Simple FM Sound Synthesis with touch screen and accelerometer control, based on STM32F746G-DISCO

Dependencies:   ADXL345 AUDIO_DISCO_F746NG BSP_DISCO_F746NG LCD_DISCO_F746NG SDRAM_DISCO_F746NG TS_DISCO_F746NG mbed-dev

Fork of Workshop_5 by Stefano Fasciani

Revision:
0:da04816fb411
Child:
2:a1330350c32e
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/main.cpp	Thu Mar 24 20:32:24 2016 +0000
@@ -0,0 +1,136 @@
+#include "mbed.h"
+#include "AUDIO_DISCO_F746NG.h"
+#include "SDRAM_DISCO_F746NG.h"
+
+AUDIO_DISCO_F746NG audio;
+// audio IN_OUT buffer is stored in the SDRAM, SDRAM needs to be initialized and FMC enabled
+SDRAM_DISCO_F746NG sdram;
+
+DigitalOut led_green(LED1);
+DigitalOut led_red(LED2);
+Serial pc(USBTX, USBRX);
+
+typedef enum
+{
+    BUFFER_OFFSET_NONE = 0,
+    BUFFER_OFFSET_HALF = 1,
+    BUFFER_OFFSET_FULL = 2,
+}BUFFER_StateTypeDef;
+
+#define AUDIO_BLOCK_SIZE   ((uint32_t)512)
+#define AUDIO_BUFFER_IN     SDRAM_DEVICE_ADDR     /* In SDRAM */
+#define AUDIO_BUFFER_OUT   (SDRAM_DEVICE_ADDR + (AUDIO_BLOCK_SIZE * 2)) /* In SDRAM */
+__IO uint32_t  audio_rec_buffer_state = BUFFER_OFFSET_NONE;
+static uint8_t SetSysClock_PLL_HSE_200MHz();
+int main()
+{
+    SetSysClock_PLL_HSE_200MHz();
+    pc.baud(9600);
+
+    pc.printf("\n\nAUDIO LOOPBACK EXAMPLE START:\n");
+    led_red = 0;
+  
+    pc.printf("\nAUDIO RECORD INIT OK\n");
+    pc.printf("Microphones sound streamed to headphones\n");
+    
+    /* Initialize SDRAM buffers */
+    memset((uint16_t*)AUDIO_BUFFER_IN, 0, AUDIO_BLOCK_SIZE*2);
+    memset((uint16_t*)AUDIO_BUFFER_OUT, 0, AUDIO_BLOCK_SIZE*2);
+    audio_rec_buffer_state = BUFFER_OFFSET_NONE;
+
+    /* Start Recording */
+    audio.IN_Record((uint16_t*)AUDIO_BUFFER_IN, AUDIO_BLOCK_SIZE);
+
+    /* Start Playback */
+    audio.OUT_SetAudioFrameSlot(CODEC_AUDIOFRAME_SLOT_02);
+    audio.OUT_Play((uint16_t*)AUDIO_BUFFER_OUT, AUDIO_BLOCK_SIZE * 2);
+
+  
+    while (1) {
+        /* Wait end of half block recording */
+        while(audio_rec_buffer_state == BUFFER_OFFSET_HALF) {
+        }
+        audio_rec_buffer_state = BUFFER_OFFSET_NONE;
+        /* Copy recorded 1st half block */
+        memcpy((uint16_t *)(AUDIO_BUFFER_OUT), (uint16_t *)(AUDIO_BUFFER_IN), AUDIO_BLOCK_SIZE);
+        /* Wait end of one block recording */
+        while(audio_rec_buffer_state == BUFFER_OFFSET_FULL) {
+        }
+        audio_rec_buffer_state = BUFFER_OFFSET_NONE;
+        /* Copy recorded 2nd half block */
+        memcpy((uint16_t *)(AUDIO_BUFFER_OUT + (AUDIO_BLOCK_SIZE)), (uint16_t *)(AUDIO_BUFFER_IN + (AUDIO_BLOCK_SIZE)), AUDIO_BLOCK_SIZE);
+    }
+}
+/*-------------------------------------------------------------------------------------
+       Callbacks implementation:
+           the callbacks API are defined __weak in the stm32746g_discovery_audio.c file
+           and their implementation should be done in the user code if they are needed.
+           Below some examples of callback implementations.
+  -------------------------------------------------------------------------------------*/
+/**
+  * @brief Manages the DMA Transfer complete interrupt.
+  * @param None
+  * @retval None
+  */
+void BSP_AUDIO_IN_TransferComplete_CallBack(void)
+{
+  audio_rec_buffer_state = BUFFER_OFFSET_FULL;
+  return;
+}
+
+/**
+  * @brief  Manages the DMA Half Transfer complete interrupt.
+  * @param  None
+  * @retval None
+  */
+void BSP_AUDIO_IN_HalfTransfer_CallBack(void)
+{
+  audio_rec_buffer_state = BUFFER_OFFSET_HALF;
+  return;
+}
+
+static uint8_t SetSysClock_PLL_HSE_200MHz()
+{
+  RCC_ClkInitTypeDef RCC_ClkInitStruct;
+  RCC_OscInitTypeDef RCC_OscInitStruct;
+
+  // Enable power clock  
+  __PWR_CLK_ENABLE();
+  
+  // Enable HSE oscillator and activate PLL with HSE as source
+  RCC_OscInitStruct.OscillatorType      = RCC_OSCILLATORTYPE_HSE;
+  RCC_OscInitStruct.HSEState            = RCC_HSE_ON; /* External xtal on OSC_IN/OSC_OUT */
+
+  // Warning: this configuration is for a 25 MHz xtal clock only
+  RCC_OscInitStruct.PLL.PLLState        = RCC_PLL_ON;
+  RCC_OscInitStruct.PLL.PLLSource       = RCC_PLLSOURCE_HSE;
+  RCC_OscInitStruct.PLL.PLLM            = 25;            // VCO input clock = 1 MHz (25 MHz / 25)
+  RCC_OscInitStruct.PLL.PLLN            = 400;           // VCO output clock = 400 MHz (1 MHz * 400)
+  RCC_OscInitStruct.PLL.PLLP            = RCC_PLLP_DIV2; // PLLCLK = 200 MHz (400 MHz / 2)
+  RCC_OscInitStruct.PLL.PLLQ            = 8;             // USB clock = 50 MHz (400 MHz / 8)
+  
+  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
+  {
+    return 0; // FAIL
+  }
+
+  // Activate the OverDrive to reach the 216 MHz Frequency
+  if (HAL_PWREx_EnableOverDrive() != HAL_OK)
+  {
+    return 0; // FAIL
+  }
+  
+  // Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clocks dividers
+  RCC_ClkInitStruct.ClockType      = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
+  RCC_ClkInitStruct.SYSCLKSource   = RCC_SYSCLKSOURCE_PLLCLK; // 200 MHz
+  RCC_ClkInitStruct.AHBCLKDivider  = RCC_SYSCLK_DIV1;         // 200 MHz
+  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;           //  50 MHz
+  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;           // 100 MHz
+  
+  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_7) != HAL_OK)
+  {
+    return 0; // FAIL
+  }
+  HAL_RCC_MCOConfig(RCC_MCO1, RCC_MCO1SOURCE_HSE, RCC_MCODIV_4);
+  return 1; // OK
+}