works fine on STM

Dependencies:   mbed

Fork of Sample_manerine_SPI_LSM9DS0 by SHENG-HEN HSIEH

main.cpp

Committer:
open4416
Date:
2017-02-13
Revision:
7:f53b52e23818
Parent:
6:c2efb0a3a543

File content as of revision 7:f53b52e23818:

#include "mbed.h"
#include "LSM9DS0_SH.h"

#define pi 3.141592f
#define d2r 0.01745329f

#define Rms 5000            //TT rate
#define dt  0.005f
#define NN  200

#define Kp  3.6f
#define Ki  5.0f
#define Kd  0.12f
#define Kcon 0.00f

#define constrain(amt,low,high) ((amt)<(low)?(low):((amt)>(high)?(high):(amt)))

//↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓GPIO registor↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓//
//~~~structure~~~//
DigitalOut  led(D13);           //detection
DigitalOut  TT_ext(D12);

//~~~IMU_SPI~~~//
DigitalOut  SPI_CSG(D7,1);      //low for GYRO enable
DigitalOut  SPI_CSXM(D6,1);     //low for ACC/MAG enable
SPI spi(D4, D5, D3);            //MOSI MISO SCLK

//~~~Serial~~~//
Serial      pc(D1, D0);         //Serial reg(TX RX)
//↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑end of GPIO registor↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑//



//↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓Varible registor↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓//
//~~~globle~~~//
Ticker  TT;                         //call a timer
int     count = 0;                  //one second counter for extrenal led blink

//~~~IMU_SPI~~~//
short low_byte = 0x00;              //buffer
short high_byte = 0x00;
short Buff = 0x00;
float Wx = 0.0;
float Wy = 0.0;
float Wz = 0.0;
float Ax = 0.0;
float Ay = 0.0;
float Az = 0.0;
//↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑end of Varible registor↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑//



//↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓Function registor↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓//
void    init_TIMER();           //set TT_main() rate
void    TT_main();              //timebase function rated by TT
void    init_IO();              //initialize IO state

void    init_IMU();             //initialize IMU
void    read_IMU();             //read IMU data give raw data

float   lpf(float input, float output_old, float frequency);    //lpf discrete
//↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑end of Function registor↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑//



//↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓main funtion↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓//
int main()
{
    pc.baud(115200);            //set baud rate

    init_IO();                  //initialized value
    init_IMU();                 //initialize IMU

    init_TIMER();               //start TT_main

    while(1) {                  //main() loop
        if(count >= NN) {       //check if main working
            count=0;
            led = !led;
        }
    }

}
//↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑end of main funtion↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑//



//↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓Timebase funtion↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓//
void init_TIMER()                   //set TT_main{} rate
{
    TT.attach_us(&TT_main, Rms);
}
void TT_main()                      //interrupt function by TT
{
    TT_ext = !TT_ext;               //indicate TT_main() function working
    count = count+1;                //one second counter

    read_IMU();                     //read IMU data give raw data

    //for Serial-Oscilloscope
    pc.printf("%.2f,%.2f,%.2f\r", Ax, Ay, Az);

}
//↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑end of Timebase funtion↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑//



//↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓init_IO funtion↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓//
void init_IO(void)                  //initialize
{
    TT_ext = 0;
    led = 1;
}
//↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑end of init_IO funtion↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑//



//↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓init_IMU funtion↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓//
void init_IMU(void)                 //initialize
{
    //gloable config
    SPI_CSXM = 1;                   //high as init for disable SPI
    SPI_CSG = 1;
    spi.format(8, 3);               //byte width, spi mode
    spi.frequency(4000000);         //8MHz

    //for GYRO config
    SPI_CSG = 0;                    //start spi talking
    spi.write(CTRL_REG1_G);
    spi.write(0x9F);                //data rate 380 Hz/ cut off 25 Hz
    SPI_CSG = 1;                    //end spi talking

    SPI_CSG = 0;                    //start spi talking
    spi.write(CTRL_REG4_G);
    spi.write(0x10);                //Scle 500dps
    SPI_CSG = 1;                    //end spi talking

    //for ACC config
    SPI_CSXM = 0;                   //start spi talking
    spi.write(CTRL_REG1_XM);
    spi.write(0x87);                //data rate 400 Hz/ Enable
    SPI_CSXM = 1;                   //end spi talking

    SPI_CSXM = 0;                   //start spi talking
    spi.write(CTRL_REG2_XM);
    spi.write(0xC8);                //cut off 50 Hz/ Scale +-4g
    SPI_CSXM = 1;                   //end spi talking
}
//↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑end of init_IMU funtion↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑//



//↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓read_IMU funtion↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓//
void read_IMU(void)                 //read IMU data give raw data
{
    //Wx
    SPI_CSG = 0;                    //start spi talking Wx
    spi.write(0xE8);                //read B11101000 read/multi/address
    low_byte = spi.write(0);
    high_byte = spi.write(0);
    Buff = high_byte << 8 |low_byte;
    SPI_CSG = 1;                    //end spi talking
//    Wx = Buff * Gpx + Gdx;
    Wx = lpf(Buff * Gpx, Wx, 48.0f);
    //Wy
    SPI_CSG = 0;                    //start spi talking Wx
    spi.write(0xEA);                //read B11101010 read/multi/address
    low_byte = spi.write(0);
    high_byte = spi.write(0);
    Buff = high_byte << 8 |low_byte;
    SPI_CSG = 1;                    //end spi talking
//    Wy = Buff * Gpy + Gdy;
    Wy = lpf(Buff * Gpy, Wy, 48.0f);
    //Wz
    SPI_CSG = 0;                    //start spi talking Wx
    spi.write(0xEC);                //read B11101100 read/multi/address
    low_byte = spi.write(0);
    high_byte = spi.write(0);
    Buff = high_byte << 8 |low_byte;
    SPI_CSG = 1;                    //end spi talking
//    Wz = Buff * Gpz + Gdz;
    Wz = lpf(Buff * Gpz, Wz, 48.0f);
    //Ax
    SPI_CSXM = 0;                   //start spi talking Ax
    spi.write(0xE8);                //read B11101000 read/multi/address
    low_byte = spi.write(0);
    high_byte = spi.write(0);
    Buff = high_byte << 8 |low_byte;
    SPI_CSXM = 1;                   //end spi talking
    Ax = lpf(Buff * Apx, Ax, 13.0f);
    //Ay
    SPI_CSXM = 0;                   //start spi talking Ax
    spi.write(0xEA);                //read B11101010 read/multi/address
    low_byte = spi.write(0);
    high_byte = spi.write(0);
    Buff = high_byte << 8 |low_byte;
    SPI_CSXM = 1;                   //end spi talking
    Ay = lpf(Buff * Apy, Ay, 13.0f);
    //Az
    SPI_CSXM = 0;                   //start spi talking Ax
    spi.write(0xEC);                //read B11101100 read/multi/address
    low_byte = spi.write(0);
    high_byte = spi.write(0);
    Buff = high_byte << 8 |low_byte;
    SPI_CSXM = 1;                   //end spi talking
    Az = lpf(Buff * Apz, Az, 13.0f);
}
//↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑end of read_IMU funtion↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑//



//↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓lpf funtion↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓//
float lpf(float input, float output_old, float frequency)
{
    float output = 0;
    output = (output_old + frequency*dt*input) / (1 + frequency*dt);
    return output;
}
//↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑end of lpf funtion↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑//