NXP LPC1768 Ethernet driver for lwip and CMSIS-RTOS

Dependents:   EthernetInterface EthernetInterface EthernetInterface_RSF EthernetInterface ... more

Legacy Networking Libraries

This is an mbed 2 networking library. For mbed 5, the networking libraries have been revised to better support additional network stacks and thread safety here.

This library is based on the code of the NXP LPC port of the Lightweight TCP/IP Stack

Copyright(C) 2011, NXP Semiconductor
All rights reserved.

Software that is described herein is for illustrative purposes only
which provides customers with programming information regarding the
products. This software is supplied "AS IS" without any warranties.
NXP Semiconductors assumes no responsibility or liability for the
use of the software, conveys no license or title under any patent,
copyright, or mask work right to the product. NXP Semiconductors
reserves the right to make changes in the software without
notification. NXP Semiconductors also make no representation or
warranty that such application will be suitable for the specified
use without further testing or modification.

arch/TARGET_Freescale/k64f_emac.c

Committer:
mbed_official
Date:
2014-09-19
Revision:
19:007f4e6b2776
Parent:
17:eb2c8c3aa1cd
Child:
20:620d381e7f4c

File content as of revision 19:007f4e6b2776:

#include "lwip/opt.h"
#include "lwip/sys.h"
#include "lwip/def.h"
#include "lwip/mem.h"
#include "lwip/pbuf.h"
#include "lwip/stats.h"
#include "lwip/snmp.h"
#include "lwip/tcpip.h"
#include "netif/etharp.h"
#include "netif/ppp_oe.h"

#include "eth_arch.h"
#include "sys_arch.h"

#include "fsl_enet_driver.h"
#include "fsl_enet_hal.h"
#include "fsl_device_registers.h"
#include "fsl_phy_driver.h"
#include "fsl_interrupt_manager.h"
#include "k64f_emac_config.h"
#include <ctype.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#include "mbed_interface.h"

extern IRQn_Type enet_irq_ids[HW_ENET_INSTANCE_COUNT][FSL_FEATURE_ENET_INTERRUPT_COUNT];
extern uint8_t enetIntMap[kEnetIntNum];
extern void *enetIfHandle;

/********************************************************************************
 * Internal data
 ********************************************************************************/

extern void k64f_init_eth_hardware(void);

/* K64F EMAC driver data structure */
struct k64f_enetdata {
  struct netif *netif;  /**< Reference back to LWIP parent netif */
  sys_sem_t RxReadySem; /**< RX packet ready semaphore */
  sys_sem_t TxCleanSem; /**< TX cleanup thread wakeup semaphore */
  sys_mutex_t TXLockMutex; /**< TX critical section mutex */
  sys_sem_t xTXDCountSem; /**< TX free buffer counting semaphore */
  volatile u32_t rx_free_descs; /**< Count of free RX descriptors */
  struct pbuf *rxb[ENET_RX_RING_LEN]; /**< RX pbuf pointer list, zero-copy mode */
  uint8_t *rx_desc_start_addr; /**< RX descriptor start address */
  uint8_t *tx_desc_start_addr; /**< TX descriptor start address */
  uint8_t tx_consume_index, tx_produce_index; /**< TX buffers ring */
  uint8_t rx_fill_index; /**< RX ring fill index */
  struct pbuf *txb[ENET_TX_RING_LEN]; /**< TX pbuf pointer list, zero-copy mode */
  void *txb_aligned[ENET_TX_RING_LEN]; /**< TX aligned buffers (if needed) */
};

static struct k64f_enetdata k64f_enetdata;

static enet_dev_if_t enetDevIf[HW_ENET_INSTANCE_COUNT];
static enet_mac_config_t g_enetMacCfg[HW_ENET_INSTANCE_COUNT] = 
{
  {
    ENET_ETH_MAX_FLEN ,  /*!< enet receive buffer size*/
    ENET_RX_LARGE_BUFFER_NUM, /*!< enet large receive buffer number*/
    ENET_RX_RING_LEN,        /*!< enet receive bd number*/
    ENET_TX_RING_LEN,        /*!< enet transmit bd number*/
    {0},                /*!< enet mac address*/
    kEnetCfgRmii,       /*!< enet rmii interface*/
    kEnetCfgSpeed100M,  /*!< enet rmii 100M*/
    kEnetCfgFullDuplex, /*!< enet rmii Full- duplex*/
     /*!< enet mac control flag recommended to use enet_mac_control_flag_t
      we send frame with crc so receive crc forward for data length check test*/
    kEnetRxCrcFwdEnable | kEnetRxFlowControlEnable,
    true,         /*!< enet txaccelerator enabled*/
    true,        /*!< enet rxaccelerator enabled*/
    false,        /*!< enet store and forward*/
    {false, false, true, false, true},  /*!< enet rxaccelerator config*/
    {false, false, true},          /*!< enet txaccelerator config*/
    true,               /*!< vlan frame support*/
    true,               /*!< phy auto discover*/
    ENET_MII_CLOCK,     /*!< enet MDC clock*/
  },
};

static enet_phy_config_t g_enetPhyCfg[HW_ENET_INSTANCE_COUNT] =
{
  {0, false}
};

/** \brief  Driver transmit and receive thread priorities
 *
 * Thread priorities for receive thread and TX cleanup thread. Alter
 * to prioritize receive or transmit bandwidth. In a heavily loaded
 * system or with LEIP_DEBUG enabled, the priorities might be better
 * the same. */
#define RX_PRIORITY   (osPriorityNormal)
#define TX_PRIORITY   (osPriorityNormal)
#define PHY_PRIORITY  (osPriorityNormal)

/** \brief  Debug output formatter lock define
 *
 * When using FreeRTOS and with LWIP_DEBUG enabled, enabling this
 * define will allow RX debug messages to not interleave with the
 * TX messages (so they are actually readable). Not enabling this
 * define when the system is under load will cause the output to
 * be unreadable. There is a small tradeoff in performance for this
 * so use it only for debug. */
//#define LOCK_RX_THREAD

/** \brief  Signal used for ethernet ISR to signal packet_rx() thread.
 */
#define RX_SIGNAL  1

// K64F-specific macros
#define RX_PBUF_AUTO_INDEX    (-1)

/********************************************************************************
 * Buffer management
 ********************************************************************************/

/** \brief  Queues a pbuf into the RX descriptor list
 *
 *  \param[in] k64f_enet Pointer to the drvier data structure
 *  \param[in] p         Pointer to pbuf to queue
 *  \param[in] bidx      Index to queue into   
 */
static void k64f_rxqueue_pbuf(struct k64f_enetdata *k64f_enet, struct pbuf *p, int bidx)
{
  enet_bd_struct_t *start = (enet_bd_struct_t *)k64f_enet->rx_desc_start_addr;
  int idx;

  /* Get next free descriptor index */
  if (bidx == RX_PBUF_AUTO_INDEX)
    idx = k64f_enet->rx_fill_index;
  else
    idx = bidx;

  /* Setup descriptor and clear statuses */
  enet_hal_init_rxbds(start + idx, (uint8_t*)p->payload, idx == ENET_RX_RING_LEN - 1);

  /* Save pbuf pointer for push to network layer later */
  k64f_enet->rxb[idx] = p;

  /* Wrap at end of descriptor list */
  idx = (idx + 1) % ENET_RX_RING_LEN;

  /* Queue descriptor(s) */
  k64f_enet->rx_free_descs -= 1;

  if (bidx == RX_PBUF_AUTO_INDEX)
    k64f_enet->rx_fill_index = idx;

  enet_hal_active_rxbd(BOARD_DEBUG_ENET_INSTANCE);

  LWIP_DEBUGF(UDP_LPC_EMAC | LWIP_DBG_TRACE,
    ("k64f_rxqueue_pbuf: pbuf packet queued: %p (free desc=%d)\n", p,
      k64f_enet->rx_free_descs));
}

/** \brief  Attempt to allocate and requeue a new pbuf for RX
 *
 *  \param[in]     netif Pointer to the netif structure
 *  \returns       number of queued packets
 */
s32_t k64f_rx_queue(struct netif *netif, int idx)
{
  struct k64f_enetdata *k64f_enet = netif->state;
  enet_dev_if_t *enetIfPtr = (enet_dev_if_t *)&enetDevIf[BOARD_DEBUG_ENET_INSTANCE];
  struct pbuf *p;
  int queued = 0;

  /* Attempt to requeue as many packets as possible */
  while (k64f_enet->rx_free_descs > 0) {
    /* Allocate a pbuf from the pool. We need to allocate at the
       maximum size as we don't know the size of the yet to be
       received packet. */
    p = pbuf_alloc(PBUF_RAW, enetIfPtr->macCfgPtr->rxBufferSize + RX_BUF_ALIGNMENT, PBUF_RAM);
    if (p == NULL) {
      LWIP_DEBUGF(UDP_LPC_EMAC | LWIP_DBG_TRACE,
        ("k64_rx_queue: could not allocate RX pbuf (free desc=%d)\n",
        k64f_enet->rx_free_descs));
      return queued;
    }
    /* K64F note: the next line ensures that the RX buffer is properly aligned for the K64F
       RX descriptors (16 bytes alignment). However, by doing so, we're effectively changing
       a data structure which is internal to lwIP. This might not prove to be a good idea
       in the long run, but a better fix would probably involve modifying lwIP itself */
    p->payload = (void*)ENET_ALIGN((uint32_t)p->payload, RX_BUF_ALIGNMENT);
    
    /* pbufs allocated from the RAM pool should be non-chained. */
    LWIP_ASSERT("k64f_rx_queue: pbuf is not contiguous (chained)", pbuf_clen(p) <= 1);

    /* Queue packet */
    k64f_rxqueue_pbuf(k64f_enet, p, idx);
    queued++;
  }

  return queued;
}

/** \brief  Sets up the RX descriptor ring buffers.
 *
 *  This function sets up the descriptor list used for receive packets.
 *
 *  \param[in]  netif  Pointer to driver data structure
 *  \returns           ERR_MEM if out of memory, ERR_OK otherwise
 */
static err_t k64f_rx_setup(struct netif *netif, enet_rxbd_config_t *rxbdCfg) {   
  struct k64f_enetdata *k64f_enet = netif->state;
  enet_dev_if_t *enetIfPtr = (enet_dev_if_t *)&enetDevIf[BOARD_DEBUG_ENET_INSTANCE];
  uint8_t *rxBdPtr;
  uint32_t rxBufferSizeAligned;

  // Allocate RX descriptors
  rxBdPtr = (uint8_t *)calloc(1, enet_hal_get_bd_size() * enetIfPtr->macCfgPtr->rxBdNumber + ENET_BD_ALIGNMENT);
  if(!rxBdPtr)
      return ERR_MEM;
  k64f_enet->rx_desc_start_addr = (uint8_t *)ENET_ALIGN((uint32_t)rxBdPtr, ENET_BD_ALIGNMENT);
  k64f_enet->rx_free_descs = enetIfPtr->macCfgPtr->rxBdNumber;
  k64f_enet->rx_fill_index = 0;

  rxBufferSizeAligned = ENET_ALIGN(enetIfPtr->macCfgPtr->rxBufferSize, ENET_RX_BUFFER_ALIGNMENT);
  enetIfPtr->macContextPtr->rxBufferSizeAligned = rxBufferSizeAligned;
  rxbdCfg->rxBdPtrAlign = k64f_enet->rx_desc_start_addr;
  rxbdCfg->rxBdNum = enetIfPtr->macCfgPtr->rxBdNumber;
  rxbdCfg->rxBufferNum = enetIfPtr->macCfgPtr->rxBdNumber;
  
  k64f_rx_queue(netif, RX_PBUF_AUTO_INDEX);
  return ERR_OK;
}

/** \brief  Sets up the TX descriptor ring buffers.
 *
 *  This function sets up the descriptor list used for transmit packets.
 *
 *  \param[in]      netif  Pointer to driver data structure
 *  \returns               ERR_MEM if out of memory, ERR_OK otherwise
 */
static err_t k64f_tx_setup(struct netif *netif, enet_txbd_config_t *txbdCfg) {
  struct k64f_enetdata *k64f_enet = netif->state;
  enet_dev_if_t *enetIfPtr = (enet_dev_if_t *)&enetDevIf[BOARD_DEBUG_ENET_INSTANCE];
  uint8_t *txBdPtr;

  // Allocate TX descriptors
  txBdPtr = (uint8_t *)calloc(1, enet_hal_get_bd_size() * enetIfPtr->macCfgPtr->txBdNumber + ENET_BD_ALIGNMENT);
  if(!txBdPtr)
    return ERR_MEM;

  k64f_enet->tx_desc_start_addr = (uint8_t *)ENET_ALIGN((uint32_t)txBdPtr, ENET_BD_ALIGNMENT);
  k64f_enet->tx_consume_index = k64f_enet->tx_produce_index = 0;

  txbdCfg->txBdPtrAlign = k64f_enet->tx_desc_start_addr;
  txbdCfg->txBufferNum = enetIfPtr->macCfgPtr->txBdNumber;
  txbdCfg->txBufferSizeAlign = ENET_ALIGN(enetIfPtr->maxFrameSize, ENET_TX_BUFFER_ALIGNMENT);

  // Make the TX descriptor ring circular
  enet_hal_init_txbds(k64f_enet->tx_desc_start_addr + enet_hal_get_bd_size() * (ENET_TX_RING_LEN - 1), 1);

  return ERR_OK;
}

/** \brief  Free TX buffers that are complete
 *
 *  \param[in] k64f_enet  Pointer to driver data structure
 */
static void k64f_tx_reclaim(struct k64f_enetdata *k64f_enet)
{
  uint8_t i;
  volatile enet_bd_struct_t * bdPtr = (enet_bd_struct_t *)k64f_enet->tx_desc_start_addr;

  /* Get exclusive access */
  sys_mutex_lock(&k64f_enet->TXLockMutex);

  // Traverse all descriptors, looking for the ones modified by the uDMA
  i = k64f_enet->tx_consume_index;
  while(i != k64f_enet->tx_produce_index && !(bdPtr[i].control & kEnetTxBdReady)) {
      if (k64f_enet->txb_aligned[i]) {
        free(k64f_enet->txb_aligned[i]);
        k64f_enet->txb_aligned[i] = NULL;
      } else if (k64f_enet->txb[i]) {
        pbuf_free(k64f_enet->txb[i]);
        k64f_enet->txb[i] = NULL;
      }
      osSemaphoreRelease(k64f_enet->xTXDCountSem.id);
      bdPtr[i].controlExtend2 &= ~TX_DESC_UPDATED_MASK;
      i = (i + 1) % ENET_TX_RING_LEN;
  }
  k64f_enet->tx_consume_index = i;

  /* Restore access */
  sys_mutex_unlock(&k64f_enet->TXLockMutex);
}

/** \brief  Low level init of the MAC and PHY.
 *
 *  \param[in]      netif  Pointer to LWIP netif structure
 */
static err_t low_level_init(struct netif *netif)
{
  enet_dev_if_t * enetIfPtr;
  uint32_t device = BOARD_DEBUG_ENET_INSTANCE;
  enet_rxbd_config_t rxbdCfg;
  enet_txbd_config_t txbdCfg;
  enet_phy_speed_t phy_speed;
  enet_phy_duplex_t phy_duplex;

  k64f_init_eth_hardware();
  
  /* Initialize device*/
  enetIfPtr = (enet_dev_if_t *)&enetDevIf[device];
  enetIfPtr->deviceNumber = device;
  enetIfPtr->macCfgPtr = &g_enetMacCfg[device];
  enetIfPtr->phyCfgPtr = &g_enetPhyCfg[device];
  enetIfPtr->macApiPtr = &g_enetMacApi;
  enetIfPtr->phyApiPtr = (void *)&g_enetPhyApi;
  memcpy(enetIfPtr->macCfgPtr->macAddr, (char*)netif->hwaddr, kEnetMacAddrLen);

  /* Allocate buffer for ENET mac context*/
  enetIfPtr->macContextPtr = (enet_mac_context_t *)calloc(1, sizeof(enet_mac_context_t));
  if (!enetIfPtr->macContextPtr) {
    return ERR_BUF;
  }  

  /* Initialize enet buffers*/
  if(k64f_rx_setup(netif, &rxbdCfg) != ERR_OK) {
    return ERR_BUF;
  }
  /* Initialize enet buffers*/
  if(k64f_tx_setup(netif, &txbdCfg) != ERR_OK) {
    return ERR_BUF;
  }
  /* Initialize enet module*/
  if (enet_mac_init(enetIfPtr, &rxbdCfg, &txbdCfg) == kStatus_ENET_Success)
  {
    /* Initialize PHY*/
    if (enetIfPtr->macCfgPtr->isPhyAutoDiscover) {
      if (((enet_phy_api_t *)(enetIfPtr->phyApiPtr))->phy_auto_discover(enetIfPtr) != kStatus_PHY_Success)
        return ERR_IF;
    }
    if (((enet_phy_api_t *)(enetIfPtr->phyApiPtr))->phy_init(enetIfPtr) != kStatus_PHY_Success)
      return ERR_IF;

    enetIfPtr->isInitialized = true;
  }
  else
  {
    // TODOETH: cleanup memory
    return ERR_IF;
  }

  /* Get link information from PHY */
  phy_get_link_speed(enetIfPtr, &phy_speed);
  phy_get_link_duplex(enetIfPtr, &phy_duplex);
  BW_ENET_RCR_RMII_10T(enetIfPtr->deviceNumber, phy_speed == kEnetSpeed10M ? kEnetCfgSpeed10M : kEnetCfgSpeed100M);
  BW_ENET_TCR_FDEN(enetIfPtr->deviceNumber, phy_duplex == kEnetFullDuplex ? kEnetCfgFullDuplex : kEnetCfgHalfDuplex);

  /* Enable Ethernet module*/
  enet_hal_config_ethernet(device, true, true);

  /* Active Receive buffer descriptor must be done after module enable*/
  enet_hal_active_rxbd(enetIfPtr->deviceNumber);

  return ERR_OK;
}

/********************************************************************************
 * LWIP port
 ********************************************************************************/

/** \brief Ethernet receive interrupt handler
 *
 *  This function handles the receive interrupt of K64F.
 */
void enet_mac_rx_isr(void *enetIfPtr)
{
  /* Clear interrupt */
  enet_hal_clear_interrupt(((enet_dev_if_t *)enetIfPtr)->deviceNumber, kEnetRxFrameInterrupt);
  sys_sem_signal(&k64f_enetdata.RxReadySem);
}

void enet_mac_tx_isr(void *enetIfPtr)
{
  /*Clear interrupt*/
  enet_hal_clear_interrupt(((enet_dev_if_t *)enetIfPtr)->deviceNumber, kEnetTxFrameInterrupt);
  sys_sem_signal(&k64f_enetdata.TxCleanSem);    
}

/**
 * This function is the ethernet packet send function. It calls
 * etharp_output after checking link status.
 *
 * \param[in] netif the lwip network interface structure for this enetif
 * \param[in] q Pointer to pbug to send
 * \param[in] ipaddr IP address
 * \return ERR_OK or error code
 */
err_t k64f_etharp_output(struct netif *netif, struct pbuf *q, ip_addr_t *ipaddr)
{ 
  /* Only send packet is link is up */
  if (netif->flags & NETIF_FLAG_LINK_UP)
    return etharp_output(netif, q, ipaddr);

  return ERR_CONN;
}

/** \brief  Allocates a pbuf and returns the data from the incoming packet.
 *
 *  \param[in] netif the lwip network interface structure
 *  \param[in] idx   index of packet to be read
 *  \return a pbuf filled with the received packet (including MAC header)
 */
static struct pbuf *k64f_low_level_input(struct netif *netif, int idx)
{
  struct k64f_enetdata *k64f_enet = netif->state;
  enet_bd_struct_t * bdPtr = (enet_bd_struct_t*)k64f_enet->rx_desc_start_addr;
  struct pbuf *p = NULL;
  u32_t length = 0, orig_length;
  const u16_t err_mask = kEnetRxBdTrunc | kEnetRxBdCrc | kEnetRxBdNoOctet | kEnetRxBdLengthViolation;

#ifdef LOCK_RX_THREAD
  /* Get exclusive access */
  sys_mutex_lock(&k64f_enet->TXLockMutex);
#endif

  /* Determine if a frame has been received */
  if ((bdPtr[idx].control & err_mask) != 0) {
#if LINK_STATS
    if ((bdPtr[idx].control & kEnetRxBdLengthViolation) != 0)
      LINK_STATS_INC(link.lenerr);
    else
      LINK_STATS_INC(link.chkerr);
#endif
    LINK_STATS_INC(link.drop);

    /* Re-queue the same buffer */
    k64f_enet->rx_free_descs++;
    p = k64f_enet->rxb[idx];
    k64f_enet->rxb[idx] = NULL;
    k64f_rxqueue_pbuf(k64f_enet, p, idx);
    p = NULL;
  } else {
    /* A packet is waiting, get length */
    length = enet_hal_get_bd_length(bdPtr + idx);

    /* Zero-copy */
    p = k64f_enet->rxb[idx];
    orig_length = p->len;
    p->len = (u16_t) length;

    /* Free pbuf from descriptor */
    k64f_enet->rxb[idx] = NULL;
    k64f_enet->rx_free_descs++;
    
    /* Attempt to queue new buffer */
    if (k64f_rx_queue(netif, idx) == 0) {
      /* Drop frame (out of memory) */
      LINK_STATS_INC(link.drop);

      /* Re-queue the same buffer */
      p->len = orig_length;
      k64f_rxqueue_pbuf(k64f_enet, p, idx);

      LWIP_DEBUGF(UDP_LPC_EMAC | LWIP_DBG_TRACE,
        ("k64f_low_level_input: Packet index %d dropped for OOM\n",
        idx));
#ifdef LOCK_RX_THREAD
      sys_mutex_unlock(&k64f_enet->TXLockMutex);
#endif

      return NULL;
    }

    LWIP_DEBUGF(UDP_LPC_EMAC | LWIP_DBG_TRACE,
      ("k64f_low_level_input: Packet received: %p, size %d (index=%d)\n",
      p, length, idx));

    /* Save size */
    p->tot_len = (u16_t) length;
    LINK_STATS_INC(link.recv);
  }

#ifdef LOCK_RX_THREAD
  sys_mutex_unlock(&k64f_enet->TXLockMutex);
#endif

  return p;
}

/** \brief  Attempt to read a packet from the EMAC interface.
 *
 *  \param[in] netif the lwip network interface structure
 *  \param[in] idx   index of packet to be read
 */
void k64f_enetif_input(struct netif *netif, int idx)
{
  struct eth_hdr *ethhdr;
  struct pbuf *p;

  /* move received packet into a new pbuf */
  p = k64f_low_level_input(netif, idx);
  if (p == NULL)
    return;

  /* points to packet payload, which starts with an Ethernet header */
  ethhdr = (struct eth_hdr*)p->payload;

  switch (htons(ethhdr->type)) {
    case ETHTYPE_IP:
    case ETHTYPE_ARP:
#if PPPOE_SUPPORT
    case ETHTYPE_PPPOEDISC:
    case ETHTYPE_PPPOE:
#endif /* PPPOE_SUPPORT */
      /* full packet send to tcpip_thread to process */
      if (netif->input(p, netif) != ERR_OK) {
        LWIP_DEBUGF(NETIF_DEBUG, ("k64f_enetif_input: IP input error\n"));
        /* Free buffer */
        pbuf_free(p);
      }
      break;

    default:
      /* Return buffer */
      pbuf_free(p);
      break;
  }
}

/** \brief  Packet reception task
 *
 * This task is called when a packet is received. It will
 * pass the packet to the LWIP core.
 *
 *  \param[in] pvParameters pointer to the interface data
 */
static void packet_rx(void* pvParameters) {
  struct k64f_enetdata *k64f_enet = pvParameters;
  volatile enet_bd_struct_t * bdPtr = (enet_bd_struct_t*)k64f_enet->rx_desc_start_addr;
  int idx = 0;

  while (1) {
    /* Wait for receive task to wakeup */
    sys_arch_sem_wait(&k64f_enet->RxReadySem, 0);

    if ((bdPtr[idx].control & kEnetRxBdEmpty) == 0) {
      k64f_enetif_input(k64f_enet->netif, idx);
      idx = (idx + 1) % ENET_RX_RING_LEN;
    }
  }
}

/** \brief  Transmit cleanup task
 *
 * This task is called when a transmit interrupt occurs and
 * reclaims the pbuf and descriptor used for the packet once
 * the packet has been transferred.
 *
 *  \param[in] pvParameters pointer to the interface data
 */
static void packet_tx(void* pvParameters) {
  struct k64f_enetdata *k64f_enet = pvParameters;

  while (1) {
    /* Wait for transmit cleanup task to wakeup */
    sys_arch_sem_wait(&k64f_enet->TxCleanSem, 0);
    // TODOETH: handle TX underrun?
    k64f_tx_reclaim(k64f_enet);
  }
}

 /** \brief  Polls if an available TX descriptor is ready. Can be used to
 *           determine if the low level transmit function will block.
 *
 *  \param[in] netif the lwip network interface structure
 *  \return 0 if no descriptors are read, or >0
 */
s32_t k64f_tx_ready(struct netif *netif)
{
  struct k64f_enetdata *k64f_enet = netif->state;
  s32_t fb;
  u32_t idx, cidx;

  cidx = k64f_enet->tx_consume_index;
  idx = k64f_enet->tx_produce_index;

  /* Determine number of free buffers */
  if (idx == cidx)
    fb = ENET_TX_RING_LEN;
  else if (cidx > idx)
    fb = (ENET_TX_RING_LEN - 1) -
      ((idx + ENET_TX_RING_LEN) - cidx);
  else
    fb = (ENET_TX_RING_LEN - 1) - (cidx - idx);

  return fb;
}

/*FUNCTION****************************************************************
 *
 * Function Name: enet_hal_update_txbds
 * Description: Update ENET transmit buffer descriptors.
 *END*********************************************************************/
void k64f_update_txbds(struct k64f_enetdata *k64f_enet, int idx, uint8_t *buffer, uint16_t length, bool isLast)
{
  volatile enet_bd_struct_t * bdPtr = (enet_bd_struct_t *)(k64f_enet->tx_desc_start_addr + idx * enet_hal_get_bd_size());
    
  bdPtr->length = HTONS(length); /* Set data length*/
  bdPtr->buffer = (uint8_t *)HTONL((uint32_t)buffer); /* Set data buffer*/
  if (isLast)
    bdPtr->control |= kEnetTxBdLast;
  else
    bdPtr->control &= ~kEnetTxBdLast;
  bdPtr->controlExtend1 |= kEnetTxBdTxInterrupt;
  bdPtr->controlExtend2 &= ~TX_DESC_UPDATED_MASK; // descriptor not updated by DMA
  bdPtr->control |= kEnetTxBdTransmitCrc | kEnetTxBdReady;
}

/** \brief  Low level output of a packet. Never call this from an
 *          interrupt context, as it may block until TX descriptors
 *          become available.
 *
 *  \param[in] netif the lwip network interface structure for this netif
 *  \param[in] p the MAC packet to send (e.g. IP packet including MAC addresses and type)
 *  \return ERR_OK if the packet could be sent or an err_t value if the packet couldn't be sent
 */
static err_t k64f_low_level_output(struct netif *netif, struct pbuf *p)
{
  struct k64f_enetdata *k64f_enet = netif->state;
  struct pbuf *q;
  u32_t idx;
  s32_t dn;
  uint8_t *psend = NULL, *dst;

  /* Get free TX buffer index */
  idx = k64f_enet->tx_produce_index;
  
  /* Check the pbuf chain for payloads that are not 8-byte aligned.
     If found, a new properly aligned buffer needs to be allocated
     and the data copied there */
  for (q = p; q != NULL; q = q->next)
    if (((u32_t)q->payload & (TX_BUF_ALIGNMENT - 1)) != 0)
      break;
  if (q != NULL) {
    // Allocate properly aligned buffer
    psend = (uint8_t*)malloc(p->tot_len);
    if (NULL == psend)
      return ERR_MEM;   
    LWIP_ASSERT("k64f_low_level_output: buffer not properly aligned", ((u32_t)psend & (TX_BUF_ALIGNMENT - 1)) == 0);
    for (q = p, dst = psend; q != NULL; q = q->next) {
      MEMCPY(dst, q->payload, q->len);
      dst += q->len;
    }
    k64f_enet->txb_aligned[idx] = psend;
    dn = 1;
  } else {
    k64f_enet->txb_aligned[idx] = NULL;
    dn = (s32_t) pbuf_clen(p);
    pbuf_ref(p);
  }

  /* Wait until enough descriptors are available for the transfer. */
  /* THIS WILL BLOCK UNTIL THERE ARE ENOUGH DESCRIPTORS AVAILABLE */
  while (dn > k64f_tx_ready(netif))
    osSemaphoreWait(k64f_enet->xTXDCountSem.id, osWaitForever);

  /* Get exclusive access */
  sys_mutex_lock(&k64f_enet->TXLockMutex);

  /* Setup transfers */
  q = p;
  while (dn > 0) {
    dn--;
    if (psend != NULL) {
      k64f_update_txbds(k64f_enet, idx, psend, p->tot_len, 1);
      k64f_enet->txb[idx] = NULL;
      
      LWIP_DEBUGF(UDP_LPC_EMAC | LWIP_DBG_TRACE,
      ("k64f_low_level_output: aligned packet(%p) sent"
      " size = %d (index=%d)\n", psend, p->tot_len, idx));      
    } else {
      LWIP_ASSERT("k64f_low_level_output: buffer not properly aligned", ((u32_t)q->payload & 0x07) == 0);

      /* Only save pointer to free on last descriptor */
      if (dn == 0) {
        /* Save size of packet and signal it's ready */
        k64f_update_txbds(k64f_enet, idx, q->payload, q->len, 1);
        k64f_enet->txb[idx] = p;
      }
      else {
        /* Save size of packet, descriptor is not last */
        k64f_update_txbds(k64f_enet, idx, q->payload, q->len, 0);
        k64f_enet->txb[idx] = NULL;
      }
      
      LWIP_DEBUGF(UDP_LPC_EMAC | LWIP_DBG_TRACE,
      ("k64f_low_level_output: pbuf packet(%p) sent, chain#=%d,"
      " size = %d (index=%d)\n", q->payload, dn, q->len, idx));
    }

    q = q->next;

    idx = (idx + 1) % ENET_TX_RING_LEN;
  }

  k64f_enet->tx_produce_index = idx;
  enet_hal_active_txbd(BOARD_DEBUG_ENET_INSTANCE);
  LINK_STATS_INC(link.xmit);

  /* Restore access */
  sys_mutex_unlock(&k64f_enet->TXLockMutex);

  return ERR_OK;
}

/*******************************************************************************
 * PHY task: monitor link
*******************************************************************************/

#define PHY_TASK_PERIOD_MS      200
#define STATE_UNKNOWN           (-1)

typedef struct {
    int connected;
    enet_phy_speed_t speed;
    enet_phy_duplex_t duplex;
} PHY_STATE;

static void k64f_phy_task(void *data) {
  struct netif *netif = (struct netif*)data;
  bool connection_status;
  enet_dev_if_t * enetIfPtr = (enet_dev_if_t*)&enetDevIf[BOARD_DEBUG_ENET_INSTANCE];
  PHY_STATE crt_state = {STATE_UNKNOWN, (enet_phy_speed_t)STATE_UNKNOWN, (enet_phy_duplex_t)STATE_UNKNOWN};
  PHY_STATE prev_state;

  prev_state = crt_state;
  while (true) {
    // Get current status
    phy_get_link_status(enetIfPtr, &connection_status);
    crt_state.connected = connection_status ? 1 : 0;
    phy_get_link_speed(enetIfPtr, &crt_state.speed);
    phy_get_link_duplex(enetIfPtr, &crt_state.duplex);

    // Compare with previous state
    if (crt_state.connected != prev_state.connected) {
      if (crt_state.connected)
        tcpip_callback_with_block((tcpip_callback_fn)netif_set_link_up, (void*) netif, 1);
      else
        tcpip_callback_with_block((tcpip_callback_fn)netif_set_link_down, (void*) netif, 1);
    }

    if (crt_state.speed != prev_state.speed)
      BW_ENET_RCR_RMII_10T(enetIfPtr->deviceNumber, crt_state.speed == kEnetSpeed10M ? kEnetCfgSpeed10M : kEnetCfgSpeed100M);

    // TODO: duplex change requires disable/enable of Ethernet interface, to be implemented

    prev_state = crt_state;
    osDelay(PHY_TASK_PERIOD_MS);
  }
}

/**
 * Should be called at the beginning of the program to set up the
 * network interface.
 *
 * This function should be passed as a parameter to netif_add().
 *
 * @param[in] netif the lwip network interface structure for this netif
 * @return ERR_OK if the loopif is initialized
 *         ERR_MEM if private data couldn't be allocated
 *         any other err_t on error
 */
err_t eth_arch_enetif_init(struct netif *netif)
{
  err_t err;

  LWIP_ASSERT("netif != NULL", (netif != NULL));

  k64f_enetdata.netif = netif;

  /* set MAC hardware address */
#if (MBED_MAC_ADDRESS_SUM != MBED_MAC_ADDR_INTERFACE)
  netif->hwaddr[0] = MBED_MAC_ADDR_0;
  netif->hwaddr[1] = MBED_MAC_ADDR_1;
  netif->hwaddr[2] = MBED_MAC_ADDR_2;
  netif->hwaddr[3] = MBED_MAC_ADDR_3;
  netif->hwaddr[4] = MBED_MAC_ADDR_4;
  netif->hwaddr[5] = MBED_MAC_ADDR_5;
#else
  mbed_mac_address((char *)netif->hwaddr);
#endif
  netif->hwaddr_len = ETHARP_HWADDR_LEN;

  /* maximum transfer unit */
  netif->mtu = 1500;

  /* device capabilities */
  // TODOETH: check if the flags are correct below
  netif->flags = NETIF_FLAG_BROADCAST | NETIF_FLAG_ETHARP | NETIF_FLAG_ETHERNET | NETIF_FLAG_IGMP;

  /* Initialize the hardware */
  netif->state = &k64f_enetdata;
  err = low_level_init(netif);
  if (err != ERR_OK)
    return err;

#if LWIP_NETIF_HOSTNAME
  /* Initialize interface hostname */
  netif->hostname = "lwipk64f";
#endif /* LWIP_NETIF_HOSTNAME */

  netif->name[0] = 'e';
  netif->name[1] = 'n';

  netif->output = k64f_etharp_output;
  netif->linkoutput = k64f_low_level_output;

  /* CMSIS-RTOS, start tasks */
#ifdef CMSIS_OS_RTX
  memset(k64f_enetdata.xTXDCountSem.data, 0, sizeof(k64f_enetdata.xTXDCountSem.data));
  k64f_enetdata.xTXDCountSem.def.semaphore = k64f_enetdata.xTXDCountSem.data;
#endif
  k64f_enetdata.xTXDCountSem.id = osSemaphoreCreate(&k64f_enetdata.xTXDCountSem.def, ENET_TX_RING_LEN);

  LWIP_ASSERT("xTXDCountSem creation error", (k64f_enetdata.xTXDCountSem.id != NULL));

  err = sys_mutex_new(&k64f_enetdata.TXLockMutex);
  LWIP_ASSERT("TXLockMutex creation error", (err == ERR_OK));

  /* Packet receive task */
  err = sys_sem_new(&k64f_enetdata.RxReadySem, 0);
  LWIP_ASSERT("RxReadySem creation error", (err == ERR_OK));
  sys_thread_new("receive_thread", packet_rx, netif->state, DEFAULT_THREAD_STACKSIZE, RX_PRIORITY);

  /* Transmit cleanup task */
  err = sys_sem_new(&k64f_enetdata.TxCleanSem, 0);
  LWIP_ASSERT("TxCleanSem creation error", (err == ERR_OK));
  sys_thread_new("txclean_thread", packet_tx, netif->state, DEFAULT_THREAD_STACKSIZE, TX_PRIORITY);

  /* PHY monitoring task */
  sys_thread_new("phy_thread", k64f_phy_task, netif, DEFAULT_THREAD_STACKSIZE, PHY_PRIORITY);

  /* Allow the PHY task to detect the initial link state and set up the proper flags */
  osDelay(10);

  return ERR_OK;
}

void eth_arch_enable_interrupts(void) {
  enet_hal_config_interrupt(BOARD_DEBUG_ENET_INSTANCE, (kEnetTxFrameInterrupt | kEnetRxFrameInterrupt), true);
  INT_SYS_EnableIRQ(enet_irq_ids[BOARD_DEBUG_ENET_INSTANCE][enetIntMap[kEnetRxfInt]]);
  INT_SYS_EnableIRQ(enet_irq_ids[BOARD_DEBUG_ENET_INSTANCE][enetIntMap[kEnetTxfInt]]);
}

void eth_arch_disable_interrupts(void) {
  INT_SYS_DisableIRQ(enet_irq_ids[BOARD_DEBUG_ENET_INSTANCE][enetIntMap[kEnetRxfInt]]);
  INT_SYS_DisableIRQ(enet_irq_ids[BOARD_DEBUG_ENET_INSTANCE][enetIntMap[kEnetTxfInt]]);
}

void ENET_Transmit_IRQHandler(void)
{
     enet_mac_tx_isr(enetIfHandle);
}

void ENET_Receive_IRQHandler(void)
{
     enet_mac_rx_isr(enetIfHandle);
}

#if FSL_FEATURE_ENET_SUPPORT_PTP
void ENET_1588_Timer_IRQHandler(void)
{
     enet_mac_ts_isr(enetIfHandle);
}
#endif
/**
 * @}
 */

/* --------------------------------- End Of File ------------------------------ */