opencv on mbed

Dependencies:   mbed

opencv2/calib3d/calib3d_c.h

Committer:
joeverbout
Date:
2016-03-31
Revision:
0:ea44dc9ed014

File content as of revision 0:ea44dc9ed014:

/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                          License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#ifndef __OPENCV_CALIB3D_C_H__
#define __OPENCV_CALIB3D_C_H__

#include "opencv2/core/core_c.h"

#ifdef __cplusplus
extern "C" {
#endif

/** @addtogroup calib3d_c
  @{
  */

/****************************************************************************************\
*                      Camera Calibration, Pose Estimation and Stereo                    *
\****************************************************************************************/

typedef struct CvPOSITObject CvPOSITObject;

/* Allocates and initializes CvPOSITObject structure before doing cvPOSIT */
CVAPI(CvPOSITObject*)  cvCreatePOSITObject( CvPoint3D32f* points, int point_count );


/* Runs POSIT (POSe from ITeration) algorithm for determining 3d position of
   an object given its model and projection in a weak-perspective case */
CVAPI(void)  cvPOSIT(  CvPOSITObject* posit_object, CvPoint2D32f* image_points,
                       double focal_length, CvTermCriteria criteria,
                       float* rotation_matrix, float* translation_vector);

/* Releases CvPOSITObject structure */
CVAPI(void)  cvReleasePOSITObject( CvPOSITObject**  posit_object );

/* updates the number of RANSAC iterations */
CVAPI(int) cvRANSACUpdateNumIters( double p, double err_prob,
                                   int model_points, int max_iters );

CVAPI(void) cvConvertPointsHomogeneous( const CvMat* src, CvMat* dst );

/* Calculates fundamental matrix given a set of corresponding points */
#define CV_FM_7POINT 1
#define CV_FM_8POINT 2

#define CV_LMEDS 4
#define CV_RANSAC 8

#define CV_FM_LMEDS_ONLY  CV_LMEDS
#define CV_FM_RANSAC_ONLY CV_RANSAC
#define CV_FM_LMEDS CV_LMEDS
#define CV_FM_RANSAC CV_RANSAC

enum
{
    CV_ITERATIVE = 0,
    CV_EPNP = 1, // F.Moreno-Noguer, V.Lepetit and P.Fua "EPnP: Efficient Perspective-n-Point Camera Pose Estimation"
    CV_P3P = 2, // X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang; "Complete Solution Classification for the Perspective-Three-Point Problem"
    CV_DLS = 3 // Joel A. Hesch and Stergios I. Roumeliotis. "A Direct Least-Squares (DLS) Method for PnP"
};

CVAPI(int) cvFindFundamentalMat( const CvMat* points1, const CvMat* points2,
                                 CvMat* fundamental_matrix,
                                 int method CV_DEFAULT(CV_FM_RANSAC),
                                 double param1 CV_DEFAULT(3.), double param2 CV_DEFAULT(0.99),
                                 CvMat* status CV_DEFAULT(NULL) );

/* For each input point on one of images
   computes parameters of the corresponding
   epipolar line on the other image */
CVAPI(void) cvComputeCorrespondEpilines( const CvMat* points,
                                         int which_image,
                                         const CvMat* fundamental_matrix,
                                         CvMat* correspondent_lines );

/* Triangulation functions */

CVAPI(void) cvTriangulatePoints(CvMat* projMatr1, CvMat* projMatr2,
                                CvMat* projPoints1, CvMat* projPoints2,
                                CvMat* points4D);

CVAPI(void) cvCorrectMatches(CvMat* F, CvMat* points1, CvMat* points2,
                             CvMat* new_points1, CvMat* new_points2);


/* Computes the optimal new camera matrix according to the free scaling parameter alpha:
   alpha=0 - only valid pixels will be retained in the undistorted image
   alpha=1 - all the source image pixels will be retained in the undistorted image
*/
CVAPI(void) cvGetOptimalNewCameraMatrix( const CvMat* camera_matrix,
                                         const CvMat* dist_coeffs,
                                         CvSize image_size, double alpha,
                                         CvMat* new_camera_matrix,
                                         CvSize new_imag_size CV_DEFAULT(cvSize(0,0)),
                                         CvRect* valid_pixel_ROI CV_DEFAULT(0),
                                         int center_principal_point CV_DEFAULT(0));

/* Converts rotation vector to rotation matrix or vice versa */
CVAPI(int) cvRodrigues2( const CvMat* src, CvMat* dst,
                         CvMat* jacobian CV_DEFAULT(0) );

/* Finds perspective transformation between the object plane and image (view) plane */
CVAPI(int) cvFindHomography( const CvMat* src_points,
                             const CvMat* dst_points,
                             CvMat* homography,
                             int method CV_DEFAULT(0),
                             double ransacReprojThreshold CV_DEFAULT(3),
                             CvMat* mask CV_DEFAULT(0),
                             int maxIters CV_DEFAULT(2000),
                             double confidence CV_DEFAULT(0.995));

/* Computes RQ decomposition for 3x3 matrices */
CVAPI(void) cvRQDecomp3x3( const CvMat *matrixM, CvMat *matrixR, CvMat *matrixQ,
                           CvMat *matrixQx CV_DEFAULT(NULL),
                           CvMat *matrixQy CV_DEFAULT(NULL),
                           CvMat *matrixQz CV_DEFAULT(NULL),
                           CvPoint3D64f *eulerAngles CV_DEFAULT(NULL));

/* Computes projection matrix decomposition */
CVAPI(void) cvDecomposeProjectionMatrix( const CvMat *projMatr, CvMat *calibMatr,
                                         CvMat *rotMatr, CvMat *posVect,
                                         CvMat *rotMatrX CV_DEFAULT(NULL),
                                         CvMat *rotMatrY CV_DEFAULT(NULL),
                                         CvMat *rotMatrZ CV_DEFAULT(NULL),
                                         CvPoint3D64f *eulerAngles CV_DEFAULT(NULL));

/* Computes d(AB)/dA and d(AB)/dB */
CVAPI(void) cvCalcMatMulDeriv( const CvMat* A, const CvMat* B, CvMat* dABdA, CvMat* dABdB );

/* Computes r3 = rodrigues(rodrigues(r2)*rodrigues(r1)),
   t3 = rodrigues(r2)*t1 + t2 and the respective derivatives */
CVAPI(void) cvComposeRT( const CvMat* _rvec1, const CvMat* _tvec1,
                         const CvMat* _rvec2, const CvMat* _tvec2,
                         CvMat* _rvec3, CvMat* _tvec3,
                         CvMat* dr3dr1 CV_DEFAULT(0), CvMat* dr3dt1 CV_DEFAULT(0),
                         CvMat* dr3dr2 CV_DEFAULT(0), CvMat* dr3dt2 CV_DEFAULT(0),
                         CvMat* dt3dr1 CV_DEFAULT(0), CvMat* dt3dt1 CV_DEFAULT(0),
                         CvMat* dt3dr2 CV_DEFAULT(0), CvMat* dt3dt2 CV_DEFAULT(0) );

/* Projects object points to the view plane using
   the specified extrinsic and intrinsic camera parameters */
CVAPI(void) cvProjectPoints2( const CvMat* object_points, const CvMat* rotation_vector,
                              const CvMat* translation_vector, const CvMat* camera_matrix,
                              const CvMat* distortion_coeffs, CvMat* image_points,
                              CvMat* dpdrot CV_DEFAULT(NULL), CvMat* dpdt CV_DEFAULT(NULL),
                              CvMat* dpdf CV_DEFAULT(NULL), CvMat* dpdc CV_DEFAULT(NULL),
                              CvMat* dpddist CV_DEFAULT(NULL),
                              double aspect_ratio CV_DEFAULT(0));

/* Finds extrinsic camera parameters from
   a few known corresponding point pairs and intrinsic parameters */
CVAPI(void) cvFindExtrinsicCameraParams2( const CvMat* object_points,
                                          const CvMat* image_points,
                                          const CvMat* camera_matrix,
                                          const CvMat* distortion_coeffs,
                                          CvMat* rotation_vector,
                                          CvMat* translation_vector,
                                          int use_extrinsic_guess CV_DEFAULT(0) );

/* Computes initial estimate of the intrinsic camera parameters
   in case of planar calibration target (e.g. chessboard) */
CVAPI(void) cvInitIntrinsicParams2D( const CvMat* object_points,
                                     const CvMat* image_points,
                                     const CvMat* npoints, CvSize image_size,
                                     CvMat* camera_matrix,
                                     double aspect_ratio CV_DEFAULT(1.) );

#define CV_CALIB_CB_ADAPTIVE_THRESH  1
#define CV_CALIB_CB_NORMALIZE_IMAGE  2
#define CV_CALIB_CB_FILTER_QUADS     4
#define CV_CALIB_CB_FAST_CHECK       8

// Performs a fast check if a chessboard is in the input image. This is a workaround to
// a problem of cvFindChessboardCorners being slow on images with no chessboard
// - src: input image
// - size: chessboard size
// Returns 1 if a chessboard can be in this image and findChessboardCorners should be called,
// 0 if there is no chessboard, -1 in case of error
CVAPI(int) cvCheckChessboard(IplImage* src, CvSize size);

    /* Detects corners on a chessboard calibration pattern */
CVAPI(int) cvFindChessboardCorners( const void* image, CvSize pattern_size,
                                    CvPoint2D32f* corners,
                                    int* corner_count CV_DEFAULT(NULL),
                                    int flags CV_DEFAULT(CV_CALIB_CB_ADAPTIVE_THRESH+CV_CALIB_CB_NORMALIZE_IMAGE) );

/* Draws individual chessboard corners or the whole chessboard detected */
CVAPI(void) cvDrawChessboardCorners( CvArr* image, CvSize pattern_size,
                                     CvPoint2D32f* corners,
                                     int count, int pattern_was_found );

#define CV_CALIB_USE_INTRINSIC_GUESS  1
#define CV_CALIB_FIX_ASPECT_RATIO     2
#define CV_CALIB_FIX_PRINCIPAL_POINT  4
#define CV_CALIB_ZERO_TANGENT_DIST    8
#define CV_CALIB_FIX_FOCAL_LENGTH 16
#define CV_CALIB_FIX_K1  32
#define CV_CALIB_FIX_K2  64
#define CV_CALIB_FIX_K3  128
#define CV_CALIB_FIX_K4  2048
#define CV_CALIB_FIX_K5  4096
#define CV_CALIB_FIX_K6  8192
#define CV_CALIB_RATIONAL_MODEL 16384
#define CV_CALIB_THIN_PRISM_MODEL 32768
#define CV_CALIB_FIX_S1_S2_S3_S4  65536
#define CV_CALIB_TILTED_MODEL  262144
#define CV_CALIB_FIX_TAUX_TAUY  524288


/* Finds intrinsic and extrinsic camera parameters
   from a few views of known calibration pattern */
CVAPI(double) cvCalibrateCamera2( const CvMat* object_points,
                                const CvMat* image_points,
                                const CvMat* point_counts,
                                CvSize image_size,
                                CvMat* camera_matrix,
                                CvMat* distortion_coeffs,
                                CvMat* rotation_vectors CV_DEFAULT(NULL),
                                CvMat* translation_vectors CV_DEFAULT(NULL),
                                int flags CV_DEFAULT(0),
                                CvTermCriteria term_crit CV_DEFAULT(cvTermCriteria(
                                    CV_TERMCRIT_ITER+CV_TERMCRIT_EPS,30,DBL_EPSILON)) );

/* Computes various useful characteristics of the camera from the data computed by
   cvCalibrateCamera2 */
CVAPI(void) cvCalibrationMatrixValues( const CvMat *camera_matrix,
                                CvSize image_size,
                                double aperture_width CV_DEFAULT(0),
                                double aperture_height CV_DEFAULT(0),
                                double *fovx CV_DEFAULT(NULL),
                                double *fovy CV_DEFAULT(NULL),
                                double *focal_length CV_DEFAULT(NULL),
                                CvPoint2D64f *principal_point CV_DEFAULT(NULL),
                                double *pixel_aspect_ratio CV_DEFAULT(NULL));

#define CV_CALIB_FIX_INTRINSIC  256
#define CV_CALIB_SAME_FOCAL_LENGTH 512

/* Computes the transformation from one camera coordinate system to another one
   from a few correspondent views of the same calibration target. Optionally, calibrates
   both cameras */
CVAPI(double) cvStereoCalibrate( const CvMat* object_points, const CvMat* image_points1,
                               const CvMat* image_points2, const CvMat* npoints,
                               CvMat* camera_matrix1, CvMat* dist_coeffs1,
                               CvMat* camera_matrix2, CvMat* dist_coeffs2,
                               CvSize image_size, CvMat* R, CvMat* T,
                               CvMat* E CV_DEFAULT(0), CvMat* F CV_DEFAULT(0),
                               int flags CV_DEFAULT(CV_CALIB_FIX_INTRINSIC),
                               CvTermCriteria term_crit CV_DEFAULT(cvTermCriteria(
                                   CV_TERMCRIT_ITER+CV_TERMCRIT_EPS,30,1e-6)) );

#define CV_CALIB_ZERO_DISPARITY 1024

/* Computes 3D rotations (+ optional shift) for each camera coordinate system to make both
   views parallel (=> to make all the epipolar lines horizontal or vertical) */
CVAPI(void) cvStereoRectify( const CvMat* camera_matrix1, const CvMat* camera_matrix2,
                             const CvMat* dist_coeffs1, const CvMat* dist_coeffs2,
                             CvSize image_size, const CvMat* R, const CvMat* T,
                             CvMat* R1, CvMat* R2, CvMat* P1, CvMat* P2,
                             CvMat* Q CV_DEFAULT(0),
                             int flags CV_DEFAULT(CV_CALIB_ZERO_DISPARITY),
                             double alpha CV_DEFAULT(-1),
                             CvSize new_image_size CV_DEFAULT(cvSize(0,0)),
                             CvRect* valid_pix_ROI1 CV_DEFAULT(0),
                             CvRect* valid_pix_ROI2 CV_DEFAULT(0));

/* Computes rectification transformations for uncalibrated pair of images using a set
   of point correspondences */
CVAPI(int) cvStereoRectifyUncalibrated( const CvMat* points1, const CvMat* points2,
                                        const CvMat* F, CvSize img_size,
                                        CvMat* H1, CvMat* H2,
                                        double threshold CV_DEFAULT(5));



/* stereo correspondence parameters and functions */

#define CV_STEREO_BM_NORMALIZED_RESPONSE  0
#define CV_STEREO_BM_XSOBEL               1

/* Block matching algorithm structure */
typedef struct CvStereoBMState
{
    // pre-filtering (normalization of input images)
    int preFilterType; // =CV_STEREO_BM_NORMALIZED_RESPONSE now
    int preFilterSize; // averaging window size: ~5x5..21x21
    int preFilterCap; // the output of pre-filtering is clipped by [-preFilterCap,preFilterCap]

    // correspondence using Sum of Absolute Difference (SAD)
    int SADWindowSize; // ~5x5..21x21
    int minDisparity;  // minimum disparity (can be negative)
    int numberOfDisparities; // maximum disparity - minimum disparity (> 0)

    // post-filtering
    int textureThreshold;  // the disparity is only computed for pixels
                           // with textured enough neighborhood
    int uniquenessRatio;   // accept the computed disparity d* only if
                           // SAD(d) >= SAD(d*)*(1 + uniquenessRatio/100.)
                           // for any d != d*+/-1 within the search range.
    int speckleWindowSize; // disparity variation window
    int speckleRange; // acceptable range of variation in window

    int trySmallerWindows; // if 1, the results may be more accurate,
                           // at the expense of slower processing
    CvRect roi1, roi2;
    int disp12MaxDiff;

    // temporary buffers
    CvMat* preFilteredImg0;
    CvMat* preFilteredImg1;
    CvMat* slidingSumBuf;
    CvMat* cost;
    CvMat* disp;
} CvStereoBMState;

#define CV_STEREO_BM_BASIC 0
#define CV_STEREO_BM_FISH_EYE 1
#define CV_STEREO_BM_NARROW 2

CVAPI(CvStereoBMState*) cvCreateStereoBMState(int preset CV_DEFAULT(CV_STEREO_BM_BASIC),
                                              int numberOfDisparities CV_DEFAULT(0));

CVAPI(void) cvReleaseStereoBMState( CvStereoBMState** state );

CVAPI(void) cvFindStereoCorrespondenceBM( const CvArr* left, const CvArr* right,
                                          CvArr* disparity, CvStereoBMState* state );

CVAPI(CvRect) cvGetValidDisparityROI( CvRect roi1, CvRect roi2, int minDisparity,
                                      int numberOfDisparities, int SADWindowSize );

CVAPI(void) cvValidateDisparity( CvArr* disparity, const CvArr* cost,
                                 int minDisparity, int numberOfDisparities,
                                 int disp12MaxDiff CV_DEFAULT(1) );

/* Reprojects the computed disparity image to the 3D space using the specified 4x4 matrix */
CVAPI(void)  cvReprojectImageTo3D( const CvArr* disparityImage,
                                   CvArr* _3dImage, const CvMat* Q,
                                   int handleMissingValues CV_DEFAULT(0) );

/** @} calib3d_c */

#ifdef __cplusplus
} // extern "C"

//////////////////////////////////////////////////////////////////////////////////////////
class CV_EXPORTS CvLevMarq
{
public:
    CvLevMarq();
    CvLevMarq( int nparams, int nerrs, CvTermCriteria criteria=
              cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,DBL_EPSILON),
              bool completeSymmFlag=false );
    ~CvLevMarq();
    void init( int nparams, int nerrs, CvTermCriteria criteria=
              cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,DBL_EPSILON),
              bool completeSymmFlag=false );
    bool update( const CvMat*& param, CvMat*& J, CvMat*& err );
    bool updateAlt( const CvMat*& param, CvMat*& JtJ, CvMat*& JtErr, double*& errNorm );

    void clear();
    void step();
    enum { DONE=0, STARTED=1, CALC_J=2, CHECK_ERR=3 };

    cv::Ptr<CvMat> mask;
    cv::Ptr<CvMat> prevParam;
    cv::Ptr<CvMat> param;
    cv::Ptr<CvMat> J;
    cv::Ptr<CvMat> err;
    cv::Ptr<CvMat> JtJ;
    cv::Ptr<CvMat> JtJN;
    cv::Ptr<CvMat> JtErr;
    cv::Ptr<CvMat> JtJV;
    cv::Ptr<CvMat> JtJW;
    double prevErrNorm, errNorm;
    int lambdaLg10;
    CvTermCriteria criteria;
    int state;
    int iters;
    bool completeSymmFlag;
    int solveMethod;
};

#endif

#endif /* __OPENCV_CALIB3D_C_H__ */