RTOS enabled i2c-driver based on the official i2c-C-api.

Dependencies:   mbed-rtos

Fork of mbed-RtosI2cDriver by Helmut Schmücker

I2cRtosDriver

Overview

  • Based on RTOS
    • Less busy wait waste of CPU cycles
    • ... but some waste of CPU cycles by context switches
    • Frees up to 80% of CPU resources
  • Fixes the bug described in https://mbed.org/forum/bugs-suggestions/topic/4128/
  • Spends minimal time in interrupt context
  • Supports I2C Master and Slave mode
  • Interface compatible to official I2C lib
  • Supports LPC1768 and LPC11U24.
  • Reuses parts of the official I2C implementation
  • The test and example programs work quite well and the results look promising. But this is by no means a thoroughly regression tested library. There might be some surprises left.
  • If you want to avoid the RTOS overhead MODI2C might be a better choice.

Usage

  • In existing projects simply replace in the I2C interface class declaration the official type by one of the adapters I2CMasterRtos or I2CSlaveRtos described below. The behavior should be the same.
  • You can also use the I2CDriver interface directly.
  • You can create several instances of I2CMasterRtos, I2CSlaveRtos and I2CDriver. The interface classes are lightweight and work in parallel.
  • See also the tests/examples in I2CDriverTest01.h - I2CDriverTest05.h
  • The I2CDriver class is the central interface
    • I2CDriver provides a "fat" API for I2C master and slave access
    • It supports on the fly changes between master and slave mode.
    • All requests are blocking. Other threads might do their work while the calling thread waits for the i2c requests to be completed.
    • It ensures mutual exclusive access to the I2C HW.
      • This is realized by a static RTOS mutex for each I2C channel. The mutex is taken by the calling thread on any call of an I2CDriver-function.
      • Thus accesses are prioritized automatically by the priority of the calling user threads.
      • Once having access to the interface the requests are performed with high priority and cannot be interrupted by other threads.
      • Optionally the interface can be locked manually. Useful if one wants to perform a sequence of commands without interruption.
  • I2CMasterRtos and I2CSlaveRtos provide an interface compatible to the official mbed I2C interface. Additionally
    • the constructors provide parameters for defining the frequency and the slave address
    • I2CMasterRtos provides a function to read data from a given slave register
    • In contrast to the original interface the I2CSlaveRtos::receive() function is blocking, i.e it returns, when the master sends a request to the listening slave. There is no need to poll the receive status in a loop. Optionally a timeout value can be passed to the function.
    • The stop function provides a timeout mechanism and returns the status. Thus if someone on the bus inhibits the creation of a stop condition by keeping the scl or the sda line low the mbed master won't get freezed.
    • The interface adapters are implemented as object adapters, i.e they hold an I2CDriver-instance, to which they forward the user requests by simple inline functions. The overhead is negligible.

Design

The i2c read and write sequences have been realized in an interrupt service routine. The communicaton between the calling thread and the ISR is realized by a simple static transfer struct and a semaphore ... see i2cRtos_api.c
The start and stop functions still use the busy wait approach. They are not entered that frequently and usually they take less than 12µs at 100kHz bus speed. At 400kHz even less time is consumed. Thus there wouldn't be much benefit if one triggers the whole interrupt/task wait/switch sequence for that short period of time.

Performance

The following performance data have been measured with the small test applications in I2CDriverTest01.h and I2CDriverTest04.h . In these applications a high priority thread, triggered at a rate of 1kHz, reads on each trigger a data packet of given size with given I2C bus speed from a SRF08 ultra sonic ranger or a MPU6050 accelerometer/gyro. At the same time the main thread - running at a lower priority - counts in an endless loop adjacent increments of the mbed's µs-ticker API and calculates a duty cycle from this. These duty cycle measurements are shown in the table below together with the time measured for one read sequence (write address+register; write address and read x byte of data). The measurements have been performed with the ISR/RTOS approach used by this driver and with the busy wait approach used by the official mbed I2C implementation. The i2c implementation can be selected via #define PREFIX in I2CDriver.cpp.

  • The time for one read cycle is almost the same for both approaches
  • At full load the duty cycle of the low priority thread drops almost to zero for the busy wait approach, whereas with the RTOS/ISR enabled driver it stays at 80%-90% on the LPC1768 and above 65% on the LPC11U24.
  • => Especially at low bus speeds and/or high data transfer loads the driver is able to free a significant amount of CPU time.
LPC17681byte/ms4byte/ms6byte/ms1byte/ms6byte/ms12byte/ms25byte/ms
SRF08@ 100kHz@ 100kHz@ 100kHz@ 400kHz@ 400kHz@ 400kHz@ 400kHz
rtos/ISRDC[%]91.791.090.593.391.990.386.8
t[µs]421714910141314518961
busy waitDC[%]57.127.78.185.868.748.23.8
t[µs]415710907128299503949
LPC17681byte/ms4byte/ms7byte/ms1byte/ms6byte/ms12byte/ms36byte/ms
MPU6050@ 100kHz@ 100kHz@ 100kHz@ 400kHz@ 400kHz@ 400kHz@ 400kHz
rtos/ISRDC[%]91.590.789.393.091.690.084.2
t[µs]415687959133254398977
busy waitDC[%]57.730.53.386.574.359.71.2
t[µs]408681953121243392974
LPC11U241byte/ms6byte/ms1byte/ms6byte/ms23byte/ms
SRF08@ 100kHz@ 100kHz@ 400kHz@ 400kHz@ 400kHz
rtos/ISRDC[%]79.277.581.178.771.4
t[µs]474975199374978
busy waitDC[%]51.82.480.5633.3
t[µs]442937156332928
LPC11U241byte/ms6byte/ms1byte/ms6byte/ms32byte/ms
MPU6050@ 100kHz@ 100kHz@ 400kHz@ 400kHz@ 400kHz
rtos/ISRDC[%]79.176.881.078.667.1
t[µs]466922188316985
busy waitDC[%]52.87.281.769.87.4
t[µs]433893143268895
Committer:
humlet
Date:
Wed May 08 19:22:45 2013 +0000
Revision:
10:e3d6c92ff222
Parent:
9:65aae53a34de
Child:
11:8c1d44595620
less smoke, actually it seems to work

Who changed what in which revision?

UserRevisionLine numberNew contents of line
humlet 0:13c962fecb13 1 #include "I2CDriver.h"
humlet 9:65aae53a34de 2 #include "i2cRtos_api.h"
humlet 0:13c962fecb13 3 #include "error.h"
humlet 0:13c962fecb13 4
humlet 1:90455d5bdd8c 5 using namespace mbed;
humlet 1:90455d5bdd8c 6 using namespace rtos;
humlet 0:13c962fecb13 7
humlet 1:90455d5bdd8c 8 #define DRV_USR_SIG (1<<6)
humlet 1:90455d5bdd8c 9
humlet 1:90455d5bdd8c 10 const PinName I2CDriver::c_sdas[] = {p9,p28};
humlet 1:90455d5bdd8c 11 const PinName I2CDriver::c_scls[] = {p10,p27};
humlet 1:90455d5bdd8c 12
humlet 1:90455d5bdd8c 13 I2CDriver::Channel* I2CDriver::s_channels[2] = {0,0};
humlet 0:13c962fecb13 14
humlet 3:967dde37e712 15 I2CDriver::I2CDriver(PinName sda, PinName scl, int hz, int slaveAdr):m_freq(hz),m_slaveAdr(slaveAdr)
humlet 3:967dde37e712 16 {
humlet 3:967dde37e712 17 // check pins and determine i2c channel
humlet 3:967dde37e712 18 int channel=0;
humlet 3:967dde37e712 19 #if defined(TARGET_LPC1768) || defined(TARGET_LPC2368)
humlet 3:967dde37e712 20 if(sda==c_sdas[0] && scl==c_scls[0]) channel=0; // I2C_1
humlet 3:967dde37e712 21 else
humlet 3:967dde37e712 22 #endif
humlet 3:967dde37e712 23 if (sda==c_sdas[1] && scl==c_scls[1]) channel=1; //I2C_2 or I2C
humlet 9:65aae53a34de 24 else error("I2CDriver: Invalid I2C pins selected\n");
humlet 3:967dde37e712 25
humlet 9:65aae53a34de 26 if(s_channels[channel]==0) {
humlet 9:65aae53a34de 27 new Thread(threadFun,(void *)channel,osPriorityRealtime,512); // evillive
humlet 8:5be85bd4c5ba 28 }
humlet 3:967dde37e712 29 m_channel = s_channels[channel];
humlet 3:967dde37e712 30 }
humlet 3:967dde37e712 31
humlet 3:967dde37e712 32
humlet 1:90455d5bdd8c 33 void I2CDriver::threadFun(void const *args)
humlet 0:13c962fecb13 34 {
humlet 0:13c962fecb13 35 int channelIdx = (int)args;
humlet 0:13c962fecb13 36 Channel channel;
humlet 0:13c962fecb13 37 s_channels[channelIdx] = &channel;
humlet 2:514105beb343 38 channel.driver = Thread::gettid();
humlet 0:13c962fecb13 39
humlet 3:967dde37e712 40 int freq = 0;
humlet 3:967dde37e712 41 int adrSlave = 0;
humlet 3:967dde37e712 42 int modeSlave = 0;
humlet 3:967dde37e712 43 i2c_t i2c;
humlet 9:65aae53a34de 44 i2cRtos_init(&i2c, c_sdas[channelIdx], c_scls[channelIdx]);
humlet 2:514105beb343 45
humlet 1:90455d5bdd8c 46 volatile Transfer& tr = channel.transfer;
humlet 0:13c962fecb13 47 while(1) {
humlet 1:90455d5bdd8c 48 // wait for requests
humlet 1:90455d5bdd8c 49 osSignalWait(DRV_USR_SIG,osWaitForever);
humlet 3:967dde37e712 50
humlet 1:90455d5bdd8c 51 // check and adapt frequency
humlet 3:967dde37e712 52 if(freq != tr.freq) {
humlet 3:967dde37e712 53 freq = tr.freq;
humlet 3:967dde37e712 54 i2c_frequency(&i2c, tr.freq);
humlet 1:90455d5bdd8c 55 }
humlet 3:967dde37e712 56
humlet 3:967dde37e712 57 // check and adapt slave/master mode
humlet 3:967dde37e712 58 if(modeSlave != tr.slv) {
humlet 3:967dde37e712 59 modeSlave = tr.slv;
humlet 3:967dde37e712 60 i2c_slave_mode(&i2c, tr.slv);
humlet 3:967dde37e712 61 }
humlet 3:967dde37e712 62
humlet 3:967dde37e712 63 // check and adapt slave address
humlet 3:967dde37e712 64 int adr = (tr.adr & 0xFF) | 1;
humlet 3:967dde37e712 65 if(tr.slv && adrSlave != adr) {
humlet 3:967dde37e712 66 adrSlave = adr;
humlet 3:967dde37e712 67 i2c_slave_address(&i2c, 0, adr, 0);
humlet 3:967dde37e712 68 }
humlet 3:967dde37e712 69
humlet 1:90455d5bdd8c 70 // just doit
humlet 1:90455d5bdd8c 71 switch(tr.cmd) {
humlet 0:13c962fecb13 72 case START:
humlet 3:967dde37e712 73 i2c_start(&i2c);
humlet 0:13c962fecb13 74 break;
humlet 0:13c962fecb13 75 case STOP:
humlet 3:967dde37e712 76 i2c_stop(&i2c);
humlet 0:13c962fecb13 77 break;
humlet 3:967dde37e712 78 case READ_MST:
humlet 9:65aae53a34de 79 tr.ret = i2cRtos_read(&i2c, tr.adr, tr.dta, tr.len, (tr.rep?0:1));
humlet 1:90455d5bdd8c 80 break;
humlet 3:967dde37e712 81 case READ_MST_REG:
humlet 10:e3d6c92ff222 82 //printf("drv00\n");
humlet 9:65aae53a34de 83 tr.ret = i2cRtos_write(&i2c, tr.adr,(const char*)&(tr.reg), 1, 0);
humlet 10:e3d6c92ff222 84 //printf("drv01\n");
humlet 1:90455d5bdd8c 85 if(tr.ret)break; // error => bail out
humlet 9:65aae53a34de 86 tr.ret = i2cRtos_read(&i2c, tr.adr, tr.dta, tr.len, (tr.rep?0:1));
humlet 10:e3d6c92ff222 87 //printf("drv02\n");
humlet 3:967dde37e712 88 break;
humlet 3:967dde37e712 89 case READ_SLV:
humlet 9:65aae53a34de 90 tr.ret = i2cRtos_slave_read(&i2c, tr.dta, tr.len);
humlet 1:90455d5bdd8c 91 break;
humlet 1:90455d5bdd8c 92 case READ_BYTE:
humlet 9:65aae53a34de 93 tr.ret = i2cRtos_byte_read(&i2c, (tr.ack?0:1));
humlet 1:90455d5bdd8c 94 break;
humlet 3:967dde37e712 95 case WRITE_MST:
humlet 9:65aae53a34de 96 tr.ret = i2cRtos_write(&i2c, tr.adr, tr.wdta, tr.len, (tr.rep?0:1));
humlet 3:967dde37e712 97 break;
humlet 3:967dde37e712 98 case WRITE_SLV:
humlet 9:65aae53a34de 99 tr.ret = i2cRtos_slave_write(&i2c, tr.wdta, tr.len);
humlet 1:90455d5bdd8c 100 break;
humlet 1:90455d5bdd8c 101 case WRITE_BYTE:
humlet 9:65aae53a34de 102 tr.ret = i2cRtos_byte_write(&i2c, tr.ack);
humlet 1:90455d5bdd8c 103 break;
humlet 3:967dde37e712 104 case RECEIVE:
humlet 9:65aae53a34de 105 tr.ret = i2cRtos_slave_receive(&i2c, tr.tmout);
humlet 4:eafa7efcd771 106 break;
humlet 1:90455d5bdd8c 107 default:
humlet 4:eafa7efcd771 108 error("call 911\n");
humlet 0:13c962fecb13 109 }
humlet 1:90455d5bdd8c 110 // inform the caller
humlet 1:90455d5bdd8c 111 osSignalSet( channel.transfer.caller, DRV_USR_SIG);
humlet 0:13c962fecb13 112 }
humlet 0:13c962fecb13 113 }
humlet 0:13c962fecb13 114
humlet 6:5b98c902a659 115 void I2CDriver::lock()
humlet 6:5b98c902a659 116 {
humlet 6:5b98c902a659 117 // One and the same thread can lock twice, but then it needs also to unlock twice.
humlet 6:5b98c902a659 118 // exactly what we need here
humlet 6:5b98c902a659 119 m_callerID = osThreadGetId();
humlet 6:5b98c902a659 120 m_callerPrio = osThreadGetPriority(m_callerID);
humlet 6:5b98c902a659 121 m_channel->mutex.lock(osWaitForever);
humlet 6:5b98c902a659 122 osThreadSetPriority(m_callerID, c_drvPrio); // hopefully not interrupted since the lock
humlet 6:5b98c902a659 123 }
humlet 6:5b98c902a659 124
humlet 6:5b98c902a659 125 void I2CDriver::unlock()
humlet 6:5b98c902a659 126 {
humlet 6:5b98c902a659 127 // free the mtex and restore original prio
humlet 6:5b98c902a659 128 m_channel->mutex.unlock();
humlet 6:5b98c902a659 129 osThreadSetPriority(m_callerID, m_callerPrio);
humlet 6:5b98c902a659 130 }
humlet 6:5b98c902a659 131
humlet 3:967dde37e712 132 int I2CDriver::sendNwait()
humlet 0:13c962fecb13 133 {
humlet 3:967dde37e712 134 m_channel->transfer.freq = m_freq;
humlet 1:90455d5bdd8c 135 m_channel->transfer.caller = Thread::gettid();
humlet 1:90455d5bdd8c 136 osSignalSet( m_channel->driver, DRV_USR_SIG);
humlet 0:13c962fecb13 137 osSignalWait(DRV_USR_SIG,osWaitForever);
humlet 1:90455d5bdd8c 138 int ret = m_channel->transfer.ret;
humlet 1:90455d5bdd8c 139 unlock();
humlet 1:90455d5bdd8c 140 return ret;
humlet 0:13c962fecb13 141 }
humlet 0:13c962fecb13 142
humlet 3:967dde37e712 143 int I2CDriver::readMaster(int address, char *data, int length, bool repeated)
humlet 1:90455d5bdd8c 144 {
humlet 1:90455d5bdd8c 145 lock();
humlet 3:967dde37e712 146 m_channel->transfer.cmd = READ_MST;
humlet 3:967dde37e712 147 m_channel->transfer.slv = false;
humlet 1:90455d5bdd8c 148 m_channel->transfer.adr = address;
humlet 1:90455d5bdd8c 149 m_channel->transfer.dta = data;
humlet 1:90455d5bdd8c 150 m_channel->transfer.len = length;
humlet 1:90455d5bdd8c 151 m_channel->transfer.rep = repeated;
humlet 3:967dde37e712 152 return sendNwait();
humlet 1:90455d5bdd8c 153 }
humlet 1:90455d5bdd8c 154
humlet 3:967dde37e712 155 int I2CDriver::readMaster(int address, uint8_t _register, char *data, int length, bool repeated)
humlet 3:967dde37e712 156 {
humlet 3:967dde37e712 157 lock();
humlet 3:967dde37e712 158 m_channel->transfer.cmd = READ_MST_REG;
humlet 3:967dde37e712 159 m_channel->transfer.slv = false;
humlet 3:967dde37e712 160 m_channel->transfer.adr = address;
humlet 3:967dde37e712 161 m_channel->transfer.reg = _register;
humlet 3:967dde37e712 162 m_channel->transfer.dta = data;
humlet 3:967dde37e712 163 m_channel->transfer.len = length;
humlet 3:967dde37e712 164 m_channel->transfer.rep = repeated;
humlet 3:967dde37e712 165 return sendNwait();
humlet 3:967dde37e712 166 }
humlet 3:967dde37e712 167
humlet 3:967dde37e712 168 int I2CDriver::readMaster(int ack)
humlet 1:90455d5bdd8c 169 {
humlet 1:90455d5bdd8c 170 lock();
humlet 1:90455d5bdd8c 171 m_channel->transfer.cmd = READ_BYTE;
humlet 3:967dde37e712 172 m_channel->transfer.slv = false;
humlet 1:90455d5bdd8c 173 m_channel->transfer.ack = ack;
humlet 3:967dde37e712 174 return sendNwait();
humlet 1:90455d5bdd8c 175 }
humlet 1:90455d5bdd8c 176
humlet 3:967dde37e712 177 int I2CDriver::writeMaster(int address, const char *data, int length, bool repeated)
humlet 1:90455d5bdd8c 178 {
humlet 0:13c962fecb13 179 lock();
humlet 3:967dde37e712 180 m_channel->transfer.cmd = WRITE_MST;
humlet 3:967dde37e712 181 m_channel->transfer.slv = false;
humlet 1:90455d5bdd8c 182 m_channel->transfer.adr = address;
humlet 1:90455d5bdd8c 183 m_channel->transfer.wdta = data;
humlet 1:90455d5bdd8c 184 m_channel->transfer.len = length;
humlet 1:90455d5bdd8c 185 m_channel->transfer.rep = repeated;
humlet 3:967dde37e712 186 return sendNwait();
humlet 1:90455d5bdd8c 187 }
humlet 1:90455d5bdd8c 188
humlet 3:967dde37e712 189 int I2CDriver::writeMaster(int data)
humlet 1:90455d5bdd8c 190 {
humlet 1:90455d5bdd8c 191 lock();
humlet 1:90455d5bdd8c 192 m_channel->transfer.cmd = WRITE_BYTE;
humlet 3:967dde37e712 193 m_channel->transfer.slv = false;
humlet 1:90455d5bdd8c 194 m_channel->transfer.ack = data;
humlet 3:967dde37e712 195 return sendNwait();
humlet 0:13c962fecb13 196 }
humlet 1:90455d5bdd8c 197
humlet 3:967dde37e712 198 void I2CDriver::startMaster(void)
humlet 1:90455d5bdd8c 199 {
humlet 1:90455d5bdd8c 200 lock();
humlet 1:90455d5bdd8c 201 m_channel->transfer.cmd = START;
humlet 3:967dde37e712 202 m_channel->transfer.slv = false;
humlet 1:90455d5bdd8c 203 sendNwait();
humlet 3:967dde37e712 204 }
humlet 3:967dde37e712 205
humlet 3:967dde37e712 206 void I2CDriver::stopMaster(void)
humlet 3:967dde37e712 207 {
humlet 3:967dde37e712 208 lock();
humlet 3:967dde37e712 209 m_channel->transfer.cmd = STOP;
humlet 3:967dde37e712 210 m_channel->transfer.slv = false;
humlet 3:967dde37e712 211 sendNwait();
humlet 3:967dde37e712 212 }
humlet 3:967dde37e712 213
humlet 3:967dde37e712 214 void I2CDriver::stopSlave(void)
humlet 3:967dde37e712 215 {
humlet 3:967dde37e712 216 lock();
humlet 3:967dde37e712 217 m_channel->transfer.cmd = STOP;
humlet 3:967dde37e712 218 m_channel->transfer.slv = true;
humlet 3:967dde37e712 219 m_channel->transfer.adr = m_slaveAdr;
humlet 3:967dde37e712 220 sendNwait();
humlet 3:967dde37e712 221 }
humlet 3:967dde37e712 222
humlet 3:967dde37e712 223 int I2CDriver::receiveSlave(uint32_t timeout_ms)
humlet 3:967dde37e712 224 {
humlet 3:967dde37e712 225 lock();
humlet 3:967dde37e712 226 m_channel->transfer.cmd = RECEIVE;
humlet 3:967dde37e712 227 m_channel->transfer.slv = true;
humlet 3:967dde37e712 228 m_channel->transfer.adr = m_slaveAdr;
humlet 3:967dde37e712 229 m_channel->transfer.tmout = timeout_ms;
humlet 3:967dde37e712 230 return sendNwait();
humlet 3:967dde37e712 231 }
humlet 3:967dde37e712 232
humlet 3:967dde37e712 233 int I2CDriver::readSlave(char* data, int length)
humlet 3:967dde37e712 234 {
humlet 3:967dde37e712 235 lock();
humlet 3:967dde37e712 236 m_channel->transfer.cmd = READ_SLV;
humlet 3:967dde37e712 237 m_channel->transfer.slv = true;
humlet 3:967dde37e712 238 m_channel->transfer.adr = m_slaveAdr;
humlet 3:967dde37e712 239 m_channel->transfer.dta = data;
humlet 3:967dde37e712 240 m_channel->transfer.len = length;
humlet 3:967dde37e712 241 return sendNwait();
humlet 3:967dde37e712 242 }
humlet 3:967dde37e712 243
humlet 3:967dde37e712 244 int I2CDriver::readSlave(void)
humlet 3:967dde37e712 245 {
humlet 3:967dde37e712 246 lock();
humlet 3:967dde37e712 247 m_channel->transfer.cmd = READ_BYTE;
humlet 3:967dde37e712 248 m_channel->transfer.slv = true;
humlet 3:967dde37e712 249 m_channel->transfer.adr = m_slaveAdr;
humlet 3:967dde37e712 250 m_channel->transfer.ack = 1;
humlet 3:967dde37e712 251 return sendNwait();
humlet 3:967dde37e712 252 }
humlet 3:967dde37e712 253
humlet 3:967dde37e712 254 int I2CDriver::writeSlave(const char *data, int length)
humlet 3:967dde37e712 255 {
humlet 3:967dde37e712 256 lock();
humlet 3:967dde37e712 257 m_channel->transfer.cmd = WRITE_SLV;
humlet 3:967dde37e712 258 m_channel->transfer.slv = true;
humlet 3:967dde37e712 259 m_channel->transfer.adr = m_slaveAdr;
humlet 3:967dde37e712 260 m_channel->transfer.wdta = data;
humlet 3:967dde37e712 261 m_channel->transfer.len = length;
humlet 3:967dde37e712 262 return sendNwait();
humlet 3:967dde37e712 263 }
humlet 3:967dde37e712 264
humlet 3:967dde37e712 265 int I2CDriver::writeSlave(int data)
humlet 3:967dde37e712 266 {
humlet 3:967dde37e712 267 lock();
humlet 3:967dde37e712 268 m_channel->transfer.cmd = WRITE_BYTE;
humlet 3:967dde37e712 269 m_channel->transfer.slv = true;
humlet 3:967dde37e712 270 m_channel->transfer.adr = m_slaveAdr;
humlet 3:967dde37e712 271 m_channel->transfer.ack = data;
humlet 3:967dde37e712 272 return sendNwait();
humlet 1:90455d5bdd8c 273 }
humlet 1:90455d5bdd8c 274
humlet 1:90455d5bdd8c 275
humlet 3:967dde37e712 276
humlet 3:967dde37e712 277