source.
<> 144:ef7eb2e8f9f7 156
<> 144:ef7eb2e8f9f7 157 (#) PLL (clocked by HSI or HSE), featuring two different output clocks:
<> 144:ef7eb2e8f9f7 158 (++) The first output is used to generate the high speed system clock (up to 120 MHz)
<> 144:ef7eb2e8f9f7 159 (++) The second output is used to generate the clock for the USB OTG FS (48 MHz),
<> 144:ef7eb2e8f9f7 160 the random analog generator (<=48 MHz) and the SDIO (<= 48 MHz).
<> 144:ef7eb2e8f9f7 161
<> 144:ef7eb2e8f9f7 162 (#) CSS (Clock security system), once enable using the macro __HAL_RCC_CSS_ENABLE()
<> 144:ef7eb2e8f9f7 163 and if a HSE clock failure occurs(HSE used directly or through PLL as System
<> 144:ef7eb2e8f9f7 164 clock source), the System clocks automatically switched to HSI and an interrupt
<> 144:ef7eb2e8f9f7 165 is generated if enabled. The interrupt is linked to the Cortex-M3 NMI
<> 144:ef7eb2e8f9f7 166 (Non-Maskable Interrupt) exception vector.
<> 144:ef7eb2e8f9f7 167
<> 144:ef7eb2e8f9f7 168 (#) MCO1 (microcontroller clock output), used to output HSI, LSE, HSE or PLL
<> 144:ef7eb2e8f9f7 169 clock (through a configurable prescaler) on PA8 pin.
<> 144:ef7eb2e8f9f7 170
<> 144:ef7eb2e8f9f7 171 (#) MCO2 (microcontroller clock output), used to output HSE, PLL, SYSCLK or PLLI2S
<> 144:ef7eb2e8f9f7 172 clock (through a configurable prescaler) on PC9 pin.
<> 144:ef7eb2e8f9f7 173
<> 144:ef7eb2e8f9f7 174 [..] System, AHB and APB busses clocks configuration
<> 144:ef7eb2e8f9f7 175 (#) Several clock sources can be used to drive the System clock (SYSCLK): HSI,
<> 144:ef7eb2e8f9f7 176 HSE and PLL.
<> 144:ef7eb2e8f9f7 177 The AHB clock (HCLK) is derived from System clock through configurable
<> 144:ef7eb2e8f9f7 178 prescaler and used to clock the CPU, memory and peripherals mapped
<> 144:ef7eb2e8f9f7 179 on AHB bus (DMA, GPIO...). APB1 (PCLK1) and APB2 (PCLK2) clocks are derived
<> 144:ef7eb2e8f9f7 180 from AHB clock through configurable prescalers and used to clock
<> 144:ef7eb2e8f9f7 181 the peripherals mapped on these busses. You can use
<> 144:ef7eb2e8f9f7 182 "HAL_RCC_GetSysClockFreq()" function to retrieve the frequencies of these clocks.
<> 144:ef7eb2e8f9f7 183
<> 144:ef7eb2e8f9f7 184 -@- All the peripheral clocks are derived from the System clock (SYSCLK) except:
<> 144:ef7eb2e8f9f7 185 (+@) I2S: the I2S clock can be derived either from a specific PLL (PLLI2S) or
<> 144:ef7eb2e8f9f7 186 from an external clock mapped on the I2S_CKIN pin.
<> 144:ef7eb2e8f9f7 187 You have to use __HAL_RCC_PLLI2S_CONFIG() macro to configure this clock.
<> 144:ef7eb2e8f9f7 188 (+@) RTC: the RTC clock can be derived either from the LSI, LSE or HSE clock
<> 144:ef7eb2e8f9f7 189 divided by 2 to 31. You have to use __HAL_RCC_RTC_CONFIG() and __HAL_RCC_RTC_ENABLE()
<> 144:ef7eb2e8f9f7 190 macros to configure this clock.
<> 144:ef7eb2e8f9f7 191 (+@) USB OTG FS, SDIO and RTC: USB OTG FS require a frequency equal to 48 MHz
<> 144:ef7eb2e8f9f7 192 to work correctly, while the SDIO require a frequency equal or lower than
<> 144:ef7eb2e8f9f7 193 to 48. This clock is derived of the main PLL through PLLQ divider.
<> 144:ef7eb2e8f9f7 194 (+@) IWDG clock which is always the LSI clock.
<> 144:ef7eb2e8f9f7 195
<> 144:ef7eb2e8f9f7 196 (#) For the stm32f2xx devices, the maximum
<> 144:ef7eb2e8f9f7 197 frequency of the SYSCLK and HCLK is 120 MHz, PCLK2 60 MHz and PCLK1 30 MHz.
<> 144:ef7eb2e8f9f7 198 Depending on the device voltage range, the maximum frequency should
<> 144:ef7eb2e8f9f7 199 be adapted accordingly:
<> 144:ef7eb2e8f9f7 200 +-------------------------------------------------------------------------------------+
<> 144:ef7eb2e8f9f7 201 | Latency | HCLK clock frequency (MHz) |
<> 144:ef7eb2e8f9f7 202 | |---------------------------------------------------------------------|
<> 144:ef7eb2e8f9f7 203 | | voltage range | voltage range | voltage range | voltage range |
<> 144:ef7eb2e8f9f7 204 | | 2.7 V - 3.6 V | 2.4 V - 2.7 V | 2.1 V - 2.4 V | 1.8 V - 2.1 V |
<> 144:ef7eb2e8f9f7 205 |---------------|----------------|----------------|-----------------|-----------------|
<> 144:ef7eb2e8f9f7 206 |0WS(1CPU cycle)|0 < HCLK <= 30 |0 < HCLK <= 24 |0 < HCLK <= 18 |0 < HCLK <= 16 |
<> 144:ef7eb2e8f9f7 207 |---------------|----------------|----------------|-----------------|-----------------|
<> 144:ef7eb2e8f9f7 208 |1WS(2CPU cycle)|30 < HCLK <= 60 |24 < HCLK <= 48 |18 < HCLK <= 36 |16 < HCLK <= 32 |
<> 144:ef7eb2e8f9f7 209 |---------------|----------------|----------------|-----------------|-----------------|
<> 144:ef7eb2e8f9f7 210 |2WS(3CPU cycle)|60 < HCLK <= 90 |48 < HCLK <= 72 |36 < HCLK <= 54 |32 < HCLK <= 48 |
<> 144:ef7eb2e8f9f7 211 |---------------|----------------|----------------|-----------------|-----------------|
<> 144:ef7eb2e8f9f7 212 |3WS(4CPU cycle)|90 < HCLK <= 120|72 < HCLK <= 96 |54 < HCLK <= 72 |48 < HCLK <= 64 |
<> 144:ef7eb2e8f9f7 213 |---------------|----------------|----------------|-----------------|-----------------|
<> 144:ef7eb2e8f9f7 214 |4WS(5CPU cycle)| NA |96 < HCLK <= 120|72 < HCLK <= 90 |64 < HCLK <= 80 |
<> 144:ef7eb2e8f9f7 215 |---------------|----------------|----------------|-----------------|-----------------|
<> 144:ef7eb2e8f9f7 216 |5WS(6CPU cycle)| NA | NA |90 < HCLK <= 108 |80 < HCLK <= 96 |
<> 144:ef7eb2e8f9f7 217 |---------------|----------------|----------------|-----------------|-----------------|
<> 144:ef7eb2e8f9f7 218 |6WS(7CPU cycle)| NA | NA |108 < HCLK <= 120|96 < HCLK <= 112 |
<> 144:ef7eb2e8f9f7 219 |---------------|----------------|----------------|-----------------|-----------------|
<> 144:ef7eb2e8f9f7 220 |7WS(8CPU cycle)| NA | NA | NA |112 < HCLK <= 120|
<> 144:ef7eb2e8f9f7 221 +-------------------------------------------------------------------------------------+
<> 144:ef7eb2e8f9f7 222 @endverbatim
<> 144:ef7eb2e8f9f7 223 * @{
<> 144:ef7eb2e8f9f7 224 */
<> 144:ef7eb2e8f9f7 225
<> 144:ef7eb2e8f9f7 226 /**
<> 144:ef7eb2e8f9f7 227 * @brief Resets the RCC clock configuration to the default reset state.
<> 144:ef7eb2e8f9f7 228 * @note The default reset state of the clock configuration is given below:
<> 144:ef7eb2e8f9f7 229 * - HSI ON and used as system clock source
<> 144:ef7eb2e8f9f7 230 * - HSE, PLL and PLLI2S OFF
<> 144:ef7eb2e8f9f7 231 * - AHB, APB1 and APB2 prescaler set to 1.
<> 144:ef7eb2e8f9f7 232 * - CSS, MCO1 and MCO2 OFF
<> 144:ef7eb2e8f9f7 233 * - All interrupts disabled
<> 144:ef7eb2e8f9f7 234 * @note This function doesn't modify the configuration of the
<> 144:ef7eb2e8f9f7 235 * - Peripheral clocks
<> 144:ef7eb2e8f9f7 236 * - LSI, LSE and RTC clocks
<> 144:ef7eb2e8f9f7 237 * @retval None
<> 144:ef7eb2e8f9f7 238 */
<> 144:ef7eb2e8f9f7 239 void HAL_RCC_DeInit(void)
<> 144:ef7eb2e8f9f7 240 {
<> 144:ef7eb2e8f9f7 241 /* Set HSION bit */
<> 144:ef7eb2e8f9f7 242 SET_BIT(RCC->CR, RCC_CR_HSION | RCC_CR_HSITRIM_4);
<> 144:ef7eb2e8f9f7 243
<> 144:ef7eb2e8f9f7 244 /* Reset CFGR register */
<> 144:ef7eb2e8f9f7 245 CLEAR_REG(RCC->CFGR);
<> 144:ef7eb2e8f9f7 246
<> 144:ef7eb2e8f9f7 247 /* Reset HSEON, CSSON, PLLON, PLLI2S */
<> 144:ef7eb2e8f9f7 248 CLEAR_BIT(RCC->CR, RCC_CR_HSEON | RCC_CR_CSSON | RCC_CR_PLLON| RCC_CR_PLLI2SON);
<> 144:ef7eb2e8f9f7 249
<> 144:ef7eb2e8f9f7 250 /* Reset PLLCFGR register */
<> 144:ef7eb2e8f9f7 251 CLEAR_REG(RCC->PLLCFGR);
<> 144:ef7eb2e8f9f7 252 SET_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLM_4 | RCC_PLLCFGR_PLLN_6 | RCC_PLLCFGR_PLLN_7 | RCC_PLLCFGR_PLLQ_2);
<> 144:ef7eb2e8f9f7 253
<> 144:ef7eb2e8f9f7 254 /* Reset PLLI2SCFGR register */
<> 144:ef7eb2e8f9f7 255 CLEAR_REG(RCC->PLLI2SCFGR);
<> 144:ef7eb2e8f9f7 256 SET_BIT(RCC->PLLI2SCFGR, RCC_PLLI2SCFGR_PLLI2SN_6 | RCC_PLLI2SCFGR_PLLI2SN_7 | RCC_PLLI2SCFGR_PLLI2SR_1);
<> 144:ef7eb2e8f9f7 257
<> 144:ef7eb2e8f9f7 258 /* Reset HSEBYP bit */
<> 144:ef7eb2e8f9f7 259 CLEAR_BIT(RCC->CR, RCC_CR_HSEBYP);
<> 144:ef7eb2e8f9f7 260
<> 144:ef7eb2e8f9f7 261 /* Disable all interrupts */
<> 144:ef7eb2e8f9f7 262 CLEAR_REG(RCC->CIR);
<> 144:ef7eb2e8f9f7 263
<> 144:ef7eb2e8f9f7 264 /* Update the SystemCoreClock global variable */
<> 144:ef7eb2e8f9f7 265 SystemCoreClock = HSI_VALUE;
<> 144:ef7eb2e8f9f7 266 }
<> 144:ef7eb2e8f9f7 267
<> 144:ef7eb2e8f9f7 268 /**
<> 144:ef7eb2e8f9f7 269 * @brief Initializes the RCC Oscillators according to the specified parameters in the
<> 144:ef7eb2e8f9f7 270 * RCC_OscInitTypeDef.
<> 144:ef7eb2e8f9f7 271 * @param RCC_OscInitStruct: pointer to an RCC_OscInitTypeDef structure that
<> 144:ef7eb2e8f9f7 272 * contains the configuration information for the RCC Oscillators.
<> 144:ef7eb2e8f9f7 273 * @note The PLL is not disabled when used as system clock.
<> 144:ef7eb2e8f9f7 274 * @note Transitions LSE Bypass to LSE On and LSE On to LSE Bypass are not
<> 144:ef7eb2e8f9f7 275 * supported by this API. User should request a transition to LSE Off
<> 144:ef7eb2e8f9f7 276 * first and then LSE On or LSE Bypass.
<> 144:ef7eb2e8f9f7 277 * @note Transition HSE Bypass to HSE On and HSE On to HSE Bypass are not
<> 144:ef7eb2e8f9f7 278 * supported by this API. User should request a transition to HSE Off
<> 144:ef7eb2e8f9f7 279 * first and then HSE On or HSE Bypass.
<> 144:ef7eb2e8f9f7 280 * @retval HAL status
<> 144:ef7eb2e8f9f7 281 */
<> 144:ef7eb2e8f9f7 282 HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct)
<> 144:ef7eb2e8f9f7 283 {
<> 144:ef7eb2e8f9f7 284 uint32_t tickstart = 0U;
<> 144:ef7eb2e8f9f7 285
<> 144:ef7eb2e8f9f7 286 /* Check the parameters */
<> 144:ef7eb2e8f9f7 287 assert_param(IS_RCC_OSCILLATORTYPE(RCC_OscInitStruct->OscillatorType));
<> 144:ef7eb2e8f9f7 288 /*------------------------------- HSE Configuration ------------------------*/
<> 144:ef7eb2e8f9f7 289 if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE)
<> 144:ef7eb2e8f9f7 290 {
<> 144:ef7eb2e8f9f7 291 /* Check the parameters */
<> 144:ef7eb2e8f9f7 292 assert_param(IS_RCC_HSE(RCC_OscInitStruct->HSEState));
<> 144:ef7eb2e8f9f7 293 /* When the HSE is used as system clock or clock source for PLL in these cases HSE will not disabled */
<> 144:ef7eb2e8f9f7 294 if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_HSE) ||\
<> 144:ef7eb2e8f9f7 295 ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_PLL) && ((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) == RCC_PLLCFGR_PLLSRC_HSE)))
<> 144:ef7eb2e8f9f7 296 {
<> 144:ef7eb2e8f9f7 297 if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET) && (RCC_OscInitStruct->HSEState == RCC_HSE_OFF))
<> 144:ef7eb2e8f9f7 298 {
<> 144:ef7eb2e8f9f7 299 return HAL_ERROR;
<> 144:ef7eb2e8f9f7 300 }
<> 144:ef7eb2e8f9f7 301 }
<> 144:ef7eb2e8f9f7 302 else
<> 144:ef7eb2e8f9f7 303 {
<> 144:ef7eb2e8f9f7 304 /* Set the new HSE configuration ---------------------------------------*/
<> 144:ef7eb2e8f9f7 305 __HAL_RCC_HSE_CONFIG(RCC_OscInitStruct->HSEState);
<> 144:ef7eb2e8f9f7 306
<> 144:ef7eb2e8f9f7 307 /* Check the HSE State */
<> 144:ef7eb2e8f9f7 308 if((RCC_OscInitStruct->HSEState) != RCC_HSE_OFF)
<> 144:ef7eb2e8f9f7 309 {
<> 144:ef7eb2e8f9f7 310 /* Get Start Tick*/
<> 144:ef7eb2e8f9f7 311 tickstart = HAL_GetTick();
<> 144:ef7eb2e8f9f7 312
<> 144:ef7eb2e8f9f7 313 /* Wait till HSE is ready */
<> 144:ef7eb2e8f9f7 314 while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET)
<> 144:ef7eb2e8f9f7 315 {
<> 144:ef7eb2e8f9f7 316 if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE)
<> 144:ef7eb2e8f9f7 317 {
<> 144:ef7eb2e8f9f7 318 return HAL_TIMEOUT;
<> 144:ef7eb2e8f9f7 319 }
<> 144:ef7eb2e8f9f7 320 }
<> 144:ef7eb2e8f9f7 321 }
<> 144:ef7eb2e8f9f7 322 else
<> 144:ef7eb2e8f9f7 323 {
<> 144:ef7eb2e8f9f7 324 /* Get Start Tick*/
<> 144:ef7eb2e8f9f7 325 tickstart = HAL_GetTick();
<> 144:ef7eb2e8f9f7 326
<> 144:ef7eb2e8f9f7 327 /* Wait till HSE is bypassed or disabled */
<> 144:ef7eb2e8f9f7 328 while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET)
<> 144:ef7eb2e8f9f7 329 {
<> 144:ef7eb2e8f9f7 330 if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE)
<> 144:ef7eb2e8f9f7 331 {
<> 144:ef7eb2e8f9f7 332 return HAL_TIMEOUT;
<> 144:ef7eb2e8f9f7 333 }
<> 144:ef7eb2e8f9f7 334 }
<> 144:ef7eb2e8f9f7 335 }
<> 144:ef7eb2e8f9f7 336 }
<> 144:ef7eb2e8f9f7 337 }
<> 144:ef7eb2e8f9f7 338 /*----------------------------- HSI Configuration --------------------------*/
<> 144:ef7eb2e8f9f7 339 if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI)
<> 144:ef7eb2e8f9f7 340 {
<> 144:ef7eb2e8f9f7 341 /* Check the parameters */
<> 144:ef7eb2e8f9f7 342 assert_param(IS_RCC_HSI(RCC_OscInitStruct->HSIState));
<> 144:ef7eb2e8f9f7 343 assert_param(IS_RCC_CALIBRATION_VALUE(RCC_OscInitStruct->HSICalibrationValue));
<> 144:ef7eb2e8f9f7 344
<> 144:ef7eb2e8f9f7 345 /* Check if HSI is used as system clock or as PLL source when PLL is selected as system clock */
<> 144:ef7eb2e8f9f7 346 if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_HSI) ||\
<> 144:ef7eb2e8f9f7 347 ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_PLL) && ((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) == RCC_PLLCFGR_PLLSRC_HSI)))
<> 144:ef7eb2e8f9f7 348 {
<> 144:ef7eb2e8f9f7 349 /* When HSI is used as system clock it will not disabled */
<> 144:ef7eb2e8f9f7 350 if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET) && (RCC_OscInitStruct->HSIState != RCC_HSI_ON))
<> 144:ef7eb2e8f9f7 351 {
<> 144:ef7eb2e8f9f7 352 return HAL_ERROR;
<> 144:ef7eb2e8f9f7 353 }
<> 144:ef7eb2e8f9f7 354 /* Otherwise, just the calibration is allowed */
<> 144:ef7eb2e8f9f7 355 else
<> 144:ef7eb2e8f9f7 356 {
<> 144:ef7eb2e8f9f7 357 /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
<> 144:ef7eb2e8f9f7 358 __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
<> 144:ef7eb2e8f9f7 359 }
<> 144:ef7eb2e8f9f7 360 }
<> 144:ef7eb2e8f9f7 361 else
<> 144:ef7eb2e8f9f7 362 {
<> 144:ef7eb2e8f9f7 363 /* Check the HSI State */
<> 144:ef7eb2e8f9f7 364 if((RCC_OscInitStruct->HSIState)!= RCC_HSI_OFF)
<> 144:ef7eb2e8f9f7 365 {
<> 144:ef7eb2e8f9f7 366 /* Enable the Internal High Speed oscillator (HSI). */
<> 144:ef7eb2e8f9f7 367 __HAL_RCC_HSI_ENABLE();
<> 144:ef7eb2e8f9f7 368
<> 144:ef7eb2e8f9f7 369 /* Get Start Tick*/
<> 144:ef7eb2e8f9f7 370 tickstart = HAL_GetTick();
<> 144:ef7eb2e8f9f7 371
<> 144:ef7eb2e8f9f7 372 /* Wait till HSI is ready */
<> 144:ef7eb2e8f9f7 373 while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET)
<> 144:ef7eb2e8f9f7 374 {
<> 144:ef7eb2e8f9f7 375 if((HAL_GetTick() - tickstart ) > HSI_TIMEOUT_VALUE)
<> 144:ef7eb2e8f9f7 376 {
<> 144:ef7eb2e8f9f7 377 return HAL_TIMEOUT;
<> 144:ef7eb2e8f9f7 378 }
<> 144:ef7eb2e8f9f7 379 }
<> 144:ef7eb2e8f9f7 380
<> 144:ef7eb2e8f9f7 381 /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
<> 144:ef7eb2e8f9f7 382 __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
<> 144:ef7eb2e8f9f7 383 }
<> 144:ef7eb2e8f9f7 384 else
<> 144:ef7eb2e8f9f7 385 {
<> 144:ef7eb2e8f9f7 386 /* Disable the Internal High Speed oscillator (HSI). */
<> 144:ef7eb2e8f9f7 387 __HAL_RCC_HSI_DISABLE();
<> 144:ef7eb2e8f9f7 388
<> 144:ef7eb2e8f9f7 389 /* Get Start Tick*/
<> 144:ef7eb2e8f9f7 390 tickstart = HAL_GetTick();
<> 144:ef7eb2e8f9f7 391
<> 144:ef7eb2e8f9f7 392 /* Wait till HSI is ready */
<> 144:ef7eb2e8f9f7 393 while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET)
<> 144:ef7eb2e8f9f7 394 {
<> 144:ef7eb2e8f9f7 395 if((HAL_GetTick() - tickstart ) > HSI_TIMEOUT_VALUE)
<> 144:ef7eb2e8f9f7 396 {
<> 144:ef7eb2e8f9f7 397 return HAL_TIMEOUT;
<> 144:ef7eb2e8f9f7 398 }
<> 144:ef7eb2e8f9f7 399 }
<> 144:ef7eb2e8f9f7 400 }
<> 144:ef7eb2e8f9f7 401 }
<> 144:ef7eb2e8f9f7 402 }
<> 144:ef7eb2e8f9f7 403 /*------------------------------ LSI Configuration -------------------------*/
<> 144:ef7eb2e8f9f7 404 if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI)
<> 144:ef7eb2e8f9f7 405 {
<> 144:ef7eb2e8f9f7 406 /* Check the parameters */
<> 144:ef7eb2e8f9f7 407 assert_param(IS_RCC_LSI(RCC_OscInitStruct->LSIState));
<> 144:ef7eb2e8f9f7 408
<> 144:ef7eb2e8f9f7 409 /* Check the LSI State */
<> 144:ef7eb2e8f9f7 410 if((RCC_OscInitStruct->LSIState)!= RCC_LSI_OFF)
<> 144:ef7eb2e8f9f7 411 {
<> 144:ef7eb2e8f9f7 412 /* Enable the Internal Low Speed oscillator (LSI). */
<> 144:ef7eb2e8f9f7 413 __HAL_RCC_LSI_ENABLE();
<> 144:ef7eb2e8f9f7 414
<> 144:ef7eb2e8f9f7 415 /* Get Start Tick*/
<> 144:ef7eb2e8f9f7 416 tickstart = HAL_GetTick();
<> 144:ef7eb2e8f9f7 417
<> 144:ef7eb2e8f9f7 418 /* Wait till LSI is ready */
<> 144:ef7eb2e8f9f7 419 while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) == RESET)
<> 144:ef7eb2e8f9f7 420 {
<> 144:ef7eb2e8f9f7 421 if((HAL_GetTick() - tickstart ) > LSI_TIMEOUT_VALUE)
<> 144:ef7eb2e8f9f7 422 {
<> 144:ef7eb2e8f9f7 423 return HAL_TIMEOUT;
<> 144:ef7eb2e8f9f7 424 }
<> 144:ef7eb2e8f9f7 425 }
<> 144:ef7eb2e8f9f7 426 }
<> 144:ef7eb2e8f9f7 427 else
<> 144:ef7eb2e8f9f7 428 {
<> 144:ef7eb2e8f9f7 429 /* Disable the Internal Low Speed oscillator (LSI). */
<> 144:ef7eb2e8f9f7 430 __HAL_RCC_LSI_DISABLE();
<> 144:ef7eb2e8f9f7 431
<> 144:ef7eb2e8f9f7 432 /* Get Start Tick*/
<> 144:ef7eb2e8f9f7 433 tickstart = HAL_GetTick();
<> 144:ef7eb2e8f9f7 434
<> 144:ef7eb2e8f9f7 435 /* Wait till LSI is ready */
<> 144:ef7eb2e8f9f7 436 while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) != RESET)
<> 144:ef7eb2e8f9f7 437 {
<> 144:ef7eb2e8f9f7 438 if((HAL_GetTick() - tickstart ) > LSI_TIMEOUT_VALUE)
<> 144:ef7eb2e8f9f7 439 {
<> 144:ef7eb2e8f9f7 440 return HAL_TIMEOUT;
<> 144:ef7eb2e8f9f7 441 }
<> 144:ef7eb2e8f9f7 442 }
<> 144:ef7eb2e8f9f7 443 }
<> 144:ef7eb2e8f9f7 444 }
<> 144:ef7eb2e8f9f7 445 /*------------------------------ LSE Configuration -------------------------*/
<> 144:ef7eb2e8f9f7 446 if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE)
<> 144:ef7eb2e8f9f7 447 {
<> 144:ef7eb2e8f9f7 448 /* Check the parameters */
<> 144:ef7eb2e8f9f7 449 assert_param(IS_RCC_LSE(RCC_OscInitStruct->LSEState));
<> 144:ef7eb2e8f9f7 450
<> 144:ef7eb2e8f9f7 451 /* Enable Power Clock*/
<> 144:ef7eb2e8f9f7 452 __HAL_RCC_PWR_CLK_ENABLE();
<> 144:ef7eb2e8f9f7 453
<> 144:ef7eb2e8f9f7 454 /* Enable write access to Backup domain */
<> 144:ef7eb2e8f9f7 455 PWR->CR |= PWR_CR_DBP;
<> 144:ef7eb2e8f9f7 456
<> 144:ef7eb2e8f9f7 457 /* Wait for Backup domain Write protection enable */
<> 144:ef7eb2e8f9f7 458 tickstart = HAL_GetTick();
<> 144:ef7eb2e8f9f7 459
<> 144:ef7eb2e8f9f7 460 while((PWR->CR & PWR_CR_DBP) == RESET)
<> 144:ef7eb2e8f9f7 461 {
<> 144:ef7eb2e8f9f7 462 if((HAL_GetTick() - tickstart ) > RCC_DBP_TIMEOUT_VALUE)
<> 144:ef7eb2e8f9f7 463 {
<> 144:ef7eb2e8f9f7 464 return HAL_TIMEOUT;
<> 144:ef7eb2e8f9f7 465 }
<> 144:ef7eb2e8f9f7 466 }
<> 144:ef7eb2e8f9f7 467
<> 144:ef7eb2e8f9f7 468 /* Set the new LSE configuration -----------------------------------------*/
<> 144:ef7eb2e8f9f7 469 __HAL_RCC_LSE_CONFIG(RCC_OscInitStruct->LSEState);
<> 144:ef7eb2e8f9f7 470 /* Check the LSE State */
<> 144:ef7eb2e8f9f7 471 if((RCC_OscInitStruct->LSEState) != RCC_LSE_OFF)
<> 144:ef7eb2e8f9f7 472 {
<> 144:ef7eb2e8f9f7 473 /* Get Start Tick*/
<> 144:ef7eb2e8f9f7 474 tickstart = HAL_GetTick();
<> 144:ef7eb2e8f9f7 475
<> 144:ef7eb2e8f9f7 476 /* Wait till LSE is ready */
<> 144:ef7eb2e8f9f7 477 while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == RESET)
<> 144:ef7eb2e8f9f7 478 {
AnnaBridge 167:e84263d55307 479 if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE)
<> 144:ef7eb2e8f9f7 480 {
<> 144:ef7eb2e8f9f7 481 return HAL_TIMEOUT;
<> 144:ef7eb2e8f9f7 482 }
<> 144:ef7eb2e8f9f7 483 }
<> 144:ef7eb2e8f9f7 484 }
<> 144:ef7eb2e8f9f7 485 else
<> 144:ef7eb2e8f9f7 486 {
<> 144:ef7eb2e8f9f7 487 /* Get Start Tick*/
<> 144:ef7eb2e8f9f7 488 tickstart = HAL_GetTick();
<> 144:ef7eb2e8f9f7 489
<> 144:ef7eb2e8f9f7 490 /* Wait till LSE is ready */
<> 144:ef7eb2e8f9f7 491 while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) != RESET)
<> 144:ef7eb2e8f9f7 492 {
<> 144:ef7eb2e8f9f7 493 if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE)
<> 144:ef7eb2e8f9f7 494 {
<> 144:ef7eb2e8f9f7 495 return HAL_TIMEOUT;
<> 144:ef7eb2e8f9f7 496 }
<> 144:ef7eb2e8f9f7 497 }
<> 144:ef7eb2e8f9f7 498 }
<> 144:ef7eb2e8f9f7 499 }
<> 144:ef7eb2e8f9f7 500 /*-------------------------------- PLL Configuration -----------------------*/
<> 144:ef7eb2e8f9f7 501 /* Check the parameters */
<> 144:ef7eb2e8f9f7 502 assert_param(IS_RCC_PLL(RCC_OscInitStruct->PLL.PLLState));
<> 144:ef7eb2e8f9f7 503 if ((RCC_OscInitStruct->PLL.PLLState) != RCC_PLL_NONE)
<> 144:ef7eb2e8f9f7 504 {
<> 144:ef7eb2e8f9f7 505 /* Check if the PLL is used as system clock or not */
<> 144:ef7eb2e8f9f7 506 if(__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_PLL)
<> 144:ef7eb2e8f9f7 507 {
<> 144:ef7eb2e8f9f7 508 if((RCC_OscInitStruct->PLL.PLLState) == RCC_PLL_ON)
<> 144:ef7eb2e8f9f7 509 {
<> 144:ef7eb2e8f9f7 510 /* Check the parameters */
<> 144:ef7eb2e8f9f7 511 assert_param(IS_RCC_PLLSOURCE(RCC_OscInitStruct->PLL.PLLSource));
<> 144:ef7eb2e8f9f7 512 assert_param(IS_RCC_PLLM_VALUE(RCC_OscInitStruct->PLL.PLLM));
<> 144:ef7eb2e8f9f7 513 assert_param(IS_RCC_PLLN_VALUE(RCC_OscInitStruct->PLL.PLLN));
<> 144:ef7eb2e8f9f7 514 assert_param(IS_RCC_PLLP_VALUE(RCC_OscInitStruct->PLL.PLLP));
<> 144:ef7eb2e8f9f7 515 assert_param(IS_RCC_PLLQ_VALUE(RCC_OscInitStruct->PLL.PLLQ));
<> 144:ef7eb2e8f9f7 516
<> 144:ef7eb2e8f9f7 517 /* Disable the main PLL. */
<> 144:ef7eb2e8f9f7 518 __HAL_RCC_PLL_DISABLE();
<> 144:ef7eb2e8f9f7 519
<> 144:ef7eb2e8f9f7 520 /* Get Start Tick*/
<> 144:ef7eb2e8f9f7 521 tickstart = HAL_GetTick();
<> 144:ef7eb2e8f9f7 522
<> 144:ef7eb2e8f9f7 523 /* Wait till PLL is ready */
<> 144:ef7eb2e8f9f7 524 while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET)
<> 144:ef7eb2e8f9f7 525 {
<> 144:ef7eb2e8f9f7 526 if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE)
<> 144:ef7eb2e8f9f7 527 {
<> 144:ef7eb2e8f9f7 528 return HAL_TIMEOUT;
<> 144:ef7eb2e8f9f7 529 }
<> 144:ef7eb2e8f9f7 530 }
<> 144:ef7eb2e8f9f7 531
<> 144:ef7eb2e8f9f7 532 /* Configure the main PLL clock source, multiplication and division factors. */
<> 144:ef7eb2e8f9f7 533 WRITE_REG(RCC->PLLCFGR, (RCC_OscInitStruct->PLL.PLLSource | \
<> 144:ef7eb2e8f9f7 534 RCC_OscInitStruct->PLL.PLLM | \
<> 144:ef7eb2e8f9f7 535 (RCC_OscInitStruct->PLL.PLLN << POSITION_VAL(RCC_PLLCFGR_PLLN)) | \
<> 144:ef7eb2e8f9f7 536 (((RCC_OscInitStruct->PLL.PLLP >> 1U) - 1U) << POSITION_VAL(RCC_PLLCFGR_PLLP)) | \
<> 144:ef7eb2e8f9f7 537 (RCC_OscInitStruct->PLL.PLLQ << POSITION_VAL(RCC_PLLCFGR_PLLQ))));
<> 144:ef7eb2e8f9f7 538 /* Enable the main PLL. */
<> 144:ef7eb2e8f9f7 539 __HAL_RCC_PLL_ENABLE();
<> 144:ef7eb2e8f9f7 540
<> 144:ef7eb2e8f9f7 541 /* Get Start Tick*/
<> 144:ef7eb2e8f9f7 542 tickstart = HAL_GetTick();
<> 144:ef7eb2e8f9f7 543
<> 144:ef7eb2e8f9f7 544 /* Wait till PLL is ready */
<> 144:ef7eb2e8f9f7 545 while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET)
<> 144:ef7eb2e8f9f7 546 {
<> 144:ef7eb2e8f9f7 547 if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE)
<> 144:ef7eb2e8f9f7 548 {
<> 144:ef7eb2e8f9f7 549 return HAL_TIMEOUT;
<> 144:ef7eb2e8f9f7 550 }
<> 144:ef7eb2e8f9f7 551 }
<> 144:ef7eb2e8f9f7 552 }
<> 144:ef7eb2e8f9f7 553 else
<> 144:ef7eb2e8f9f7 554 {
<> 144:ef7eb2e8f9f7 555 /* Disable the main PLL. */
<> 144:ef7eb2e8f9f7 556 __HAL_RCC_PLL_DISABLE();
<> 144:ef7eb2e8f9f7 557
<> 144:ef7eb2e8f9f7 558 /* Get Start Tick*/
<> 144:ef7eb2e8f9f7 559 tickstart = HAL_GetTick();
<> 144:ef7eb2e8f9f7 560
<> 144:ef7eb2e8f9f7 561 /* Wait till PLL is ready */
<> 144:ef7eb2e8f9f7 562 while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET)
<> 144:ef7eb2e8f9f7 563 {
<> 144:ef7eb2e8f9f7 564 if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE)
<> 144:ef7eb2e8f9f7 565 {
<> 144:ef7eb2e8f9f7 566 return HAL_TIMEOUT;
<> 144:ef7eb2e8f9f7 567 }
<> 144:ef7eb2e8f9f7 568 }
<> 144:ef7eb2e8f9f7 569 }
<> 144:ef7eb2e8f9f7 570 }
<> 144:ef7eb2e8f9f7 571 else
<> 144:ef7eb2e8f9f7 572 {
<> 144:ef7eb2e8f9f7 573 return HAL_ERROR;
<> 144:ef7eb2e8f9f7 574 }
<> 144:ef7eb2e8f9f7 575 }
<> 144:ef7eb2e8f9f7 576 return HAL_OK;
<> 144:ef7eb2e8f9f7 577 }
<> 144:ef7eb2e8f9f7 578
<> 144:ef7eb2e8f9f7 579 /**
<> 144:ef7eb2e8f9f7 580 * @brief Initializes the CPU, AHB and APB busses clocks according to the specified
<> 144:ef7eb2e8f9f7 581 * parameters in the RCC_ClkInitStruct.
<> 144:ef7eb2e8f9f7 582 * @param RCC_ClkInitStruct: pointer to an RCC_OscInitTypeDef structure that
<> 144:ef7eb2e8f9f7 583 * contains the configuration information for the RCC peripheral.
<> 144:ef7eb2e8f9f7 584 * @param FLatency: FLASH Latency, this parameter depend on device selected
<> 144:ef7eb2e8f9f7 585 *
<> 144:ef7eb2e8f9f7 586 * @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency
<> 144:ef7eb2e8f9f7 587 * and updated by HAL_RCC_GetHCLKFreq() function called within this function
<> 144:ef7eb2e8f9f7 588 *
<> 144:ef7eb2e8f9f7 589 * @note The HSI is used (enabled by hardware) as system clock source after
<> 144:ef7eb2e8f9f7 590 * startup from Reset, wake-up from STOP and STANDBY mode, or in case
<> 144:ef7eb2e8f9f7 591 * of failure of the HSE used directly or indirectly as system clock
<> 144:ef7eb2e8f9f7 592 * (if the Clock Security System CSS is enabled).
<> 144:ef7eb2e8f9f7 593 *
<> 144:ef7eb2e8f9f7 594 * @note A switch from one clock source to another occurs only if the target
<> 144:ef7eb2e8f9f7 595 * clock source is ready (clock stable after startup delay or PLL locked).
<> 144:ef7eb2e8f9f7 596 * If a clock source which is not yet ready is selected, the switch will
<> 144:ef7eb2e8f9f7 597 * occur when the clock source will be ready.
<> 144:ef7eb2e8f9f7 598 *
<> 144:ef7eb2e8f9f7 599 * @note Depending on the device voltage range, the software has to set correctly
<> 144:ef7eb2e8f9f7 600 * HPRE[3:0] bits to ensure that HCLK not exceed the maximum allowed frequency
<> 144:ef7eb2e8f9f7 601 * (for more details refer to section above "Initialization/de-initialization functions")
<> 144:ef7eb2e8f9f7 602 * @retval None
<> 144:ef7eb2e8f9f7 603 */
<> 144:ef7eb2e8f9f7 604 HAL_StatusTypeDef HAL_RCC_ClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t FLatency)
<> 144:ef7eb2e8f9f7 605 {
<> 144:ef7eb2e8f9f7 606 uint32_t tickstart = 0U;
<> 144:ef7eb2e8f9f7 607
<> 144:ef7eb2e8f9f7 608 /* Check the parameters */
<> 144:ef7eb2e8f9f7 609 assert_param(IS_RCC_CLOCKTYPE(RCC_ClkInitStruct->ClockType));
<> 144:ef7eb2e8f9f7 610 assert_param(IS_FLASH_LATENCY(FLatency));
<> 144:ef7eb2e8f9f7 611
<> 144:ef7eb2e8f9f7 612 /* To correctly read data from FLASH memory, the number of wait states (LATENCY)
<> 144:ef7eb2e8f9f7 613 must be correctly programmed according to the frequency of the CPU clock
<> 144:ef7eb2e8f9f7 614 (HCLK) and the supply voltage of the device. */
<> 144:ef7eb2e8f9f7 615
<> 144:ef7eb2e8f9f7 616 /* Increasing the number of wait states because of higher CPU frequency */
<> 144:ef7eb2e8f9f7 617 if(FLatency > (FLASH->ACR & FLASH_ACR_LATENCY))
<> 144:ef7eb2e8f9f7 618 {
<> 144:ef7eb2e8f9f7 619 /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
<> 144:ef7eb2e8f9f7 620 __HAL_FLASH_SET_LATENCY(FLatency);
<> 144:ef7eb2e8f9f7 621
<> 144:ef7eb2e8f9f7 622 /* Check that the new number of wait states is taken into account to access the Flash
<> 144:ef7eb2e8f9f7 623 memory by reading the FLASH_ACR register */
<> 144:ef7eb2e8f9f7 624 if((FLASH->ACR & FLASH_ACR_LATENCY) != FLatency)
<> 144:ef7eb2e8f9f7 625 {
<> 144:ef7eb2e8f9f7 626 return HAL_ERROR;
<> 144:ef7eb2e8f9f7 627 }
<> 144:ef7eb2e8f9f7 628 }
<> 144:ef7eb2e8f9f7 629
<> 144:ef7eb2e8f9f7 630 /*-------------------------- HCLK Configuration --------------------------*/
<> 144:ef7eb2e8f9f7 631 if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK) == RCC_CLOCKTYPE_HCLK)
<> 144:ef7eb2e8f9f7 632 {
<> 144:ef7eb2e8f9f7 633 assert_param(IS_RCC_HCLK(RCC_ClkInitStruct->AHBCLKDivider));
<> 144:ef7eb2e8f9f7 634 MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, RCC_ClkInitStruct->AHBCLKDivider);
<> 144:ef7eb2e8f9f7 635 }
<> 144:ef7eb2e8f9f7 636
<> 144:ef7eb2e8f9f7 637 /*------------------------- SYSCLK Configuration ---------------------------*/
<> 144:ef7eb2e8f9f7 638 if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_SYSCLK) == RCC_CLOCKTYPE_SYSCLK)
<> 144:ef7eb2e8f9f7 639 {
<> 144:ef7eb2e8f9f7 640 assert_param(IS_RCC_SYSCLKSOURCE(RCC_ClkInitStruct->SYSCLKSource));
<> 144:ef7eb2e8f9f7 641
<> 144:ef7eb2e8f9f7 642 /* HSE is selected as System Clock Source */
<> 144:ef7eb2e8f9f7 643 if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE)
<> 144:ef7eb2e8f9f7 644 {
<> 144:ef7eb2e8f9f7 645 /* Check the HSE ready flag */
<> 144:ef7eb2e8f9f7 646 if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET)
<> 144:ef7eb2e8f9f7 647 {
<> 144:ef7eb2e8f9f7 648 return HAL_ERROR;
<> 144:ef7eb2e8f9f7 649 }
<> 144:ef7eb2e8f9f7 650 }
<> 144:ef7eb2e8f9f7 651 /* PLL is selected as System Clock Source */
<> 144:ef7eb2e8f9f7 652 else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK)
<> 144:ef7eb2e8f9f7 653 {
<> 144:ef7eb2e8f9f7 654 /* Check the PLL ready flag */
<> 144:ef7eb2e8f9f7 655 if(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET)
<> 144:ef7eb2e8f9f7 656 {
<> 144:ef7eb2e8f9f7 657 return HAL_ERROR;
<> 144:ef7eb2e8f9f7 658 }
<> 144:ef7eb2e8f9f7 659 }
<> 144:ef7eb2e8f9f7 660 /* HSI is selected as System Clock Source */
<> 144:ef7eb2e8f9f7 661 else
<> 144:ef7eb2e8f9f7 662 {
<> 144:ef7eb2e8f9f7 663 /* Check the HSI ready flag */
<> 144:ef7eb2e8f9f7 664 if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET)
<> 144:ef7eb2e8f9f7 665 {
<> 144:ef7eb2e8f9f7 666 return HAL_ERROR;
<> 144:ef7eb2e8f9f7 667 }
<> 144:ef7eb2e8f9f7 668 }
<> 144:ef7eb2e8f9f7 669
<> 144:ef7eb2e8f9f7 670 __HAL_RCC_SYSCLK_CONFIG(RCC_ClkInitStruct->SYSCLKSource);
<> 144:ef7eb2e8f9f7 671 /* Get Start Tick*/
<> 144:ef7eb2e8f9f7 672 tickstart = HAL_GetTick();
<> 144:ef7eb2e8f9f7 673
<> 144:ef7eb2e8f9f7 674 if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE)
<> 144:ef7eb2e8f9f7 675 {
<> 144:ef7eb2e8f9f7 676 while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_HSE)
<> 144:ef7eb2e8f9f7 677 {
<> 144:ef7eb2e8f9f7 678 if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE)
<> 144:ef7eb2e8f9f7 679 {
<> 144:ef7eb2e8f9f7 680 return HAL_TIMEOUT;
<> 144:ef7eb2e8f9f7 681 }
<> 144:ef7eb2e8f9f7 682 }
<> 144:ef7eb2e8f9f7 683 }
<> 144:ef7eb2e8f9f7 684 else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK)
<> 144:ef7eb2e8f9f7 685 {
<> 144:ef7eb2e8f9f7 686 while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK)
<> 144:ef7eb2e8f9f7 687 {
<> 144:ef7eb2e8f9f7 688 if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE)
<> 144:ef7eb2e8f9f7 689 {
<> 144:ef7eb2e8f9f7 690 return HAL_TIMEOUT;
<> 144:ef7eb2e8f9f7 691 }
<> 144:ef7eb2e8f9f7 692 }
<> 144:ef7eb2e8f9f7 693 }
<> 144:ef7eb2e8f9f7 694 else
<> 144:ef7eb2e8f9f7 695 {
<> 144:ef7eb2e8f9f7 696 while(__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_HSI)
<> 144:ef7eb2e8f9f7 697 {
<> 144:ef7eb2e8f9f7 698 if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE)
<> 144:ef7eb2e8f9f7 699 {
<> 144:ef7eb2e8f9f7 700 return HAL_TIMEOUT;
<> 144:ef7eb2e8f9f7 701 }
<> 144:ef7eb2e8f9f7 702 }
<> 144:ef7eb2e8f9f7 703 }
<> 144:ef7eb2e8f9f7 704 }
<> 144:ef7eb2e8f9f7 705
<> 144:ef7eb2e8f9f7 706 /* Decreasing the number of wait states because of lower CPU frequency */
<> 144:ef7eb2e8f9f7 707 if(FLatency < (FLASH->ACR & FLASH_ACR_LATENCY))
<> 144:ef7eb2e8f9f7 708 {
<> 144:ef7eb2e8f9f7 709 /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
<> 144:ef7eb2e8f9f7 710 __HAL_FLASH_SET_LATENCY(FLatency);
<> 144:ef7eb2e8f9f7 711
<> 144:ef7eb2e8f9f7 712 /* Check that the new number of wait states is taken into account to access the Flash
<> 144:ef7eb2e8f9f7 713 memory by reading the FLASH_ACR register */
<> 144:ef7eb2e8f9f7 714 if((FLASH->ACR & FLASH_ACR_LATENCY) != FLatency)
<> 144:ef7eb2e8f9f7 715 {
<> 144:ef7eb2e8f9f7 716 return HAL_ERROR;
<> 144:ef7eb2e8f9f7 717 }
<> 144:ef7eb2e8f9f7 718 }
<> 144:ef7eb2e8f9f7 719
<> 144:ef7eb2e8f9f7 720 /*-------------------------- PCLK1 Configuration ---------------------------*/
<> 144:ef7eb2e8f9f7 721 if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1)
<> 144:ef7eb2e8f9f7 722 {
<> 144:ef7eb2e8f9f7 723 assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB1CLKDivider));
<> 144:ef7eb2e8f9f7 724 MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE1, RCC_ClkInitStruct->APB1CLKDivider);
<> 144:ef7eb2e8f9f7 725 }
<> 144:ef7eb2e8f9f7 726
<> 144:ef7eb2e8f9f7 727 /*-------------------------- PCLK2 Configuration ---------------------------*/
<> 144:ef7eb2e8f9f7 728 if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK2) == RCC_CLOCKTYPE_PCLK2)
<> 144:ef7eb2e8f9f7 729 {
<> 144:ef7eb2e8f9f7 730 assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB2CLKDivider));
<> 144:ef7eb2e8f9f7 731 MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE2, ((RCC_ClkInitStruct->APB2CLKDivider) << 3U));
<> 144:ef7eb2e8f9f7 732 }
<> 144:ef7eb2e8f9f7 733
<> 144:ef7eb2e8f9f7 734 /* Update the SystemCoreClock global variable */
AnnaBridge 167:e84263d55307 735 SystemCoreClock = HAL_RCC_GetSysClockFreq() >> AHBPrescTable[(RCC->CFGR & RCC_CFGR_HPRE)>> POSITION_VAL(RCC_CFGR_HPRE)];
<> 144:ef7eb2e8f9f7 736
<> 144:ef7eb2e8f9f7 737 /* Configure the source of time base considering new system clocks settings*/
<> 144:ef7eb2e8f9f7 738 HAL_InitTick (TICK_INT_PRIORITY);
<> 144:ef7eb2e8f9f7 739
<> 144:ef7eb2e8f9f7 740 return HAL_OK;
<> 144:ef7eb2e8f9f7 741 }
<> 144:ef7eb2e8f9f7 742
<> 144:ef7eb2e8f9f7 743 /**
<> 144:ef7eb2e8f9f7 744 * @}
<> 144:ef7eb2e8f9f7 745 */
<> 144:ef7eb2e8f9f7 746
<> 144:ef7eb2e8f9f7 747 /** @defgroup RCC_Exported_Functions_Group2 Peripheral Control functions
<> 144:ef7eb2e8f9f7 748 * @brief RCC clocks control functions
<> 144:ef7eb2e8f9f7 749 *
<> 144:ef7eb2e8f9f7 750 @verbatim
<> 144:ef7eb2e8f9f7 751 ===============================================================================
<> 144:ef7eb2e8f9f7 752 ##### Peripheral Control functions #####
<> 144:ef7eb2e8f9f7 753 ===============================================================================
<> 144:ef7eb2e8f9f7 754 [..]
<> 144:ef7eb2e8f9f7 755 This subsection provides a set of functions allowing to control the RCC Clocks
<> 144:ef7eb2e8f9f7 756 frequencies.
<> 144:ef7eb2e8f9f7 757
<> 144:ef7eb2e8f9f7 758 @endverbatim
<> 144:ef7eb2e8f9f7 759 * @{
<> 144:ef7eb2e8f9f7 760 */
<> 144:ef7eb2e8f9f7 761
<> 144:ef7eb2e8f9f7 762 /**
<> 144:ef7eb2e8f9f7 763 * @brief Selects the clock source to output on MCO1 pin(PA8) or on MCO2 pin(PC9).
<> 144:ef7eb2e8f9f7 764 * @note PA8/PC9 should be configured in alternate function mode.
<> 144:ef7eb2e8f9f7 765 * @param RCC_MCOx: specifies the output direction for the clock source.
<> 144:ef7eb2e8f9f7 766 * This parameter can be one of the following values:
<> 144:ef7eb2e8f9f7 767 * @arg RCC_MCO1: Clock source to output on MCO1 pin(PA8).
<> 144:ef7eb2e8f9f7 768 * @arg RCC_MCO2: Clock source to output on MCO2 pin(PC9).
<> 144:ef7eb2e8f9f7 769 * @param RCC_MCOSource: specifies the clock source to output.
<> 144:ef7eb2e8f9f7 770 * This parameter can be one of the following values:
<> 144:ef7eb2e8f9f7 771 * @arg RCC_MCO1SOURCE_HSI: HSI clock selected as MCO1 source
<> 144:ef7eb2e8f9f7 772 * @arg RCC_MCO1SOURCE_LSE: LSE clock selected as MCO1 source
<> 144:ef7eb2e8f9f7 773 * @arg RCC_MCO1SOURCE_HSE: HSE clock selected as MCO1 source
<> 144:ef7eb2e8f9f7 774 * @arg RCC_MCO1SOURCE_PLLCLK: main PLL clock selected as MCO1 source
<> 144:ef7eb2e8f9f7 775 * @arg RCC_MCO2SOURCE_SYSCLK: System clock (SYSCLK) selected as MCO2 source
<> 144:ef7eb2e8f9f7 776 * @arg RCC_MCO2SOURCE_PLLI2SCLK: PLLI2S clock selected as MCO2 source
<> 144:ef7eb2e8f9f7 777 * @arg RCC_MCO2SOURCE_HSE: HSE clock selected as MCO2 source
<> 144:ef7eb2e8f9f7 778 * @arg RCC_MCO2SOURCE_PLLCLK: main PLL clock selected as MCO2 source
<> 144:ef7eb2e8f9f7 779 * @param RCC_MCODiv: specifies the MCOx prescaler.
<> 144:ef7eb2e8f9f7 780 * This parameter can be one of the following values:
<> 144:ef7eb2e8f9f7 781 * @arg RCC_MCODIV_1: no division applied to MCOx clock
<> 144:ef7eb2e8f9f7 782 * @arg RCC_MCODIV_2: division by 2 applied to MCOx clock
<> 144:ef7eb2e8f9f7 783 * @arg RCC_MCODIV_3: division by 3 applied to MCOx clock
<> 144:ef7eb2e8f9f7 784 * @arg RCC_MCODIV_4: division by 4 applied to MCOx clock
<> 144:ef7eb2e8f9f7 785 * @arg RCC_MCODIV_5: division by 5 applied to MCOx clock
<> 144:ef7eb2e8f9f7 786 * @retval None
<> 144:ef7eb2e8f9f7 787 */
<> 144:ef7eb2e8f9f7 788 void HAL_RCC_MCOConfig(uint32_t RCC_MCOx, uint32_t RCC_MCOSource, uint32_t RCC_MCODiv)
<> 144:ef7eb2e8f9f7 789 {
<> 144:ef7eb2e8f9f7 790 GPIO_InitTypeDef GPIO_InitStruct;
<> 144:ef7eb2e8f9f7 791 /* Check the parameters */
<> 144:ef7eb2e8f9f7 792 assert_param(IS_RCC_MCO(RCC_MCOx));
<> 144:ef7eb2e8f9f7 793 assert_param(IS_RCC_MCODIV(RCC_MCODiv));
<> 144:ef7eb2e8f9f7 794 /* RCC_MCO1 */
<> 144:ef7eb2e8f9f7 795 if(RCC_MCOx == RCC_MCO1)
<> 144:ef7eb2e8f9f7 796 {
<> 144:ef7eb2e8f9f7 797 assert_param(IS_RCC_MCO1SOURCE(RCC_MCOSource));
<> 144:ef7eb2e8f9f7 798
<> 144:ef7eb2e8f9f7 799 /* MCO1 Clock Enable */
<> 144:ef7eb2e8f9f7 800 __MCO1_CLK_ENABLE();
<> 144:ef7eb2e8f9f7 801
<> 144:ef7eb2e8f9f7 802 /* Configure the MCO1 pin in alternate function mode */
<> 144:ef7eb2e8f9f7 803 GPIO_InitStruct.Pin = MCO1_PIN;
<> 144:ef7eb2e8f9f7 804 GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
<> 144:ef7eb2e8f9f7 805 GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
<> 144:ef7eb2e8f9f7 806 GPIO_InitStruct.Pull = GPIO_NOPULL;
<> 144:ef7eb2e8f9f7 807 GPIO_InitStruct.Alternate = GPIO_AF0_MCO;
<> 144:ef7eb2e8f9f7 808 HAL_GPIO_Init(MCO1_GPIO_PORT, &GPIO_InitStruct);
<> 144:ef7eb2e8f9f7 809
<> 144:ef7eb2e8f9f7 810 /* Mask MCO1 and MCO1PRE[2:0] bits then Select MCO1 clock source and prescaler */
<> 144:ef7eb2e8f9f7 811 MODIFY_REG(RCC->CFGR, (RCC_CFGR_MCO1 | RCC_CFGR_MCO1PRE), (RCC_MCOSource | RCC_MCODiv));
<> 144:ef7eb2e8f9f7 812 }
<> 144:ef7eb2e8f9f7 813 else
<> 144:ef7eb2e8f9f7 814 {
<> 144:ef7eb2e8f9f7 815 assert_param(IS_RCC_MCO2SOURCE(RCC_MCOSource));
<> 144:ef7eb2e8f9f7 816
<> 144:ef7eb2e8f9f7 817 /* MCO2 Clock Enable */
<> 144:ef7eb2e8f9f7 818 __MCO2_CLK_ENABLE();
<> 144:ef7eb2e8f9f7 819
<> 144:ef7eb2e8f9f7 820 /* Configure the MCO2 pin in alternate function mode */
<> 144:ef7eb2e8f9f7 821 GPIO_InitStruct.Pin = MCO2_PIN;
<> 144:ef7eb2e8f9f7 822 GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
<> 144:ef7eb2e8f9f7 823 GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
<> 144:ef7eb2e8f9f7 824 GPIO_InitStruct.Pull = GPIO_NOPULL;
<> 144:ef7eb2e8f9f7 825 GPIO_InitStruct.Alternate = GPIO_AF0_MCO;
<> 144:ef7eb2e8f9f7 826 HAL_GPIO_Init(MCO2_GPIO_PORT, &GPIO_InitStruct);
<> 144:ef7eb2e8f9f7 827
<> 144:ef7eb2e8f9f7 828 /* Mask MCO2 and MCO2PRE[2:0] bits then Select MCO2 clock source and prescaler */
AnnaBridge 167:e84263d55307 829 MODIFY_REG(RCC->CFGR, (RCC_CFGR_MCO2 | RCC_CFGR_MCO2PRE), (RCC_MCOSource | (RCC_MCODiv << 3U)));
<> 144:ef7eb2e8f9f7 830 }
<> 144:ef7eb2e8f9f7 831 }
<> 144:ef7eb2e8f9f7 832
<> 144:ef7eb2e8f9f7 833 /**
<> 144:ef7eb2e8f9f7 834 * @brief Enables the Clock Security System.
<> 144:ef7eb2e8f9f7 835 * @note If a failure is detected on the HSE oscillator clock, this oscillator
<> 144:ef7eb2e8f9f7 836 * is automatically disabled and an interrupt is generated to inform the
<> 144:ef7eb2e8f9f7 837 * software about the failure (Clock Security System Interrupt, CSSI),
<> 144:ef7eb2e8f9f7 838 * allowing the MCU to perform rescue operations. The CSSI is linked to
<> 144:ef7eb2e8f9f7 839 * the Cortex-M3 NMI (Non-Maskable Interrupt) exception vector.
<> 144:ef7eb2e8f9f7 840 * @retval None
<> 144:ef7eb2e8f9f7 841 */
<> 144:ef7eb2e8f9f7 842 void HAL_RCC_EnableCSS(void)
<> 144:ef7eb2e8f9f7 843 {
<> 144:ef7eb2e8f9f7 844 *(__IO uint32_t *) RCC_CR_CSSON_BB = (uint32_t)ENABLE;
<> 144:ef7eb2e8f9f7 845 }
<> 144:ef7eb2e8f9f7 846
<> 144:ef7eb2e8f9f7 847 /**
<> 144:ef7eb2e8f9f7 848 * @brief Disables the Clock Security System.
<> 144:ef7eb2e8f9f7 849 * @retval None
<> 144:ef7eb2e8f9f7 850 */
<> 144:ef7eb2e8f9f7 851 void HAL_RCC_DisableCSS(void)
<> 144:ef7eb2e8f9f7 852 {
<> 144:ef7eb2e8f9f7 853 *(__IO uint32_t *) RCC_CR_CSSON_BB = (uint32_t)DISABLE;
<> 144:ef7eb2e8f9f7 854 }
<> 144:ef7eb2e8f9f7 855
<> 144:ef7eb2e8f9f7 856 /**
<> 144:ef7eb2e8f9f7 857 * @brief Returns the SYSCLK frequency
<> 144:ef7eb2e8f9f7 858 *
<> 144:ef7eb2e8f9f7 859 * @note The system frequency computed by this function is not the real
<> 144:ef7eb2e8f9f7 860 * frequency in the chip. It is calculated based on the predefined
<> 144:ef7eb2e8f9f7 861 * constant and the selected clock source:
<> 144:ef7eb2e8f9f7 862 * @note If SYSCLK source is HSI, function returns values based on HSI_VALUE(*)
<> 144:ef7eb2e8f9f7 863 * @note If SYSCLK source is HSE, function returns values based on HSE_VALUE(**)
<> 144:ef7eb2e8f9f7 864 * @note If SYSCLK source is PLL, function returns values based on HSE_VALUE(**)
<> 144:ef7eb2e8f9f7 865 * or HSI_VALUE(*) multiplied/divided by the PLL factors.
<> 144:ef7eb2e8f9f7 866 * @note (*) HSI_VALUE is a constant defined in stm32f2xx_hal_conf.h file (default value
<> 144:ef7eb2e8f9f7 867 * 16 MHz) but the real value may vary depending on the variations
<> 144:ef7eb2e8f9f7 868 * in voltage and temperature.
<> 144:ef7eb2e8f9f7 869 * @note (**) HSE_VALUE is a constant defined in stm32f2xx_hal_conf.h file (default value
<> 144:ef7eb2e8f9f7 870 * 25 MHz), user has to ensure that HSE_VALUE is same as the real
<> 144:ef7eb2e8f9f7 871 * frequency of the crystal used. Otherwise, this function may
<> 144:ef7eb2e8f9f7 872 * have wrong result.
<> 144:ef7eb2e8f9f7 873 *
<> 144:ef7eb2e8f9f7 874 * @note The result of this function could be not correct when using fractional
<> 144:ef7eb2e8f9f7 875 * value for HSE crystal.
<> 144:ef7eb2e8f9f7 876 *
<> 144:ef7eb2e8f9f7 877 * @note This function can be used by the user application to compute the
<> 144:ef7eb2e8f9f7 878 * baudrate for the communication peripherals or configure other parameters.
<> 144:ef7eb2e8f9f7 879 *
<> 144:ef7eb2e8f9f7 880 * @note Each time SYSCLK changes, this function must be called to update the
<> 144:ef7eb2e8f9f7 881 * right SYSCLK value. Otherwise, any configuration based on this function will be incorrect.
<> 144:ef7eb2e8f9f7 882 *
<> 144:ef7eb2e8f9f7 883 *
<> 144:ef7eb2e8f9f7 884 * @retval SYSCLK frequency
<> 144:ef7eb2e8f9f7 885 */
<> 144:ef7eb2e8f9f7 886 uint32_t HAL_RCC_GetSysClockFreq(void)
<> 144:ef7eb2e8f9f7 887 {
<> 144:ef7eb2e8f9f7 888 uint32_t pllm = 0U, pllvco = 0U, pllp = 0U;
<> 144:ef7eb2e8f9f7 889 uint32_t sysclockfreq = 0U;
<> 144:ef7eb2e8f9f7 890
<> 144:ef7eb2e8f9f7 891 /* Get SYSCLK source -------------------------------------------------------*/
<> 144:ef7eb2e8f9f7 892 switch (RCC->CFGR & RCC_CFGR_SWS)
<> 144:ef7eb2e8f9f7 893 {
<> 144:ef7eb2e8f9f7 894 case RCC_CFGR_SWS_HSI: /* HSI used as system clock source */
<> 144:ef7eb2e8f9f7 895 {
<> 144:ef7eb2e8f9f7 896 sysclockfreq = HSI_VALUE;
<> 144:ef7eb2e8f9f7 897 break;
<> 144:ef7eb2e8f9f7 898 }
<> 144:ef7eb2e8f9f7 899 case RCC_CFGR_SWS_HSE: /* HSE used as system clock source */
<> 144:ef7eb2e8f9f7 900 {
<> 144:ef7eb2e8f9f7 901 sysclockfreq = HSE_VALUE;
<> 144:ef7eb2e8f9f7 902 break;
<> 144:ef7eb2e8f9f7 903 }
<> 144:ef7eb2e8f9f7 904 case RCC_CFGR_SWS_PLL: /* PLL used as system clock source */
<> 144:ef7eb2e8f9f7 905 {
<> 144:ef7eb2e8f9f7 906 /* PLL_VCO = (HSE_VALUE or HSI_VALUE / PLLM) * PLLN
<> 144:ef7eb2e8f9f7 907 SYSCLK = PLL_VCO / PLLP */
<> 144:ef7eb2e8f9f7 908 pllm = RCC->PLLCFGR & RCC_PLLCFGR_PLLM;
<> 144:ef7eb2e8f9f7 909 if(__HAL_RCC_GET_PLL_OSCSOURCE() != RCC_PLLSOURCE_HSI)
<> 144:ef7eb2e8f9f7 910 {
<> 144:ef7eb2e8f9f7 911 /* HSE used as PLL clock source */
<> 144:ef7eb2e8f9f7 912 pllvco = ((HSE_VALUE / pllm) * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> POSITION_VAL(RCC_PLLCFGR_PLLN)));
<> 144:ef7eb2e8f9f7 913 }
<> 144:ef7eb2e8f9f7 914 else
<> 144:ef7eb2e8f9f7 915 {
<> 144:ef7eb2e8f9f7 916 /* HSI used as PLL clock source */
<> 144:ef7eb2e8f9f7 917 pllvco = ((HSI_VALUE / pllm) * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> POSITION_VAL(RCC_PLLCFGR_PLLN)));
<> 144:ef7eb2e8f9f7 918 }
<> 144:ef7eb2e8f9f7 919 pllp = ((((RCC->PLLCFGR & RCC_PLLCFGR_PLLP) >> POSITION_VAL(RCC_PLLCFGR_PLLP)) + 1U) *2U);
<> 144:ef7eb2e8f9f7 920
<> 144:ef7eb2e8f9f7 921 sysclockfreq = pllvco/pllp;
<> 144:ef7eb2e8f9f7 922 break;
<> 144:ef7eb2e8f9f7 923 }
<> 144:ef7eb2e8f9f7 924 default:
<> 144:ef7eb2e8f9f7 925 {
<> 144:ef7eb2e8f9f7 926 sysclockfreq = HSI_VALUE;
<> 144:ef7eb2e8f9f7 927 break;
<> 144:ef7eb2e8f9f7 928 }
<> 144:ef7eb2e8f9f7 929 }
<> 144:ef7eb2e8f9f7 930 return sysclockfreq;
<> 144:ef7eb2e8f9f7 931 }
<> 144:ef7eb2e8f9f7 932
<> 144:ef7eb2e8f9f7 933 /**
<> 144:ef7eb2e8f9f7 934 * @brief Returns the HCLK frequency
<> 144:ef7eb2e8f9f7 935 * @note Each time HCLK changes, this function must be called to update the
<> 144:ef7eb2e8f9f7 936 * right HCLK value. Otherwise, any configuration based on this function will be incorrect.
<> 144:ef7eb2e8f9f7 937 *
<> 144:ef7eb2e8f9f7 938 * @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency
<> 144:ef7eb2e8f9f7 939 * and updated within this function
<> 144:ef7eb2e8f9f7 940 * @retval HCLK frequency
<> 144:ef7eb2e8f9f7 941 */
<> 144:ef7eb2e8f9f7 942 uint32_t HAL_RCC_GetHCLKFreq(void)
<> 144:ef7eb2e8f9f7 943 {
<> 144:ef7eb2e8f9f7 944 return SystemCoreClock;
<> 144:ef7eb2e8f9f7 945 }
<> 144:ef7eb2e8f9f7 946
<> 144:ef7eb2e8f9f7 947 /**
<> 144:ef7eb2e8f9f7 948 * @brief Returns the PCLK1 frequency
<> 144:ef7eb2e8f9f7 949 * @note Each time PCLK1 changes, this function must be called to update the
<> 144:ef7eb2e8f9f7 950 * right PCLK1 value. Otherwise, any configuration based on this function will be incorrect.
<> 144:ef7eb2e8f9f7 951 * @retval PCLK1 frequency
<> 144:ef7eb2e8f9f7 952 */
<> 144:ef7eb2e8f9f7 953 uint32_t HAL_RCC_GetPCLK1Freq(void)
<> 144:ef7eb2e8f9f7 954 {
<> 144:ef7eb2e8f9f7 955 /* Get HCLK source and Compute PCLK1 frequency ---------------------------*/
AnnaBridge 167:e84263d55307 956 return (HAL_RCC_GetHCLKFreq() >> APBPrescTable[(RCC->CFGR & RCC_CFGR_PPRE1)>> POSITION_VAL(RCC_CFGR_PPRE1)]);
<> 144:ef7eb2e8f9f7 957 }
<> 144:ef7eb2e8f9f7 958
<> 144:ef7eb2e8f9f7 959 /**
<> 144:ef7eb2e8f9f7 960 * @brief Returns the PCLK2 frequency
<> 144:ef7eb2e8f9f7 961 * @note Each time PCLK2 changes, this function must be called to update the
<> 144:ef7eb2e8f9f7 962 * right PCLK2 value. Otherwise, any configuration based on this function will be incorrect.
<> 144:ef7eb2e8f9f7 963 * @retval PCLK2 frequency
<> 144:ef7eb2e8f9f7 964 */
<> 144:ef7eb2e8f9f7 965 uint32_t HAL_RCC_GetPCLK2Freq(void)
<> 144:ef7eb2e8f9f7 966 {
<> 144:ef7eb2e8f9f7 967 /* Get HCLK source and Compute PCLK2 frequency ---------------------------*/
AnnaBridge 167:e84263d55307 968 return (HAL_RCC_GetHCLKFreq()>> APBPrescTable[(RCC->CFGR & RCC_CFGR_PPRE2)>> POSITION_VAL(RCC_CFGR_PPRE2)]);
<> 144:ef7eb2e8f9f7 969 }
<> 144:ef7eb2e8f9f7 970
<> 144:ef7eb2e8f9f7 971 /**
<> 144:ef7eb2e8f9f7 972 * @brief Configures the RCC_OscInitStruct according to the internal
<> 144:ef7eb2e8f9f7 973 * RCC configuration registers.
<> 144:ef7eb2e8f9f7 974 * @param RCC_OscInitStruct: pointer to an RCC_OscInitTypeDef structure that
<> 144:ef7eb2e8f9f7 975 * will be configured.
<> 144:ef7eb2e8f9f7 976 * @retval None
<> 144:ef7eb2e8f9f7 977 */
<> 144:ef7eb2e8f9f7 978 void HAL_RCC_GetOscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct)
<> 144:ef7eb2e8f9f7 979 {
<> 144:ef7eb2e8f9f7 980 /* Set all possible values for the Oscillator type parameter ---------------*/
<> 144:ef7eb2e8f9f7 981 RCC_OscInitStruct->OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_HSI | RCC_OSCILLATORTYPE_LSE | RCC_OSCILLATORTYPE_LSI;
<> 144:ef7eb2e8f9f7 982
<> 144:ef7eb2e8f9f7 983 /* Get the HSE configuration -----------------------------------------------*/
<> 144:ef7eb2e8f9f7 984 if((RCC->CR &RCC_CR_HSEBYP) == RCC_CR_HSEBYP)
<> 144:ef7eb2e8f9f7 985 {
<> 144:ef7eb2e8f9f7 986 RCC_OscInitStruct->HSEState = RCC_HSE_BYPASS;
<> 144:ef7eb2e8f9f7 987 }
<> 144:ef7eb2e8f9f7 988 else if((RCC->CR &RCC_CR_HSEON) == RCC_CR_HSEON)
<> 144:ef7eb2e8f9f7 989 {
<> 144:ef7eb2e8f9f7 990 RCC_OscInitStruct->HSEState = RCC_HSE_ON;
<> 144:ef7eb2e8f9f7 991 }
<> 144:ef7eb2e8f9f7 992 else
<> 144:ef7eb2e8f9f7 993 {
<> 144:ef7eb2e8f9f7 994 RCC_OscInitStruct->HSEState = RCC_HSE_OFF;
<> 144:ef7eb2e8f9f7 995 }
<> 144:ef7eb2e8f9f7 996
<> 144:ef7eb2e8f9f7 997 /* Get the HSI configuration -----------------------------------------------*/
<> 144:ef7eb2e8f9f7 998 if((RCC->CR &RCC_CR_HSION) == RCC_CR_HSION)
<> 144:ef7eb2e8f9f7 999 {
<> 144:ef7eb2e8f9f7 1000 RCC_OscInitStruct->HSIState = RCC_HSI_ON;
<> 144:ef7eb2e8f9f7 1001 }
<> 144:ef7eb2e8f9f7 1002 else
<> 144:ef7eb2e8f9f7 1003 {
<> 144:ef7eb2e8f9f7 1004 RCC_OscInitStruct->HSIState = RCC_HSI_OFF;
<> 144:ef7eb2e8f9f7 1005 }
<> 144:ef7eb2e8f9f7 1006
<> 144:ef7eb2e8f9f7 1007 RCC_OscInitStruct->HSICalibrationValue = (uint32_t)((RCC->CR &RCC_CR_HSITRIM) >> POSITION_VAL(RCC_CR_HSITRIM));
<> 144:ef7eb2e8f9f7 1008
<> 144:ef7eb2e8f9f7 1009 /* Get the LSE configuration -----------------------------------------------*/
<> 144:ef7eb2e8f9f7 1010 if((RCC->BDCR &RCC_BDCR_LSEBYP) == RCC_BDCR_LSEBYP)
<> 144:ef7eb2e8f9f7 1011 {
<> 144:ef7eb2e8f9f7 1012 RCC_OscInitStruct->LSEState = RCC_LSE_BYPASS;
<> 144:ef7eb2e8f9f7 1013 }
<> 144:ef7eb2e8f9f7 1014 else if((RCC->BDCR &RCC_BDCR_LSEON) == RCC_BDCR_LSEON)
<> 144:ef7eb2e8f9f7 1015 {
<> 144:ef7eb2e8f9f7 1016 RCC_OscInitStruct->LSEState = RCC_LSE_ON;
<> 144:ef7eb2e8f9f7 1017 }
<> 144:ef7eb2e8f9f7 1018 else
<> 144:ef7eb2e8f9f7 1019 {
<> 144:ef7eb2e8f9f7 1020 RCC_OscInitStruct->LSEState = RCC_LSE_OFF;
<> 144:ef7eb2e8f9f7 1021 }
<> 144:ef7eb2e8f9f7 1022
<> 144:ef7eb2e8f9f7 1023 /* Get the LSI configuration -----------------------------------------------*/
<> 144:ef7eb2e8f9f7 1024 if((RCC->CSR &RCC_CSR_LSION) == RCC_CSR_LSION)
<> 144:ef7eb2e8f9f7 1025 {
<> 144:ef7eb2e8f9f7 1026 RCC_OscInitStruct->LSIState = RCC_LSI_ON;
<> 144:ef7eb2e8f9f7 1027 }
<> 144:ef7eb2e8f9f7 1028 else
<> 144:ef7eb2e8f9f7 1029 {
<> 144:ef7eb2e8f9f7 1030 RCC_OscInitStruct->LSIState = RCC_LSI_OFF;
<> 144:ef7eb2e8f9f7 1031 }
<> 144:ef7eb2e8f9f7 1032
<> 144:ef7eb2e8f9f7 1033 /* Get the PLL configuration -----------------------------------------------*/
<> 144:ef7eb2e8f9f7 1034 if((RCC->CR &RCC_CR_PLLON) == RCC_CR_PLLON)
<> 144:ef7eb2e8f9f7 1035 {
<> 144:ef7eb2e8f9f7 1036 RCC_OscInitStruct->PLL.PLLState = RCC_PLL_ON;
<> 144:ef7eb2e8f9f7 1037 }
<> 144:ef7eb2e8f9f7 1038 else
<> 144:ef7eb2e8f9f7 1039 {
<> 144:ef7eb2e8f9f7 1040 RCC_OscInitStruct->PLL.PLLState = RCC_PLL_OFF;
<> 144:ef7eb2e8f9f7 1041 }
<> 144:ef7eb2e8f9f7 1042 RCC_OscInitStruct->PLL.PLLSource = (uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC);
<> 144:ef7eb2e8f9f7 1043 RCC_OscInitStruct->PLL.PLLM = (uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLM);
<> 144:ef7eb2e8f9f7 1044 RCC_OscInitStruct->PLL.PLLN = (uint32_t)((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> POSITION_VAL(RCC_PLLCFGR_PLLN));
<> 144:ef7eb2e8f9f7 1045 RCC_OscInitStruct->PLL.PLLP = (uint32_t)((((RCC->PLLCFGR & RCC_PLLCFGR_PLLP) + RCC_PLLCFGR_PLLP_0) << 1U) >> POSITION_VAL(RCC_PLLCFGR_PLLP));
<> 144:ef7eb2e8f9f7 1046 RCC_OscInitStruct->PLL.PLLQ = (uint32_t)((RCC->PLLCFGR & RCC_PLLCFGR_PLLQ) >> POSITION_VAL(RCC_PLLCFGR_PLLQ));
<> 144:ef7eb2e8f9f7 1047 }
<> 144:ef7eb2e8f9f7 1048
<> 144:ef7eb2e8f9f7 1049 /**
<> 144:ef7eb2e8f9f7 1050 * @brief Configures the RCC_ClkInitStruct according to the internal
<> 144:ef7eb2e8f9f7 1051 * RCC configuration registers.
<> 144:ef7eb2e8f9f7 1052 * @param RCC_ClkInitStruct: pointer to an RCC_ClkInitTypeDef structure that
<> 144:ef7eb2e8f9f7 1053 * will be configured.
<> 144:ef7eb2e8f9f7 1054 * @param pFLatency: Pointer on the Flash Latency.
<> 144:ef7eb2e8f9f7 1055 * @retval None
<> 144:ef7eb2e8f9f7 1056 */
<> 144:ef7eb2e8f9f7 1057 void HAL_RCC_GetClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t *pFLatency)
<> 144:ef7eb2e8f9f7 1058 {
<> 144:ef7eb2e8f9f7 1059 /* Set all possible values for the Clock type parameter --------------------*/
<> 144:ef7eb2e8f9f7 1060 RCC_ClkInitStruct->ClockType = RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
<> 144:ef7eb2e8f9f7 1061
<> 144:ef7eb2e8f9f7 1062 /* Get the SYSCLK configuration --------------------------------------------*/
<> 144:ef7eb2e8f9f7 1063 RCC_ClkInitStruct->SYSCLKSource = (uint32_t)(RCC->CFGR & RCC_CFGR_SW);
<> 144:ef7eb2e8f9f7 1064
<> 144:ef7eb2e8f9f7 1065 /* Get the HCLK configuration ----------------------------------------------*/
<> 144:ef7eb2e8f9f7 1066 RCC_ClkInitStruct->AHBCLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_HPRE);
<> 144:ef7eb2e8f9f7 1067
<> 144:ef7eb2e8f9f7 1068 /* Get the APB1 configuration ----------------------------------------------*/
<> 144:ef7eb2e8f9f7 1069 RCC_ClkInitStruct->APB1CLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_PPRE1);
<> 144:ef7eb2e8f9f7 1070
<> 144:ef7eb2e8f9f7 1071 /* Get the APB2 configuration ----------------------------------------------*/
<> 144:ef7eb2e8f9f7 1072 RCC_ClkInitStruct->APB2CLKDivider = (uint32_t)((RCC->CFGR & RCC_CFGR_PPRE2) >> 3U);
<> 144:ef7eb2e8f9f7 1073
<> 144:ef7eb2e8f9f7 1074 /* Get the Flash Wait State (Latency) configuration ------------------------*/
<> 144:ef7eb2e8f9f7 1075 *pFLatency = (uint32_t)(FLASH->ACR & FLASH_ACR_LATENCY);
<> 144:ef7eb2e8f9f7 1076 }
<> 144:ef7eb2e8f9f7 1077
<> 144:ef7eb2e8f9f7 1078 /**
<> 144:ef7eb2e8f9f7 1079 * @brief This function handles the RCC CSS interrupt request.
<> 144:ef7eb2e8f9f7 1080 * @note This API should be called under the NMI_Handler().
<> 144:ef7eb2e8f9f7 1081 * @retval None
<> 144:ef7eb2e8f9f7 1082 */
<> 144:ef7eb2e8f9f7 1083 void HAL_RCC_NMI_IRQHandler(void)
<> 144:ef7eb2e8f9f7 1084 {
<> 144:ef7eb2e8f9f7 1085 /* Check RCC CSSF flag */
<> 144:ef7eb2e8f9f7 1086 if(__HAL_RCC_GET_IT(RCC_IT_CSS))
<> 144:ef7eb2e8f9f7 1087 {
<> 144:ef7eb2e8f9f7 1088 /* RCC Clock Security System interrupt user callback */
<> 144:ef7eb2e8f9f7 1089 HAL_RCC_CSSCallback();
<> 144:ef7eb2e8f9f7 1090
<> 144:ef7eb2e8f9f7 1091 /* Clear RCC CSS pending bit */
<> 144:ef7eb2e8f9f7 1092 __HAL_RCC_CLEAR_IT(RCC_IT_CSS);
<> 144:ef7eb2e8f9f7 1093 }
<> 144:ef7eb2e8f9f7 1094 }
<> 144:ef7eb2e8f9f7 1095
<> 144:ef7eb2e8f9f7 1096 /**
<> 144:ef7eb2e8f9f7 1097 * @brief RCC Clock Security System interrupt callback
<> 144:ef7eb2e8f9f7 1098 * @retval None
<> 144:ef7eb2e8f9f7 1099 */
<> 144:ef7eb2e8f9f7 1100 __weak void HAL_RCC_CSSCallback(void)
<> 144:ef7eb2e8f9f7 1101 {
<> 144:ef7eb2e8f9f7 1102 /* NOTE : This function Should not be modified, when the callback is needed,
<> 144:ef7eb2e8f9f7 1103 the HAL_RCC_CSSCallback could be implemented in the user file
<> 144:ef7eb2e8f9f7 1104 */
<> 144:ef7eb2e8f9f7 1105 }
<> 144:ef7eb2e8f9f7 1106
<> 144:ef7eb2e8f9f7 1107 /**
<> 144:ef7eb2e8f9f7 1108 * @}
<> 144:ef7eb2e8f9f7 1109 */
<> 144:ef7eb2e8f9f7 1110
<> 144:ef7eb2e8f9f7 1111 /**
<> 144:ef7eb2e8f9f7 1112 * @}
<> 144:ef7eb2e8f9f7 1113 */
<> 144:ef7eb2e8f9f7 1114
<> 144:ef7eb2e8f9f7 1115 #endif /* HAL_RCC_MODULE_ENABLED */
<> 144:ef7eb2e8f9f7 1116 /**
<> 144:ef7eb2e8f9f7 1117 * @}
<> 144:ef7eb2e8f9f7 1118 */
<> 144:ef7eb2e8f9f7 1119
<> 144:ef7eb2e8f9f7 1120 /**
<> 144:ef7eb2e8f9f7 1121 * @}
<> 144:ef7eb2e8f9f7 1122 */
<> 144:ef7eb2e8f9f7 1123
<> 144:ef7eb2e8f9f7 1124 /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/