Maniacbug's RF24 arduino library ported to mbed. Tested, it works for Nucleo F411

Dependents:   RF24Network_Send RF24Network_Receive maple_chotobot_rf_motores Thesis_Verzender ... more

RF24Network.cpp

Committer:
akashvibhute
Date:
2015-11-05
Revision:
3:dfc8da7ac18c
Parent:
2:a5f8e04bd02b
Child:
4:75c5aa56411f

File content as of revision 3:dfc8da7ac18c:

/*
 Copyright (C) 2011 James Coliz, Jr. <maniacbug@ymail.com>

 This program is free software; you can redistribute it and/or
 modify it under the terms of the GNU General Public License
 version 2 as published by the Free Software Foundation.
 */

/*
* Mbed support added by Akash Vibhute <akash.roboticist@gmail.com>
* Porting completed on Nov/05/2015
*
* Updated with TMRh20's RF24 library on Nov/04/2015 from https://github.com/TMRh20
*
*/

#include "RF24Network_config.h"
#include <RF24.h>
#include "RF24Network.h"

uint16_t RF24NetworkHeader::next_id = 1;
#if defined ENABLE_NETWORK_STATS
uint32_t RF24Network::nFails = 0;
uint32_t RF24Network::nOK = 0;
#endif
uint64_t pipe_address( uint16_t node, uint8_t pipe );
#if defined (RF24NetworkMulticast)
uint16_t levelToAddress( uint8_t level );
#endif
bool is_valid_address( uint16_t node );

/******************************************************************/
#if !defined (DUAL_HEAD_RADIO)
RF24Network::RF24Network( RF24& _radio ): radio(_radio), next_frame(frame_queue)
{
#if !defined ( DISABLE_FRAGMENTATION )
    frag_queue.message_buffer=&frag_queue_message_buffer[0];
    frag_ptr = &frag_queue;
#endif
}
#else
RF24Network::RF24Network( RF24& _radio, RF24& _radio1 ): radio(_radio), radio1(_radio1), next_frame(frame_queue)
{
#if !defined ( DISABLE_FRAGMENTATION )
    frag_queue.message_buffer=&frag_queue_message_buffer[0];
    frag_ptr = &frag_queue;
#endif
}
#endif
/******************************************************************/

void RF24Network::begin(uint8_t _channel, uint16_t _node_address )
{
    rf24netTimer.start();
    if (! is_valid_address(_node_address) )
        return;

    node_address = _node_address;

    if ( ! radio.isValid() ) {
        return;
    }

    // Set up the radio the way we want it to look
    if(_channel != USE_CURRENT_CHANNEL) {
        radio.setChannel(_channel);
    }
    //radio.enableDynamicAck();
    radio.setAutoAck(0,0);

#if defined (ENABLE_DYNAMIC_PAYLOADS)
    radio.enableDynamicPayloads();
#endif

    // Use different retry periods to reduce data collisions
    uint8_t retryVar = (((node_address % 6)+1) *2) + 3;
    radio.setRetries(retryVar, 5);
    txTimeout = 25;
    routeTimeout = txTimeout*9; // Adjust for max delay per node


#if defined (DUAL_HEAD_RADIO)
    radio1.setChannel(_channel);
    radio1.enableDynamicAck();
    radio1.enableDynamicPayloads();
#endif

    // Setup our address helper cache
    setup_address();

    // Open up all listening pipes
    uint8_t i = 6;
    while (i--) {
        radio.openReadingPipe(i,pipe_address(_node_address,i));
    }
    radio.startListening();

}

/******************************************************************/

#if defined ENABLE_NETWORK_STATS
void RF24Network::failures(uint32_t *_fails, uint32_t *_ok)
{
    *_fails = nFails;
    *_ok = nOK;
}
#endif

/******************************************************************/

uint8_t RF24Network::update(void)
{
    // if there is data ready
    uint8_t pipe_num;
    uint8_t returnVal = 0;

    // If bypass is enabled, continue although incoming user data may be dropped
    // Allows system payloads to be read while user cache is full
    // Incoming Hold prevents data from being read from the radio, preventing incoming payloads from being acked


    if(!(networkFlags & FLAG_BYPASS_HOLDS)) {
        if( (networkFlags & FLAG_HOLD_INCOMING) || (next_frame-frame_queue) + 34 > MAIN_BUFFER_SIZE ) {
            if(!available()) {
                networkFlags &= ~FLAG_HOLD_INCOMING;
            } else {
                return 0;
            }
        }
    }


    while ( radio.isValid() && radio.available(&pipe_num) ) {

#if defined (ENABLE_DYNAMIC_PAYLOADS)
        if( (frame_size = radio.getDynamicPayloadSize() ) < sizeof(RF24NetworkHeader)) {
            wait_ms(10);
            continue;
        }
#else
        frame_size=32;
#endif
        // Dump the payloads until we've gotten everything
        // Fetch the payload, and see if this was the last one.
        radio.read( frame_buffer, frame_size );

        // Read the beginning of the frame as the header
        RF24NetworkHeader *header = (RF24NetworkHeader*)(&frame_buffer);

        IF_SERIAL_DEBUG(printf_P(PSTR("%lu: MAC Received on %u %s\n\r"),millis(),pipe_num,header->toString()));
        IF_SERIAL_DEBUG(const uint16_t* i = reinterpret_cast<const uint16_t*>(frame_buffer + sizeof(RF24NetworkHeader)); printf_P(PSTR("%lu: NET message %04x\n\r"),millis(),*i));


        // Throw it away if it's not a valid address
        if ( !is_valid_address(header->to_node) ) {
            continue;
        }

        uint8_t returnVal = header->type;

        // Is this for us?
        if ( header->to_node == node_address   ) {

            if(header->type == NETWORK_PING) {
                continue;
            }
            if(header->type == NETWORK_ADDR_RESPONSE ) {
                uint16_t requester = frame_buffer[8];
                requester |= frame_buffer[9] << 8;
                if(requester != node_address) {
                    header->to_node = requester;
                    write(header->to_node,USER_TX_TO_PHYSICAL_ADDRESS);
                    wait_ms(10);
                    write(header->to_node,USER_TX_TO_PHYSICAL_ADDRESS);
                    //printf("Fwd add response to 0%o\n",requester);
                    continue;
                }
            }
            if(header->type == NETWORK_REQ_ADDRESS && node_address) {
                //printf("Fwd add req to 0\n");
                header->from_node = node_address;
                header->to_node = 0;
                write(header->to_node,TX_NORMAL);
                continue;
            }

            if( (returnSysMsgs && header->type > 127) || header->type == NETWORK_ACK ) {
                //IF_SERIAL_DEBUG_ROUTING( printf_P(PSTR("%lu MAC: System payload rcvd %d\n"),millis(),returnVal); );
                //if( (header->type < 148 || header->type > 150) && header->type != NETWORK_MORE_FRAGMENTS_NACK && header->type != EXTERNAL_DATA_TYPE && header->type!= NETWORK_LAST_FRAGMENT){
                if( header->type != NETWORK_FIRST_FRAGMENT && header->type != NETWORK_MORE_FRAGMENTS && header->type != NETWORK_MORE_FRAGMENTS_NACK && header->type != EXTERNAL_DATA_TYPE && header->type!= NETWORK_LAST_FRAGMENT) {
                    return returnVal;
                }
            }

            if( enqueue(header) == 2 ) { //External data received
#if defined (SERIAL_DEBUG_MINIMAL)
                printf("ret ext\n");
#endif
                return EXTERNAL_DATA_TYPE;
            }
        } else {

#if defined   (RF24NetworkMulticast)

            if( header->to_node == 0100) {


                if(header->type == NETWORK_POLL ) {
                    //Serial.println("Send poll");
                    header->to_node = header->from_node;
                    header->from_node = node_address;
                    //delay((node_address%5)*3);
                    write(header->to_node,USER_TX_TO_PHYSICAL_ADDRESS);
                    continue;
                }
                uint8_t val = enqueue(header);

                if(multicastRelay) {
                    //IF_SERIAL_DEBUG_ROUTING( printf_P(PSTR("%u MAC: FWD multicast frame from 0%o to level %u\n"),millis(),header->from_node,multicast_level+1); );
                    write(levelToAddress(multicast_level)<<3,4);
                }
                if( val == 2 ) { //External data received
                    //Serial.println("ret ext multicast");
                    return EXTERNAL_DATA_TYPE;
                }

            } else {
                write(header->to_node,1);   //Send it on, indicate it is a routed payload
            }
#else
            write(header->to_node,1);   //Send it on, indicate it is a routed payload
#endif
        }

    }
    return returnVal;
}

/******************************************************************/

uint8_t RF24Network::enqueue(RF24NetworkHeader* header)
{
    bool result = false;
    uint8_t message_size = frame_size - sizeof(RF24NetworkHeader);

    IF_SERIAL_DEBUG(printf_P(PSTR("%lu: NET Enqueue @%x "),millis(),next_frame-frame_queue));

#if !defined ( DISABLE_FRAGMENTATION )

    bool isFragment = header->type == NETWORK_FIRST_FRAGMENT || header->type == NETWORK_MORE_FRAGMENTS || header->type == NETWORK_LAST_FRAGMENT || header->type == NETWORK_MORE_FRAGMENTS_NACK ;

    if(isFragment) {

        if(header->type == NETWORK_FIRST_FRAGMENT) {
            // Drop frames exceeding max size and duplicates (MAX_PAYLOAD_SIZE needs to be divisible by 24)
            if(header->reserved > (MAX_PAYLOAD_SIZE / max_frame_payload_size) ) {

#if defined (SERIAL_DEBUG_FRAGMENTATION) || defined (SERIAL_DEBUG_MINIMAL)
                printf_P(PSTR("Frag frame with %d frags exceeds MAX_PAYLOAD_SIZE or out of sequence\n"),header->reserved);
#endif
                frag_queue.header.reserved = 0;
                return false;
            } else if(frag_queue.header.id == header->id && frag_queue.header.from_node == header->from_node) {
                return true;
            }

            if( (header->reserved * 24) > (MAX_PAYLOAD_SIZE - (next_frame-frame_queue)) ) {
                networkFlags |= FLAG_HOLD_INCOMING;
                radio.stopListening();
            }

            memcpy(&frag_queue,&frame_buffer,8);
            memcpy(frag_queue.message_buffer,frame_buffer+sizeof(RF24NetworkHeader),message_size);

//IF_SERIAL_DEBUG_FRAGMENTATION( Serial.print(F("queue first, total frags ")); Serial.println(header->reserved); );
            //Store the total size of the stored frame in message_size
            frag_queue.message_size = message_size;
            --frag_queue.header.reserved;

            IF_SERIAL_DEBUG_FRAGMENTATION_L2(  for(int i=0; i<frag_queue.message_size; i++) {
            Serial.println(frag_queue.message_buffer[i],HEX);
            } );

            return true;

        } else // NETWORK_MORE_FRAGMENTS
            if(header->type == NETWORK_LAST_FRAGMENT || header->type == NETWORK_MORE_FRAGMENTS || header->type == NETWORK_MORE_FRAGMENTS_NACK) {

                if(frag_queue.message_size + message_size > MAX_PAYLOAD_SIZE) {
#if defined (SERIAL_DEBUG_FRAGMENTATION) || defined (SERIAL_DEBUG_MINIMAL)
                    Serial.print(F("Drop frag "));
                    Serial.print(header->reserved);
                    Serial.println(F(" Size exceeds max"));
#endif
                    frag_queue.header.reserved=0;
                    return false;
                }
                if(  frag_queue.header.reserved == 0 || (header->type != NETWORK_LAST_FRAGMENT && header->reserved != frag_queue.header.reserved ) || frag_queue.header.id != header->id ) {
#if defined (SERIAL_DEBUG_FRAGMENTATION) || defined (SERIAL_DEBUG_MINIMAL)
                    Serial.print(F("Drop frag "));
                    Serial.print(header->reserved);
                    //Serial.print(F(" header id ")); Serial.print(header->id);
                    Serial.println(F(" Out of order "));
#endif
                    return false;
                }

                memcpy(frag_queue.message_buffer+frag_queue.message_size,frame_buffer+sizeof(RF24NetworkHeader),message_size);
                frag_queue.message_size += message_size;

                if(header->type != NETWORK_LAST_FRAGMENT) {
                    --frag_queue.header.reserved;
                    return true;
                }
                frag_queue.header.reserved = 0;
                frag_queue.header.type = header->reserved;

                IF_SERIAL_DEBUG_FRAGMENTATION( printf(PSTR("fq 3: %d\n"),frag_queue.message_size); );
                IF_SERIAL_DEBUG_FRAGMENTATION_L2(for(int i=0; i< frag_queue.message_size; i++) {
                Serial.println(frag_queue.message_buffer[i],HEX);
                }  );

                //Frame assembly complete, copy to main buffer if OK
                if(frag_queue.header.type == EXTERNAL_DATA_TYPE) {
                    return 2;
                }
#if defined (DISABLE_USER_PAYLOADS)
                return 0;
#endif

                if(MAX_PAYLOAD_SIZE - (next_frame-frame_queue) >= frag_queue.message_size) {
                    memcpy(next_frame,&frag_queue,10);
                    memcpy(next_frame+10,frag_queue.message_buffer,frag_queue.message_size);
                    next_frame += (10+frag_queue.message_size);
                    IF_SERIAL_DEBUG_FRAGMENTATION( printf(PSTR("enq size %d\n"),frag_queue.message_size); );
                    return true;
                } else {
                    radio.stopListening();
                    networkFlags |= FLAG_HOLD_INCOMING;
                }
                IF_SERIAL_DEBUG_FRAGMENTATION( printf(PSTR("Drop frag payload, queue full\n")); );
                return false;
            }//If more or last fragments

    } else //else is not a fragment
#endif // End fragmentation enabled

        // Copy the current frame into the frame queue

#if !defined( DISABLE_FRAGMENTATION )

        if(header->type == EXTERNAL_DATA_TYPE) {
            memcpy(&frag_queue,&frame_buffer,8);
            frag_queue.message_buffer = frame_buffer+sizeof(RF24NetworkHeader);
            frag_queue.message_size = message_size;
            return 2;
        }
#endif
#if defined (DISABLE_USER_PAYLOADS)
    return 0;
}
#else
    if(message_size + (next_frame-frame_queue) <= MAIN_BUFFER_SIZE)
    {
        memcpy(next_frame,&frame_buffer,8);
        RF24NetworkFrame *f = (RF24NetworkFrame*)next_frame;
        f->message_size = message_size;
        memcpy(next_frame+10,frame_buffer+sizeof(RF24NetworkHeader),message_size);

        IF_SERIAL_DEBUG_FRAGMENTATION( for(int i=0; i<message_size; i++) {
        Serial.print(next_frame[i],HEX);
            Serial.print(" : ");
        }
        Serial.println(""); );

        next_frame += (message_size + 10);
        IF_SERIAL_DEBUG_FRAGMENTATION( Serial.print("Enq "); Serial.println(next_frame-frame_queue); );//printf_P(PSTR("enq %d\n"),next_frame-frame_queue); );

        result = true;
    } else
    {
        result = false;
        IF_SERIAL_DEBUG(printf_P(PSTR("NET **Drop Payload** Buffer Full")));
    }
    return result;
}
#endif //USER_PAYLOADS_ENABLED


/******************************************************************/

bool RF24Network::available(void)
{
    // Are there frames on the queue for us?
    return (next_frame > frame_queue);

}

/******************************************************************/

uint16_t RF24Network::parent() const
{
    if ( node_address == 0 )
        return -1;
    else
        return parent_node;
}

/******************************************************************/
/*uint8_t RF24Network::peekData(){

        return frame_queue[0];
}*/

uint16_t RF24Network::peek(RF24NetworkHeader& header)
{
    if ( available() ) {
        RF24NetworkFrame *frame = (RF24NetworkFrame*)(frame_queue);
        memcpy(&header,&frame->header,sizeof(RF24NetworkHeader));
        return frame->message_size;

    }
    return 0;
}

/******************************************************************/

uint16_t RF24Network::read(RF24NetworkHeader& header,void* message, uint16_t maxlen)
{
    uint16_t bufsize = 0;

    if ( available() ) {

        memcpy(&header,frame_queue,8);
        RF24NetworkFrame *f = (RF24NetworkFrame*)frame_queue;
        bufsize = f->message_size;

        if (maxlen > 0) {
            maxlen = min(maxlen,bufsize);
            memcpy(message,frame_queue+10,maxlen);
            IF_SERIAL_DEBUG(printf("%lu: NET message size %d\n",millis(),bufsize););

            IF_SERIAL_DEBUG( uint16_t len = maxlen; printf_P(PSTR("%lu: NET r message "),millis()); const uint8_t* charPtr = reinterpret_cast<const uint8_t*>(message); while(len--) {
            printf("%02x ",charPtr[len]);
            }
            printf_P(PSTR("\n\r") ) );

        }
        memmove(frame_queue,frame_queue+bufsize+10,sizeof(frame_queue)- bufsize);
        next_frame-=bufsize+10;

        //IF_SERIAL_DEBUG(printf_P(PSTR("%lu: NET Received %s\n\r"),millis(),header.toString()));
    }

    return bufsize;
}


#if defined RF24NetworkMulticast
/******************************************************************/
bool RF24Network::multicast(RF24NetworkHeader& header,const void* message, uint16_t len, uint8_t level)
{
    // Fill out the header
    header.to_node = 0100;
    header.from_node = node_address;
    return write(header, message, len, levelToAddress(level));
}
#endif

/******************************************************************/
bool RF24Network::write(RF24NetworkHeader& header,const void* message, uint16_t len)
{
    return write(header,message,len,070);
}
/******************************************************************/
bool RF24Network::write(RF24NetworkHeader& header,const void* message, uint16_t len, uint16_t writeDirect)
{

    //Allows time for requests (RF24Mesh) to get through between failed writes on busy nodes
    while(rf24netTimer.read_ms()-txTime < 25) {
        if(update() > 127) {
            break;
        }
    }
    wait_us(200);

#if defined (DISABLE_FRAGMENTATION)
    frame_size = rf24_min(len+sizeof(RF24NetworkHeader),MAX_FRAME_SIZE);
    return _write(header,message,rf24_min(len,max_frame_payload_size),writeDirect);
#else
    if(len <= max_frame_payload_size) {
        //Normal Write (Un-Fragmented)
        frame_size = len + sizeof(RF24NetworkHeader);
        if(_write(header,message,len,writeDirect)) {
            return 1;
        }
        txTime = rf24netTimer.read_ms();
        return 0;
    }
    //Check payload size
    if (len > MAX_PAYLOAD_SIZE) {
        IF_SERIAL_DEBUG(printf("%u: NET write message failed. Given 'len' %d is bigger than the MAX Payload size %i\n\r",millis(),len,MAX_PAYLOAD_SIZE););
        return false;
    }

    //Divide the message payload into chunks of max_frame_payload_size
    uint8_t fragment_id = (len % max_frame_payload_size != 0) + ((len ) / max_frame_payload_size);  //the number of fragments to send = ceil(len/max_frame_payload_size)

    uint8_t msgCount = 0;

    IF_SERIAL_DEBUG_FRAGMENTATION(printf("%lu: FRG Total message fragments %d\n\r",millis(),fragment_id););

    if(header.to_node != 0100) {
        networkFlags |= FLAG_FAST_FRAG;
#if !defined (DUAL_HEAD_RADIO)
        radio.stopListening();
#endif
    }

    uint8_t retriesPerFrag = 0;
    uint8_t type = header.type;

    while (fragment_id > 0) {

        //Copy and fill out the header
        //RF24NetworkHeader fragmentHeader = header;
        header.reserved = fragment_id;

        if (fragment_id == 1) {
            header.type = NETWORK_LAST_FRAGMENT;  //Set the last fragment flag to indicate the last fragment
            header.reserved = type; //The reserved field is used to transmit the header type
        } else {
            if (msgCount == 0) {
                header.type = NETWORK_FIRST_FRAGMENT;
            } else {
                header.type = NETWORK_MORE_FRAGMENTS; //Set the more fragments flag to indicate a fragmented frame
            }
        }

        uint16_t offset = msgCount*max_frame_payload_size;
        uint16_t fragmentLen = rf24_min((uint16_t)(len-offset),max_frame_payload_size);

        //Try to send the payload chunk with the copied header
        frame_size = sizeof(RF24NetworkHeader)+fragmentLen;
        bool ok = _write(header,((char *)message)+offset,fragmentLen,writeDirect);

        if (!ok) {
            wait_ms(2);
            ++retriesPerFrag;

        } else {
            retriesPerFrag = 0;
            fragment_id--;
            msgCount++;
        }

        if(writeDirect != 070) {
            wait_ms(2);    //Delay 2ms between sending multicast payloads
        }

        if (!ok && retriesPerFrag >= 3) {
            IF_SERIAL_DEBUG_FRAGMENTATION(printf("%lu: FRG TX with fragmentID '%d' failed after %d fragments. Abort.\n\r",millis(),fragment_id,msgCount););
            break;
        }

        //Message was successful sent
#if defined SERIAL_DEBUG_FRAGMENTATION_L2
        printf("%lu: FRG message transmission with fragmentID '%d' sucessfull.\n\r",millis(),fragment_id);
#endif

    }

#if !defined (DUAL_HEAD_RADIO)
    if(networkFlags & FLAG_FAST_FRAG) {
        radio.startListening();
    }
#endif
    networkFlags &= ~FLAG_FAST_FRAG
                    //int frag_delay = uint8_t(len/48);
                    //delay( rf24_min(len/48,20));

                    //Return true if all the chunks where sent successfully

                    IF_SERIAL_DEBUG_FRAGMENTATION(printf("%u: FRG total message fragments sent %i. \n",millis(),msgCount); );
    if(fragment_id > 0) {
        txTime = rf24netTimer.read_ms();
        return false;
    }
    return true;

#endif //Fragmentation enabled
}
/******************************************************************/

bool RF24Network::_write(RF24NetworkHeader& header,const void* message, uint16_t len, uint16_t writeDirect)
{
    // Fill out the header
    header.from_node = node_address;

    // Build the full frame to send
    memcpy(frame_buffer,&header,sizeof(RF24NetworkHeader));

    IF_SERIAL_DEBUG(printf_P(PSTR("%lu: NET Sending %s\n\r"),millis(),header.toString()));

    if (len) {

        memcpy(frame_buffer + sizeof(RF24NetworkHeader),message,len);

        IF_SERIAL_DEBUG(uint16_t tmpLen = len; printf_P(PSTR("%lu: NET message "),millis()); const uint8_t* charPtr = reinterpret_cast<const uint8_t*>(message); while(tmpLen--) {
        printf("%02x ",charPtr[tmpLen]);
        }
        printf_P(PSTR("\n\r") ) );

    }

    // If the user is trying to send it to himself
    /*if ( header.to_node == node_address ){
      #if defined (RF24_LINUX)
        RF24NetworkFrame frame = RF24NetworkFrame(header,message,rf24_min(MAX_FRAME_SIZE-sizeof(RF24NetworkHeader),len));
      #else
        RF24NetworkFrame frame(header,len);
      #endif
      // Just queue it in the received queue
      return enqueue(frame);
    }*/
    // Otherwise send it out over the air


    if(writeDirect != 070) {
        uint8_t sendType = USER_TX_TO_LOGICAL_ADDRESS; // Payload is multicast to the first node, and routed normally to the next

        if(header.to_node == 0100) {
            sendType = USER_TX_MULTICAST;
        }
        if(header.to_node == writeDirect) {
            sendType = USER_TX_TO_PHYSICAL_ADDRESS; // Payload is multicast to the first node, which is the recipient
        }
        return write(writeDirect,sendType);
    }
    return write(header.to_node,TX_NORMAL);

}

/******************************************************************/

bool RF24Network::write(uint16_t to_node, uint8_t directTo)  // Direct To: 0 = First Payload, standard routing, 1=routed payload, 2=directRoute to host, 3=directRoute to Route
{
    bool ok = false;
    bool isAckType = false;
    if(frame_buffer[6] > 64 && frame_buffer[6] < 192 ) {
        isAckType=true;
    }

    /*if( ( (frame_buffer[7] % 2) && frame_buffer[6] == NETWORK_MORE_FRAGMENTS) ){
      isAckType = 0;
    }*/

    // Throw it away if it's not a valid address
    if ( !is_valid_address(to_node) )
        return false;

    //Load info into our conversion structure, and get the converted address info
    logicalToPhysicalStruct conversion = { to_node,directTo,0};
    logicalToPhysicalAddress(&conversion);


    IF_SERIAL_DEBUG(printf_P(PSTR("%lu: MAC Sending to 0%o via 0%o on pipe %x\n\r"),millis(),to_node,conversion.send_node,conversion.send_pipe));

    /**Write it*/
    ok=write_to_pipe(conversion.send_node, conversion.send_pipe, conversion.multicast);


    if(!ok) {
        IF_SERIAL_DEBUG_ROUTING( printf_P(PSTR("%lu: MAC Send fail to 0%o via 0%o on pipe %x\n\r"),millis(),to_node,conversion.send_node,conversion.send_pipe););
    }


    if( directTo == TX_ROUTED && ok && conversion.send_node == to_node && isAckType) {

        RF24NetworkHeader* header = (RF24NetworkHeader*)&frame_buffer;
        header->type = NETWORK_ACK;                 // Set the payload type to NETWORK_ACK
        header->to_node = header->from_node;          // Change the 'to' address to the 'from' address

        conversion.send_node = header->from_node;
        conversion.send_pipe = TX_ROUTED;
        conversion.multicast = 0;
        logicalToPhysicalAddress(&conversion);

        //Write the data using the resulting physical address
        frame_size = sizeof(RF24NetworkHeader);
        write_to_pipe(conversion.send_node, conversion.send_pipe, conversion.multicast);

        //dynLen=0;

        IF_SERIAL_DEBUG_ROUTING( printf_P(PSTR("%lu MAC: Route OK to 0%o ACK sent to 0%o\n"),millis(),to_node,header->from_node); );

    }


    if( ok && conversion.send_node != to_node && (directTo==0 || directTo==3) && isAckType) {
#if !defined (DUAL_HEAD_RADIO)
        // Now, continue listening
        if(networkFlags & FLAG_FAST_FRAG) {
            radio.txStandBy(txTimeout);
            networkFlags &= ~FLAG_FAST_FRAG;
        }
        radio.startListening();
#endif
        uint32_t reply_time = rf24netTimer.read_ms();

        while( update() != NETWORK_ACK) {
            wait_us(900);
            if(rf24netTimer.read_ms() - reply_time > routeTimeout) {

                IF_SERIAL_DEBUG_ROUTING( printf_P(PSTR("%lu: MAC Network ACK fail from 0%o via 0%o on pipe %x\n\r"),millis(),to_node,conversion.send_node,conversion.send_pipe); );

                ok=false;
                break;
            }
        }
    }
    if( !(networkFlags & FLAG_FAST_FRAG) ) {
#if !defined (DUAL_HEAD_RADIO)
        // Now, continue listening
        radio.startListening();
#endif
    }

#if defined ENABLE_NETWORK_STATS
    if(ok == true) {
        ++nOK;
    } else {
        ++nFails;
    }
#endif
    return ok;
}

/******************************************************************/

// Provided the to_node and directTo option, it will return the resulting node and pipe
bool RF24Network::logicalToPhysicalAddress(logicalToPhysicalStruct *conversionInfo)
{

    //Create pointers so this makes sense.. kind of
    //We take in the to_node(logical) now, at the end of the function, output the send_node(physical) address, etc.
    //back to the original memory address that held the logical information.
    uint16_t *to_node = &conversionInfo->send_node;
    uint8_t *directTo = &conversionInfo->send_pipe;
    bool *multicast = &conversionInfo->multicast;

    // Where do we send this?  By default, to our parent
    uint16_t pre_conversion_send_node = parent_node;

    // On which pipe
    uint8_t pre_conversion_send_pipe = parent_pipe %5;

    if(*directTo > TX_ROUTED ) {
        pre_conversion_send_node = *to_node;
        *multicast = 1;
        //if(*directTo == USER_TX_MULTICAST || *directTo == USER_TX_TO_PHYSICAL_ADDRESS){
        pre_conversion_send_pipe=0;
        //}
    }
    // If the node is a direct child,
    else if ( is_direct_child(*to_node) ) {
        // Send directly
        pre_conversion_send_node = *to_node;
        // To its listening pipe
        pre_conversion_send_pipe = 5;
    }
    // If the node is a child of a child
    // talk on our child's listening pipe,
    // and let the direct child relay it.
    else if ( is_descendant(*to_node) ) {
        pre_conversion_send_node = direct_child_route_to(*to_node);
        pre_conversion_send_pipe = 5;
    }

    *to_node = pre_conversion_send_node;
    *directTo = pre_conversion_send_pipe;

    return 1;

}

/********************************************************/

bool RF24Network::write_to_pipe( uint16_t node, uint8_t pipe, bool multicast )
{
    bool ok = false;
    uint64_t out_pipe = pipe_address( node, pipe );

#if !defined (DUAL_HEAD_RADIO)
    // Open the correct pipe for writing.
    // First, stop listening so we can talk

    if(!(networkFlags & FLAG_FAST_FRAG)) {
        radio.stopListening();
    }

    if(multicast) {
        radio.setAutoAck(0,0);
    } else {
        radio.setAutoAck(0,1);
    }

    radio.openWritingPipe(out_pipe);
    radio.writeFast(frame_buffer, frame_size,multicast);
    ok = radio.txStandBy(txTimeout);

    radio.setAutoAck(0,0);

#else
    radio1.openWritingPipe(out_pipe);
    radio1.writeFast(frame_buffer, frame_size);
    ok = radio1.txStandBy(txTimeout,multicast);

#endif

    IF_SERIAL_DEBUG(printf_P(PSTR("%lu: MAC Sent on %lx %S\n\r"),rf24netTimer.read_ms(),(uint32_t)out_pipe,ok?PSTR("ok"):PSTR("failed")));

    return ok;
}

/******************************************************************/

const char* RF24NetworkHeader::toString(void) const
{
    static char buffer[45];
    //snprintf_P(buffer,sizeof(buffer),PSTR("id %04x from 0%o to 0%o type %c"),id,from_node,to_node,type);
    sprintf(buffer,PSTR("id %u from 0%o to 0%o type %d"),id,from_node,to_node,type);
    return buffer;
}

/******************************************************************/

bool RF24Network::is_direct_child( uint16_t node )
{
    bool result = false;

    // A direct child of ours has the same low numbers as us, and only
    // one higher number.
    //
    // e.g. node 0234 is a direct child of 034, and node 01234 is a
    // descendant but not a direct child

    // First, is it even a descendant?
    if ( is_descendant(node) ) {
        // Does it only have ONE more level than us?
        uint16_t child_node_mask = ( ~ node_mask ) << 3;
        result = ( node & child_node_mask ) == 0 ;
    }
    return result;
}

/******************************************************************/

bool RF24Network::is_descendant( uint16_t node )
{
    return ( node & node_mask ) == node_address;
}

/******************************************************************/

void RF24Network::setup_address(void)
{
    // First, establish the node_mask
    uint16_t node_mask_check = 0xFFFF;
#if defined (RF24NetworkMulticast)
    uint8_t count = 0;
#endif

    while ( node_address & node_mask_check ) {
        node_mask_check <<= 3;
#if defined (RF24NetworkMulticast)
        count++;
    }
    multicast_level = count;
#else
    }
#endif

    node_mask = ~ node_mask_check;

    // parent mask is the next level down
    uint16_t parent_mask = node_mask >> 3;

    // parent node is the part IN the mask
    parent_node = node_address & parent_mask;

    // parent pipe is the part OUT of the mask
    uint16_t i = node_address;
    uint16_t m = parent_mask;
    while (m)
    {
        i >>= 3;
        m >>= 3;
    }
    parent_pipe = i;

    IF_SERIAL_DEBUG( printf_P(PSTR("setup_address node=0%o mask=0%o parent=0%o pipe=0%o\n\r"),node_address,node_mask,parent_node,parent_pipe););

}

/******************************************************************/
uint16_t RF24Network::addressOfPipe( uint16_t node, uint8_t pipeNo )
{
    //Say this node is 013 (1011), mask is 077 or (00111111)
    //Say we want to use pipe 3 (11)
    //6 bits in node mask, so shift pipeNo 6 times left and | into address
    uint16_t m = node_mask >> 3;
    uint8_t i=0;

    while (m) {    //While there are bits left in the node mask
        m>>=1;     //Shift to the right
        i++;       //Count the # of increments
    }
    return node | (pipeNo << i);
}

/******************************************************************/

uint16_t RF24Network::direct_child_route_to( uint16_t node )
{
    // Presumes that this is in fact a child!!
    uint16_t child_mask = ( node_mask << 3 ) | 7;
    return node & child_mask;

}

/******************************************************************/
/*
uint8_t RF24Network::pipe_to_descendant( uint16_t node )
{
  uint16_t i = node;
  uint16_t m = node_mask;

  while (m)
  {
    i >>= 3;
    m >>= 3;
  }

  return i & 0B111;
}*/

/******************************************************************/

bool RF24Network::is_valid_address( uint16_t node )
{
    bool result = true;

    while(node) {
        uint8_t digit = node & 7;
#if !defined (RF24NetworkMulticast)
        if (digit < 1 || digit > 5)
#else
        if (digit < 0 || digit > 5) //Allow our out of range multicast address
#endif
        {
            result = false;
            IF_SERIAL_DEBUG_MINIMAL(printf_P(PSTR("*** WARNING *** Invalid address 0%o\n\r"),node););
            break;
        }
        node >>= 3;
    }

    return result;
}

/******************************************************************/
#if defined (RF24NetworkMulticast)
void RF24Network::multicastLevel(uint8_t level)
{
    multicast_level = level;
    //radio.stopListening();
    radio.openReadingPipe(0,pipe_address(levelToAddress(level),0));
    //radio.startListening();
}

uint16_t levelToAddress(uint8_t level)
{

    uint16_t levelAddr = 1;
    if(level) {
        levelAddr = levelAddr << ((level-1) * 3);
    } else {
        return 0;
    }
    return levelAddr;
}
#endif
/******************************************************************/

uint64_t pipe_address( uint16_t node, uint8_t pipe )
{

    static uint8_t address_translation[] = { 0xc3,0x3c,0x33,0xce,0x3e,0xe3,0xec };
    uint64_t result = 0xCCCCCCCCCCLL;
    uint8_t* out = reinterpret_cast<uint8_t*>(&result);

    // Translate the address to use our optimally chosen radio address bytes
    uint8_t count = 1;
    uint16_t dec = node;

    while(dec) {
#if defined (RF24NetworkMulticast)
        if(pipe != 0 || !node)
#endif
            out[count]=address_translation[(dec % 8)];      // Convert our decimal values to octal, translate them to address bytes, and set our address

        dec /= 8;
        count++;
    }

#if defined (RF24NetworkMulticast)
    if(pipe != 0 || !node)
#endif
        out[0] = address_translation[pipe];
#if defined (RF24NetworkMulticast)
    else
        out[1] = address_translation[count-1];
#endif


    IF_SERIAL_DEBUG(uint32_t* top = reinterpret_cast<uint32_t*>(out+1); printf_P(PSTR("%lu: NET Pipe %i on node 0%o has address %lx%x\n\r"),millis(),pipe,node,*top,*out));

    return result;
}


/************************ Sleep Mode ******************************************/

#if defined ENABLE_SLEEP_MODE

void wakeUp()
{
    wasInterrupted=true;
    sleep_cycles_remaining = 0;
}

ISR(WDT_vect)
{
    --sleep_cycles_remaining;
}


bool RF24Network::sleepNode( unsigned int cycles, int interruptPin )
{


    sleep_cycles_remaining = cycles;
    set_sleep_mode(SLEEP_MODE_PWR_DOWN); // sleep mode is set here
    sleep_enable();
    //if(interruptPin != 255){
    //  wasInterrupted = false; //Reset Flag
    //  attachInterrupt(interruptPin,wakeUp, LOW);
    //}

    WDTCSR |= _BV(WDIE);

    while(sleep_cycles_remaining) {
        sleep_mode();                        // System sleeps here
    }                                     // The WDT_vect interrupt wakes the MCU from here
    sleep_disable();                     // System continues execution here when watchdog timed out
    //detachInterrupt(interruptPin);

    WDTCSR &= ~_BV(WDIE);

    return !wasInterrupted;
}

void RF24Network::setup_watchdog(uint8_t prescalar)
{

    uint8_t wdtcsr = prescalar & 7;
    if ( prescalar & 8 )
        wdtcsr |= _BV(WDP3);
    MCUSR &= ~_BV(WDRF);                      // Clear the WD System Reset Flag

    WDTCSR = _BV(WDCE) | _BV(WDE);            // Write the WD Change enable bit to enable changing the prescaler and enable system reset
    WDTCSR = _BV(WDCE) | wdtcsr | _BV(WDIE);  // Write the prescalar bits (how long to sleep, enable the interrupt to wake the MCU
}

#endif