L3GD20 & L3G4200D / STMicroelectronics / MEMS motion sensor, three-axis gyroscope library

Dependents:   GR-PEACH_test_wo_rtos GR-PEACH_test_on_rtos_works_well

L3GD20.cpp

Committer:
kenjiArai
Date:
2017-08-23
Revision:
7:f5c0fe6ed71a
Parent:
6:451811697299

File content as of revision 7:f5c0fe6ed71a:

/*
 * mbed library program
 *  L3GD20 MEMS motion sensor: 3-axis digital gyroscope, made by STMicroelectronics
 *      http://www.st.com/web/catalog/sense_power/FM89/SC1288
 *          /PF252443?sc=internet/analog/product/252443.jsp
 *  L3G4200 DMEMS motion sensor: three-axis digital output gyroscope, made by STMicroelectronics
 *      http://www.st.com/web/catalog/sense_power/FM89/SC1288
 *          /PF250373?sc=internet/analog/product/250373.jsp
 *
 * Copyright (c) 2014,'15,'17 Kenji Arai / JH1PJL
 *  http://www.page.sannet.ne.jp/kenjia/index.html
 *  http://mbed.org/users/kenjiArai/
 *      Created: July       13th, 2014
 *      Revised: August     23rd, 2017
 */

#include "L3GD20.h"

L3GX_GYRO::L3GX_GYRO (PinName p_sda, PinName p_scl,
    uint8_t addr, uint8_t data_rate, uint8_t bandwidth, uint8_t fullscale)
 : _i2c_p(new I2C(p_sda, p_scl)), _i2c(*_i2c_p)
{
    _i2c.frequency(400000);
    initialize (addr, data_rate, bandwidth, fullscale);
}

L3GX_GYRO::L3GX_GYRO (PinName p_sda, PinName p_scl, uint8_t addr)
 : _i2c_p(new I2C(p_sda, p_scl)), _i2c(*_i2c_p)
{
    _i2c.frequency(400000);
    initialize (addr, L3GX_DR_95HZ, L3GX_BW_HI, L3GX_FS_250DPS);
}

L3GX_GYRO::L3GX_GYRO (I2C& p_i2c,
    uint8_t addr, uint8_t data_rate, uint8_t bandwidth, uint8_t fullscale)
 : _i2c(p_i2c)
{
    _i2c.frequency(400000);
    initialize (addr, data_rate, bandwidth, fullscale);
}

L3GX_GYRO::L3GX_GYRO (I2C& p_i2c, uint8_t addr)
 : _i2c(p_i2c)
{
    _i2c.frequency(400000);
    initialize (addr, L3GX_DR_95HZ, L3GX_BW_HI, L3GX_FS_250DPS);
}

void L3GX_GYRO::initialize (uint8_t addr, uint8_t data_rate,
                     uint8_t bandwidth, uint8_t fullscale)
{
    // Check gyro is available of not
    gyro_addr = addr;
    dt[0] = L3GX_WHO_AM_I;
    _i2c.write(gyro_addr, dt, 1, true);
    _i2c.read(gyro_addr, dt, 1, false);
    if (dt[0] == I_AM_L3G4200D) {
        gyro_ready = 1;
    } else if (dt[0] == I_AM_L3GD20) {
        gyro_ready = 1;
    } else {
        gyro_ready = 0;
        return;     // gyro chip is NOT on I2C line then terminate this part
    }
    //  Reg.1
    dt[0] = L3GX_CTRL_REG1;
    dt[1] = 0x0f;
    dt[1] |= data_rate << 6;
    dt[1] |= bandwidth << 4;
    _i2c.write(gyro_addr, dt, 2, false);
    //  Reg.3
    dt[0] = L3GX_CTRL_REG3;
    dt[1] = 0x08;
    _i2c.write(gyro_addr, dt, 2, false);
    //  Reg.4
    dt[0] = L3GX_CTRL_REG4;
    switch (fullscale) {
        case L3GX_FS_250DPS:
            fs_factor = 0.00875;
            dt[1] = 0x80;
            break;
        case L3GX_FS_500DPS:
            fs_factor = 0.0175;
            dt[1] = 0x90;
            break;
        case L3GX_FS_2000DPS:
            fs_factor = 0.07;
            dt[1] = 0xa0;
            break;
        default:
            ;
    }
    _i2c.write(gyro_addr, dt, 2, false);
}

void L3GX_GYRO::read_data(float *dt_usr)
{
    char data[6];

    if (gyro_ready == 0) {
        dt_usr[0] = 0;
        dt_usr[1] = 0;
        dt_usr[2] = 0;
        return;
    }
    // X,Y & Z
    // manual said that
    // In order to read multiple bytes, it is necessary to assert the most significant bit
    // of the subaddress field.
    // In other words, SUB(7) must be equal to ‘1’ while SUB(6-0) represents the address
    // of the first register to be read.
    dt[0] = L3GX_OUT_X_L | 0x80;
    _i2c.write(gyro_addr, dt, 1, true);
    _i2c.read(gyro_addr, data, 6, false);
    // data normalization
    dt_usr[0] = float(short(data[1] << 8 | data[0])) * fs_factor;
    dt_usr[1] = float(short(data[3] << 8 | data[2])) * fs_factor;
    dt_usr[2] = float(short(data[5] << 8 | data[4])) * fs_factor;
}

int8_t L3GX_GYRO::read_temp()
{
    if (gyro_ready == 1) {
        dt[0] = L3GX_OUT_TEMP;
        _i2c.write(gyro_addr, dt, 1, true);
        _i2c.read(gyro_addr, dt, 1, false);
    } else {
        dt[0] = 99;
    }
    return (int8_t)dt[0];
}

uint8_t L3GX_GYRO::read_id()
{
    dt[0] = L3GX_WHO_AM_I;
    _i2c.write(gyro_addr, dt, 1, true);
    _i2c.read(gyro_addr, dt, 1, false);
    return (uint8_t)dt[0];
}

uint8_t L3GX_GYRO::data_ready()
{
    if (gyro_ready == 1) {
        dt[0] = L3GX_STATUS_REG;
        _i2c.write(gyro_addr, dt, 1, true);
        _i2c.read(gyro_addr, dt, 1, false);
        if (!(dt[0] & 0x01)) {
            return 0;
        }
    }
    return 1;;
}

void L3GX_GYRO::frequency(int hz)
{
    _i2c.frequency(hz);
}

uint8_t L3GX_GYRO::read_reg(uint8_t addr)
{
    if (gyro_ready == 1) {
        dt[0] = addr;
        _i2c.write(gyro_addr, dt, 1, true);
        _i2c.read(gyro_addr, dt, 1, false);
    } else {
        dt[0] = 0xff;
    }
    return (uint8_t)dt[0];
}

void L3GX_GYRO::write_reg(uint8_t addr, uint8_t data)
{
    if (gyro_ready == 1) {
        dt[0] = addr;
        dt[1] = data;
        _i2c.write(gyro_addr, dt, 2, false);
    }
}