combine lib to one

Dependents:   BMS

bms_master.cpp

Committer:
roger5641
Date:
2018-01-17
Revision:
3:2561f59cd3dd
Parent:
0:b2692e0e4219

File content as of revision 3:2561f59cd3dd:

//
//#include "mbed.h"
//#include "bms_master.h"
//
//void wakeup_idle(uint8_t total_ic)
//{
//  for (int i =0; i<total_ic; i++)
//  {
//    CS_PIN = 0;
//    //delayMicroseconds(2); //Guarantees the isoSPI will be in ready mode
//    spi_read_byte(0xff);
//    CS_PIN = 1;
//  }
//}
//
////Generic wakeup commannd to wake the LTC6813 from sleep
//void wakeup_sleep(uint8_t total_ic)
//{
//  for (int i =0; i<total_ic; i++)
//  {
//    CS_PIN = 0;
//    wait_ms(300); // Guarantees the LTC6813 will be in standby
//    CS_PIN = 1;
//    wait_ms(10);
//  }
//}
//
//
////Generic function to write 68xx commands. Function calculated PEC for tx_cmd data
//void cmd_68(uint8_t tx_cmd[2])
//{
//  uint8_t cmd[4];
//  uint16_t cmd_pec;
//  uint8_t md_bits;
//
//  cmd[0] = tx_cmd[0];
//  cmd[1] =  tx_cmd[1];
//  cmd_pec = pec15_calc(2, cmd);
//  cmd[2] = (uint8_t)(cmd_pec >> 8);
//  cmd[3] = (uint8_t)(cmd_pec);
//  CS_PIN = 0;
//  spi_write_array(4,cmd);
//  CS_PIN = 1;
//}
//
////Generic function to write 68xx commands and write payload data. Function calculated PEC for tx_cmd data
//void write_68(uint8_t total_ic , uint8_t tx_cmd[2], uint8_t data[])
//{
//  const uint8_t BYTES_IN_REG = 6;
//  const uint8_t CMD_LEN = 4+(8*total_ic);
//  uint8_t *cmd;
//  uint16_t data_pec;
//  uint16_t cmd_pec;
//  uint8_t cmd_index;
//
//  cmd = (uint8_t *)malloc(CMD_LEN*sizeof(uint8_t));
//  cmd[0] = tx_cmd[0];
//  cmd[1] = tx_cmd[1];
//  cmd_pec = pec15_calc(2, cmd);
//  cmd[2] = (uint8_t)(cmd_pec >> 8);
//  cmd[3] = (uint8_t)(cmd_pec);
//  cmd_index = 4;
//  for (uint8_t current_ic = total_ic; current_ic > 0; current_ic--)       // executes for each LTC681x in daisy chain, this loops starts with
//  {
//    // the last IC on the stack. The first configuration written is
//    // received by the last IC in the daisy chain
//
//    for (uint8_t current_byte = 0; current_byte < BYTES_IN_REG; current_byte++)
//    {
//      cmd[cmd_index] = data[((current_ic-1)*6)+current_byte];
//      cmd_index = cmd_index + 1;
//    }
//
//    data_pec = (uint16_t)pec15_calc(BYTES_IN_REG, &data[(current_ic-1)*6]);    // calculating the PEC for each Iss configuration register data
//    cmd[cmd_index] = (uint8_t)(data_pec >> 8);
//    cmd[cmd_index + 1] = (uint8_t)data_pec;
//    cmd_index = cmd_index + 2;
//  }
//
//
//  CS_PIN = 0;
//  spi_write_array(CMD_LEN, cmd);
//  CS_PIN = 1;
//  free(cmd);
//}
//
////Generic function to write 68xx commands and read data. Function calculated PEC for tx_cmd data
//int8_t read_68( uint8_t total_ic, uint8_t tx_cmd[2], uint8_t *rx_data)
//{
//  const uint8_t BYTES_IN_REG = 8;
//  uint8_t cmd[4];
//  uint8_t data[256];
//  int8_t pec_error = 0;
//  uint16_t cmd_pec;
//  uint16_t data_pec;
//  uint16_t received_pec;
//
//  // data = (uint8_t *) malloc((8*total_ic)*sizeof(uint8_t)); // This is a problem because it can fail
//
//  cmd[0] = tx_cmd[0];
//  cmd[1] = tx_cmd[1];
//  cmd_pec = pec15_calc(2, cmd);
//  cmd[2] = (uint8_t)(cmd_pec >> 8);
//  cmd[3] = (uint8_t)(cmd_pec);
//
//
//  CS_PIN = 0;
//  spi_write_read(cmd, 4, data, (BYTES_IN_REG*total_ic));         //Read the configuration data of all ICs on the daisy chain into
//  CS_PIN = 1;                          //rx_data[] array
//
//  for (uint8_t current_ic = 0; current_ic < total_ic; current_ic++)       //executes for each LTC681x in the daisy chain and packs the data
//  {
//    //into the r_comm array as well as check the received Config data
//    //for any bit errors
//    for (uint8_t current_byte = 0; current_byte < BYTES_IN_REG; current_byte++)
//    {
//      rx_data[(current_ic*8)+current_byte] = data[current_byte + (current_ic*BYTES_IN_REG)];
//    }
//    received_pec = (rx_data[(current_ic*8)+6]<<8) + rx_data[(current_ic*8)+7];
//    data_pec = pec15_calc(6, &rx_data[current_ic*8]);
//    if (received_pec != data_pec)
//    {
//      pec_error = -1;
//    }
//  }
//
//
//  return(pec_error);
//}
//
//// Calculates  and returns the CRC15
//
//uint16_t pec15_calc(uint8_t len, //Number of bytes that will be used to calculate a PEC
//                    uint8_t *data //Array of data that will be used to calculate  a PEC
//                   )
//{
//  uint16_t remainder,addr;
//
//  remainder = 16;//initialize the PEC
//  for (uint8_t i = 0; i<len; i++) // loops for each byte in data array
//  {
//    addr = ((remainder>>7)^data[i])&0xff;//calculate PEC table address
//    
//    remainder = (remainder<<8)^crc15Table[addr];
//  }
//  return(remainder*2);//The CRC15 has a 0 in the LSB so the remainder must be multiplied by 2
//}
//
////Starts cell voltage conversion
//void LTC681x_adcv(
//  uint8_t MD, //ADC Mode
//  uint8_t DCP, //Discharge Permit
//  uint8_t CH //Cell Channels to be measured
//)
//{
//  uint8_t cmd[4];
//  uint8_t md_bits;
//
//  md_bits = (MD & 0x02) >> 1;
//  cmd[0] = md_bits + 0x02;
//  md_bits = (MD & 0x01) << 7;
//  cmd[1] =  md_bits + 0x60 + (DCP<<4) + CH;
//  cmd_68(cmd);
//}
//
////Starts cell voltage overlap conversion
//void LTC681x_adol(
//  uint8_t MD, //ADC Mode
//  uint8_t DCP //Discharge Permit
//)
//{
//  uint8_t cmd[4];
//  uint8_t md_bits;
//  md_bits = (MD & 0x02) >> 1;
//  cmd[0] = md_bits + 0x02;
//  md_bits = (MD & 0x01) << 7;
//  cmd[1] =  md_bits + (DCP<<4) +0x01;
//  cmd_68(cmd);
//}
//
////Starts cell voltage self test conversion
//void LTC681x_cvst(
//  uint8_t MD, //ADC Mode
//  uint8_t ST //Self Test
//)
//{
//  uint8_t cmd[2];
//  uint8_t md_bits;
//
//  md_bits = (MD & 0x02) >> 1;
//  cmd[0] = md_bits + 0x02;
//  md_bits = (MD & 0x01) << 7;
//  cmd[1] =  md_bits + ((ST)<<5) +0x07;
//  cmd_68(cmd);
//
//}
//
////Start an Auxiliary Register Self Test Conversion
//void LTC681x_axst(
//  uint8_t MD, //ADC Mode
//  uint8_t ST //Self Test
//)
//{
//  uint8_t cmd[4];
//  uint8_t md_bits;
//
//  md_bits = (MD & 0x02) >> 1;
//  cmd[0] = md_bits + 0x04;
//  md_bits = (MD & 0x01) << 7;
//  cmd[1] =  md_bits + ((ST&0x03)<<5) +0x07;
//  cmd_68(cmd);
//
//}
//
////Start a Status Register Self Test Conversion
//void LTC681x_statst(
//  uint8_t MD, //ADC Mode
//  uint8_t ST //Self Test
//)
//{
//  uint8_t cmd[2];
//  uint8_t md_bits;
//
//  md_bits = (MD & 0x02) >> 1;
//  cmd[0] = md_bits + 0x04;
//  md_bits = (MD & 0x01) << 7;
//  cmd[1] =  md_bits + ((ST&0x03)<<5) +0x0F;
//  cmd_68(cmd);
//
//}
//
////This function will block operation until the ADC has finished it's conversion
//uint32_t LTC681x_pollAdc()
//{
//  uint32_t counter = 0;
//  uint8_t finished = 0;
//  uint8_t current_time = 0;
//  uint8_t cmd[4];
//  uint16_t cmd_pec;
//
//
//  cmd[0] = 0x07;
//  cmd[1] = 0x14;
//  cmd_pec = pec15_calc(2, cmd);
//  cmd[2] = (uint8_t)(cmd_pec >> 8);
//  cmd[3] = (uint8_t)(cmd_pec);
//
//  CS_PIN = 0;
//  spi_write_array(4,cmd);
//
//  while ((counter<200000)&&(finished == 0))
//  {
//    current_time = spi_read_byte(0xff);
//    if (current_time>0)
//    {
//      finished = 1;
//    }
//    else
//    {
//      counter = counter + 10;
//    }
//  }
//
//  CS_PIN = 1;
//
//
//  return(counter);
//}
//
////Start a GPIO and Vref2 Conversion
//void LTC681x_adax(
//  uint8_t MD, //ADC Mode
//  uint8_t CHG //GPIO Channels to be measured)
//)
//{
//  uint8_t cmd[4];
//  uint8_t md_bits;
//
//  md_bits = (MD & 0x02) >> 1;
//  cmd[0] = md_bits + 0x04;
//  md_bits = (MD & 0x01) << 7;
//  cmd[1] = md_bits + 0x60 + CHG ;
//  cmd_68(cmd);
//
//}
////Start an GPIO Redundancy test
//void LTC681x_adaxd(
//  uint8_t MD, //ADC Mode
//  uint8_t CHG //GPIO Channels to be measured)
//)
//{
//  uint8_t cmd[4];
//  uint8_t md_bits;
//
//  md_bits = (MD & 0x02) >> 1;
//  cmd[0] = md_bits + 0x04;
//  md_bits = (MD & 0x01) << 7;
//  cmd[1] = md_bits + CHG ;
//  cmd_68(cmd);
//}
//
////Start a Status ADC Conversion
//void LTC681x_adstat(
//  uint8_t MD, //ADC Mode
//  uint8_t CHST //GPIO Channels to be measured
//)
//{
//  uint8_t cmd[4];
//  uint8_t md_bits;
//
//  md_bits = (MD & 0x02) >> 1;
//  cmd[0] = md_bits + 0x04;
//  md_bits = (MD & 0x01) << 7;
//  cmd[1] = md_bits + 0x68 + CHST ;
//  cmd_68(cmd);
//}
//
//// Start a Status register redundancy test Conversion
//void LTC681x_adstatd(
//  uint8_t MD, //ADC Mode
//  uint8_t CHST //GPIO Channels to be measured
//)
//{
//  uint8_t cmd[2];
//  uint8_t md_bits;
//
//  md_bits = (MD & 0x02) >> 1;
//  cmd[0] = md_bits + 0x04;
//  md_bits = (MD & 0x01) << 7;
//  cmd[1] = md_bits + 0x08 + CHST ;
//  cmd_68(cmd);
//
//}
//
//
//// Start an open wire Conversion
//void LTC681x_adow(
//  uint8_t MD, //ADC Mode
//  uint8_t PUP //Discharge Permit
//)
//{
//  uint8_t cmd[2];
//  uint8_t md_bits;
//  md_bits = (MD & 0x02) >> 1;
//  cmd[0] = md_bits + 0x02;
//  md_bits = (MD & 0x01) << 7;
//  cmd[1] =  md_bits + 0x28 + (PUP<<6) ;//+ CH;
//  cmd_68(cmd);
//}
//
//// Reads the raw cell voltage register data
//void LTC681x_rdcv_reg(uint8_t reg, //Determines which cell voltage register is read back
//                      uint8_t total_ic, //the number of ICs in the
//                      uint8_t *data //An array of the unparsed cell codes
//                     )
//{
//  const uint8_t REG_LEN = 8; //number of bytes in each ICs register + 2 bytes for the PEC
//  uint8_t cmd[4];
//  uint16_t cmd_pec;
//
//  if (reg == 1)     //1: RDCVA
//  {
//    cmd[1] = 0x04;
//    cmd[0] = 0x00;
//  }
//  else if (reg == 2) //2: RDCVB
//  {
//    cmd[1] = 0x06;
//    cmd[0] = 0x00;
//  }
//  else if (reg == 3) //3: RDCVC
//  {
//    cmd[1] = 0x08;
//    cmd[0] = 0x00;
//  }
//  else if (reg == 4) //4: RDCVD
//  {
//    cmd[1] = 0x0A;
//    cmd[0] = 0x00;
//  }
//  else if (reg == 5) //4: RDCVE
//  {
//    cmd[1] = 0x09;
//    cmd[0] = 0x00;
//  }
//  else if (reg == 6) //4: RDCVF
//  {
//    cmd[1] = 0x0B;
//    cmd[0] = 0x00;
//  }
//
//
//  cmd_pec = pec15_calc(2, cmd);
//  cmd[2] = (uint8_t)(cmd_pec >> 8);
//  cmd[3] = (uint8_t)(cmd_pec);
//
//  CS_PIN = 0;
//  spi_write_read(cmd,4,data,(REG_LEN*total_ic));
//  CS_PIN = 1;
//
//}
//
///*
//The function reads a single GPIO voltage register and stores thre read data
//in the *data point as a byte array. This function is rarely used outside of
//the LTC6811_rdaux() command.
//*/
//void LTC681x_rdaux_reg(uint8_t reg, //Determines which GPIO voltage register is read back
//                       uint8_t total_ic, //The number of ICs in the system
//                       uint8_t *data //Array of the unparsed auxiliary codes
//                      )
//{
//  const uint8_t REG_LEN = 8; // number of bytes in the register + 2 bytes for the PEC
//  uint8_t cmd[4];
//  uint16_t cmd_pec;
//
//
//  if (reg == 1)     //Read back auxiliary group A
//  {
//    cmd[1] = 0x0C;
//    cmd[0] = 0x00;
//  }
//  else if (reg == 2)  //Read back auxiliary group B
//  {
//    cmd[1] = 0x0e;
//    cmd[0] = 0x00;
//  }
//  else if (reg == 3)  //Read back auxiliary group C
//  {
//    cmd[1] = 0x0D;
//    cmd[0] = 0x00;
//  }
//  else if (reg == 4)  //Read back auxiliary group D
//  {
//    cmd[1] = 0x0F;
//    cmd[0] = 0x00;
//  }
//  else          //Read back auxiliary group A
//  {
//    cmd[1] = 0x0C;
//    cmd[0] = 0x00;
//  }
//
//  cmd_pec = pec15_calc(2, cmd);
//  cmd[2] = (uint8_t)(cmd_pec >> 8);
//  cmd[3] = (uint8_t)(cmd_pec);
//
//  CS_PIN = 0;
//  spi_write_read(cmd,4,data,(REG_LEN*total_ic));
//  CS_PIN = 1;
//
//}
//
///*
//The function reads a single stat  register and stores the read data
//in the *data point as a byte array. This function is rarely used outside of
//the LTC6811_rdstat() command.
//*/
//void LTC681x_rdstat_reg(uint8_t reg, //Determines which stat register is read back
//                        uint8_t total_ic, //The number of ICs in the system
//                        uint8_t *data //Array of the unparsed stat codes
//                       )
//{
//  const uint8_t REG_LEN = 8; // number of bytes in the register + 2 bytes for the PEC
//  uint8_t cmd[4];
//  uint16_t cmd_pec;
//
//
//  if (reg == 1)     //Read back statiliary group A
//  {
//    cmd[1] = 0x10;
//    cmd[0] = 0x00;
//  }
//  else if (reg == 2)  //Read back statiliary group B
//  {
//    cmd[1] = 0x12;
//    cmd[0] = 0x00;
//  }
//
//  else          //Read back statiliary group A
//  {
//    cmd[1] = 0x10;
//    cmd[0] = 0x00;
//  }
//
//  cmd_pec = pec15_calc(2, cmd);
//  cmd[2] = (uint8_t)(cmd_pec >> 8);
//  cmd[3] = (uint8_t)(cmd_pec);
//
//  CS_PIN = 0;
//  spi_write_read(cmd,4,data,(REG_LEN*total_ic));
//  CS_PIN = 1;
//
//}
//
///*
//The command clears the cell voltage registers and intiallizes
//all values to 1. The register will read back hexadecimal 0xFF
//after the command is sent.
//*/
//void LTC681x_clrcell()
//{
//  uint8_t cmd[2]= {0x07 , 0x11};
//  cmd_68(cmd);
//}
//
///*
//The command clears the Auxiliary registers and initializes
//all values to 1. The register will read back hexadecimal 0xFF
//after the command is sent.
//*/
//void LTC681x_clraux()
//{
//  uint8_t cmd[2]= {0x07 , 0x12};
//  cmd_68(cmd);
//}
//
//
///*
//The command clears the Stat registers and intiallizes
//all values to 1. The register will read back hexadecimal 0xFF
//after the command is sent.
//
//*/
//void LTC681x_clrstat()
//{
//  uint8_t cmd[2]= {0x07 , 0x13};
//  cmd_68(cmd);
//}
//
////Starts the Mux Decoder diagnostic self test
//void LTC681x_diagn()
//{
//  uint8_t cmd[2] = {0x07 , 0x15};
//  cmd_68(cmd);
//}
//
////Reads and parses the LTC681x cell voltage registers.
//uint8_t LTC681x_rdcv(uint8_t reg, // Controls which cell voltage register is read back.
//                     uint8_t total_ic, // the number of ICs in the system
//                     cell_asic ic[] // Array of the parsed cell codes
//                    )
//{
//  int8_t pec_error = 0;
//  uint8_t *cell_data;
//  uint8_t c_ic = 0;
//  cell_data = (uint8_t *) malloc((NUM_RX_BYT*total_ic)*sizeof(uint8_t));
//
//  if (reg == 0)
//  {
//    for (uint8_t cell_reg = 1; cell_reg<ic[0].ic_reg.num_cv_reg+1; cell_reg++)                   //executes once for each of the LTC6811 cell voltage registers
//    {
//      LTC681x_rdcv_reg(cell_reg, total_ic,cell_data );
//      for (int current_ic = 0; current_ic<total_ic; current_ic++)
//      {
//        if (ic->isospi_reverse == false)
//        {
//          c_ic = current_ic;
//        }
//        else
//        {
//          c_ic = total_ic - current_ic - 1;
//        }
//        pec_error = pec_error + parse_cells(current_ic,cell_reg, cell_data,
//                                            &ic[c_ic].cells.c_codes[0],
//                                            &ic[c_ic].cells.pec_match[0]);
//      }
//    }
//  }
//
//  else
//  {
//    LTC681x_rdcv_reg(reg, total_ic,cell_data);
//
//    for (int current_ic = 0; current_ic<total_ic; current_ic++)
//    {
//      if (ic->isospi_reverse == false)
//      {
//        c_ic = current_ic;
//      }
//      else
//      {
//        c_ic = total_ic - current_ic - 1;
//      }
//      pec_error = pec_error + parse_cells(current_ic,reg, &cell_data[8*c_ic],
//                                          &ic[c_ic].cells.c_codes[0],
//                                          &ic[c_ic].cells.pec_match[0]);
//    }
//  }
//  LTC681x_check_pec(total_ic,CELL,ic);
//  free(cell_data);
//  return(pec_error);
//}
//
////helper function that parses voltage measurement registers
//int8_t parse_cells(uint8_t current_ic, uint8_t cell_reg, uint8_t cell_data[], uint16_t *cell_codes, uint8_t *ic_pec)
//{
//
//  const uint8_t BYT_IN_REG = 6;
//  const uint8_t CELL_IN_REG = 3;
//  int8_t pec_error = 0;
//  uint16_t parsed_cell;
//  uint16_t received_pec;
//  uint16_t data_pec;
//  uint8_t data_counter = current_ic*NUM_RX_BYT; //data counter
//
//
//  for (uint8_t current_cell = 0; current_cell<CELL_IN_REG; current_cell++)  // This loop parses the read back data into cell voltages, it
//  {
//    // loops once for each of the 3 cell voltage codes in the register
//
//    parsed_cell = cell_data[data_counter] + (cell_data[data_counter + 1] << 8);//Each cell code is received as two bytes and is combined to
//    // create the parsed cell voltage code
//    cell_codes[current_cell  + ((cell_reg - 1) * CELL_IN_REG)] = parsed_cell;
//    data_counter = data_counter + 2;                       //Because cell voltage codes are two bytes the data counter
//    //must increment by two for each parsed cell code
//  }
//
//  received_pec = (cell_data[data_counter] << 8) | cell_data[data_counter+1]; //The received PEC for the current_ic is transmitted as the 7th and 8th
//  //after the 6 cell voltage data bytes
//  data_pec = pec15_calc(BYT_IN_REG, &cell_data[(current_ic) * NUM_RX_BYT]);
//
//  if (received_pec != data_pec)
//  {
//    pec_error = 1;                             //The pec_error variable is simply set negative if any PEC errors
//    ic_pec[cell_reg-1]=1;
//  }
//  else
//  {
//    ic_pec[cell_reg-1]=0;
//  }
//  data_counter=data_counter+2;
//  return(pec_error);
//}
//
///*
//The function is used
//to read the  parsed GPIO codes of the LTC6811. This function will send the requested
//read commands parse the data and store the gpio voltages in aux_codes variable
//*/
//int8_t LTC681x_rdaux(uint8_t reg, //Determines which GPIO voltage register is read back.
//                     uint8_t total_ic,//the number of ICs in the system
//                     cell_asic ic[]//A two dimensional array of the gpio voltage codes.
//                    )
//{
//  uint8_t *data;
//  int8_t pec_error = 0;
//  uint8_t c_ic =0;
//  data = (uint8_t *) malloc((NUM_RX_BYT*total_ic)*sizeof(uint8_t));
//
//  if (reg == 0)
//  {
//    for (uint8_t gpio_reg = 1; gpio_reg<ic[0].ic_reg.num_gpio_reg+1; gpio_reg++)                 //executes once for each of the LTC6811 aux voltage registers
//    {
//      LTC681x_rdaux_reg(gpio_reg, total_ic,data);                 //Reads the raw auxiliary register data into the data[] array
//      for (int current_ic = 0; current_ic<total_ic; current_ic++)
//      {
//        if (ic->isospi_reverse == false)
//        {
//          c_ic = current_ic;
//        }
//        else
//        {
//          c_ic = total_ic - current_ic - 1;
//        }
//        pec_error = parse_cells(current_ic,gpio_reg, data,
//                                &ic[c_ic].aux.a_codes[0],
//                                &ic[c_ic].aux.pec_match[0]);
//
//      }
//    }
//  }
//  else
//  {
//    LTC681x_rdaux_reg(reg, total_ic, data);
//
//    for (int current_ic = 0; current_ic<total_ic; current_ic++)
//    {
//      if (ic->isospi_reverse == false)
//      {
//        c_ic = current_ic;
//      }
//      else
//      {
//        c_ic = total_ic - current_ic - 1;
//      }
//      pec_error = parse_cells(current_ic,reg, data,
//                              &ic[c_ic].aux.a_codes[0],
//                              &ic[c_ic].aux.pec_match[0]);
//    }
//
//  }
//  LTC681x_check_pec(total_ic,AUX,ic);
//  free(data);
//  return (pec_error);
//}
//
//// Reads and parses the LTC681x stat registers.
//int8_t LTC681x_rdstat(uint8_t reg, //Determines which Stat  register is read back.
//                      uint8_t total_ic,//the number of ICs in the system
//                      cell_asic ic[]
//                     )
//
//{
//
//  const uint8_t BYT_IN_REG = 6;
//  const uint8_t GPIO_IN_REG = 3;
//
//  uint8_t *data;
//  uint8_t data_counter = 0;
//  int8_t pec_error = 0;
//  uint16_t parsed_stat;
//  uint16_t received_pec;
//  uint16_t data_pec;
//  uint8_t c_ic = 0;
//  data = (uint8_t *) malloc((NUM_RX_BYT*total_ic)*sizeof(uint8_t));
//
//  if (reg == 0)
//  {
//
//    for (uint8_t stat_reg = 1; stat_reg< 3; stat_reg++)                      //executes once for each of the LTC6811 stat voltage registers
//    {
//      data_counter = 0;
//      LTC681x_rdstat_reg(stat_reg, total_ic,data);                            //Reads the raw statiliary register data into the data[] array
//
//      for (uint8_t current_ic = 0 ; current_ic < total_ic; current_ic++)      // executes for every LTC6811 in the daisy chain
//      {
//        if (ic->isospi_reverse == false)
//        {
//          c_ic = current_ic;
//        }
//        else
//        {
//          c_ic = total_ic - current_ic - 1;
//        }
//        // current_ic is used as the IC counter
//        if (stat_reg ==1)
//        {
//          for (uint8_t current_gpio = 0; current_gpio< GPIO_IN_REG; current_gpio++) // This loop parses the read back data into GPIO voltages, it
//          {
//            // loops once for each of the 3 gpio voltage codes in the register
//
//            parsed_stat = data[data_counter] + (data[data_counter+1]<<8);              //Each gpio codes is received as two bytes and is combined to
//            ic[c_ic].stat.stat_codes[current_gpio] = parsed_stat;
//            data_counter=data_counter+2;                                               //Because gpio voltage codes are two bytes the data counter
//
//          }
//        }
//        else if (stat_reg == 2)
//        {
//          parsed_stat = data[data_counter] + (data[data_counter+1]<<8);              //Each gpio codes is received as two bytes and is combined to
//          data_counter = data_counter +2;
//          ic[c_ic].stat.stat_codes[3] = parsed_stat;
//          ic[c_ic].stat.flags[0] = data[data_counter++];
//          ic[c_ic].stat.flags[1] = data[data_counter++];
//          ic[c_ic].stat.flags[2] = data[data_counter++];
//          ic[c_ic].stat.mux_fail[0] = (data[data_counter] & 0x02)>>1;
//          ic[c_ic].stat.thsd[0] = data[data_counter++] & 0x01;
//        }
//
//        received_pec = (data[data_counter]<<8)+ data[data_counter+1];          //The received PEC for the current_ic is transmitted as the 7th and 8th
//        //after the 6 gpio voltage data bytes
//        data_pec = pec15_calc(BYT_IN_REG, &data[current_ic*NUM_RX_BYT]);
//
//        if (received_pec != data_pec)
//        {
//          pec_error = -1; //The pec_error variable is simply set negative if any PEC errors
//          ic[c_ic].stat.pec_match[stat_reg-1]=1;
//          //are detected in the received serial data
//        }
//        else
//        {
//          ic[c_ic].stat.pec_match[stat_reg-1]=0;
//        }
//
//        data_counter=data_counter+2;                        //Because the transmitted PEC code is 2 bytes long the data_counter
//        //must be incremented by 2 bytes to point to the next ICs gpio voltage data
//      }
//
//
//    }
//
//  }
//  else
//  {
//
//    LTC681x_rdstat_reg(reg, total_ic, data);
//    for (int current_ic = 0 ; current_ic < total_ic; current_ic++)            // executes for every LTC6811 in the daisy chain
//    {
//      // current_ic is used as an IC counter
//      if (ic->isospi_reverse == false)
//      {
//        c_ic = current_ic;
//      }
//      else
//      {
//        c_ic = total_ic - current_ic - 1;
//      }
//      if (reg ==1)
//      {
//        for (uint8_t current_gpio = 0; current_gpio< GPIO_IN_REG; current_gpio++) // This loop parses the read back data into GPIO voltages, it
//        {
//          // loops once for each of the 3 gpio voltage codes in the register
//          parsed_stat = data[data_counter] + (data[data_counter+1]<<8);              //Each gpio codes is received as two bytes and is combined to
//          // create the parsed gpio voltage code
//
//          ic[c_ic].stat.stat_codes[current_gpio] = parsed_stat;
//          data_counter=data_counter+2;                        //Because gpio voltage codes are two bytes the data counter
//          //must increment by two for each parsed gpio voltage code
//
//        }
//      }
//      else if (reg == 2)
//      {
//        parsed_stat = data[data_counter++] + (data[data_counter++]<<8);              //Each gpio codes is received as two bytes and is combined to
//        ic[c_ic].stat.stat_codes[3] = parsed_stat;
//        ic[c_ic].stat.flags[0] = data[data_counter++];
//        ic[c_ic].stat.flags[1] = data[data_counter++];
//        ic[c_ic].stat.flags[2] = data[data_counter++];
//        ic[c_ic].stat.mux_fail[0] = (data[data_counter] & 0x02)>>1;
//        ic[c_ic].stat.thsd[0] = data[data_counter++] & 0x01;
//      }
//
//
//      received_pec = (data[data_counter]<<8)+ data[data_counter+1];          //The received PEC for the current_ic is transmitted as the 7th and 8th
//      //after the 6 gpio voltage data bytes
//      data_pec = pec15_calc(BYT_IN_REG, &data[current_ic*NUM_RX_BYT]);
//      if (received_pec != data_pec)
//      {
//        pec_error = -1;                             //The pec_error variable is simply set negative if any PEC errors
//        ic[c_ic].stat.pec_match[reg-1]=1;
//
//      }
//
//      data_counter=data_counter+2;
//    }
//  }
//  LTC681x_check_pec(total_ic,STAT,ic);
//  free(data);
//  return (pec_error);
//}
//
////Write the LTC681x CFGRA
//void LTC681x_wrcfg(uint8_t total_ic, //The number of ICs being written to
//                   cell_asic ic[]
//                  )
//{
//  uint8_t cmd[2] = {0x00 , 0x01} ;
//  uint8_t write_buffer[256];
//  uint8_t write_count = 0;
//  uint8_t c_ic = 0;
//  for (uint8_t current_ic = 0; current_ic<total_ic; current_ic++)
//  {
//    if (ic->isospi_reverse == true)
//    {
//      c_ic = current_ic;
//    }
//    else
//    {
//      c_ic = total_ic - current_ic - 1;
//    }
//
//    for (uint8_t data = 0; data<6; data++)
//    {
//      write_buffer[write_count] = ic[c_ic].config.tx_data[data];
//      write_count++;
//    }
//  }
//  write_68(total_ic, cmd, write_buffer);
//}
//
////Read CFGA
//int8_t LTC681x_rdcfg(uint8_t total_ic, //Number of ICs in the system
//                     cell_asic ic[]
//                    )
//{
//  uint8_t cmd[2]= {0x00 , 0x02};
//  uint8_t read_buffer[256];
//  int8_t pec_error = 0;
//  uint16_t data_pec;
//  uint16_t calc_pec;
//  uint8_t c_ic = 0;
//  pec_error = read_68(total_ic, cmd, read_buffer);
//  for (uint8_t current_ic = 0; current_ic<total_ic; current_ic++)
//  {
//    if (ic->isospi_reverse == false)
//    {
//      c_ic = current_ic;
//    }
//    else
//    {
//      c_ic = total_ic - current_ic - 1;
//    }
//
//    for (int byte=0; byte<8; byte++)
//    {
//      ic[c_ic].config.rx_data[byte] = read_buffer[byte+(8*current_ic)];
//    }
//    calc_pec = pec15_calc(6,&read_buffer[8*current_ic]);
//    data_pec = read_buffer[7+(8*current_ic)] | (read_buffer[6+(8*current_ic)]<<8);
//    if (calc_pec != data_pec )
//    {
//      ic[c_ic].config.rx_pec_match = 1;
//    }
//    else ic[c_ic].config.rx_pec_match = 0;
//  }
//  LTC681x_check_pec(total_ic,CFGR,ic);
//  return(pec_error);
//}
//
////Looks up the result pattern for digital filter self test
//uint16_t LTC681x_st_lookup(
//  uint8_t MD, //ADC Mode
//  uint8_t ST //Self Test
//)
//{
//  uint16_t test_pattern = 0;
//  if (MD == 1)
//  {
//    if (ST == 1)
//    {
//      test_pattern = 0x9565;
//    }
//    else
//    {
//      test_pattern = 0x6A9A;
//    }
//  }
//  else
//  {
//    if (ST == 1)
//    {
//      test_pattern = 0x9555;
//    }
//    else
//    {
//      test_pattern = 0x6AAA;
//    }
//  }
//  return(test_pattern);
//}
//
////Clears all of the DCC bits in the configuration registers
//void clear_discharge(uint8_t total_ic, cell_asic ic[])
//{
//  for (int i=0; i<total_ic; i++)
//  {
//    ic[i].config.tx_data[4] = 0;
//    ic[i].config.tx_data[5] = 0;
//  }
//}
//
//// Runs the Digital Filter Self Test
//int16_t LTC681x_run_cell_adc_st(uint8_t adc_reg,uint8_t total_ic, cell_asic ic[])
//{
//  int16_t error = 0;
//  uint16_t expected_result = 0;
//  for (int self_test = 1; self_test<3; self_test++)
//  {
//
//    expected_result = LTC681x_st_lookup(2,self_test);
//    wakeup_idle(total_ic);
//    switch (adc_reg)
//    {
//      case CELL:
//        wakeup_idle(total_ic);
//        LTC681x_clrcell();
//        LTC681x_cvst(2,self_test);
//        LTC681x_pollAdc();//this isn't working
//        wakeup_idle(total_ic);
//        error = LTC681x_rdcv(0, total_ic,ic);
//        for (int cic = 0; cic < total_ic; cic++)
//        {
//          for (int channel=0; channel< ic[cic].ic_reg.cell_channels; channel++)
//          {
//            if (ic[cic].cells.c_codes[channel] != expected_result)
//            {
//              error = error+1;
//            }
//          }
//        }
//        break;
//      case AUX:
//        error = 0;
//        wakeup_idle(total_ic);
//        LTC681x_clraux();
//        LTC681x_axst(2,self_test);
//        LTC681x_pollAdc();
//        wait_ms(10);
//        wakeup_idle(total_ic);
//        LTC681x_rdaux(0, total_ic,ic);
//        for (int cic = 0; cic < total_ic; cic++)
//        {
//          for (int channel=0; channel< ic[cic].ic_reg.aux_channels; channel++)
//          {
//            if (ic[cic].aux.a_codes[channel] != expected_result)
//            {
//              error = error+1;
//            }
//          }
//        }
//        break;
//      case STAT:
//        wakeup_idle(total_ic);
//        LTC681x_clrstat();
//        LTC681x_statst(2,self_test);
//        LTC681x_pollAdc();
//        wakeup_idle(total_ic);
//        error = LTC681x_rdstat(0,total_ic,ic);
//        for (int cic = 0; cic < total_ic; cic++)
//        {
//          for (int channel=0; channel< ic[cic].ic_reg.stat_channels; channel++)
//          {
//            if (ic[cic].stat.stat_codes[channel] != expected_result)
//            {
//              error = error+1;
//            }
//          }
//        }
//        break;
//
//      default:
//        error = -1;
//        break;
//    }
//  }
//  return(error);
//}
//
////runs the redundancy self test
//int16_t LTC681x_run_adc_redundancy_st(uint8_t adc_mode, uint8_t adc_reg, uint8_t total_ic, cell_asic ic[])
//{
//  int16_t error = 0;
//  for (int self_test = 1; self_test<3; self_test++)
//  {
//    wakeup_idle(total_ic);
//    switch (adc_reg)
//    {
//      case AUX:
//        LTC681x_clraux();
//        LTC681x_adaxd(adc_mode,AUX_CH_ALL);
//        LTC681x_pollAdc();
//        wakeup_idle(total_ic);
//        error = LTC681x_rdaux(0, total_ic,ic);
//        for (int cic = 0; cic < total_ic; cic++)
//        {
//          for (int channel=0; channel< ic[cic].ic_reg.aux_channels; channel++)
//          {
//            if (ic[cic].aux.a_codes[channel] >= 65280)
//            {
//              error = error+1;
//            }
//          }
//        }
//        break;
//      case STAT:
//        LTC681x_clrstat();
//        LTC681x_adstatd(adc_mode,STAT_CH_ALL);
//        LTC681x_pollAdc();
//        wakeup_idle(total_ic);
//        error = LTC681x_rdstat(0,total_ic,ic);
//        for (int cic = 0; cic < total_ic; cic++)
//        {
//          for (int channel=0; channel< ic[cic].ic_reg.stat_channels; channel++)
//          {
//            if (ic[cic].stat.stat_codes[channel] >= 65280)
//            {
//              error = error+1;
//            }
//          }
//        }
//        break;
//
//      default:
//        error = -1;
//        break;
//    }
//  }
//  return(error);
//}
//
////Runs the datasheet algorithm for open wire
//void LTC681x_run_openwire(uint8_t total_ic, cell_asic ic[])
//{
//  uint16_t OPENWIRE_THRESHOLD = 4000;
//  const uint8_t  N_CHANNELS = ic[0].ic_reg.cell_channels;
//
//  cell_asic pullUp_cell_codes[total_ic];
//  cell_asic pullDwn_cell_codes[total_ic];
//  cell_asic openWire_delta[total_ic];
//  int8_t error;
//
//  wakeup_sleep(total_ic);
//  LTC681x_adow(MD_7KHZ_3KHZ,PULL_UP_CURRENT);
//  LTC681x_pollAdc();
//  wakeup_idle(total_ic);
//  LTC681x_adow(MD_7KHZ_3KHZ,PULL_UP_CURRENT);
//  LTC681x_pollAdc();
//  wakeup_idle(total_ic);
//  error = LTC681x_rdcv(0, total_ic,pullUp_cell_codes);
//
//  wakeup_idle(total_ic);
//  LTC681x_adow(MD_7KHZ_3KHZ,PULL_DOWN_CURRENT);
//  LTC681x_pollAdc();
//  wakeup_idle(total_ic);
//  LTC681x_adow(MD_7KHZ_3KHZ,PULL_DOWN_CURRENT);
//  LTC681x_pollAdc();
//  wakeup_idle(total_ic);
//  error = LTC681x_rdcv(0, total_ic,pullDwn_cell_codes);
//
//  for (int cic=0; cic<total_ic; cic++)
//  {
//    ic[cic].system_open_wire =0;
//    for (int cell=0; cell<N_CHANNELS; cell++)
//    {
//      if (pullDwn_cell_codes[cic].cells.c_codes[cell]>pullUp_cell_codes[cic].cells.c_codes[cell])
//      {
//        openWire_delta[cic].cells.c_codes[cell] = pullDwn_cell_codes[cic].cells.c_codes[cell] - pullUp_cell_codes[cic].cells.c_codes[cell]  ;
//      }
//      else
//      {
//        openWire_delta[cic].cells.c_codes[cell] = 0;
//      }
//
//    }
//  }
//  for (int cic=0; cic<total_ic; cic++)
//  {
//    for (int cell=1; cell<N_CHANNELS; cell++)
//    {
//
//      if (openWire_delta[cic].cells.c_codes[cell]>OPENWIRE_THRESHOLD)
//      {
//        ic[cic].system_open_wire += (1<<cell);
//
//      }
//    }
//    if (pullUp_cell_codes[cic].cells.c_codes[0] == 0)
//    {
//      ic[cic].system_open_wire += 1;
//    }
//    if (pullUp_cell_codes[cic].cells.c_codes[N_CHANNELS-1] == 0)
//    {
//      ic[cic].system_open_wire += (1<<(N_CHANNELS));
//    }
//  }
//}
//
//// Runs the ADC overlap test for the IC
//uint16_t LTC681x_run_adc_overlap(uint8_t total_ic, cell_asic ic[])
//{
//  uint16_t error = 0;
//  int32_t measure_delta =0;
//  int16_t failure_pos_limit = 20;
//  int16_t failure_neg_limit = -20;
//  wakeup_idle(total_ic);
//  LTC681x_adol(MD_7KHZ_3KHZ,DCP_DISABLED);
//  LTC681x_pollAdc();
//  wakeup_idle(total_ic);
//  error = LTC681x_rdcv(0, total_ic,ic);
//  for (int cic = 0; cic<total_ic; cic++)
//  {
//    measure_delta = (int32_t)ic[cic].cells.c_codes[6]-(int32_t)ic[cic].cells.c_codes[7];
//    if ((measure_delta>failure_pos_limit) || (measure_delta<failure_neg_limit))
//    {
//      error = error | (1<<(cic-1));
//    }
//  }
//  return(error);
//}
//
////Helper function that increments PEC counters
//void LTC681x_check_pec(uint8_t total_ic,uint8_t reg, cell_asic ic[])
//{
//  switch (reg)
//  {
//    case CFGR:
//      for (int current_ic = 0 ; current_ic < total_ic; current_ic++)
//      {
//        ic[current_ic].crc_count.pec_count = ic[current_ic].crc_count.pec_count + ic[current_ic].config.rx_pec_match;
//        ic[current_ic].crc_count.cfgr_pec = ic[current_ic].crc_count.cfgr_pec + ic[current_ic].config.rx_pec_match;
//      }
//      break;
//
//    case CFGRB:
//      for (int current_ic = 0 ; current_ic < total_ic; current_ic++)
//      {
//        ic[current_ic].crc_count.pec_count = ic[current_ic].crc_count.pec_count + ic[current_ic].configb.rx_pec_match;
//        ic[current_ic].crc_count.cfgr_pec = ic[current_ic].crc_count.cfgr_pec + ic[current_ic].configb.rx_pec_match;
//      }
//      break;
//    case CELL:
//      for (int current_ic = 0 ; current_ic < total_ic; current_ic++)
//      {
//        for (int i=0; i<ic[0].ic_reg.num_cv_reg; i++)
//        {
//          ic[current_ic].crc_count.pec_count = ic[current_ic].crc_count.pec_count + ic[current_ic].cells.pec_match[i];
//          ic[current_ic].crc_count.cell_pec[i] = ic[current_ic].crc_count.cell_pec[i] + ic[current_ic].cells.pec_match[i];
//        }
//      }
//      break;
//    case AUX:
//      for (int current_ic = 0 ; current_ic < total_ic; current_ic++)
//      {
//        for (int i=0; i<ic[0].ic_reg.num_gpio_reg; i++)
//        {
//          ic[current_ic].crc_count.pec_count = ic[current_ic].crc_count.pec_count + (ic[current_ic].aux.pec_match[i]);
//          ic[current_ic].crc_count.aux_pec[i] = ic[current_ic].crc_count.aux_pec[i] + (ic[current_ic].aux.pec_match[i]);
//        }
//      }
//
//      break;
//    case STAT:
//      for (int current_ic = 0 ; current_ic < total_ic; current_ic++)
//      {
//
//        for (int i=0; i<ic[0].ic_reg.num_stat_reg-1; i++)
//        {
//          ic[current_ic].crc_count.pec_count = ic[current_ic].crc_count.pec_count + ic[current_ic].stat.pec_match[i];
//          ic[current_ic].crc_count.stat_pec[i] = ic[current_ic].crc_count.stat_pec[i] + ic[current_ic].stat.pec_match[i];
//        }
//      }
//      break;
//    default:
//      break;
//  }
//}
//
////Helper Function to reset PEC counters
//void LTC681x_reset_crc_count(uint8_t total_ic, cell_asic ic[])
//{
//  for (int current_ic = 0 ; current_ic < total_ic; current_ic++)
//  {
//    ic[current_ic].crc_count.pec_count = 0;
//    ic[current_ic].crc_count.cfgr_pec = 0;
//    for (int i=0; i<6; i++)
//    {
//      ic[current_ic].crc_count.cell_pec[i]=0;
//
//    }
//    for (int i=0; i<4; i++)
//    {
//      ic[current_ic].crc_count.aux_pec[i]=0;
//    }
//    for (int i=0; i<2; i++)
//    {
//      ic[current_ic].crc_count.stat_pec[i]=0;
//    }
//  }
//}
//
////Helper function to intialize CFG variables.
//void LTC681x_init_cfg(uint8_t total_ic, cell_asic ic[])
//{
//  bool REFON = true;
//  bool ADCOPT = false;
//  bool gpioBits[5] = {true,true,true,true,true};
//  bool dccBits[12] = {false,false,false,false,false,false,false,false,false,false,false,false};
//  for (uint8_t current_ic = 0; current_ic<total_ic; current_ic++)
//  {
//    for (int j =0; j<6; j++)
//    {
//      ic[current_ic].config.tx_data[j] = 0;
//      ic[current_ic].configb.tx_data[j] = 0;
//    }
//    LTC681x_set_cfgr(current_ic ,ic,REFON,ADCOPT,gpioBits,dccBits);
//
//  }
//}
//
////Helper function to set CFGR variable
//void LTC681x_set_cfgr(uint8_t nIC, cell_asic ic[], bool refon, bool adcopt, bool gpio[5],bool dcc[12])
//{
//  LTC681x_set_cfgr_refon(nIC,ic,refon);
//  LTC681x_set_cfgr_adcopt(nIC,ic,adcopt);
//  LTC681x_set_cfgr_gpio(nIC,ic,gpio);
//  LTC681x_set_cfgr_dis(nIC,ic,dcc);
//}
//
////Helper function to set the REFON bit
//void LTC681x_set_cfgr_refon(uint8_t nIC, cell_asic ic[], bool refon)
//{
//  if (refon) ic[nIC].config.tx_data[0] = ic[nIC].config.tx_data[0]|0x04;
//  else ic[nIC].config.tx_data[0] = ic[nIC].config.tx_data[0]&0xFB;
//}
//
////Helper function to set the adcopt bit
//void LTC681x_set_cfgr_adcopt(uint8_t nIC, cell_asic ic[], bool adcopt)
//{
//  if (adcopt) ic[nIC].config.tx_data[0] = ic[nIC].config.tx_data[0]|0x01;
//  else ic[nIC].config.tx_data[0] = ic[nIC].config.tx_data[0]&0xFE;
//}
//
////Helper function to set GPIO bits
//void LTC681x_set_cfgr_gpio(uint8_t nIC, cell_asic ic[],bool gpio[5])
//{
//  for (int i =0; i<5; i++)
//  {
//    if (gpio[i])ic[nIC].config.tx_data[0] = ic[nIC].config.tx_data[0]|(0x01<<(i+3));
//    else ic[nIC].config.tx_data[0] = ic[nIC].config.tx_data[0]&(~(0x01<<(i+3)));
//  }
//}
//
////Helper function to control discharge
//void LTC681x_set_cfgr_dis(uint8_t nIC, cell_asic ic[],bool dcc[12])
//{
//  for (int i =0; i<8; i++)
//  {
//    if (dcc[i])ic[nIC].config.tx_data[4] = ic[nIC].config.tx_data[4]|(0x01<<i);
//    else ic[nIC].config.tx_data[4] = ic[nIC].config.tx_data[4]& (~(0x01<<i));
//  }
//  for (int i =0; i<4; i++)
//  {
//    if (dcc[i+8])ic[nIC].config.tx_data[5] = ic[nIC].config.tx_data[5]|(0x01<<i);
//    else ic[nIC].config.tx_data[5] = ic[nIC].config.tx_data[5]&(~(0x01<<i));
//  }
//}
//
////*************************** LTC 6811 ****************************************//
//void LTC6811_init_reg_limits(uint8_t total_ic, cell_asic ic[])
//{
//  for (uint8_t cic=0; cic<total_ic; cic++)
//  {
//    ic[cic].ic_reg.cell_channels=12;
//    ic[cic].ic_reg.stat_channels=4;
//    ic[cic].ic_reg.aux_channels=6;
//    ic[cic].ic_reg.num_cv_reg=4;
//    ic[cic].ic_reg.num_gpio_reg=2;
//    ic[cic].ic_reg.num_stat_reg=3;
//  }
//}
//
////Helper function to set discharge bit in CFG register
//void LTC6811_set_discharge(int Cell, uint8_t total_ic, cell_asic ic[])
//{
//  for (int i=0; i<total_ic; i++)
//  {
//    if (Cell<9)
//    {
//      ic[i].config.tx_data[4] = ic[i].config.tx_data[4] | (1<<(Cell-1));
//    }
//    else if (Cell < 13)
//    {
//      ic[i].config.tx_data[5] = ic[i].config.tx_data[5] | (1<<(Cell-9));
//    }
//  }
//}
//
////****************************** SPI **************************************//
///*
//Writes an array of bytes out of the SPI port
//*/
//void spi_write_array(uint8_t len, // Option: Number of bytes to be written on the SPI port
//                     uint8_t data[] //Array of bytes to be written on the SPI port
//                    )
//{
//  for (uint8_t i = 0; i < len; i++)
//  {
//    spi.write((int8_t)data[i]);
//  }
//}
//
///*
// Writes and read a set number of bytes using the SPI port.
//
//*/
//
//void spi_write_read(uint8_t tx_Data[],//array of data to be written on SPI port
//                    uint8_t tx_len, //length of the tx data arry
//                    uint8_t *rx_data,//Input: array that will store the data read by the SPI port
//                    uint8_t rx_len //Option: number of bytes to be read from the SPI port
//                   )
//{
//  for (uint8_t i = 0; i < tx_len; i++)
//  {
//    spi.write(tx_Data[i]);
//  }
//
//  for (uint8_t i = 0; i < rx_len; i++)
//  {
//
//    rx_data[i] = (uint8_t)spi.write(0xFF);
//  }
//
//}
//
//uint8_t spi_read_byte(uint8_t tx_dat)
//{
//  uint8_t data;
//  data = (uint8_t)spi.write(0xFF);
//  return(data);
//}
//
////****************************** UserInterface **************************************//
//char ui_buffer[UI_BUFFER_SIZE];
//
//// Read data from the serial interface into the ui_buffer
//uint8_t read_data()
//{
//  uint8_t index = 0; //index to hold current location in ui_buffer
//  int c; // single character used to store incoming keystrokes
//  while (index < UI_BUFFER_SIZE-1)
//  {
//    c = pc.getc(); //read one character
//    if (((char) c == '\r') || ((char) c == '\n')) break; // if carriage return or linefeed, stop and return data
//    if ( ((char) c == '\x7F') || ((char) c == '\x08') )   // remove previous character (decrement index) if Backspace/Delete key pressed      index--;
//    {
//      if (index > 0) index--;
//    }
//    else if (c >= 0)
//    {
//      ui_buffer[index++]=(char) c; // put character into ui_buffer
//    }
//  }
//  ui_buffer[index]='\0';  // terminate string with NULL
//
//  if ((char) c == '\r')    // if the last character was a carriage return, also clear linefeed if it is next character
//  {
//    wait_ms(10);  // allow 10ms for linefeed to appear on serial pins
////    if (pc.peek() == '\n') 
//    pc.getc(); // if linefeed appears, read it and throw it away
//  }
//
//  return index; // return number of characters, not including null terminator
//}
//
//// Read an integer from the serial interface.
//// The routine can recognize Hex, Decimal, Octal, or Binary
//// Example:
//// Hex:     0x11 (0x prefix)
//// Decimal: 17
//// Octal:   021 (leading zero prefix)
//// Binary:  B10001 (leading B prefix)
//int32_t read_int()
//{
//  int32_t data;
//  read_data();
//  if (ui_buffer[0] == 'm')
//    return('m');
//  if ((ui_buffer[0] == 'B') || (ui_buffer[0] == 'b'))
//  {
//    data = strtol(ui_buffer+1, NULL, 2);
//  }
//  else
//    data = strtol(ui_buffer, NULL, 0);
//  return(data);
//}
//
//// Read a character from the serial interface
//int8_t read_char()
//{
//  read_data();
//  return(ui_buffer[0]);
//}
//
//