NXP's driver library for LPC17xx, ported to mbed's online compiler. Not tested! I had to fix a lot of warings and found a couple of pretty obvious bugs, so the chances are there are more. Original: http://ics.nxp.com/support/documents/microcontrollers/zip/lpc17xx.cmsis.driver.library.zip

Dependencies:   mbed

source/lpc17xx_ssp.c

Committer:
igorsk
Date:
2010-02-17
Revision:
0:1063a091a062

File content as of revision 0:1063a091a062:

/**
 * @file    : lpc17xx_ssp.c
 * @brief    : Contains all functions support for SSP firmware library on LPC17xx
 * @version    : 1.0
 * @date    : 9. April. 2009
 * @author    : HieuNguyen
 **************************************************************************
 * Software that is described herein is for illustrative purposes only
 * which provides customers with programming information regarding the
 * products. This software is supplied "AS IS" without any warranties.
 * NXP Semiconductors assumes no responsibility or liability for the
 * use of the software, conveys no license or title under any patent,
 * copyright, or mask work right to the product. NXP Semiconductors
 * reserves the right to make changes in the software without
 * notification. NXP Semiconductors also make no representation or
 * warranty that such application will be suitable for the specified
 * use without further testing or modification.
 **********************************************************************/

/* Peripheral group ----------------------------------------------------------- */
/** @addtogroup SSP
 * @{
 */

/* Includes ------------------------------------------------------------------- */
#include "lpc17xx_ssp.h"
#include "lpc17xx_clkpwr.h"


/* If this source file built with example, the LPC17xx FW library configuration
 * file in each example directory ("lpc17xx_libcfg.h") must be included,
 * otherwise the default FW library configuration file must be included instead
 */
#ifdef __BUILD_WITH_EXAMPLE__
#include "lpc17xx_libcfg.h"
#else
#include "lpc17xx_libcfg_default.h"
#endif /* __BUILD_WITH_EXAMPLE__ */


#ifdef _SSP

/* Private Types -------------------------------------------------------------- */
/** @defgroup SSP_Private_Types
 * @{
 */

/** @brief SSP device configuration structure type */
typedef struct
{
    int32_t     dataword;                /* Current data word: 0 - 8 bit; 1 - 16 bit */
    uint32_t    txrx_setup;             /* Transmission setup */
    void        (*inthandler)(LPC_SSP_TypeDef *SSPx);       /* Transmission interrupt handler */
} SSP_CFG_T;

/**
 * @}
 */

/* Private Variables ---------------------------------------------------------- */
/* SSP configuration data */
static SSP_CFG_T sspdat[2];


/* Private Functions ---------------------------------------------------------- */
/** @defgroup SSP_Private_Functions
 * @{
 */

/**
 * @brief Convert from SSP peripheral to number
 */
static int32_t SSP_getNum(LPC_SSP_TypeDef *SSPx){
    if (SSPx == LPC_SSP0) {
        return (0);
    } else if (SSPx == LPC_SSP1) {
        return (1);
    }
    return (-1);
}


/*********************************************************************//**
 * @brief         Standard Private SSP Interrupt handler
 * @param        SSPx: SSP peripheral definition, should be
 *                       SSP0 or SSP1.
 * @return         None
 ***********************************************************************/
void SSP_IntHandler(LPC_SSP_TypeDef *SSPx)
{
    SSP_DATA_SETUP_Type *xf_setup;
    uint16_t tmp;
    int32_t sspnum;

    // Disable interrupt
    SSPx->IMSC = 0;

    sspnum = SSP_getNum(SSPx);
    xf_setup = (SSP_DATA_SETUP_Type *)sspdat[sspnum].txrx_setup;

    // save status
    tmp = SSPx->RIS;
    xf_setup->status = tmp;

    // Check overrun error
    if (tmp & SSP_RIS_ROR){
        // Clear interrupt
        SSPx->ICR = SSP_RIS_ROR;
        // update status
        xf_setup->status |= SSP_STAT_ERROR;
        // Callback
        if (xf_setup->callback != NULL){
            xf_setup->callback();
        }
        return;
    }

    if ((xf_setup->tx_cnt != xf_setup->length) || (xf_setup->rx_cnt != xf_setup->length)){
        /* check if RX FIFO contains data */
        while ((SSPx->SR & SSP_SR_RNE) && (xf_setup->rx_cnt != xf_setup->length)){
            // Read data from SSP data
            tmp = SSP_ReceiveData(SSPx);

            // Store data to destination
            if (xf_setup->rx_data != NULL)
            {
                if (sspdat[sspnum].dataword == 0){
                    *(uint8_t *)((uint32_t)xf_setup->rx_data + xf_setup->rx_cnt) = (uint8_t) tmp;
                } else {
                    *(uint16_t *)((uint32_t)xf_setup->rx_data + xf_setup->rx_cnt) = (uint16_t) tmp;
                }
            }
            // Increase counter
            if (sspdat[sspnum].dataword == 0){
                xf_setup->rx_cnt++;
            } else {
                xf_setup->rx_cnt += 2;
            }
        }

        while ((SSPx->SR & SSP_SR_TNF) && (xf_setup->tx_cnt != xf_setup->length)){
            // Write data to buffer
            if(xf_setup->tx_data == NULL){
                if (sspdat[sspnum].dataword == 0){
                    SSP_SendData(SSPx, 0xFF);
                    xf_setup->tx_cnt++;
                } else {
                    SSP_SendData(SSPx, 0xFFFF);
                    xf_setup->tx_cnt += 2;
                }
            } else {
                if (sspdat[sspnum].dataword == 0){
                    SSP_SendData(SSPx, (*(uint8_t *)((uint32_t)xf_setup->tx_data + xf_setup->tx_cnt)));
                    xf_setup->tx_cnt++;
                } else {
                    SSP_SendData(SSPx, (*(uint16_t *)((uint32_t)xf_setup->tx_data + xf_setup->tx_cnt)));
                    xf_setup->tx_cnt += 2;
                }
            }

            // Check overrun error
            if ((tmp = SSPx->RIS) & SSP_RIS_ROR){
                // update status
                xf_setup->status |= SSP_STAT_ERROR;
                // Callback
                if (xf_setup->callback != NULL){
                    xf_setup->callback();
                }
                return;
            }

            // Check for any data available in RX FIFO
            while ((SSPx->SR & SSP_SR_RNE) && (xf_setup->rx_cnt != xf_setup->length)){
                // Read data from SSP data
                tmp = SSP_ReceiveData(SSPx);

                // Store data to destination
                if (xf_setup->rx_data != NULL)
                {
                    if (sspdat[sspnum].dataword == 0){
                        *(uint8_t *)((uint32_t)xf_setup->rx_data + xf_setup->rx_cnt) = (uint8_t) tmp;
                    } else {
                        *(uint16_t *)((uint32_t)xf_setup->rx_data + xf_setup->rx_cnt) = (uint16_t) tmp;
                    }
                }
                // Increase counter
                if (sspdat[sspnum].dataword == 0){
                    xf_setup->rx_cnt++;
                } else {
                    xf_setup->rx_cnt += 2;
                }
            }
        }
    }

    // If there more data to sent or receive
    if ((xf_setup->rx_cnt != xf_setup->length) || (xf_setup->tx_cnt != xf_setup->length)){
        // Enable all interrupt
        SSPx->IMSC = SSP_IMSC_BITMASK;
    } else {
        // Save status
        xf_setup->status = SSP_STAT_DONE;
        // Callback
        if (xf_setup->callback != NULL){
            xf_setup->callback();
        }
    }
}

/**
 * @}
 */


/* Public Functions ----------------------------------------------------------- */
/** @addtogroup SSP_Public_Functions
 * @{
 */

/*********************************************************************//**
 * @brief         Setup clock rate for SSP device
 * @param[in]     SSPx    SSP peripheral definition, should be
 *                         SSP0 or SSP1.
 * @param[in]    target_clock : clock of SSP (Hz)
 * @return         None
 ***********************************************************************/
void SSP_SetClock (LPC_SSP_TypeDef *SSPx, uint32_t target_clock)
{
    uint32_t prescale, cr0_div, cmp_clk, ssp_clk;

    CHECK_PARAM(PARAM_SSPx(SSPx));

    /* The SSP clock is derived from the (main system oscillator / 2),
       so compute the best divider from that clock */
    if (SSPx == LPC_SSP0){
        ssp_clk = CLKPWR_GetPCLK (CLKPWR_PCLKSEL_SSP0);
    } else if (SSPx == LPC_SSP1) {
        ssp_clk = CLKPWR_GetPCLK (CLKPWR_PCLKSEL_SSP1);
    } else {
        return;
    }

    /* Find closest divider to get at or under the target frequency.
       Use smallest prescale possible and rely on the divider to get
       the closest target frequency */
    cr0_div = 0;
    cmp_clk = 0xFFFFFFFF;
    prescale = 2;
    while (cmp_clk > target_clock)
    {
        cmp_clk = ssp_clk / ((cr0_div + 1) * prescale);
        if (cmp_clk > target_clock)
        {
            cr0_div++;
            if (cr0_div > 0xFF)
            {
                cr0_div = 0;
                prescale += 2;
            }
        }
    }

    /* Write computed prescaler and divider back to register */
    SSPx->CR0 &= (~SSP_CR0_SCR(0xFF)) & SSP_CR0_BITMASK;
    SSPx->CR0 |= (SSP_CR0_SCR(cr0_div)) & SSP_CR0_BITMASK;
    SSPx->CPSR = prescale & SSP_CPSR_BITMASK;
}


/*********************************************************************//**
 * @brief        De-initializes the SSPx peripheral registers to their
*                  default reset values.
 * @param[in]    SSPx    SSP peripheral selected, should be SSP0 or SSP1
 * @return         None
 **********************************************************************/
void SSP_DeInit(LPC_SSP_TypeDef* SSPx)
{
    CHECK_PARAM(PARAM_SSPx(SSPx));

    if (SSPx == LPC_SSP0){
        /* Set up clock and power for SSP0 module */
        CLKPWR_ConfigPPWR (CLKPWR_PCONP_PCSSP0, DISABLE);
    } else if (SSPx == LPC_SSP1) {
        /* Set up clock and power for SSP1 module */
        CLKPWR_ConfigPPWR (CLKPWR_PCONP_PCSSP1, DISABLE);
    }
}



/********************************************************************//**
 * @brief        Initializes the SSPx peripheral according to the specified
*               parameters in the SSP_ConfigStruct.
 * @param[in]    SSPx    SSP peripheral selected, should be SSP0 or SSP1
 * @param[in]    SSP_ConfigStruct Pointer to a SSP_CFG_Type structure
*                    that contains the configuration information for the
*                    specified SSP peripheral.
 * @return         None
 *********************************************************************/
void SSP_Init(LPC_SSP_TypeDef *SSPx, SSP_CFG_Type *SSP_ConfigStruct)
{
    uint32_t tmp;

    CHECK_PARAM(PARAM_SSPx(SSPx));

    if(SSPx == LPC_SSP0) {
        /* Set up clock and power for SSP0 module */
        CLKPWR_ConfigPPWR (CLKPWR_PCONP_PCSSP0, ENABLE);
    } else if(SSPx == LPC_SSP1) {
        /* Set up clock and power for SSP1 module */
        CLKPWR_ConfigPPWR (CLKPWR_PCONP_PCSSP1, ENABLE);
    } else {
        return;
    }

    /* Configure SSP, interrupt is disable, LoopBack mode is disable,
     * SSP is disable, Slave output is disable as default
     */
    tmp = ((SSP_ConfigStruct->CPHA) | (SSP_ConfigStruct->CPOL) \
        | (SSP_ConfigStruct->FrameFormat) | (SSP_ConfigStruct->Databit))
        & SSP_CR0_BITMASK;
    // write back to SSP control register
    SSPx->CR0 = tmp;
    tmp = SSP_getNum(SSPx);
    if (SSP_ConfigStruct->Databit > SSP_DATABIT_8){
        sspdat[tmp].dataword = 1;
    } else {
        sspdat[tmp].dataword = 0;
    }

    tmp = SSP_ConfigStruct->Mode & SSP_CR1_BITMASK;
    // Write back to CR1
    SSPx->CR1 = tmp;

    // Set clock rate for SSP peripheral
    SSP_SetClock(SSPx, SSP_ConfigStruct->ClockRate);
}



/*****************************************************************************//**
* @brief        Fills each SSP_InitStruct member with its default value:
*                 - CPHA = SSP_CPHA_FIRST
*                 - CPOL = SSP_CPOL_HI
*                 - ClockRate = 1000000
*                 - Databit = SSP_DATABIT_8
*                 - Mode = SSP_MASTER_MODE
*                 - FrameFormat = SSP_FRAME_SSP
* @param[in]    SSP_InitStruct Pointer to a SSP_CFG_Type structure
*                    which will be initialized.
* @return        None
*******************************************************************************/
void SSP_ConfigStructInit(SSP_CFG_Type *SSP_InitStruct)
{
    SSP_InitStruct->CPHA = SSP_CPHA_FIRST;
    SSP_InitStruct->CPOL = SSP_CPOL_HI;
    SSP_InitStruct->ClockRate = 1000000;
    SSP_InitStruct->Databit = SSP_DATABIT_8;
    SSP_InitStruct->Mode = SSP_MASTER_MODE;
    SSP_InitStruct->FrameFormat = SSP_FRAME_SPI;
}


/*********************************************************************//**
 * @brief        Enable or disable SSP peripheral's operation
 * @param[in]    SSPx    SSP peripheral, should be SSP0 or SSP1
 * @param[in]    NewState New State of SSPx peripheral's operation
 * @return         none
 **********************************************************************/
void SSP_Cmd(LPC_SSP_TypeDef* SSPx, FunctionalState NewState)
{
    CHECK_PARAM(PARAM_SSPx(SSPx));
    CHECK_PARAM(PARAM_FUNCTIONALSTATE(NewState));

    if (NewState == ENABLE)
    {
        SSPx->CR1 |= SSP_CR1_SSP_EN;
    }
    else
    {
        SSPx->CR1 &= (~SSP_CR1_SSP_EN) & SSP_CR1_BITMASK;
    }
}



/*********************************************************************//**
 * @brief        Enable or disable Loop Back mode function in SSP peripheral
 * @param[in]    SSPx    SSP peripheral selected, should be SSP0 or SSP1
 * @param[in]    NewState    New State of Loop Back mode, should be:
 *                             - ENABLE: Enable this function
 *                             - DISABLE: Disable this function
 * @return         None
 **********************************************************************/
void SSP_LoopBackCmd(LPC_SSP_TypeDef* SSPx, FunctionalState NewState)
{
    CHECK_PARAM(PARAM_SSPx(SSPx));
    CHECK_PARAM(PARAM_FUNCTIONALSTATE(NewState));

    if (NewState == ENABLE)
    {
        SSPx->CR1 |= SSP_CR1_LBM_EN;
    }
    else
    {
        SSPx->CR1 &= (~SSP_CR1_LBM_EN) & SSP_CR1_BITMASK;
    }
}



/*********************************************************************//**
 * @brief        Enable or disable Slave Output function in SSP peripheral
 * @param[in]    SSPx    SSP peripheral selected, should be SSP0 or SSP1
 * @param[in]    NewState    New State of Slave Output function, should be:
 *                             - ENABLE: Slave Output in normal operation
 *                             - DISABLE: Slave Output is disabled. This blocks
 *                             SSP controller from driving the transmit data
 *                             line (MISO)
 * Note:         This function is available when SSP peripheral in Slave mode
 * @return         None
 **********************************************************************/
void SSP_SlaveOutputCmd(LPC_SSP_TypeDef* SSPx, FunctionalState NewState)
{
    CHECK_PARAM(PARAM_SSPx(SSPx));
    CHECK_PARAM(PARAM_FUNCTIONALSTATE(NewState));

    if (NewState == ENABLE)
    {
        SSPx->CR1 &= (~SSP_CR1_SO_DISABLE) & SSP_CR1_BITMASK;
    }
    else
    {
        SSPx->CR1 |= SSP_CR1_SO_DISABLE;
    }
}



/*********************************************************************//**
 * @brief        Transmit a single data through SSPx peripheral
 * @param[in]    SSPx    SSP peripheral selected, should be SSP
 * @param[in]    Data    Data to transmit (must be 16 or 8-bit long,
 *                         this depend on SSP data bit number configured)
 * @return         none
 **********************************************************************/
void SSP_SendData(LPC_SSP_TypeDef* SSPx, uint16_t Data)
{
    CHECK_PARAM(PARAM_SSPx(SSPx));

    SSPx->DR = SSP_DR_BITMASK(Data);
}



/*********************************************************************//**
 * @brief        Receive a single data from SSPx peripheral
 * @param[in]    SSPx    SSP peripheral selected, should be SSP
 * @return         Data received (16-bit long)
 **********************************************************************/
uint16_t SSP_ReceiveData(LPC_SSP_TypeDef* SSPx)
{
    CHECK_PARAM(PARAM_SSPx(SSPx));

    return ((uint16_t) (SSP_DR_BITMASK(SSPx->DR)));
}

/*********************************************************************//**
 * @brief         SSP Read write data function
 * @param[in]    SSPx     Pointer to SSP peripheral, should be SSP0 or SSP1
 * @param[in]    dataCfg    Pointer to a SSP_DATA_SETUP_Type structure that
 *                         contains specified information about transmit
 *                         data configuration.
 * @param[in]    xfType    Transfer type, should be:
 *                         - SSP_TRANSFER_POLLING: Polling mode
 *                         - SSP_TRANSFER_INTERRUPT: Interrupt mode
 * @return         Actual Data length has been transferred in polling mode.
 *                 In interrupt mode, always return (0)
 *                 Return (-1) if error.
 * Note: This function can be used in both master and slave mode.
 ***********************************************************************/
int32_t SSP_ReadWrite (LPC_SSP_TypeDef *SSPx, SSP_DATA_SETUP_Type *dataCfg, \
                        SSP_TRANSFER_Type xfType)
{
    uint8_t *rdata8=NULL;
    uint8_t *wdata8=NULL;
    uint16_t *rdata16=NULL;
    uint16_t *wdata16=NULL;
    uint32_t stat;
    uint32_t tmp;
    int32_t sspnum;
    int32_t dataword;

    dataCfg->rx_cnt = 0;
    dataCfg->tx_cnt = 0;
    dataCfg->status = 0;


    /* Clear all remaining data in RX FIFO */
    while (SSPx->SR & SSP_SR_RNE){
        tmp = (uint32_t) SSP_ReceiveData(SSPx);
    }

    // Clear status
    SSPx->ICR = SSP_ICR_BITMASK;

    sspnum = SSP_getNum(SSPx);
    dataword = sspdat[sspnum].dataword;

    // Polling mode ----------------------------------------------------------------------
    if (xfType == SSP_TRANSFER_POLLING){
        if (dataword == 0){
            rdata8 = (uint8_t *)dataCfg->rx_data;
            wdata8 = (uint8_t *)dataCfg->tx_data;
        } else {
            rdata16 = (uint16_t *)dataCfg->rx_data;
            wdata16 = (uint16_t *)dataCfg->tx_data;
        }
        while ((dataCfg->tx_cnt != dataCfg->length) || (dataCfg->rx_cnt != dataCfg->length)){
            if ((SSPx->SR & SSP_SR_TNF) && (dataCfg->tx_cnt != dataCfg->length)){
                // Write data to buffer
                if(dataCfg->tx_data == NULL){
                    if (dataword == 0){
                        SSP_SendData(SSPx, 0xFF);
                        dataCfg->tx_cnt++;
                    } else {
                        SSP_SendData(SSPx, 0xFFFF);
                        dataCfg->tx_cnt += 2;
                    }
                } else {
                    if (dataword == 0){
                        SSP_SendData(SSPx, *wdata8);
                        wdata8++;
                        dataCfg->tx_cnt++;
                    } else {
                        SSP_SendData(SSPx, *wdata16);
                        wdata16++;
                        dataCfg->tx_cnt += 2;
                    }
                }
            }

            // Check overrun error
            if ((stat = SSPx->RIS) & SSP_RIS_ROR){
                // save status and return
                dataCfg->status = stat | SSP_STAT_ERROR;
                return (-1);
            }

            // Check for any data available in RX FIFO
            while ((SSPx->SR & SSP_SR_RNE) && (dataCfg->rx_cnt != dataCfg->length)){
                // Read data from SSP data
                tmp = SSP_ReceiveData(SSPx);

                // Store data to destination
                if (dataCfg->rx_data != NULL)
                {
                    if (dataword == 0){
                        *(rdata8) = (uint8_t) tmp;
                        rdata8++;
                    } else {
                        *(rdata16) = (uint16_t) tmp;
                        rdata16++;
                    }
                }
                // Increase counter
                if (dataword == 0){
                    dataCfg->rx_cnt++;
                } else {
                    dataCfg->rx_cnt += 2;
                }
            }
        }

        // save status
        dataCfg->status = SSP_STAT_DONE;

        if (dataCfg->tx_data != NULL){
            return dataCfg->tx_cnt;
        } else if (dataCfg->rx_data != NULL){
            return dataCfg->rx_cnt;
        } else {
            return (0);
        }
    }

    // Interrupt mode ----------------------------------------------------------------------
    else if (xfType == SSP_TRANSFER_INTERRUPT){
        sspdat[sspnum].inthandler = SSP_IntHandler;
        sspdat[sspnum].txrx_setup = (uint32_t)dataCfg;

        while ((SSPx->SR & SSP_SR_TNF) && (dataCfg->tx_cnt != dataCfg->length)){
            // Write data to buffer
            if(dataCfg->tx_data == NULL){
                if (sspdat[sspnum].dataword == 0){
                    SSP_SendData(SSPx, 0xFF);
                    dataCfg->tx_cnt++;
                } else {
                    SSP_SendData(SSPx, 0xFFFF);
                    dataCfg->tx_cnt += 2;
                }
            } else {
                if (sspdat[sspnum].dataword == 0){
                    SSP_SendData(SSPx, (*(uint8_t *)((uint32_t)dataCfg->tx_data + dataCfg->tx_cnt)));
                    dataCfg->tx_cnt++;
                } else {
                    SSP_SendData(SSPx, (*(uint16_t *)((uint32_t)dataCfg->tx_data + dataCfg->tx_cnt)));
                    dataCfg->tx_cnt += 2;
                }
            }

            // Check error
            if ((stat = SSPx->RIS) & SSP_RIS_ROR){
                // save status and return
                dataCfg->status = stat | SSP_STAT_ERROR;
                return (-1);
            }

            // Check for any data available in RX FIFO
            while ((SSPx->SR & SSP_SR_RNE) && (dataCfg->rx_cnt != dataCfg->length)){
                // Read data from SSP data
                tmp = SSP_ReceiveData(SSPx);

                // Store data to destination
                if (dataCfg->rx_data != NULL)
                {
                    if (sspdat[sspnum].dataword == 0){
                        *(uint8_t *)((uint32_t)dataCfg->rx_data + dataCfg->rx_cnt) = (uint8_t) tmp;
                    } else {
                        *(uint16_t *)((uint32_t)dataCfg->rx_data + dataCfg->rx_cnt) = (uint16_t) tmp;
                    }
                }
                // Increase counter
                if (sspdat[sspnum].dataword == 0){
                    dataCfg->rx_cnt++;
                } else {
                    dataCfg->rx_cnt += 2;
                }
            }
        }

        // If there more data to sent or receive
        if ((dataCfg->rx_cnt != dataCfg->length) || (dataCfg->tx_cnt != dataCfg->length)){
            // Enable all interrupt
            SSPx->IMSC = SSP_IMSC_BITMASK;
        } else {
            // Save status
            dataCfg->status = SSP_STAT_DONE;
        }
        return (0);
    }

    return (-1);
}

/*********************************************************************//**
 * @brief        Checks whether the specified SSP status flag is set or not
 * @param[in]    SSPx    SSP peripheral selected, should be SSP0 or SSP1
 * @param[in]    FlagType    Type of flag to check status, should be one
 *                             of following:
 *                            - SSP_STAT_TXFIFO_EMPTY: TX FIFO is empty
 *                            - SSP_STAT_TXFIFO_NOTFULL: TX FIFO is not full
 *                            - SSP_STAT_RXFIFO_NOTEMPTY: RX FIFO is not empty
 *                            - SSP_STAT_RXFIFO_FULL: RX FIFO is full
 *                            - SSP_STAT_BUSY: SSP peripheral is busy
 * @return        New State of specified SSP status flag
 **********************************************************************/
FlagStatus SSP_GetStatus(LPC_SSP_TypeDef* SSPx, uint32_t FlagType)
{
    CHECK_PARAM(PARAM_SSPx(SSPx));
    CHECK_PARAM(PARAM_SSP_STAT(FlagType));

    return ((SSPx->SR & FlagType) ? SET : RESET);
}



/*********************************************************************//**
 * @brief        Enable or disable specified interrupt type in SSP peripheral
 * @param[in]    SSPx    SSP peripheral selected, should be SSP0 or SSP1
 * @param[in]    IntType    Interrupt type in SSP peripheral, should be:
 *                 - SSP_INTCFG_ROR: Receive Overrun interrupt
 *                 - SSP_INTCFG_RT: Receive Time out interrupt
 *                 - SSP_INTCFG_RX: RX FIFO is at least half full interrupt
 *                 - SSP_INTCFG_TX: TX FIFO is at least half empty interrupt
 * @param[in]    NewState New State of specified interrupt type, should be:
 *                 - ENABLE: Enable this interrupt type
 *                 - DISABLE: Disable this interrupt type
 * @return        None
 **********************************************************************/
void SSP_IntConfig(LPC_SSP_TypeDef *SSPx, uint32_t IntType, FunctionalState NewState)
{
    CHECK_PARAM(PARAM_SSPx(SSPx));
    CHECK_PARAM(PARAM_SSP_INTCFG(IntType));

    if (NewState == ENABLE)
    {
        SSPx->IMSC |= IntType;
    }
    else
    {
        SSPx->IMSC &= (~IntType) & SSP_IMSC_BITMASK;
    }
}


/*********************************************************************//**
 * @brief    Check whether the specified Raw interrupt status flag is
 *             set or not
 * @param[in]    SSPx    SSP peripheral selected, should be SSP0 or SSP1
 * @param[in]    RawIntType    Raw Interrupt Type, should be:
 *                 - SSP_INTSTAT_RAW_ROR: Receive Overrun interrupt
 *                 - SSP_INTSTAT_RAW_RT: Receive Time out interrupt
 *                 - SSP_INTSTAT_RAW_RX: RX FIFO is at least half full interrupt
 *                 - SSP_INTSTAT_RAW_TX: TX FIFO is at least half empty interrupt
 * @return    New State of specified Raw interrupt status flag in SSP peripheral
 * Note: Enabling/Disabling specified interrupt in SSP peripheral does not
 *         effect to Raw Interrupt Status flag.
 **********************************************************************/
IntStatus SSP_GetRawIntStatus(LPC_SSP_TypeDef *SSPx, uint32_t RawIntType)
{
    CHECK_PARAM(PARAM_SSPx(SSPx));
    CHECK_PARAM(PARAM_SSP_INTSTAT_RAW(RawIntType));

    return ((SSPx->RIS & RawIntType) ? SET : RESET);
}


/*********************************************************************//**
 * @brief    Check whether the specified interrupt status flag is
 *             set or not
 * @param[in]    SSPx    SSP peripheral selected, should be SSP0 or SSP1
 * @param[in]    IntType    Raw Interrupt Type, should be:
 *                 - SSP_INTSTAT_ROR: Receive Overrun interrupt
 *                 - SSP_INTSTAT_RT: Receive Time out interrupt
 *                 - SSP_INTSTAT_RX: RX FIFO is at least half full interrupt
 *                 - SSP_INTSTAT_TX: TX FIFO is at least half empty interrupt
 * @return    New State of specified interrupt status flag in SSP peripheral
 * Note: Enabling/Disabling specified interrupt in SSP peripheral effects
 *             to Interrupt Status flag.
 **********************************************************************/
IntStatus SSP_GetIntStatus (LPC_SSP_TypeDef *SSPx, uint32_t IntType)
{
    CHECK_PARAM(PARAM_SSPx(SSPx));
    CHECK_PARAM(PARAM_SSP_INTSTAT(IntType));

    return ((SSPx->MIS & IntType) ? SET :RESET);
}



/*********************************************************************//**
 * @brief                Clear specified interrupt pending in SSP peripheral
 * @param[in]    SSPx    SSP peripheral selected, should be SSP0 or SSP1
 * @param[in]    IntType    Interrupt pending to clear, should be:
 *                         - SSP_INTCLR_ROR: clears the "frame was received when
 *                         RxFIFO was full" interrupt.
 *                         - SSP_INTCLR_RT: clears the "Rx FIFO was not empty and
 *                         has not been read for a timeout period" interrupt.
 * @return        None
 **********************************************************************/
void SSP_ClearIntPending(LPC_SSP_TypeDef *SSPx, uint32_t IntType)
{
    CHECK_PARAM(PARAM_SSPx(SSPx));
    CHECK_PARAM(PARAM_SSP_INTCLR(IntType));

    SSPx->ICR = IntType;
}

/*********************************************************************//**
 * @brief                Enable/Disable DMA function for SSP peripheral
 * @param[in]    SSPx    SSP peripheral selected, should be SSP0 or SSP1
 * @param[in]    DMAMode    Type of DMA, should be:
 *                         - SSP_DMA_TX: DMA for the transmit FIFO
 *                         - SSP_DMA_RX: DMA for the Receive FIFO
 * @param[in]    NewState    New State of DMA function on SSP peripheral,
 *                         should be:
 *                         - ENALBE: Enable this function
 *                         - DISABLE: Disable this function
 * @return        None
 **********************************************************************/
void SSP_DMACmd(LPC_SSP_TypeDef *SSPx, uint32_t DMAMode, FunctionalState NewState)
{
    CHECK_PARAM(PARAM_SSPx(SSPx));
    CHECK_PARAM(PARAM_SSP_DMA(DMAMode));
    CHECK_PARAM(PARAM_FUNCTIONALSTATE(NewState));

    if (NewState == ENABLE)
    {
        SSPx->DMACR |= DMAMode;
    }
    else
    {
        SSPx->DMACR &= (~DMAMode) & SSP_DMA_BITMASK;
    }
}

/**
 * @brief        Standard SSP0 Interrupt handler
 * @param[in]     None
 * @return        None
 */
void SSP0_StdIntHandler(void)
{
    // Call relevant handler
    sspdat[0].inthandler(LPC_SSP0);
}

/**
 * @brief        Standard SSP1 Interrupt handler
 * @param[in]     None
 * @return        None
 */
void SSP1_StdIntHandler(void)
{
    // Call relevant handler
    sspdat[1].inthandler(LPC_SSP1);
}

/**
 * @}
 */

#endif /* _SSP */

/**
 * @}
 */

/* --------------------------------- End Of File ------------------------------ */