mod

Dependencies:   ST_401_84MHZ mbed

Fork of MPU9250AHRS by Kris Winer

Committer:
nikitamere
Date:
Fri Sep 16 01:04:02 2016 +0000
Revision:
3:f1893b5610f7
Parent:
2:4e59a37182df
Modified

Who changed what in which revision?

UserRevisionLine numberNew contents of line
onehorse 0:2e5e65a6fb30 1 #ifndef MPU9250_H
onehorse 0:2e5e65a6fb30 2 #define MPU9250_H
nikitamere 3:f1893b5610f7 3
onehorse 0:2e5e65a6fb30 4 #include "mbed.h"
onehorse 0:2e5e65a6fb30 5 #include "math.h"
nikitamere 3:f1893b5610f7 6
nikitamere 3:f1893b5610f7 7 // See also MPU-9250 Register Map and Descriptions, Revision 4.0, RM-MPU-9250A-00, Rev. 1.4, 9/9/2013 for registers not listed in
onehorse 0:2e5e65a6fb30 8 // above document; the MPU9250 and MPU9150 are virtually identical but the latter has a different register map
onehorse 0:2e5e65a6fb30 9 //
onehorse 0:2e5e65a6fb30 10 //Magnetometer Registers
onehorse 0:2e5e65a6fb30 11 #define AK8963_ADDRESS 0x0C<<1
onehorse 0:2e5e65a6fb30 12 #define WHO_AM_I_AK8963 0x00 // should return 0x48
onehorse 0:2e5e65a6fb30 13 #define INFO 0x01
onehorse 0:2e5e65a6fb30 14 #define AK8963_ST1 0x02 // data ready status bit 0
onehorse 0:2e5e65a6fb30 15 #define AK8963_XOUT_L 0x03 // data
onehorse 0:2e5e65a6fb30 16 #define AK8963_XOUT_H 0x04
onehorse 0:2e5e65a6fb30 17 #define AK8963_YOUT_L 0x05
onehorse 0:2e5e65a6fb30 18 #define AK8963_YOUT_H 0x06
onehorse 0:2e5e65a6fb30 19 #define AK8963_ZOUT_L 0x07
onehorse 0:2e5e65a6fb30 20 #define AK8963_ZOUT_H 0x08
onehorse 0:2e5e65a6fb30 21 #define AK8963_ST2 0x09 // Data overflow bit 3 and data read error status bit 2
onehorse 0:2e5e65a6fb30 22 #define AK8963_CNTL 0x0A // Power down (0000), single-measurement (0001), self-test (1000) and Fuse ROM (1111) modes on bits 3:0
onehorse 0:2e5e65a6fb30 23 #define AK8963_ASTC 0x0C // Self test control
onehorse 0:2e5e65a6fb30 24 #define AK8963_I2CDIS 0x0F // I2C disable
onehorse 0:2e5e65a6fb30 25 #define AK8963_ASAX 0x10 // Fuse ROM x-axis sensitivity adjustment value
onehorse 0:2e5e65a6fb30 26 #define AK8963_ASAY 0x11 // Fuse ROM y-axis sensitivity adjustment value
onehorse 0:2e5e65a6fb30 27 #define AK8963_ASAZ 0x12 // Fuse ROM z-axis sensitivity adjustment value
onehorse 0:2e5e65a6fb30 28
nikitamere 3:f1893b5610f7 29 #define SELF_TEST_X_GYRO 0x00
nikitamere 3:f1893b5610f7 30 #define SELF_TEST_Y_GYRO 0x01
onehorse 0:2e5e65a6fb30 31 #define SELF_TEST_Z_GYRO 0x02
onehorse 0:2e5e65a6fb30 32
onehorse 0:2e5e65a6fb30 33 /*#define X_FINE_GAIN 0x03 // [7:0] fine gain
onehorse 0:2e5e65a6fb30 34 #define Y_FINE_GAIN 0x04
onehorse 0:2e5e65a6fb30 35 #define Z_FINE_GAIN 0x05
onehorse 0:2e5e65a6fb30 36 #define XA_OFFSET_H 0x06 // User-defined trim values for accelerometer
onehorse 0:2e5e65a6fb30 37 #define XA_OFFSET_L_TC 0x07
onehorse 0:2e5e65a6fb30 38 #define YA_OFFSET_H 0x08
onehorse 0:2e5e65a6fb30 39 #define YA_OFFSET_L_TC 0x09
onehorse 0:2e5e65a6fb30 40 #define ZA_OFFSET_H 0x0A
onehorse 0:2e5e65a6fb30 41 #define ZA_OFFSET_L_TC 0x0B */
onehorse 0:2e5e65a6fb30 42
onehorse 0:2e5e65a6fb30 43 #define SELF_TEST_X_ACCEL 0x0D
nikitamere 3:f1893b5610f7 44 #define SELF_TEST_Y_ACCEL 0x0E
onehorse 0:2e5e65a6fb30 45 #define SELF_TEST_Z_ACCEL 0x0F
onehorse 0:2e5e65a6fb30 46
onehorse 0:2e5e65a6fb30 47 #define SELF_TEST_A 0x10
onehorse 0:2e5e65a6fb30 48
onehorse 0:2e5e65a6fb30 49 #define XG_OFFSET_H 0x13 // User-defined trim values for gyroscope
onehorse 0:2e5e65a6fb30 50 #define XG_OFFSET_L 0x14
onehorse 0:2e5e65a6fb30 51 #define YG_OFFSET_H 0x15
onehorse 0:2e5e65a6fb30 52 #define YG_OFFSET_L 0x16
onehorse 0:2e5e65a6fb30 53 #define ZG_OFFSET_H 0x17
onehorse 0:2e5e65a6fb30 54 #define ZG_OFFSET_L 0x18
onehorse 0:2e5e65a6fb30 55 #define SMPLRT_DIV 0x19
onehorse 0:2e5e65a6fb30 56 #define CONFIG 0x1A
onehorse 0:2e5e65a6fb30 57 #define GYRO_CONFIG 0x1B
onehorse 0:2e5e65a6fb30 58 #define ACCEL_CONFIG 0x1C
onehorse 0:2e5e65a6fb30 59 #define ACCEL_CONFIG2 0x1D
nikitamere 3:f1893b5610f7 60 #define LP_ACCEL_ODR 0x1E
nikitamere 3:f1893b5610f7 61 #define WOM_THR 0x1F
onehorse 0:2e5e65a6fb30 62
onehorse 0:2e5e65a6fb30 63 #define MOT_DUR 0x20 // Duration counter threshold for motion interrupt generation, 1 kHz rate, LSB = 1 ms
onehorse 0:2e5e65a6fb30 64 #define ZMOT_THR 0x21 // Zero-motion detection threshold bits [7:0]
onehorse 0:2e5e65a6fb30 65 #define ZRMOT_DUR 0x22 // Duration counter threshold for zero motion interrupt generation, 16 Hz rate, LSB = 64 ms
onehorse 0:2e5e65a6fb30 66
onehorse 0:2e5e65a6fb30 67 #define FIFO_EN 0x23
nikitamere 3:f1893b5610f7 68 #define I2C_MST_CTRL 0x24
onehorse 0:2e5e65a6fb30 69 #define I2C_SLV0_ADDR 0x25
onehorse 0:2e5e65a6fb30 70 #define I2C_SLV0_REG 0x26
onehorse 0:2e5e65a6fb30 71 #define I2C_SLV0_CTRL 0x27
onehorse 0:2e5e65a6fb30 72 #define I2C_SLV1_ADDR 0x28
onehorse 0:2e5e65a6fb30 73 #define I2C_SLV1_REG 0x29
onehorse 0:2e5e65a6fb30 74 #define I2C_SLV1_CTRL 0x2A
onehorse 0:2e5e65a6fb30 75 #define I2C_SLV2_ADDR 0x2B
onehorse 0:2e5e65a6fb30 76 #define I2C_SLV2_REG 0x2C
onehorse 0:2e5e65a6fb30 77 #define I2C_SLV2_CTRL 0x2D
onehorse 0:2e5e65a6fb30 78 #define I2C_SLV3_ADDR 0x2E
onehorse 0:2e5e65a6fb30 79 #define I2C_SLV3_REG 0x2F
onehorse 0:2e5e65a6fb30 80 #define I2C_SLV3_CTRL 0x30
onehorse 0:2e5e65a6fb30 81 #define I2C_SLV4_ADDR 0x31
onehorse 0:2e5e65a6fb30 82 #define I2C_SLV4_REG 0x32
onehorse 0:2e5e65a6fb30 83 #define I2C_SLV4_DO 0x33
onehorse 0:2e5e65a6fb30 84 #define I2C_SLV4_CTRL 0x34
onehorse 0:2e5e65a6fb30 85 #define I2C_SLV4_DI 0x35
onehorse 0:2e5e65a6fb30 86 #define I2C_MST_STATUS 0x36
onehorse 0:2e5e65a6fb30 87 #define INT_PIN_CFG 0x37
onehorse 0:2e5e65a6fb30 88 #define INT_ENABLE 0x38
onehorse 0:2e5e65a6fb30 89 #define DMP_INT_STATUS 0x39 // Check DMP interrupt
onehorse 0:2e5e65a6fb30 90 #define INT_STATUS 0x3A
onehorse 0:2e5e65a6fb30 91 #define ACCEL_XOUT_H 0x3B
onehorse 0:2e5e65a6fb30 92 #define ACCEL_XOUT_L 0x3C
onehorse 0:2e5e65a6fb30 93 #define ACCEL_YOUT_H 0x3D
onehorse 0:2e5e65a6fb30 94 #define ACCEL_YOUT_L 0x3E
onehorse 0:2e5e65a6fb30 95 #define ACCEL_ZOUT_H 0x3F
onehorse 0:2e5e65a6fb30 96 #define ACCEL_ZOUT_L 0x40
onehorse 0:2e5e65a6fb30 97 #define TEMP_OUT_H 0x41
onehorse 0:2e5e65a6fb30 98 #define TEMP_OUT_L 0x42
onehorse 0:2e5e65a6fb30 99 #define GYRO_XOUT_H 0x43
onehorse 0:2e5e65a6fb30 100 #define GYRO_XOUT_L 0x44
onehorse 0:2e5e65a6fb30 101 #define GYRO_YOUT_H 0x45
onehorse 0:2e5e65a6fb30 102 #define GYRO_YOUT_L 0x46
onehorse 0:2e5e65a6fb30 103 #define GYRO_ZOUT_H 0x47
onehorse 0:2e5e65a6fb30 104 #define GYRO_ZOUT_L 0x48
onehorse 0:2e5e65a6fb30 105 #define EXT_SENS_DATA_00 0x49
onehorse 0:2e5e65a6fb30 106 #define EXT_SENS_DATA_01 0x4A
onehorse 0:2e5e65a6fb30 107 #define EXT_SENS_DATA_02 0x4B
onehorse 0:2e5e65a6fb30 108 #define EXT_SENS_DATA_03 0x4C
onehorse 0:2e5e65a6fb30 109 #define EXT_SENS_DATA_04 0x4D
onehorse 0:2e5e65a6fb30 110 #define EXT_SENS_DATA_05 0x4E
onehorse 0:2e5e65a6fb30 111 #define EXT_SENS_DATA_06 0x4F
onehorse 0:2e5e65a6fb30 112 #define EXT_SENS_DATA_07 0x50
onehorse 0:2e5e65a6fb30 113 #define EXT_SENS_DATA_08 0x51
onehorse 0:2e5e65a6fb30 114 #define EXT_SENS_DATA_09 0x52
onehorse 0:2e5e65a6fb30 115 #define EXT_SENS_DATA_10 0x53
onehorse 0:2e5e65a6fb30 116 #define EXT_SENS_DATA_11 0x54
onehorse 0:2e5e65a6fb30 117 #define EXT_SENS_DATA_12 0x55
onehorse 0:2e5e65a6fb30 118 #define EXT_SENS_DATA_13 0x56
onehorse 0:2e5e65a6fb30 119 #define EXT_SENS_DATA_14 0x57
onehorse 0:2e5e65a6fb30 120 #define EXT_SENS_DATA_15 0x58
onehorse 0:2e5e65a6fb30 121 #define EXT_SENS_DATA_16 0x59
onehorse 0:2e5e65a6fb30 122 #define EXT_SENS_DATA_17 0x5A
onehorse 0:2e5e65a6fb30 123 #define EXT_SENS_DATA_18 0x5B
onehorse 0:2e5e65a6fb30 124 #define EXT_SENS_DATA_19 0x5C
onehorse 0:2e5e65a6fb30 125 #define EXT_SENS_DATA_20 0x5D
onehorse 0:2e5e65a6fb30 126 #define EXT_SENS_DATA_21 0x5E
onehorse 0:2e5e65a6fb30 127 #define EXT_SENS_DATA_22 0x5F
onehorse 0:2e5e65a6fb30 128 #define EXT_SENS_DATA_23 0x60
onehorse 0:2e5e65a6fb30 129 #define MOT_DETECT_STATUS 0x61
onehorse 0:2e5e65a6fb30 130 #define I2C_SLV0_DO 0x63
onehorse 0:2e5e65a6fb30 131 #define I2C_SLV1_DO 0x64
onehorse 0:2e5e65a6fb30 132 #define I2C_SLV2_DO 0x65
onehorse 0:2e5e65a6fb30 133 #define I2C_SLV3_DO 0x66
onehorse 0:2e5e65a6fb30 134 #define I2C_MST_DELAY_CTRL 0x67
onehorse 0:2e5e65a6fb30 135 #define SIGNAL_PATH_RESET 0x68
onehorse 0:2e5e65a6fb30 136 #define MOT_DETECT_CTRL 0x69
onehorse 0:2e5e65a6fb30 137 #define USER_CTRL 0x6A // Bit 7 enable DMP, bit 3 reset DMP
onehorse 0:2e5e65a6fb30 138 #define PWR_MGMT_1 0x6B // Device defaults to the SLEEP mode
onehorse 0:2e5e65a6fb30 139 #define PWR_MGMT_2 0x6C
onehorse 0:2e5e65a6fb30 140 #define DMP_BANK 0x6D // Activates a specific bank in the DMP
onehorse 0:2e5e65a6fb30 141 #define DMP_RW_PNT 0x6E // Set read/write pointer to a specific start address in specified DMP bank
onehorse 0:2e5e65a6fb30 142 #define DMP_REG 0x6F // Register in DMP from which to read or to which to write
onehorse 0:2e5e65a6fb30 143 #define DMP_REG_1 0x70
nikitamere 3:f1893b5610f7 144 #define DMP_REG_2 0x71
onehorse 0:2e5e65a6fb30 145 #define FIFO_COUNTH 0x72
onehorse 0:2e5e65a6fb30 146 #define FIFO_COUNTL 0x73
onehorse 0:2e5e65a6fb30 147 #define FIFO_R_W 0x74
onehorse 0:2e5e65a6fb30 148 #define WHO_AM_I_MPU9250 0x75 // Should return 0x71
onehorse 0:2e5e65a6fb30 149 #define XA_OFFSET_H 0x77
onehorse 0:2e5e65a6fb30 150 #define XA_OFFSET_L 0x78
onehorse 0:2e5e65a6fb30 151 #define YA_OFFSET_H 0x7A
onehorse 0:2e5e65a6fb30 152 #define YA_OFFSET_L 0x7B
onehorse 0:2e5e65a6fb30 153 #define ZA_OFFSET_H 0x7D
onehorse 0:2e5e65a6fb30 154 #define ZA_OFFSET_L 0x7E
onehorse 0:2e5e65a6fb30 155
nikitamere 3:f1893b5610f7 156 // Using the MSENSR-9250 breakout board, ADO is set to 0
onehorse 0:2e5e65a6fb30 157 // Seven-bit device address is 110100 for ADO = 0 and 110101 for ADO = 1
onehorse 0:2e5e65a6fb30 158 //mbed uses the eight-bit device address, so shift seven-bit addresses left by one!
onehorse 0:2e5e65a6fb30 159 #define ADO 0
onehorse 0:2e5e65a6fb30 160 #if ADO
onehorse 0:2e5e65a6fb30 161 #define MPU9250_ADDRESS 0x69<<1 // Device address when ADO = 1
onehorse 0:2e5e65a6fb30 162 #else
onehorse 0:2e5e65a6fb30 163 #define MPU9250_ADDRESS 0x68<<1 // Device address when ADO = 0
nikitamere 3:f1893b5610f7 164 #endif
onehorse 0:2e5e65a6fb30 165
onehorse 0:2e5e65a6fb30 166 // Set initial input parameters
onehorse 0:2e5e65a6fb30 167 enum Ascale {
nikitamere 3:f1893b5610f7 168 AFS_2G = 0,
nikitamere 3:f1893b5610f7 169 AFS_4G,
nikitamere 3:f1893b5610f7 170 AFS_8G,
nikitamere 3:f1893b5610f7 171 AFS_16G
onehorse 0:2e5e65a6fb30 172 };
onehorse 0:2e5e65a6fb30 173
onehorse 0:2e5e65a6fb30 174 enum Gscale {
nikitamere 3:f1893b5610f7 175 GFS_250DPS = 0,
nikitamere 3:f1893b5610f7 176 GFS_500DPS,
nikitamere 3:f1893b5610f7 177 GFS_1000DPS,
nikitamere 3:f1893b5610f7 178 GFS_2000DPS
onehorse 0:2e5e65a6fb30 179 };
onehorse 0:2e5e65a6fb30 180
onehorse 0:2e5e65a6fb30 181 enum Mscale {
nikitamere 3:f1893b5610f7 182 MFS_14BITS = 0, // 0.6 mG per LSB
nikitamere 3:f1893b5610f7 183 MFS_16BITS // 0.15 mG per LSB
onehorse 0:2e5e65a6fb30 184 };
onehorse 0:2e5e65a6fb30 185
onehorse 0:2e5e65a6fb30 186 uint8_t Ascale = AFS_2G; // AFS_2G, AFS_4G, AFS_8G, AFS_16G
onehorse 0:2e5e65a6fb30 187 uint8_t Gscale = GFS_250DPS; // GFS_250DPS, GFS_500DPS, GFS_1000DPS, GFS_2000DPS
onehorse 0:2e5e65a6fb30 188 uint8_t Mscale = MFS_16BITS; // MFS_14BITS or MFS_16BITS, 14-bit or 16-bit magnetometer resolution
nikitamere 3:f1893b5610f7 189 uint8_t Mmode = 0x06; // Either 8 Hz 0x02) or 100 Hz (0x06) magnetometer data ODR
onehorse 0:2e5e65a6fb30 190 float aRes, gRes, mRes; // scale resolutions per LSB for the sensors
onehorse 0:2e5e65a6fb30 191
onehorse 0:2e5e65a6fb30 192 //Set up I2C, (SDA,SCL)
onehorse 0:2e5e65a6fb30 193 I2C i2c(I2C_SDA, I2C_SCL);
onehorse 0:2e5e65a6fb30 194
onehorse 0:2e5e65a6fb30 195 DigitalOut myled(LED1);
nikitamere 3:f1893b5610f7 196
onehorse 0:2e5e65a6fb30 197 // Pin definitions
onehorse 0:2e5e65a6fb30 198 int intPin = 12; // These can be changed, 2 and 3 are the Arduinos ext int pins
onehorse 0:2e5e65a6fb30 199
onehorse 0:2e5e65a6fb30 200 int16_t accelCount[3]; // Stores the 16-bit signed accelerometer sensor output
onehorse 0:2e5e65a6fb30 201 int16_t gyroCount[3]; // Stores the 16-bit signed gyro sensor output
onehorse 0:2e5e65a6fb30 202 int16_t magCount[3]; // Stores the 16-bit signed magnetometer sensor output
onehorse 0:2e5e65a6fb30 203 float magCalibration[3] = {0, 0, 0}, magbias[3] = {0, 0, 0}; // Factory mag calibration and mag bias
onehorse 0:2e5e65a6fb30 204 float gyroBias[3] = {0, 0, 0}, accelBias[3] = {0, 0, 0}; // Bias corrections for gyro and accelerometer
nikitamere 3:f1893b5610f7 205 float ax, ay, az, gx, gy, gz, mx, my, mz; // variables to hold latest sensor data values
onehorse 0:2e5e65a6fb30 206 int16_t tempCount; // Stores the real internal chip temperature in degrees Celsius
onehorse 0:2e5e65a6fb30 207 float temperature;
onehorse 0:2e5e65a6fb30 208 float SelfTest[6];
onehorse 0:2e5e65a6fb30 209
onehorse 0:2e5e65a6fb30 210 int delt_t = 0; // used to control display output rate
onehorse 0:2e5e65a6fb30 211 int count = 0; // used to control display output rate
onehorse 0:2e5e65a6fb30 212
onehorse 0:2e5e65a6fb30 213 // parameters for 6 DoF sensor fusion calculations
onehorse 0:2e5e65a6fb30 214 float PI = 3.14159265358979323846f;
onehorse 0:2e5e65a6fb30 215 float GyroMeasError = PI * (60.0f / 180.0f); // gyroscope measurement error in rads/s (start at 60 deg/s), then reduce after ~10 s to 3
onehorse 0:2e5e65a6fb30 216 float beta = sqrt(3.0f / 4.0f) * GyroMeasError; // compute beta
onehorse 0:2e5e65a6fb30 217 float GyroMeasDrift = PI * (1.0f / 180.0f); // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s)
onehorse 0:2e5e65a6fb30 218 float zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value
nikitamere 3:f1893b5610f7 219 #define Kp 6.0f * 5.0f // these are the free parameters in the Mahony filter and fusion scheme, Kp for proportional feedback, Ki for integral
onehorse 0:2e5e65a6fb30 220 #define Ki 0.0f
onehorse 0:2e5e65a6fb30 221
onehorse 0:2e5e65a6fb30 222 float pitch, yaw, roll;
onehorse 0:2e5e65a6fb30 223 float deltat = 0.0f; // integration interval for both filter schemes
onehorse 0:2e5e65a6fb30 224 int lastUpdate = 0, firstUpdate = 0, Now = 0; // used to calculate integration interval // used to calculate integration interval
onehorse 0:2e5e65a6fb30 225 float q[4] = {1.0f, 0.0f, 0.0f, 0.0f}; // vector to hold quaternion
onehorse 0:2e5e65a6fb30 226 float eInt[3] = {0.0f, 0.0f, 0.0f}; // vector to hold integral error for Mahony method
onehorse 0:2e5e65a6fb30 227
nikitamere 3:f1893b5610f7 228 class MPU9250
nikitamere 3:f1893b5610f7 229 {
nikitamere 3:f1893b5610f7 230
nikitamere 3:f1893b5610f7 231 protected:
nikitamere 3:f1893b5610f7 232
nikitamere 3:f1893b5610f7 233 public:
nikitamere 3:f1893b5610f7 234 //===================================================================================================================
onehorse 0:2e5e65a6fb30 235 //====== Set of useful function to access acceleratio, gyroscope, and temperature data
onehorse 0:2e5e65a6fb30 236 //===================================================================================================================
onehorse 0:2e5e65a6fb30 237
nikitamere 3:f1893b5610f7 238 void writeByte(uint8_t address, uint8_t subAddress, uint8_t data) {
nikitamere 3:f1893b5610f7 239 char data_write[2];
nikitamere 3:f1893b5610f7 240 data_write[0] = subAddress;
nikitamere 3:f1893b5610f7 241 data_write[1] = data;
nikitamere 3:f1893b5610f7 242 i2c.write(address, data_write, 2, 0);
nikitamere 3:f1893b5610f7 243 }
onehorse 0:2e5e65a6fb30 244
nikitamere 3:f1893b5610f7 245 char readByte(uint8_t address, uint8_t subAddress) {
nikitamere 3:f1893b5610f7 246 char data[1]; // `data` will store the register data
nikitamere 3:f1893b5610f7 247 char data_write[1];
nikitamere 3:f1893b5610f7 248 data_write[0] = subAddress;
nikitamere 3:f1893b5610f7 249 i2c.write(address, data_write, 1, 1); // no stop
nikitamere 3:f1893b5610f7 250 i2c.read(address, data, 1, 0);
nikitamere 3:f1893b5610f7 251 return data[0];
onehorse 0:2e5e65a6fb30 252 }
onehorse 0:2e5e65a6fb30 253
nikitamere 3:f1893b5610f7 254 void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest) {
nikitamere 3:f1893b5610f7 255 char data[14];
nikitamere 3:f1893b5610f7 256 char data_write[1];
nikitamere 3:f1893b5610f7 257 data_write[0] = subAddress;
nikitamere 3:f1893b5610f7 258 i2c.write(address, data_write, 1, 1); // no stop
nikitamere 3:f1893b5610f7 259 i2c.read(address, data, count, 0);
nikitamere 3:f1893b5610f7 260 for(int ii = 0; ii < count; ii++) {
nikitamere 3:f1893b5610f7 261 dest[ii] = data[ii];
nikitamere 3:f1893b5610f7 262 }
nikitamere 3:f1893b5610f7 263 }
onehorse 0:2e5e65a6fb30 264
onehorse 0:2e5e65a6fb30 265
nikitamere 3:f1893b5610f7 266 void getMres() {
nikitamere 3:f1893b5610f7 267 switch (Mscale) {
nikitamere 3:f1893b5610f7 268 // Possible magnetometer scales (and their register bit settings) are:
nikitamere 3:f1893b5610f7 269 // 14 bit resolution (0) and 16 bit resolution (1)
nikitamere 3:f1893b5610f7 270 case MFS_14BITS:
nikitamere 3:f1893b5610f7 271 mRes = 10.0*4219.0/8190.0; // Proper scale to return milliGauss
nikitamere 3:f1893b5610f7 272 break;
nikitamere 3:f1893b5610f7 273 case MFS_16BITS:
nikitamere 3:f1893b5610f7 274 mRes = 10.0*4219.0/32760.0; // Proper scale to return milliGauss
nikitamere 3:f1893b5610f7 275 break;
nikitamere 3:f1893b5610f7 276 }
nikitamere 3:f1893b5610f7 277 }
onehorse 0:2e5e65a6fb30 278
onehorse 0:2e5e65a6fb30 279
nikitamere 3:f1893b5610f7 280 void getGres() {
nikitamere 3:f1893b5610f7 281 switch (Gscale) {
nikitamere 3:f1893b5610f7 282 // Possible gyro scales (and their register bit settings) are:
nikitamere 3:f1893b5610f7 283 // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11).
nikitamere 3:f1893b5610f7 284 // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
nikitamere 3:f1893b5610f7 285 case GFS_250DPS:
nikitamere 3:f1893b5610f7 286 gRes = 250.0/32768.0;
nikitamere 3:f1893b5610f7 287 break;
nikitamere 3:f1893b5610f7 288 case GFS_500DPS:
nikitamere 3:f1893b5610f7 289 gRes = 500.0/32768.0;
nikitamere 3:f1893b5610f7 290 break;
nikitamere 3:f1893b5610f7 291 case GFS_1000DPS:
nikitamere 3:f1893b5610f7 292 gRes = 1000.0/32768.0;
nikitamere 3:f1893b5610f7 293 break;
nikitamere 3:f1893b5610f7 294 case GFS_2000DPS:
nikitamere 3:f1893b5610f7 295 gRes = 2000.0/32768.0;
nikitamere 3:f1893b5610f7 296 break;
nikitamere 3:f1893b5610f7 297 }
nikitamere 3:f1893b5610f7 298 }
nikitamere 3:f1893b5610f7 299
nikitamere 3:f1893b5610f7 300
nikitamere 3:f1893b5610f7 301 void getAres() {
nikitamere 3:f1893b5610f7 302 switch (Ascale) {
nikitamere 3:f1893b5610f7 303 // Possible accelerometer scales (and their register bit settings) are:
nikitamere 3:f1893b5610f7 304 // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11).
nikitamere 3:f1893b5610f7 305 // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
nikitamere 3:f1893b5610f7 306 case AFS_2G:
nikitamere 3:f1893b5610f7 307 aRes = 2.0/32768.0;
nikitamere 3:f1893b5610f7 308 break;
nikitamere 3:f1893b5610f7 309 case AFS_4G:
nikitamere 3:f1893b5610f7 310 aRes = 4.0/32768.0;
nikitamere 3:f1893b5610f7 311 break;
nikitamere 3:f1893b5610f7 312 case AFS_8G:
nikitamere 3:f1893b5610f7 313 aRes = 8.0/32768.0;
nikitamere 3:f1893b5610f7 314 break;
nikitamere 3:f1893b5610f7 315 case AFS_16G:
nikitamere 3:f1893b5610f7 316 aRes = 16.0/32768.0;
nikitamere 3:f1893b5610f7 317 break;
nikitamere 3:f1893b5610f7 318 }
nikitamere 3:f1893b5610f7 319 }
onehorse 0:2e5e65a6fb30 320
onehorse 0:2e5e65a6fb30 321
nikitamere 3:f1893b5610f7 322 void readAccelData(int16_t * destination) {
nikitamere 3:f1893b5610f7 323 uint8_t rawData[6]; // x/y/z accel register data stored here
nikitamere 3:f1893b5610f7 324 readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
nikitamere 3:f1893b5610f7 325 destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
nikitamere 3:f1893b5610f7 326 destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
nikitamere 3:f1893b5610f7 327 destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
nikitamere 3:f1893b5610f7 328 }
onehorse 0:2e5e65a6fb30 329
nikitamere 3:f1893b5610f7 330 void readGyroData(int16_t * destination) {
nikitamere 3:f1893b5610f7 331 uint8_t rawData[6]; // x/y/z gyro register data stored here
nikitamere 3:f1893b5610f7 332 readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
nikitamere 3:f1893b5610f7 333 destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
nikitamere 3:f1893b5610f7 334 destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
nikitamere 3:f1893b5610f7 335 destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
nikitamere 3:f1893b5610f7 336 }
onehorse 0:2e5e65a6fb30 337
nikitamere 3:f1893b5610f7 338 void readMagData(int16_t * destination) {
nikitamere 3:f1893b5610f7 339 uint8_t rawData[7]; // x/y/z gyro register data, ST2 register stored here, must read ST2 at end of data acquisition
nikitamere 3:f1893b5610f7 340 if(readByte(AK8963_ADDRESS, AK8963_ST1) & 0x01) { // wait for magnetometer data ready bit to be set
nikitamere 3:f1893b5610f7 341 readBytes(AK8963_ADDRESS, AK8963_XOUT_L, 7, &rawData[0]); // Read the six raw data and ST2 registers sequentially into data array
nikitamere 3:f1893b5610f7 342 uint8_t c = rawData[6]; // End data read by reading ST2 register
nikitamere 3:f1893b5610f7 343 if(!(c & 0x08)) { // Check if magnetic sensor overflow set, if not then report data
nikitamere 3:f1893b5610f7 344 destination[0] = (int16_t)(((int16_t)rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value
nikitamere 3:f1893b5610f7 345 destination[1] = (int16_t)(((int16_t)rawData[3] << 8) | rawData[2]) ; // Data stored as little Endian
nikitamere 3:f1893b5610f7 346 destination[2] = (int16_t)(((int16_t)rawData[5] << 8) | rawData[4]) ;
nikitamere 3:f1893b5610f7 347 }
nikitamere 3:f1893b5610f7 348 }
nikitamere 3:f1893b5610f7 349 }
onehorse 0:2e5e65a6fb30 350
nikitamere 3:f1893b5610f7 351 int16_t readTempData() {
nikitamere 3:f1893b5610f7 352 uint8_t rawData[2]; // x/y/z gyro register data stored here
nikitamere 3:f1893b5610f7 353 readBytes(MPU9250_ADDRESS, TEMP_OUT_H, 2, &rawData[0]); // Read the two raw data registers sequentially into data array
nikitamere 3:f1893b5610f7 354 return (int16_t)(((int16_t)rawData[0]) << 8 | rawData[1]) ; // Turn the MSB and LSB into a 16-bit value
nikitamere 3:f1893b5610f7 355 }
onehorse 0:2e5e65a6fb30 356
onehorse 0:2e5e65a6fb30 357
nikitamere 3:f1893b5610f7 358 void resetMPU9250() {
nikitamere 3:f1893b5610f7 359 // reset device
nikitamere 3:f1893b5610f7 360 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
nikitamere 3:f1893b5610f7 361 wait(0.1);
nikitamere 3:f1893b5610f7 362 }
nikitamere 3:f1893b5610f7 363
nikitamere 3:f1893b5610f7 364 void initAK8963(float * destination) {
nikitamere 3:f1893b5610f7 365 // First extract the factory calibration for each magnetometer axis
nikitamere 3:f1893b5610f7 366 uint8_t rawData[3]; // x/y/z gyro calibration data stored here
nikitamere 3:f1893b5610f7 367 writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer
nikitamere 3:f1893b5610f7 368 wait(0.01);
nikitamere 3:f1893b5610f7 369 writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x0F); // Enter Fuse ROM access mode
nikitamere 3:f1893b5610f7 370 wait(0.01);
nikitamere 3:f1893b5610f7 371 readBytes(AK8963_ADDRESS, AK8963_ASAX, 3, &rawData[0]); // Read the x-, y-, and z-axis calibration values
nikitamere 3:f1893b5610f7 372 destination[0] = (float)(rawData[0] - 128)/256.0f + 1.0f; // Return x-axis sensitivity adjustment values, etc.
nikitamere 3:f1893b5610f7 373 destination[1] = (float)(rawData[1] - 128)/256.0f + 1.0f;
nikitamere 3:f1893b5610f7 374 destination[2] = (float)(rawData[2] - 128)/256.0f + 1.0f;
nikitamere 3:f1893b5610f7 375 writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer
nikitamere 3:f1893b5610f7 376 wait(0.01);
nikitamere 3:f1893b5610f7 377 // Configure the magnetometer for continuous read and highest resolution
nikitamere 3:f1893b5610f7 378 // set Mscale bit 4 to 1 (0) to enable 16 (14) bit resolution in CNTL register,
nikitamere 3:f1893b5610f7 379 // and enable continuous mode data acquisition Mmode (bits [3:0]), 0010 for 8 Hz and 0110 for 100 Hz sample rates
nikitamere 3:f1893b5610f7 380 writeByte(AK8963_ADDRESS, AK8963_CNTL, Mscale << 4 | Mmode); // Set magnetometer data resolution and sample ODR
nikitamere 3:f1893b5610f7 381 wait(0.01);
nikitamere 3:f1893b5610f7 382 }
onehorse 0:2e5e65a6fb30 383
onehorse 0:2e5e65a6fb30 384
nikitamere 3:f1893b5610f7 385 void initMPU9250() {
nikitamere 3:f1893b5610f7 386 // Initialize MPU9250 device
nikitamere 3:f1893b5610f7 387 // wake up device
nikitamere 3:f1893b5610f7 388 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors
nikitamere 3:f1893b5610f7 389 wait(0.1); // Delay 100 ms for PLL to get established on x-axis gyro; should check for PLL ready interrupt
nikitamere 3:f1893b5610f7 390
nikitamere 3:f1893b5610f7 391 // get stable time source
nikitamere 3:f1893b5610f7 392 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01); // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
onehorse 0:2e5e65a6fb30 393
nikitamere 3:f1893b5610f7 394 // Configure Gyro and Accelerometer
nikitamere 3:f1893b5610f7 395 // Disable FSYNC and set accelerometer and gyro bandwidth to 44 and 42 Hz, respectively;
nikitamere 3:f1893b5610f7 396 // DLPF_CFG = bits 2:0 = 010; this sets the sample rate at 1 kHz for both
nikitamere 3:f1893b5610f7 397 // Maximum delay is 4.9 ms which is just over a 200 Hz maximum rate
nikitamere 3:f1893b5610f7 398 writeByte(MPU9250_ADDRESS, CONFIG, 0x03);
nikitamere 3:f1893b5610f7 399
nikitamere 3:f1893b5610f7 400 // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV)
nikitamere 3:f1893b5610f7 401 writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x04); // Use a 200 Hz rate; the same rate set in CONFIG above
onehorse 0:2e5e65a6fb30 402
nikitamere 3:f1893b5610f7 403 // Set gyroscope full scale range
nikitamere 3:f1893b5610f7 404 // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3
nikitamere 3:f1893b5610f7 405 uint8_t c = readByte(MPU9250_ADDRESS, GYRO_CONFIG);
nikitamere 3:f1893b5610f7 406 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c & ~0xE0); // Clear self-test bits [7:5]
nikitamere 3:f1893b5610f7 407 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
nikitamere 3:f1893b5610f7 408 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c | Gscale << 3); // Set full scale range for the gyro
nikitamere 3:f1893b5610f7 409
nikitamere 3:f1893b5610f7 410 // Set accelerometer configuration
nikitamere 3:f1893b5610f7 411 c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG);
nikitamere 3:f1893b5610f7 412 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c & ~0xE0); // Clear self-test bits [7:5]
nikitamere 3:f1893b5610f7 413 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
nikitamere 3:f1893b5610f7 414 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c | Ascale << 3); // Set full scale range for the accelerometer
onehorse 0:2e5e65a6fb30 415
nikitamere 3:f1893b5610f7 416 // Set accelerometer sample rate configuration
nikitamere 3:f1893b5610f7 417 // It is possible to get a 4 kHz sample rate from the accelerometer by choosing 1 for
nikitamere 3:f1893b5610f7 418 // accel_fchoice_b bit [3]; in this case the bandwidth is 1.13 kHz
nikitamere 3:f1893b5610f7 419 c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG2);
nikitamere 3:f1893b5610f7 420 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c & ~0x0F); // Clear accel_fchoice_b (bit 3) and A_DLPFG (bits [2:0])
nikitamere 3:f1893b5610f7 421 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c | 0x03); // Set accelerometer rate to 1 kHz and bandwidth to 41 Hz
onehorse 0:2e5e65a6fb30 422
nikitamere 3:f1893b5610f7 423 // The accelerometer, gyro, and thermometer are set to 1 kHz sample rates,
nikitamere 3:f1893b5610f7 424 // but all these rates are further reduced by a factor of 5 to 200 Hz because of the SMPLRT_DIV setting
onehorse 0:2e5e65a6fb30 425
nikitamere 3:f1893b5610f7 426 // Configure Interrupts and Bypass Enable
nikitamere 3:f1893b5610f7 427 // Set interrupt pin active high, push-pull, and clear on read of INT_STATUS, enable I2C_BYPASS_EN so additional chips
nikitamere 3:f1893b5610f7 428 // can join the I2C bus and all can be controlled by the Arduino as master
nikitamere 3:f1893b5610f7 429 writeByte(MPU9250_ADDRESS, INT_PIN_CFG, 0x22);
nikitamere 3:f1893b5610f7 430 writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x01); // Enable data ready (bit 0) interrupt
nikitamere 3:f1893b5610f7 431 }
onehorse 0:2e5e65a6fb30 432
onehorse 0:2e5e65a6fb30 433 // Function which accumulates gyro and accelerometer data after device initialization. It calculates the average
onehorse 0:2e5e65a6fb30 434 // of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers.
nikitamere 3:f1893b5610f7 435 void calibrateMPU9250(float * dest1, float * dest2) {
nikitamere 3:f1893b5610f7 436 uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data
nikitamere 3:f1893b5610f7 437 uint16_t ii, packet_count, fifo_count;
nikitamere 3:f1893b5610f7 438 int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0};
nikitamere 3:f1893b5610f7 439
onehorse 0:2e5e65a6fb30 440 // reset device, reset all registers, clear gyro and accelerometer bias registers
nikitamere 3:f1893b5610f7 441 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
nikitamere 3:f1893b5610f7 442 wait(0.1);
nikitamere 3:f1893b5610f7 443
onehorse 0:2e5e65a6fb30 444 // get stable time source
onehorse 0:2e5e65a6fb30 445 // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
nikitamere 3:f1893b5610f7 446 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01);
nikitamere 3:f1893b5610f7 447 writeByte(MPU9250_ADDRESS, PWR_MGMT_2, 0x00);
nikitamere 3:f1893b5610f7 448 wait(0.2);
nikitamere 3:f1893b5610f7 449
onehorse 0:2e5e65a6fb30 450 // Configure device for bias calculation
nikitamere 3:f1893b5610f7 451 writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x00); // Disable all interrupts
nikitamere 3:f1893b5610f7 452 writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); // Disable FIFO
nikitamere 3:f1893b5610f7 453 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Turn on internal clock source
nikitamere 3:f1893b5610f7 454 writeByte(MPU9250_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master
nikitamere 3:f1893b5610f7 455 writeByte(MPU9250_ADDRESS, USER_CTRL, 0x00); // Disable FIFO and I2C master modes
nikitamere 3:f1893b5610f7 456 writeByte(MPU9250_ADDRESS, USER_CTRL, 0x0C); // Reset FIFO and DMP
nikitamere 3:f1893b5610f7 457 wait(0.015);
nikitamere 3:f1893b5610f7 458
onehorse 0:2e5e65a6fb30 459 // Configure MPU9250 gyro and accelerometer for bias calculation
nikitamere 3:f1893b5610f7 460 writeByte(MPU9250_ADDRESS, CONFIG, 0x01); // Set low-pass filter to 188 Hz
nikitamere 3:f1893b5610f7 461 writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set sample rate to 1 kHz
nikitamere 3:f1893b5610f7 462 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00); // Set gyro full-scale to 250 degrees per second, maximum sensitivity
nikitamere 3:f1893b5610f7 463 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity
nikitamere 3:f1893b5610f7 464
nikitamere 3:f1893b5610f7 465 uint16_t gyrosensitivity = 131; // = 131 LSB/degrees/sec
nikitamere 3:f1893b5610f7 466 uint16_t accelsensitivity = 16384; // = 16384 LSB/g
onehorse 0:2e5e65a6fb30 467
onehorse 0:2e5e65a6fb30 468 // Configure FIFO to capture accelerometer and gyro data for bias calculation
nikitamere 3:f1893b5610f7 469 writeByte(MPU9250_ADDRESS, USER_CTRL, 0x40); // Enable FIFO
nikitamere 3:f1893b5610f7 470 writeByte(MPU9250_ADDRESS, FIFO_EN, 0x78); // Enable gyro and accelerometer sensors for FIFO (max size 512 bytes in MPU-9250)
nikitamere 3:f1893b5610f7 471 wait(0.04); // accumulate 40 samples in 80 milliseconds = 480 bytes
onehorse 0:2e5e65a6fb30 472
onehorse 0:2e5e65a6fb30 473 // At end of sample accumulation, turn off FIFO sensor read
nikitamere 3:f1893b5610f7 474 writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); // Disable gyro and accelerometer sensors for FIFO
nikitamere 3:f1893b5610f7 475 readBytes(MPU9250_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count
nikitamere 3:f1893b5610f7 476 fifo_count = ((uint16_t)data[0] << 8) | data[1];
nikitamere 3:f1893b5610f7 477 packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging
nikitamere 3:f1893b5610f7 478
nikitamere 3:f1893b5610f7 479 for (ii = 0; ii < packet_count; ii++) {
nikitamere 3:f1893b5610f7 480 int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0};
nikitamere 3:f1893b5610f7 481 readBytes(MPU9250_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging
nikitamere 3:f1893b5610f7 482 accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1] ) ; // Form signed 16-bit integer for each sample in FIFO
nikitamere 3:f1893b5610f7 483 accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3] ) ;
nikitamere 3:f1893b5610f7 484 accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5] ) ;
nikitamere 3:f1893b5610f7 485 gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7] ) ;
nikitamere 3:f1893b5610f7 486 gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9] ) ;
nikitamere 3:f1893b5610f7 487 gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]) ;
nikitamere 3:f1893b5610f7 488
nikitamere 3:f1893b5610f7 489 accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
nikitamere 3:f1893b5610f7 490 accel_bias[1] += (int32_t) accel_temp[1];
nikitamere 3:f1893b5610f7 491 accel_bias[2] += (int32_t) accel_temp[2];
nikitamere 3:f1893b5610f7 492 gyro_bias[0] += (int32_t) gyro_temp[0];
nikitamere 3:f1893b5610f7 493 gyro_bias[1] += (int32_t) gyro_temp[1];
nikitamere 3:f1893b5610f7 494 gyro_bias[2] += (int32_t) gyro_temp[2];
onehorse 0:2e5e65a6fb30 495
nikitamere 3:f1893b5610f7 496 }
nikitamere 3:f1893b5610f7 497 accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases
nikitamere 3:f1893b5610f7 498 accel_bias[1] /= (int32_t) packet_count;
nikitamere 3:f1893b5610f7 499 accel_bias[2] /= (int32_t) packet_count;
nikitamere 3:f1893b5610f7 500 gyro_bias[0] /= (int32_t) packet_count;
nikitamere 3:f1893b5610f7 501 gyro_bias[1] /= (int32_t) packet_count;
nikitamere 3:f1893b5610f7 502 gyro_bias[2] /= (int32_t) packet_count;
nikitamere 3:f1893b5610f7 503
nikitamere 3:f1893b5610f7 504 if(accel_bias[2] > 0L) {
nikitamere 3:f1893b5610f7 505 accel_bias[2] -= (int32_t) accelsensitivity; // Remove gravity from the z-axis accelerometer bias calculation
nikitamere 3:f1893b5610f7 506 } else {
nikitamere 3:f1893b5610f7 507 accel_bias[2] += (int32_t) accelsensitivity;
nikitamere 3:f1893b5610f7 508 }
nikitamere 3:f1893b5610f7 509
onehorse 0:2e5e65a6fb30 510 // Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup
nikitamere 3:f1893b5610f7 511 data[0] = (-gyro_bias[0]/4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format
nikitamere 3:f1893b5610f7 512 data[1] = (-gyro_bias[0]/4) & 0xFF; // Biases are additive, so change sign on calculated average gyro biases
nikitamere 3:f1893b5610f7 513 data[2] = (-gyro_bias[1]/4 >> 8) & 0xFF;
nikitamere 3:f1893b5610f7 514 data[3] = (-gyro_bias[1]/4) & 0xFF;
nikitamere 3:f1893b5610f7 515 data[4] = (-gyro_bias[2]/4 >> 8) & 0xFF;
nikitamere 3:f1893b5610f7 516 data[5] = (-gyro_bias[2]/4) & 0xFF;
onehorse 0:2e5e65a6fb30 517
onehorse 0:2e5e65a6fb30 518 /// Push gyro biases to hardware registers
nikitamere 3:f1893b5610f7 519 /* writeByte(MPU9250_ADDRESS, XG_OFFSET_H, data[0]);
nikitamere 3:f1893b5610f7 520 writeByte(MPU9250_ADDRESS, XG_OFFSET_L, data[1]);
nikitamere 3:f1893b5610f7 521 writeByte(MPU9250_ADDRESS, YG_OFFSET_H, data[2]);
nikitamere 3:f1893b5610f7 522 writeByte(MPU9250_ADDRESS, YG_OFFSET_L, data[3]);
nikitamere 3:f1893b5610f7 523 writeByte(MPU9250_ADDRESS, ZG_OFFSET_H, data[4]);
nikitamere 3:f1893b5610f7 524 writeByte(MPU9250_ADDRESS, ZG_OFFSET_L, data[5]);
nikitamere 3:f1893b5610f7 525 */
nikitamere 3:f1893b5610f7 526 dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity; // construct gyro bias in deg/s for later manual subtraction
nikitamere 3:f1893b5610f7 527 dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity;
nikitamere 3:f1893b5610f7 528 dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity;
onehorse 0:2e5e65a6fb30 529
onehorse 0:2e5e65a6fb30 530 // Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain
onehorse 0:2e5e65a6fb30 531 // factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold
onehorse 0:2e5e65a6fb30 532 // non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature
onehorse 0:2e5e65a6fb30 533 // compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that
onehorse 0:2e5e65a6fb30 534 // the accelerometer biases calculated above must be divided by 8.
onehorse 0:2e5e65a6fb30 535
nikitamere 3:f1893b5610f7 536 int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases
nikitamere 3:f1893b5610f7 537 readBytes(MPU9250_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values
nikitamere 3:f1893b5610f7 538 accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1];
nikitamere 3:f1893b5610f7 539 readBytes(MPU9250_ADDRESS, YA_OFFSET_H, 2, &data[0]);
nikitamere 3:f1893b5610f7 540 accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1];
nikitamere 3:f1893b5610f7 541 readBytes(MPU9250_ADDRESS, ZA_OFFSET_H, 2, &data[0]);
nikitamere 3:f1893b5610f7 542 accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1];
nikitamere 3:f1893b5610f7 543
nikitamere 3:f1893b5610f7 544 uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers
nikitamere 3:f1893b5610f7 545 uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis
nikitamere 3:f1893b5610f7 546
nikitamere 3:f1893b5610f7 547 for(ii = 0; ii < 3; ii++) {
nikitamere 3:f1893b5610f7 548 if(accel_bias_reg[ii] & mask) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit
nikitamere 3:f1893b5610f7 549 }
onehorse 0:2e5e65a6fb30 550
nikitamere 3:f1893b5610f7 551 // Construct total accelerometer bias, including calculated average accelerometer bias from above
nikitamere 3:f1893b5610f7 552 accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale)
nikitamere 3:f1893b5610f7 553 accel_bias_reg[1] -= (accel_bias[1]/8);
nikitamere 3:f1893b5610f7 554 accel_bias_reg[2] -= (accel_bias[2]/8);
nikitamere 3:f1893b5610f7 555
nikitamere 3:f1893b5610f7 556 data[0] = (accel_bias_reg[0] >> 8) & 0xFF;
nikitamere 3:f1893b5610f7 557 data[1] = (accel_bias_reg[0]) & 0xFF;
nikitamere 3:f1893b5610f7 558 data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers
nikitamere 3:f1893b5610f7 559 data[2] = (accel_bias_reg[1] >> 8) & 0xFF;
nikitamere 3:f1893b5610f7 560 data[3] = (accel_bias_reg[1]) & 0xFF;
nikitamere 3:f1893b5610f7 561 data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers
nikitamere 3:f1893b5610f7 562 data[4] = (accel_bias_reg[2] >> 8) & 0xFF;
nikitamere 3:f1893b5610f7 563 data[5] = (accel_bias_reg[2]) & 0xFF;
nikitamere 3:f1893b5610f7 564 data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers
onehorse 0:2e5e65a6fb30 565
onehorse 0:2e5e65a6fb30 566 // Apparently this is not working for the acceleration biases in the MPU-9250
onehorse 0:2e5e65a6fb30 567 // Are we handling the temperature correction bit properly?
onehorse 0:2e5e65a6fb30 568 // Push accelerometer biases to hardware registers
nikitamere 3:f1893b5610f7 569 /* writeByte(MPU9250_ADDRESS, XA_OFFSET_H, data[0]);
nikitamere 3:f1893b5610f7 570 writeByte(MPU9250_ADDRESS, XA_OFFSET_L, data[1]);
nikitamere 3:f1893b5610f7 571 writeByte(MPU9250_ADDRESS, YA_OFFSET_H, data[2]);
nikitamere 3:f1893b5610f7 572 writeByte(MPU9250_ADDRESS, YA_OFFSET_L, data[3]);
nikitamere 3:f1893b5610f7 573 writeByte(MPU9250_ADDRESS, ZA_OFFSET_H, data[4]);
nikitamere 3:f1893b5610f7 574 writeByte(MPU9250_ADDRESS, ZA_OFFSET_L, data[5]);
nikitamere 3:f1893b5610f7 575 */
onehorse 0:2e5e65a6fb30 576 // Output scaled accelerometer biases for manual subtraction in the main program
nikitamere 3:f1893b5610f7 577 dest2[0] = (float)accel_bias[0]/(float)accelsensitivity;
nikitamere 3:f1893b5610f7 578 dest2[1] = (float)accel_bias[1]/(float)accelsensitivity;
nikitamere 3:f1893b5610f7 579 dest2[2] = (float)accel_bias[2]/(float)accelsensitivity;
nikitamere 3:f1893b5610f7 580 }
onehorse 0:2e5e65a6fb30 581
onehorse 0:2e5e65a6fb30 582
onehorse 0:2e5e65a6fb30 583 // Accelerometer and gyroscope self test; check calibration wrt factory settings
nikitamere 3:f1893b5610f7 584 void MPU9250SelfTest(float * destination) { // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass
nikitamere 3:f1893b5610f7 585 uint8_t rawData[6] = {0, 0, 0, 0, 0, 0};
nikitamere 3:f1893b5610f7 586 uint8_t selfTest[6];
nikitamere 3:f1893b5610f7 587 int16_t gAvg[3], aAvg[3], aSTAvg[3], gSTAvg[3];
nikitamere 3:f1893b5610f7 588 float factoryTrim[6];
nikitamere 3:f1893b5610f7 589 uint8_t FS = 0;
nikitamere 3:f1893b5610f7 590
nikitamere 3:f1893b5610f7 591 writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set gyro sample rate to 1 kHz
nikitamere 3:f1893b5610f7 592 writeByte(MPU9250_ADDRESS, CONFIG, 0x02); // Set gyro sample rate to 1 kHz and DLPF to 92 Hz
nikitamere 3:f1893b5610f7 593 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 1<<FS); // Set full scale range for the gyro to 250 dps
nikitamere 3:f1893b5610f7 594 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, 0x02); // Set accelerometer rate to 1 kHz and bandwidth to 92 Hz
nikitamere 3:f1893b5610f7 595 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 1<<FS); // Set full scale range for the accelerometer to 2 g
nikitamere 3:f1893b5610f7 596
nikitamere 3:f1893b5610f7 597 for( int ii = 0; ii < 200; ii++) { // get average current values of gyro and acclerometer
onehorse 2:4e59a37182df 598
nikitamere 3:f1893b5610f7 599 readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
nikitamere 3:f1893b5610f7 600 aAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
nikitamere 3:f1893b5610f7 601 aAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
nikitamere 3:f1893b5610f7 602 aAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
nikitamere 3:f1893b5610f7 603
nikitamere 3:f1893b5610f7 604 readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
nikitamere 3:f1893b5610f7 605 gAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
nikitamere 3:f1893b5610f7 606 gAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
nikitamere 3:f1893b5610f7 607 gAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
nikitamere 3:f1893b5610f7 608 }
nikitamere 3:f1893b5610f7 609
nikitamere 3:f1893b5610f7 610 for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average current readings
nikitamere 3:f1893b5610f7 611 aAvg[ii] /= 200;
nikitamere 3:f1893b5610f7 612 gAvg[ii] /= 200;
nikitamere 3:f1893b5610f7 613 }
nikitamere 3:f1893b5610f7 614
onehorse 2:4e59a37182df 615 // Configure the accelerometer for self-test
nikitamere 3:f1893b5610f7 616 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0xE0); // Enable self test on all three axes and set accelerometer range to +/- 2 g
nikitamere 3:f1893b5610f7 617 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s
nikitamere 3:f1893b5610f7 618 wait(0.25); // Delay a while to let the device stabilize
nikitamere 3:f1893b5610f7 619
nikitamere 3:f1893b5610f7 620 for( int ii = 0; ii < 200; ii++) { // get average self-test values of gyro and acclerometer
onehorse 2:4e59a37182df 621
nikitamere 3:f1893b5610f7 622 readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
nikitamere 3:f1893b5610f7 623 aSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
nikitamere 3:f1893b5610f7 624 aSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
nikitamere 3:f1893b5610f7 625 aSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
nikitamere 3:f1893b5610f7 626
nikitamere 3:f1893b5610f7 627 readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
nikitamere 3:f1893b5610f7 628 gSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
nikitamere 3:f1893b5610f7 629 gSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
nikitamere 3:f1893b5610f7 630 gSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
nikitamere 3:f1893b5610f7 631 }
nikitamere 3:f1893b5610f7 632
nikitamere 3:f1893b5610f7 633 for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average self-test readings
nikitamere 3:f1893b5610f7 634 aSTAvg[ii] /= 200;
nikitamere 3:f1893b5610f7 635 gSTAvg[ii] /= 200;
nikitamere 3:f1893b5610f7 636 }
nikitamere 3:f1893b5610f7 637
nikitamere 3:f1893b5610f7 638 // Configure the gyro and accelerometer for normal operation
nikitamere 3:f1893b5610f7 639 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00);
nikitamere 3:f1893b5610f7 640 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00);
nikitamere 3:f1893b5610f7 641 wait(0.25); // Delay a while to let the device stabilize
onehorse 0:2e5e65a6fb30 642
nikitamere 3:f1893b5610f7 643 // Retrieve accelerometer and gyro factory Self-Test Code from USR_Reg
nikitamere 3:f1893b5610f7 644 selfTest[0] = readByte(MPU9250_ADDRESS, SELF_TEST_X_ACCEL); // X-axis accel self-test results
nikitamere 3:f1893b5610f7 645 selfTest[1] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_ACCEL); // Y-axis accel self-test results
nikitamere 3:f1893b5610f7 646 selfTest[2] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_ACCEL); // Z-axis accel self-test results
nikitamere 3:f1893b5610f7 647 selfTest[3] = readByte(MPU9250_ADDRESS, SELF_TEST_X_GYRO); // X-axis gyro self-test results
nikitamere 3:f1893b5610f7 648 selfTest[4] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_GYRO); // Y-axis gyro self-test results
nikitamere 3:f1893b5610f7 649 selfTest[5] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_GYRO); // Z-axis gyro self-test results
nikitamere 3:f1893b5610f7 650
nikitamere 3:f1893b5610f7 651 // Retrieve factory self-test value from self-test code reads
nikitamere 3:f1893b5610f7 652 factoryTrim[0] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[0] - 1.0) )); // FT[Xa] factory trim calculation
nikitamere 3:f1893b5610f7 653 factoryTrim[1] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[1] - 1.0) )); // FT[Ya] factory trim calculation
nikitamere 3:f1893b5610f7 654 factoryTrim[2] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[2] - 1.0) )); // FT[Za] factory trim calculation
nikitamere 3:f1893b5610f7 655 factoryTrim[3] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[3] - 1.0) )); // FT[Xg] factory trim calculation
nikitamere 3:f1893b5610f7 656 factoryTrim[4] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[4] - 1.0) )); // FT[Yg] factory trim calculation
nikitamere 3:f1893b5610f7 657 factoryTrim[5] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[5] - 1.0) )); // FT[Zg] factory trim calculation
nikitamere 3:f1893b5610f7 658
nikitamere 3:f1893b5610f7 659 // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response
nikitamere 3:f1893b5610f7 660 // To get percent, must multiply by 100
nikitamere 3:f1893b5610f7 661 for (int i = 0; i < 3; i++) {
nikitamere 3:f1893b5610f7 662 destination[i] = 100.0*((float)(aSTAvg[i] - aAvg[i]))/factoryTrim[i]; // Report percent differences
nikitamere 3:f1893b5610f7 663 destination[i+3] = 100.0*((float)(gSTAvg[i] - gAvg[i]))/factoryTrim[i+3]; // Report percent differences
nikitamere 3:f1893b5610f7 664 }
nikitamere 3:f1893b5610f7 665
nikitamere 3:f1893b5610f7 666 }
onehorse 0:2e5e65a6fb30 667
onehorse 0:2e5e65a6fb30 668
onehorse 0:2e5e65a6fb30 669
onehorse 0:2e5e65a6fb30 670 // Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays"
onehorse 0:2e5e65a6fb30 671 // (see http://www.x-io.co.uk/category/open-source/ for examples and more details)
onehorse 0:2e5e65a6fb30 672 // which fuses acceleration, rotation rate, and magnetic moments to produce a quaternion-based estimate of absolute
onehorse 0:2e5e65a6fb30 673 // device orientation -- which can be converted to yaw, pitch, and roll. Useful for stabilizing quadcopters, etc.
onehorse 0:2e5e65a6fb30 674 // The performance of the orientation filter is at least as good as conventional Kalman-based filtering algorithms
onehorse 0:2e5e65a6fb30 675 // but is much less computationally intensive---it can be performed on a 3.3 V Pro Mini operating at 8 MHz!
nikitamere 3:f1893b5610f7 676 void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz) {
nikitamere 3:f1893b5610f7 677 float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability
nikitamere 3:f1893b5610f7 678 float norm;
nikitamere 3:f1893b5610f7 679 float hx, hy, _2bx, _2bz;
nikitamere 3:f1893b5610f7 680 float s1, s2, s3, s4;
nikitamere 3:f1893b5610f7 681 float qDot1, qDot2, qDot3, qDot4;
nikitamere 3:f1893b5610f7 682
nikitamere 3:f1893b5610f7 683 // Auxiliary variables to avoid repeated arithmetic
nikitamere 3:f1893b5610f7 684 float _2q1mx;
nikitamere 3:f1893b5610f7 685 float _2q1my;
nikitamere 3:f1893b5610f7 686 float _2q1mz;
nikitamere 3:f1893b5610f7 687 float _2q2mx;
nikitamere 3:f1893b5610f7 688 float _4bx;
nikitamere 3:f1893b5610f7 689 float _4bz;
nikitamere 3:f1893b5610f7 690 float _2q1 = 2.0f * q1;
nikitamere 3:f1893b5610f7 691 float _2q2 = 2.0f * q2;
nikitamere 3:f1893b5610f7 692 float _2q3 = 2.0f * q3;
nikitamere 3:f1893b5610f7 693 float _2q4 = 2.0f * q4;
nikitamere 3:f1893b5610f7 694 float _2q1q3 = 2.0f * q1 * q3;
nikitamere 3:f1893b5610f7 695 float _2q3q4 = 2.0f * q3 * q4;
nikitamere 3:f1893b5610f7 696 float q1q1 = q1 * q1;
nikitamere 3:f1893b5610f7 697 float q1q2 = q1 * q2;
nikitamere 3:f1893b5610f7 698 float q1q3 = q1 * q3;
nikitamere 3:f1893b5610f7 699 float q1q4 = q1 * q4;
nikitamere 3:f1893b5610f7 700 float q2q2 = q2 * q2;
nikitamere 3:f1893b5610f7 701 float q2q3 = q2 * q3;
nikitamere 3:f1893b5610f7 702 float q2q4 = q2 * q4;
nikitamere 3:f1893b5610f7 703 float q3q3 = q3 * q3;
nikitamere 3:f1893b5610f7 704 float q3q4 = q3 * q4;
nikitamere 3:f1893b5610f7 705 float q4q4 = q4 * q4;
onehorse 0:2e5e65a6fb30 706
nikitamere 3:f1893b5610f7 707 // Normalise accelerometer measurement
nikitamere 3:f1893b5610f7 708 norm = sqrt(ax * ax + ay * ay + az * az);
nikitamere 3:f1893b5610f7 709 if (norm == 0.0f) return; // handle NaN
nikitamere 3:f1893b5610f7 710 norm = 1.0f/norm;
nikitamere 3:f1893b5610f7 711 ax *= norm;
nikitamere 3:f1893b5610f7 712 ay *= norm;
nikitamere 3:f1893b5610f7 713 az *= norm;
nikitamere 3:f1893b5610f7 714
nikitamere 3:f1893b5610f7 715 // Normalise magnetometer measurement
nikitamere 3:f1893b5610f7 716 norm = sqrt(mx * mx + my * my + mz * mz);
nikitamere 3:f1893b5610f7 717 if (norm == 0.0f) return; // handle NaN
nikitamere 3:f1893b5610f7 718 norm = 1.0f/norm;
nikitamere 3:f1893b5610f7 719 mx *= norm;
nikitamere 3:f1893b5610f7 720 my *= norm;
nikitamere 3:f1893b5610f7 721 mz *= norm;
onehorse 0:2e5e65a6fb30 722
nikitamere 3:f1893b5610f7 723 // Reference direction of Earth's magnetic field
nikitamere 3:f1893b5610f7 724 _2q1mx = 2.0f * q1 * mx;
nikitamere 3:f1893b5610f7 725 _2q1my = 2.0f * q1 * my;
nikitamere 3:f1893b5610f7 726 _2q1mz = 2.0f * q1 * mz;
nikitamere 3:f1893b5610f7 727 _2q2mx = 2.0f * q2 * mx;
nikitamere 3:f1893b5610f7 728 hx = mx * q1q1 - _2q1my * q4 + _2q1mz * q3 + mx * q2q2 + _2q2 * my * q3 + _2q2 * mz * q4 - mx * q3q3 - mx * q4q4;
nikitamere 3:f1893b5610f7 729 hy = _2q1mx * q4 + my * q1q1 - _2q1mz * q2 + _2q2mx * q3 - my * q2q2 + my * q3q3 + _2q3 * mz * q4 - my * q4q4;
nikitamere 3:f1893b5610f7 730 _2bx = sqrt(hx * hx + hy * hy);
nikitamere 3:f1893b5610f7 731 _2bz = -_2q1mx * q3 + _2q1my * q2 + mz * q1q1 + _2q2mx * q4 - mz * q2q2 + _2q3 * my * q4 - mz * q3q3 + mz * q4q4;
nikitamere 3:f1893b5610f7 732 _4bx = 2.0f * _2bx;
nikitamere 3:f1893b5610f7 733 _4bz = 2.0f * _2bz;
nikitamere 3:f1893b5610f7 734
nikitamere 3:f1893b5610f7 735 // Gradient decent algorithm corrective step
nikitamere 3:f1893b5610f7 736 s1 = -_2q3 * (2.0f * q2q4 - _2q1q3 - ax) + _2q2 * (2.0f * q1q2 + _2q3q4 - ay) - _2bz * q3 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q4 + _2bz * q2) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q3 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
nikitamere 3:f1893b5610f7 737 s2 = _2q4 * (2.0f * q2q4 - _2q1q3 - ax) + _2q1 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q2 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + _2bz * q4 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q3 + _2bz * q1) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q4 - _4bz * q2) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
nikitamere 3:f1893b5610f7 738 s3 = -_2q1 * (2.0f * q2q4 - _2q1q3 - ax) + _2q4 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q3 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + (-_4bx * q3 - _2bz * q1) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q2 + _2bz * q4) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q1 - _4bz * q3) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
nikitamere 3:f1893b5610f7 739 s4 = _2q2 * (2.0f * q2q4 - _2q1q3 - ax) + _2q3 * (2.0f * q1q2 + _2q3q4 - ay) + (-_4bx * q4 + _2bz * q2) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q1 + _2bz * q3) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q2 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
nikitamere 3:f1893b5610f7 740 norm = sqrt(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4); // normalise step magnitude
nikitamere 3:f1893b5610f7 741 norm = 1.0f/norm;
nikitamere 3:f1893b5610f7 742 s1 *= norm;
nikitamere 3:f1893b5610f7 743 s2 *= norm;
nikitamere 3:f1893b5610f7 744 s3 *= norm;
nikitamere 3:f1893b5610f7 745 s4 *= norm;
nikitamere 3:f1893b5610f7 746
nikitamere 3:f1893b5610f7 747 // Compute rate of change of quaternion
nikitamere 3:f1893b5610f7 748 qDot1 = 0.5f * (-q2 * gx - q3 * gy - q4 * gz) - beta * s1;
nikitamere 3:f1893b5610f7 749 qDot2 = 0.5f * (q1 * gx + q3 * gz - q4 * gy) - beta * s2;
nikitamere 3:f1893b5610f7 750 qDot3 = 0.5f * (q1 * gy - q2 * gz + q4 * gx) - beta * s3;
nikitamere 3:f1893b5610f7 751 qDot4 = 0.5f * (q1 * gz + q2 * gy - q3 * gx) - beta * s4;
onehorse 0:2e5e65a6fb30 752
nikitamere 3:f1893b5610f7 753 // Integrate to yield quaternion
nikitamere 3:f1893b5610f7 754 q1 += qDot1 * deltat;
nikitamere 3:f1893b5610f7 755 q2 += qDot2 * deltat;
nikitamere 3:f1893b5610f7 756 q3 += qDot3 * deltat;
nikitamere 3:f1893b5610f7 757 q4 += qDot4 * deltat;
nikitamere 3:f1893b5610f7 758 norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); // normalise quaternion
nikitamere 3:f1893b5610f7 759 norm = 1.0f/norm;
nikitamere 3:f1893b5610f7 760 q[0] = q1 * norm;
nikitamere 3:f1893b5610f7 761 q[1] = q2 * norm;
nikitamere 3:f1893b5610f7 762 q[2] = q3 * norm;
nikitamere 3:f1893b5610f7 763 q[3] = q4 * norm;
nikitamere 3:f1893b5610f7 764
nikitamere 3:f1893b5610f7 765 }
nikitamere 3:f1893b5610f7 766
nikitamere 3:f1893b5610f7 767
onehorse 0:2e5e65a6fb30 768
nikitamere 3:f1893b5610f7 769 // Similar to Madgwick scheme but uses proportional and integral filtering on the error between estimated reference vectors and
nikitamere 3:f1893b5610f7 770 // measured ones.
nikitamere 3:f1893b5610f7 771 void MahonyQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz) {
nikitamere 3:f1893b5610f7 772 float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability
nikitamere 3:f1893b5610f7 773 float norm;
nikitamere 3:f1893b5610f7 774 float hx, hy, bx, bz;
nikitamere 3:f1893b5610f7 775 float vx, vy, vz, wx, wy, wz;
nikitamere 3:f1893b5610f7 776 float ex, ey, ez;
nikitamere 3:f1893b5610f7 777 float pa, pb, pc;
nikitamere 3:f1893b5610f7 778
nikitamere 3:f1893b5610f7 779 // Auxiliary variables to avoid repeated arithmetic
nikitamere 3:f1893b5610f7 780 float q1q1 = q1 * q1;
nikitamere 3:f1893b5610f7 781 float q1q2 = q1 * q2;
nikitamere 3:f1893b5610f7 782 float q1q3 = q1 * q3;
nikitamere 3:f1893b5610f7 783 float q1q4 = q1 * q4;
nikitamere 3:f1893b5610f7 784 float q2q2 = q2 * q2;
nikitamere 3:f1893b5610f7 785 float q2q3 = q2 * q3;
nikitamere 3:f1893b5610f7 786 float q2q4 = q2 * q4;
nikitamere 3:f1893b5610f7 787 float q3q3 = q3 * q3;
nikitamere 3:f1893b5610f7 788 float q3q4 = q3 * q4;
nikitamere 3:f1893b5610f7 789 float q4q4 = q4 * q4;
onehorse 0:2e5e65a6fb30 790
nikitamere 3:f1893b5610f7 791 // Normalise accelerometer measurement
nikitamere 3:f1893b5610f7 792 norm = sqrt(ax * ax + ay * ay + az * az);
nikitamere 3:f1893b5610f7 793 if (norm == 0.0f) return; // handle NaN
nikitamere 3:f1893b5610f7 794 norm = 1.0f / norm; // use reciprocal for division
nikitamere 3:f1893b5610f7 795 ax *= norm;
nikitamere 3:f1893b5610f7 796 ay *= norm;
nikitamere 3:f1893b5610f7 797 az *= norm;
nikitamere 3:f1893b5610f7 798
nikitamere 3:f1893b5610f7 799 // Normalise magnetometer measurement
nikitamere 3:f1893b5610f7 800 norm = sqrt(mx * mx + my * my + mz * mz);
nikitamere 3:f1893b5610f7 801 if (norm == 0.0f) return; // handle NaN
nikitamere 3:f1893b5610f7 802 norm = 1.0f / norm; // use reciprocal for division
nikitamere 3:f1893b5610f7 803 mx *= norm;
nikitamere 3:f1893b5610f7 804 my *= norm;
nikitamere 3:f1893b5610f7 805 mz *= norm;
onehorse 0:2e5e65a6fb30 806
nikitamere 3:f1893b5610f7 807 // Reference direction of Earth's magnetic field
nikitamere 3:f1893b5610f7 808 hx = 2.0f * mx * (0.5f - q3q3 - q4q4) + 2.0f * my * (q2q3 - q1q4) + 2.0f * mz * (q2q4 + q1q3);
nikitamere 3:f1893b5610f7 809 hy = 2.0f * mx * (q2q3 + q1q4) + 2.0f * my * (0.5f - q2q2 - q4q4) + 2.0f * mz * (q3q4 - q1q2);
nikitamere 3:f1893b5610f7 810 bx = sqrt((hx * hx) + (hy * hy));
nikitamere 3:f1893b5610f7 811 bz = 2.0f * mx * (q2q4 - q1q3) + 2.0f * my * (q3q4 + q1q2) + 2.0f * mz * (0.5f - q2q2 - q3q3);
onehorse 0:2e5e65a6fb30 812
nikitamere 3:f1893b5610f7 813 // Estimated direction of gravity and magnetic field
nikitamere 3:f1893b5610f7 814 vx = 2.0f * (q2q4 - q1q3);
nikitamere 3:f1893b5610f7 815 vy = 2.0f * (q1q2 + q3q4);
nikitamere 3:f1893b5610f7 816 vz = q1q1 - q2q2 - q3q3 + q4q4;
nikitamere 3:f1893b5610f7 817 wx = 2.0f * bx * (0.5f - q3q3 - q4q4) + 2.0f * bz * (q2q4 - q1q3);
nikitamere 3:f1893b5610f7 818 wy = 2.0f * bx * (q2q3 - q1q4) + 2.0f * bz * (q1q2 + q3q4);
nikitamere 3:f1893b5610f7 819 wz = 2.0f * bx * (q1q3 + q2q4) + 2.0f * bz * (0.5f - q2q2 - q3q3);
onehorse 0:2e5e65a6fb30 820
nikitamere 3:f1893b5610f7 821 // Error is cross product between estimated direction and measured direction of gravity
nikitamere 3:f1893b5610f7 822 ex = (ay * vz - az * vy) + (my * wz - mz * wy);
nikitamere 3:f1893b5610f7 823 ey = (az * vx - ax * vz) + (mz * wx - mx * wz);
nikitamere 3:f1893b5610f7 824 ez = (ax * vy - ay * vx) + (mx * wy - my * wx);
nikitamere 3:f1893b5610f7 825 if (Ki > 0.0f) {
nikitamere 3:f1893b5610f7 826 eInt[0] += ex; // accumulate integral error
nikitamere 3:f1893b5610f7 827 eInt[1] += ey;
nikitamere 3:f1893b5610f7 828 eInt[2] += ez;
nikitamere 3:f1893b5610f7 829 } else {
nikitamere 3:f1893b5610f7 830 eInt[0] = 0.0f; // prevent integral wind up
nikitamere 3:f1893b5610f7 831 eInt[1] = 0.0f;
nikitamere 3:f1893b5610f7 832 eInt[2] = 0.0f;
onehorse 0:2e5e65a6fb30 833 }
nikitamere 3:f1893b5610f7 834
nikitamere 3:f1893b5610f7 835 // Apply feedback terms
nikitamere 3:f1893b5610f7 836 gx = gx + Kp * ex + Ki * eInt[0];
nikitamere 3:f1893b5610f7 837 gy = gy + Kp * ey + Ki * eInt[1];
nikitamere 3:f1893b5610f7 838 gz = gz + Kp * ez + Ki * eInt[2];
nikitamere 3:f1893b5610f7 839
nikitamere 3:f1893b5610f7 840 // Integrate rate of change of quaternion
nikitamere 3:f1893b5610f7 841 pa = q2;
nikitamere 3:f1893b5610f7 842 pb = q3;
nikitamere 3:f1893b5610f7 843 pc = q4;
nikitamere 3:f1893b5610f7 844 q1 = q1 + (-q2 * gx - q3 * gy - q4 * gz) * (0.5f * deltat);
nikitamere 3:f1893b5610f7 845 q2 = pa + (q1 * gx + pb * gz - pc * gy) * (0.5f * deltat);
nikitamere 3:f1893b5610f7 846 q3 = pb + (q1 * gy - pa * gz + pc * gx) * (0.5f * deltat);
nikitamere 3:f1893b5610f7 847 q4 = pc + (q1 * gz + pa * gy - pb * gx) * (0.5f * deltat);
nikitamere 3:f1893b5610f7 848
nikitamere 3:f1893b5610f7 849 // Normalise quaternion
nikitamere 3:f1893b5610f7 850 norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4);
nikitamere 3:f1893b5610f7 851 norm = 1.0f / norm;
nikitamere 3:f1893b5610f7 852 q[0] = q1 * norm;
nikitamere 3:f1893b5610f7 853 q[1] = q2 * norm;
nikitamere 3:f1893b5610f7 854 q[2] = q3 * norm;
nikitamere 3:f1893b5610f7 855 q[3] = q4 * norm;
nikitamere 3:f1893b5610f7 856
nikitamere 3:f1893b5610f7 857 }
nikitamere 3:f1893b5610f7 858 };
nikitamere 3:f1893b5610f7 859
nikitamere 3:f1893b5610f7 860 class IMU
nikitamere 3:f1893b5610f7 861 {
nikitamere 3:f1893b5610f7 862
nikitamere 3:f1893b5610f7 863 public:
nikitamere 3:f1893b5610f7 864
nikitamere 3:f1893b5610f7 865 void init(bool debug) {
nikitamere 3:f1893b5610f7 866
nikitamere 3:f1893b5610f7 867 this->debug = debug;
nikitamere 3:f1893b5610f7 868 i2c.frequency(400000); // use fast (400 kHz) I2C
nikitamere 3:f1893b5610f7 869 Serial pc(USBTX,USBRX);
nikitamere 3:f1893b5610f7 870 pc.baud(38400);
nikitamere 3:f1893b5610f7 871 pc.printf("CPU SystemCoreClock is %d Hz\r\n", SystemCoreClock);
nikitamere 3:f1893b5610f7 872
nikitamere 3:f1893b5610f7 873 t.start();
nikitamere 3:f1893b5610f7 874
nikitamere 3:f1893b5610f7 875 // Read the WHO_AM_I register, this is a good test of communication
nikitamere 3:f1893b5610f7 876 uint8_t whoami = mpu9250.readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250); // Read WHO_AM_I register for MPU-9250
nikitamere 3:f1893b5610f7 877 pc.printf("I AM 0x%x\n\r", whoami);
nikitamere 3:f1893b5610f7 878 pc.printf("I SHOULD BE 0x71\n\r");
nikitamere 3:f1893b5610f7 879
nikitamere 3:f1893b5610f7 880 if (whoami == 0x71) { // WHO_AM_I should always be 0x68
nikitamere 3:f1893b5610f7 881 pc.printf("MPU9250 WHO_AM_I is 0x%x\n\r", whoami);
nikitamere 3:f1893b5610f7 882 pc.printf("MPU9250 is online...\n\r");
nikitamere 3:f1893b5610f7 883 sprintf(buffer, "0x%x", whoami);
nikitamere 3:f1893b5610f7 884
nikitamere 3:f1893b5610f7 885 wait(1);
onehorse 0:2e5e65a6fb30 886
nikitamere 3:f1893b5610f7 887 mpu9250.resetMPU9250(); // Reset registers to default in preparation for device calibration
nikitamere 3:f1893b5610f7 888 mpu9250.MPU9250SelfTest(SelfTest); // Start by performing self test and reporting values
nikitamere 3:f1893b5610f7 889 if (debug)
nikitamere 3:f1893b5610f7 890 {
nikitamere 3:f1893b5610f7 891 pc.printf("x-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[0]);
nikitamere 3:f1893b5610f7 892 pc.printf("y-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[1]);
nikitamere 3:f1893b5610f7 893 pc.printf("z-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[2]);
nikitamere 3:f1893b5610f7 894 pc.printf("x-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[3]);
nikitamere 3:f1893b5610f7 895 pc.printf("y-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[4]);
nikitamere 3:f1893b5610f7 896 pc.printf("z-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[5]);
nikitamere 3:f1893b5610f7 897 }
nikitamere 3:f1893b5610f7 898 mpu9250.calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers
nikitamere 3:f1893b5610f7 899
nikitamere 3:f1893b5610f7 900 if (debug)
nikitamere 3:f1893b5610f7 901 {
nikitamere 3:f1893b5610f7 902 pc.printf("x gyro bias = %f\n\r", gyroBias[0]);
nikitamere 3:f1893b5610f7 903 pc.printf("y gyro bias = %f\n\r", gyroBias[1]);
nikitamere 3:f1893b5610f7 904 pc.printf("z gyro bias = %f\n\r", gyroBias[2]);
nikitamere 3:f1893b5610f7 905 pc.printf("x accel bias = %f\n\r", accelBias[0]);
nikitamere 3:f1893b5610f7 906 pc.printf("y accel bias = %f\n\r", accelBias[1]);
nikitamere 3:f1893b5610f7 907 pc.printf("z accel bias = %f\n\r", accelBias[2]);
nikitamere 3:f1893b5610f7 908 }
nikitamere 3:f1893b5610f7 909
nikitamere 3:f1893b5610f7 910 wait(2);
nikitamere 3:f1893b5610f7 911 mpu9250.initMPU9250();
nikitamere 3:f1893b5610f7 912 pc.printf("MPU9250 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
nikitamere 3:f1893b5610f7 913 mpu9250.initAK8963(magCalibration);
nikitamere 3:f1893b5610f7 914 pc.printf("AK8963 initialized for active data mode....\n\r"); // Initialize device for active mode read of magnetometer
nikitamere 3:f1893b5610f7 915 if (debug) pc.printf("Accelerometer full-scale range = %f g\n\r", 2.0f*(float)(1<<Ascale));
nikitamere 3:f1893b5610f7 916 if (debug) pc.printf("Gyroscope full-scale range = %f deg/s\n\r", 250.0f*(float)(1<<Gscale));
nikitamere 3:f1893b5610f7 917
nikitamere 3:f1893b5610f7 918 if(Mscale == 0 && debug) pc.printf("Magnetometer resolution = 14 bits\n\r");
nikitamere 3:f1893b5610f7 919 if(Mscale == 1 && debug) pc.printf("Magnetometer resolution = 16 bits\n\r");
nikitamere 3:f1893b5610f7 920 if(Mmode == 2 && debug) pc.printf("Magnetometer ODR = 8 Hz\n\r");
nikitamere 3:f1893b5610f7 921 if(Mmode == 6 && debug) pc.printf("Magnetometer ODR = 100 Hz\n\r");
nikitamere 3:f1893b5610f7 922 wait(1);
nikitamere 3:f1893b5610f7 923 } else {
nikitamere 3:f1893b5610f7 924 pc.printf("Could not connect to MPU9250: \n\r");
nikitamere 3:f1893b5610f7 925 pc.printf("%#x \n", whoami);
onehorse 0:2e5e65a6fb30 926
nikitamere 3:f1893b5610f7 927
nikitamere 3:f1893b5610f7 928 while(1) ; // Loop forever if communication doesn't happen
nikitamere 3:f1893b5610f7 929 }
onehorse 0:2e5e65a6fb30 930
nikitamere 3:f1893b5610f7 931 mpu9250.getAres(); // Get accelerometer sensitivity
nikitamere 3:f1893b5610f7 932 mpu9250.getGres(); // Get gyro sensitivity
nikitamere 3:f1893b5610f7 933 mpu9250.getMres(); // Get magnetometer sensitivity
nikitamere 3:f1893b5610f7 934 if (debug) pc.printf("Accelerometer sensitivity is %f LSB/g \n\r", 1.0f/aRes);
nikitamere 3:f1893b5610f7 935 if (debug) pc.printf("Gyroscope sensitivity is %f LSB/deg/s \n\r", 1.0f/gRes);
nikitamere 3:f1893b5610f7 936 if (debug) pc.printf("Magnetometer sensitivity is %f LSB/G \n\r", 1.0f/mRes);
nikitamere 3:f1893b5610f7 937 magbias[0] = +470.; // User environmental x-axis correction in milliGauss, should be automatically calculated
nikitamere 3:f1893b5610f7 938 magbias[1] = +120.; // User environmental x-axis correction in milliGauss
nikitamere 3:f1893b5610f7 939 magbias[2] = +125.; // User environmental x-axis correction in milliGauss
onehorse 0:2e5e65a6fb30 940
nikitamere 3:f1893b5610f7 941
nikitamere 3:f1893b5610f7 942 yawZero=0;
nikitamere 3:f1893b5610f7 943 rollZero=0;
nikitamere 3:f1893b5610f7 944 pitchZero=0;
nikitamere 3:f1893b5610f7 945
nikitamere 3:f1893b5610f7 946
nikitamere 3:f1893b5610f7 947 }
nikitamere 3:f1893b5610f7 948
nikitamere 3:f1893b5610f7 949 void update() {
nikitamere 3:f1893b5610f7 950 // If intPin goes high, all data registers have new data
nikitamere 3:f1893b5610f7 951 if(mpu9250.readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01) { // On interrupt, check if data ready interrupt
nikitamere 3:f1893b5610f7 952
nikitamere 3:f1893b5610f7 953 mpu9250.readAccelData(accelCount); // Read the x/y/z adc values
nikitamere 3:f1893b5610f7 954 // Now we'll calculate the accleration value into actual g's
nikitamere 3:f1893b5610f7 955 ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set
nikitamere 3:f1893b5610f7 956 ay = (float)accelCount[1]*aRes - accelBias[1];
nikitamere 3:f1893b5610f7 957 az = (float)accelCount[2]*aRes - accelBias[2];
nikitamere 3:f1893b5610f7 958
nikitamere 3:f1893b5610f7 959 mpu9250.readGyroData(gyroCount); // Read the x/y/z adc values
nikitamere 3:f1893b5610f7 960 // Calculate the gyro value into actual degrees per second
nikitamere 3:f1893b5610f7 961 gx = (float)gyroCount[0]*gRes - gyroBias[0]; // get actual gyro value, this depends on scale being set
nikitamere 3:f1893b5610f7 962 gy = (float)gyroCount[1]*gRes - gyroBias[1];
nikitamere 3:f1893b5610f7 963 gz = (float)gyroCount[2]*gRes - gyroBias[2];
onehorse 0:2e5e65a6fb30 964
nikitamere 3:f1893b5610f7 965 mpu9250.readMagData(magCount); // Read the x/y/z adc values
nikitamere 3:f1893b5610f7 966 // Calculate the magnetometer values in milliGauss
nikitamere 3:f1893b5610f7 967 // Include factory calibration per data sheet and user environmental corrections
nikitamere 3:f1893b5610f7 968 mx = (float)magCount[0]*mRes*magCalibration[0] - magbias[0]; // get actual magnetometer value, this depends on scale being set
nikitamere 3:f1893b5610f7 969 my = (float)magCount[1]*mRes*magCalibration[1] - magbias[1];
nikitamere 3:f1893b5610f7 970 mz = (float)magCount[2]*mRes*magCalibration[2] - magbias[2];
nikitamere 3:f1893b5610f7 971 }
nikitamere 3:f1893b5610f7 972
nikitamere 3:f1893b5610f7 973 Now = t.read_us();
nikitamere 3:f1893b5610f7 974 deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
nikitamere 3:f1893b5610f7 975 lastUpdate = Now;
nikitamere 3:f1893b5610f7 976
nikitamere 3:f1893b5610f7 977 sum += deltat;
nikitamere 3:f1893b5610f7 978 sumCount++;
nikitamere 3:f1893b5610f7 979
nikitamere 3:f1893b5610f7 980 // if(lastUpdate - firstUpdate > 10000000.0f) {
nikitamere 3:f1893b5610f7 981 // beta = 0.04; // decrease filter gain after stabilized
nikitamere 3:f1893b5610f7 982 // zeta = 0.015; // increasey bias drift gain after stabilized
nikitamere 3:f1893b5610f7 983 // }
nikitamere 3:f1893b5610f7 984
nikitamere 3:f1893b5610f7 985 // Pass gyro rate as rad/s
nikitamere 3:f1893b5610f7 986 //mpu9250.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz);
nikitamere 3:f1893b5610f7 987 mpu9250.MahonyQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz);
nikitamere 3:f1893b5610f7 988 }
onehorse 0:2e5e65a6fb30 989
nikitamere 3:f1893b5610f7 990 void setZero() {
nikitamere 3:f1893b5610f7 991 rollZero = getRollRelative();
nikitamere 3:f1893b5610f7 992 pitchZero = getPitchRelative();
nikitamere 3:f1893b5610f7 993 yawZero = getYawRelative();
nikitamere 3:f1893b5610f7 994 }
nikitamere 3:f1893b5610f7 995
nikitamere 3:f1893b5610f7 996 void updateRollAbsolute() {
nikitamere 3:f1893b5610f7 997 roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
nikitamere 3:f1893b5610f7 998 roll *= 180.0f / PI;
nikitamere 3:f1893b5610f7 999
nikitamere 3:f1893b5610f7 1000 }
nikitamere 3:f1893b5610f7 1001
nikitamere 3:f1893b5610f7 1002 void updatePitchAbsolute() {
nikitamere 3:f1893b5610f7 1003 pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
nikitamere 3:f1893b5610f7 1004 pitch *= 180.0f / PI;
nikitamere 3:f1893b5610f7 1005 }
nikitamere 3:f1893b5610f7 1006
nikitamere 3:f1893b5610f7 1007 void updateYawAbsolute() {
nikitamere 3:f1893b5610f7 1008 yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);
nikitamere 3:f1893b5610f7 1009 yaw *= 180.0f / PI;
nikitamere 3:f1893b5610f7 1010 }
nikitamere 3:f1893b5610f7 1011
nikitamere 3:f1893b5610f7 1012 float getRollRelative() {
nikitamere 3:f1893b5610f7 1013 float res = roll - rollZero;
nikitamere 3:f1893b5610f7 1014 if (debug) printf("[d] Roll relative value: %f\n\r", res);
nikitamere 3:f1893b5610f7 1015 return res;
nikitamere 3:f1893b5610f7 1016 }
onehorse 0:2e5e65a6fb30 1017
nikitamere 3:f1893b5610f7 1018 float getPitchRelative() {
nikitamere 3:f1893b5610f7 1019 float res = pitch - pitchZero;
nikitamere 3:f1893b5610f7 1020 if (debug) printf("[d] Pitch relative value: %f\n\r", res);
nikitamere 3:f1893b5610f7 1021 return res;
nikitamere 3:f1893b5610f7 1022 }
nikitamere 3:f1893b5610f7 1023
nikitamere 3:f1893b5610f7 1024 float getYawRelative() {
nikitamere 3:f1893b5610f7 1025 float res = yaw - yawZero;
nikitamere 3:f1893b5610f7 1026 if (debug) printf("[d] Yaw relative value: %f\n\r", res);
nikitamere 3:f1893b5610f7 1027 return res;
nikitamere 3:f1893b5610f7 1028 }
nikitamere 3:f1893b5610f7 1029
nikitamere 3:f1893b5610f7 1030
nikitamere 3:f1893b5610f7 1031
onehorse 0:2e5e65a6fb30 1032
nikitamere 3:f1893b5610f7 1033 private:
nikitamere 3:f1893b5610f7 1034
nikitamere 3:f1893b5610f7 1035
nikitamere 3:f1893b5610f7 1036
nikitamere 3:f1893b5610f7 1037 float rollZero, pitchZero, yawZero;
nikitamere 3:f1893b5610f7 1038 bool debug;
nikitamere 3:f1893b5610f7 1039 Timer t;
nikitamere 3:f1893b5610f7 1040 float sum;
nikitamere 3:f1893b5610f7 1041 uint32_t sumCount;
nikitamere 3:f1893b5610f7 1042 char buffer[14];
nikitamere 3:f1893b5610f7 1043
nikitamere 3:f1893b5610f7 1044 MPU9250 mpu9250;
nikitamere 3:f1893b5610f7 1045 };
nikitamere 3:f1893b5610f7 1046
onehorse 0:2e5e65a6fb30 1047 #endif