V4.0.1 of the ARM CMSIS DSP libraries. Note that arm_bitreversal2.s, arm_cfft_f32.c and arm_rfft_fast_f32.c had to be removed. arm_bitreversal2.s will not assemble with the online tools. So, the fast f32 FFT functions are not yet available. All the other FFT functions are available.

Dependents:   MPU9150_Example fir_f32 fir_f32 MPU9150_nucleo_noni2cdev ... more

Revision:
0:3d9c67d97d6f
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/MatrixFunctions/arm_mat_mult_q15.c	Mon Jul 28 15:03:15 2014 +0000
@@ -0,0 +1,469 @@
+/* ----------------------------------------------------------------------    
+* Copyright (C) 2010-2014 ARM Limited. All rights reserved.    
+*    
+* $Date:        12. March 2014 
+* $Revision: 	V1.4.3
+*    
+* Project: 	    CMSIS DSP Library    
+* Title:	    arm_mat_mult_q15.c    
+*    
+* Description:	 Q15 matrix multiplication.    
+*    
+* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
+*  
+* Redistribution and use in source and binary forms, with or without 
+* modification, are permitted provided that the following conditions
+* are met:
+*   - Redistributions of source code must retain the above copyright
+*     notice, this list of conditions and the following disclaimer.
+*   - Redistributions in binary form must reproduce the above copyright
+*     notice, this list of conditions and the following disclaimer in
+*     the documentation and/or other materials provided with the 
+*     distribution.
+*   - Neither the name of ARM LIMITED nor the names of its contributors
+*     may be used to endorse or promote products derived from this
+*     software without specific prior written permission.
+*
+* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 
+* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
+* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
+* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+* POSSIBILITY OF SUCH DAMAGE.     
+* -------------------------------------------------------------------- */
+
+#include "arm_math.h"
+
+/**    
+ * @ingroup groupMatrix    
+ */
+
+/**    
+ * @addtogroup MatrixMult    
+ * @{    
+ */
+
+
+/**    
+ * @brief Q15 matrix multiplication    
+ * @param[in]       *pSrcA points to the first input matrix structure    
+ * @param[in]       *pSrcB points to the second input matrix structure    
+ * @param[out]      *pDst points to output matrix structure    
+ * @param[in]		*pState points to the array for storing intermediate results   
+ * @return     		The function returns either    
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.    
+ *    
+ * @details    
+ * <b>Scaling and Overflow Behavior:</b>    
+ *    
+ * \par    
+ * The function is implemented using a 64-bit internal accumulator. The inputs to the    
+ * multiplications are in 1.15 format and multiplications yield a 2.30 result.    
+ * The 2.30 intermediate    
+ * results are accumulated in a 64-bit accumulator in 34.30 format. This approach    
+ * provides 33 guard bits and there is no risk of overflow. The 34.30 result is then    
+ * truncated to 34.15 format by discarding the low 15 bits and then saturated to    
+ * 1.15 format.    
+ *    
+ * \par    
+ * Refer to <code>arm_mat_mult_fast_q15()</code> for a faster but less precise version of this function for Cortex-M3 and Cortex-M4.    
+ *    
+ */
+
+arm_status arm_mat_mult_q15(
+  const arm_matrix_instance_q15 * pSrcA,
+  const arm_matrix_instance_q15 * pSrcB,
+  arm_matrix_instance_q15 * pDst,
+  q15_t * pState CMSIS_UNUSED)
+{
+  q63_t sum;                                     /* accumulator */
+
+#ifndef ARM_MATH_CM0_FAMILY
+
+  /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+  q15_t *pSrcBT = pState;                        /* input data matrix pointer for transpose */
+  q15_t *pInA = pSrcA->pData;                    /* input data matrix pointer A of Q15 type */
+  q15_t *pInB = pSrcB->pData;                    /* input data matrix pointer B of Q15 type */
+  q15_t *px;                                     /* Temporary output data matrix pointer */
+  uint16_t numRowsA = pSrcA->numRows;            /* number of rows of input matrix A    */
+  uint16_t numColsB = pSrcB->numCols;            /* number of columns of input matrix B */
+  uint16_t numColsA = pSrcA->numCols;            /* number of columns of input matrix A */
+  uint16_t numRowsB = pSrcB->numRows;            /* number of rows of input matrix A    */
+  uint16_t col, i = 0u, row = numRowsB, colCnt;  /* loop counters */
+  arm_status status;                             /* status of matrix multiplication */
+
+#ifndef UNALIGNED_SUPPORT_DISABLE
+
+  q31_t in;                                      /* Temporary variable to hold the input value */
+  q31_t pSourceA1, pSourceB1, pSourceA2, pSourceB2;
+
+#else
+
+  q15_t in;                                      /* Temporary variable to hold the input value */
+  q15_t inA1, inB1, inA2, inB2;
+
+#endif	/*	#ifndef UNALIGNED_SUPPORT_DISABLE	*/
+
+#ifdef ARM_MATH_MATRIX_CHECK
+  /* Check for matrix mismatch condition */
+  if((pSrcA->numCols != pSrcB->numRows) ||
+     (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
+  {
+    /* Set status as ARM_MATH_SIZE_MISMATCH */
+    status = ARM_MATH_SIZE_MISMATCH;
+  }
+  else
+#endif /*    #ifdef ARM_MATH_MATRIX_CHECK    */
+  {
+    /* Matrix transpose */
+    do
+    {
+      /* Apply loop unrolling and exchange the columns with row elements */
+      col = numColsB >> 2;
+
+      /* The pointer px is set to starting address of the column being processed */
+      px = pSrcBT + i;
+
+      /* First part of the processing with loop unrolling.  Compute 4 outputs at a time.        
+       ** a second loop below computes the remaining 1 to 3 samples. */
+      while(col > 0u)
+      {
+#ifndef UNALIGNED_SUPPORT_DISABLE
+
+        /* Read two elements from the row */
+        in = *__SIMD32(pInB)++;
+
+        /* Unpack and store one element in the destination */
+#ifndef ARM_MATH_BIG_ENDIAN
+
+        *px = (q15_t) in;
+
+#else
+
+        *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
+
+#endif /*    #ifndef ARM_MATH_BIG_ENDIAN    */
+
+        /* Update the pointer px to point to the next row of the transposed matrix */
+        px += numRowsB;
+
+        /* Unpack and store the second element in the destination */
+#ifndef ARM_MATH_BIG_ENDIAN
+
+        *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
+
+#else
+
+        *px = (q15_t) in;
+
+#endif /*    #ifndef ARM_MATH_BIG_ENDIAN    */
+
+        /* Update the pointer px to point to the next row of the transposed matrix */
+        px += numRowsB;
+
+        /* Read two elements from the row */
+        in = *__SIMD32(pInB)++;
+
+        /* Unpack and store one element in the destination */
+#ifndef ARM_MATH_BIG_ENDIAN
+
+        *px = (q15_t) in;
+
+#else
+
+        *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
+
+#endif /*    #ifndef ARM_MATH_BIG_ENDIAN    */
+
+        /* Update the pointer px to point to the next row of the transposed matrix */
+        px += numRowsB;
+
+        /* Unpack and store the second element in the destination */
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+        *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
+
+#else
+
+        *px = (q15_t) in;
+
+#endif /*    #ifndef ARM_MATH_BIG_ENDIAN    */
+
+        /* Update the pointer px to point to the next row of the transposed matrix */
+        px += numRowsB;
+
+#else
+
+        /* Read one element from the row */
+        in = *pInB++;
+
+        /* Store one element in the destination */
+        *px = in;
+ 
+        /* Update the pointer px to point to the next row of the transposed matrix */
+        px += numRowsB;
+
+        /* Read one element from the row */
+        in = *pInB++;
+
+        /* Store one element in the destination */
+        *px = in;
+ 
+        /* Update the pointer px to point to the next row of the transposed matrix */
+        px += numRowsB;
+
+        /* Read one element from the row */
+        in = *pInB++;
+
+        /* Store one element in the destination */
+        *px = in;
+ 
+        /* Update the pointer px to point to the next row of the transposed matrix */
+        px += numRowsB;
+
+        /* Read one element from the row */
+        in = *pInB++;
+
+        /* Store one element in the destination */
+        *px = in;
+ 
+        /* Update the pointer px to point to the next row of the transposed matrix */
+        px += numRowsB;
+
+#endif	/*	#ifndef UNALIGNED_SUPPORT_DISABLE	*/
+
+       /* Decrement the column loop counter */
+        col--;
+      }
+
+      /* If the columns of pSrcB is not a multiple of 4, compute any remaining output samples here.        
+       ** No loop unrolling is used. */
+      col = numColsB % 0x4u;
+
+      while(col > 0u)
+      {
+        /* Read and store the input element in the destination */
+        *px = *pInB++;
+
+        /* Update the pointer px to point to the next row of the transposed matrix */
+        px += numRowsB;
+
+        /* Decrement the column loop counter */
+        col--;
+      }
+
+      i++;
+
+      /* Decrement the row loop counter */
+      row--;
+
+    } while(row > 0u);
+
+    /* Reset the variables for the usage in the following multiplication process */
+    row = numRowsA;
+    i = 0u;
+    px = pDst->pData;
+
+    /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
+    /* row loop */
+    do
+    {
+      /* For every row wise process, the column loop counter is to be initiated */
+      col = numColsB;
+
+      /* For every row wise process, the pIn2 pointer is set        
+       ** to the starting address of the transposed pSrcB data */
+      pInB = pSrcBT;
+
+      /* column loop */
+      do
+      {
+        /* Set the variable sum, that acts as accumulator, to zero */
+        sum = 0;
+
+        /* Apply loop unrolling and compute 2 MACs simultaneously. */
+        colCnt = numColsA >> 2;
+
+        /* Initiate the pointer pIn1 to point to the starting address of the column being processed */
+        pInA = pSrcA->pData + i;
+
+
+        /* matrix multiplication */
+        while(colCnt > 0u)
+        {
+          /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
+#ifndef UNALIGNED_SUPPORT_DISABLE
+
+          /* read real and imag values from pSrcA and pSrcB buffer */
+          pSourceA1 = *__SIMD32(pInA)++;
+          pSourceB1 = *__SIMD32(pInB)++;
+
+          pSourceA2 = *__SIMD32(pInA)++;
+          pSourceB2 = *__SIMD32(pInB)++;
+
+          /* Multiply and Accumlates */
+          sum = __SMLALD(pSourceA1, pSourceB1, sum);
+          sum = __SMLALD(pSourceA2, pSourceB2, sum);
+
+#else
+          /* read real and imag values from pSrcA and pSrcB buffer */
+          inA1 = *pInA++;
+          inB1 = *pInB++;
+          inA2 = *pInA++;
+          /* Multiply and Accumlates */
+          sum += inA1 * inB1;
+          inB2 = *pInB++;
+
+          inA1 = *pInA++;
+          inB1 = *pInB++;
+          /* Multiply and Accumlates */
+          sum += inA2 * inB2;
+          inA2 = *pInA++;
+          inB2 = *pInB++;
+
+          /* Multiply and Accumlates */
+          sum += inA1 * inB1;
+          sum += inA2 * inB2;
+
+#endif	/*	#ifndef UNALIGNED_SUPPORT_DISABLE	*/
+
+          /* Decrement the loop counter */
+          colCnt--;
+        }
+
+        /* process remaining column samples */
+        colCnt = numColsA & 3u;
+
+        while(colCnt > 0u)
+        {
+          /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
+          sum += *pInA++ * *pInB++;
+
+          /* Decrement the loop counter */
+          colCnt--;
+        }
+
+        /* Saturate and store the result in the destination buffer */
+        *px = (q15_t) (__SSAT((sum >> 15), 16));
+        px++;
+
+        /* Decrement the column loop counter */
+        col--;
+
+      } while(col > 0u);
+
+      i = i + numColsA;
+
+      /* Decrement the row loop counter */
+      row--;
+
+    } while(row > 0u);
+
+#else
+
+  /* Run the below code for Cortex-M0 */
+
+  q15_t *pIn1 = pSrcA->pData;                    /* input data matrix pointer A */
+  q15_t *pIn2 = pSrcB->pData;                    /* input data matrix pointer B */
+  q15_t *pInA = pSrcA->pData;                    /* input data matrix pointer A of Q15 type */
+  q15_t *pInB = pSrcB->pData;                    /* input data matrix pointer B of Q15 type */
+  q15_t *pOut = pDst->pData;                     /* output data matrix pointer */
+  q15_t *px;                                     /* Temporary output data matrix pointer */
+  uint16_t numColsB = pSrcB->numCols;            /* number of columns of input matrix B */
+  uint16_t numColsA = pSrcA->numCols;            /* number of columns of input matrix A */
+  uint16_t numRowsA = pSrcA->numRows;            /* number of rows of input matrix A    */
+  uint16_t col, i = 0u, row = numRowsA, colCnt;  /* loop counters */
+  arm_status status;                             /* status of matrix multiplication */
+
+#ifdef ARM_MATH_MATRIX_CHECK
+
+  /* Check for matrix mismatch condition */
+  if((pSrcA->numCols != pSrcB->numRows) ||
+     (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
+  {
+    /* Set status as ARM_MATH_SIZE_MISMATCH */
+    status = ARM_MATH_SIZE_MISMATCH;
+  }
+  else
+#endif /*    #ifdef ARM_MATH_MATRIX_CHECK    */
+
+  {
+    /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
+    /* row loop */
+    do
+    {
+      /* Output pointer is set to starting address of the row being processed */
+      px = pOut + i;
+
+      /* For every row wise process, the column loop counter is to be initiated */
+      col = numColsB;
+
+      /* For every row wise process, the pIn2 pointer is set          
+       ** to the starting address of the pSrcB data */
+      pIn2 = pSrcB->pData;
+
+      /* column loop */
+      do
+      {
+        /* Set the variable sum, that acts as accumulator, to zero */
+        sum = 0;
+
+        /* Initiate the pointer pIn1 to point to the starting address of pSrcA */
+        pIn1 = pInA;
+
+        /* Matrix A columns number of MAC operations are to be performed */
+        colCnt = numColsA;
+
+        /* matrix multiplication */
+        while(colCnt > 0u)
+        {
+          /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
+          /* Perform the multiply-accumulates */
+          sum += (q31_t) * pIn1++ * *pIn2;
+          pIn2 += numColsB;
+
+          /* Decrement the loop counter */
+          colCnt--;
+        }
+
+        /* Convert the result from 34.30 to 1.15 format and store the saturated value in destination buffer */
+        /* Saturate and store the result in the destination buffer */
+        *px++ = (q15_t) __SSAT((sum >> 15), 16);
+
+        /* Decrement the column loop counter */
+        col--;
+
+        /* Update the pointer pIn2 to point to the  starting address of the next column */
+        pIn2 = pInB + (numColsB - col);
+
+      } while(col > 0u);
+
+      /* Update the pointer pSrcA to point to the  starting address of the next row */
+      i = i + numColsB;
+      pInA = pInA + numColsA;
+
+      /* Decrement the row loop counter */
+      row--;
+
+    } while(row > 0u);
+
+#endif /* #ifndef ARM_MATH_CM0_FAMILY */
+    /* set status as ARM_MATH_SUCCESS */
+    status = ARM_MATH_SUCCESS;
+  }
+
+  /* Return to application */
+  return (status);
+}
+
+/**        
+ * @} end of MatrixMult group        
+ */