Has base BMU code but sends dummy temperature and voltage readings to test CAN

Dependencies:   CUER_CAN DS1820 LTC2943 LTC6804 mbed

Fork of BMS_BMUCore_Max by CUER

Committer:
DasSidG
Date:
Tue Jan 10 00:57:19 2017 +0000
Revision:
4:9050c5d6925e
Parent:
2:94716229ecc3
Child:
5:793afeef45dc
First attempt at adding SoC and battery current measurements to BMU code; ; Note some constants (e.g. battery capacity, threshold values) need to be modified in the future.; ; Code compiles.

Who changed what in which revision?

UserRevisionLine numberNew contents of line
lcockerton62 1:51477fe4851b 1 /*
lcockerton62 0:0a5f554d2a16 2 Should also consider the different errors that need to be sent
lcockerton62 0:0a5f554d2a16 3 */
lcockerton62 0:0a5f554d2a16 4 #include "mbed.h"
lcockerton62 0:0a5f554d2a16 5 #include "CANParserBMU.h"
lcockerton62 0:0a5f554d2a16 6 #include "Data_Types_BMU.h"
lcockerton62 0:0a5f554d2a16 7 #include "CAN_Data.h"
lcockerton62 0:0a5f554d2a16 8 #include "CAN_IDs.h"
lcockerton62 1:51477fe4851b 9 #include "EEPROM_I2C.h"
lcockerton62 1:51477fe4851b 10 #include "Temperature.h"
DasSidG 4:9050c5d6925e 11 #include "LTC2943_Read.h"
lcockerton62 0:0a5f554d2a16 12
lcockerton62 0:0a5f554d2a16 13 using namespace CAN_IDs;
lcockerton62 0:0a5f554d2a16 14
lcockerton62 0:0a5f554d2a16 15 // Function definitions
lcockerton62 1:51477fe4851b 16 void transmit_data(BMU_data measurements,uint32_t status);
lcockerton62 1:51477fe4851b 17 void read_temperature_sensors(BMU_data &measurements);
lcockerton62 0:0a5f554d2a16 18 void update_SOC();
lcockerton62 0:0a5f554d2a16 19 void init();
lcockerton62 1:51477fe4851b 20 void write_SOC_EEPROM(BMU_data &measurements,uint16_t start_address);
lcockerton62 1:51477fe4851b 21 uint16_t read_EEPROM_startup(BMU_data &measurements);
lcockerton62 1:51477fe4851b 22 uint32_t check_measurements(BMU_data &measurements);
lcockerton62 1:51477fe4851b 23 void take_measurements(BMU_data &measurements);
lcockerton62 0:0a5f554d2a16 24
lcockerton62 0:0a5f554d2a16 25 CAN can(CAN_READ_PIN, CAN_WRITE_PIN); //Create a CAN object to handle CAN comms
DasSidG 4:9050c5d6925e 26 uint16_t eeprom_start_address; //the initial address where we store/read SoC values
lcockerton62 0:0a5f554d2a16 27
lcockerton62 1:51477fe4851b 28 Timeout loop_delay;
lcockerton62 1:51477fe4851b 29 bool delay_finished = false;
lcockerton62 2:94716229ecc3 30
lcockerton62 2:94716229ecc3 31 void loop_delay_callback(void)
lcockerton62 2:94716229ecc3 32 {
lcockerton62 1:51477fe4851b 33 delay_finished = true;
lcockerton62 1:51477fe4851b 34 }
lcockerton62 1:51477fe4851b 35
lcockerton62 0:0a5f554d2a16 36 int main()
lcockerton62 0:0a5f554d2a16 37 {
lcockerton62 1:51477fe4851b 38 BMU_data measurements;
lcockerton62 1:51477fe4851b 39 uint16_t current_EEPROM_address;
lcockerton62 1:51477fe4851b 40 uint32_t status;
lcockerton62 0:0a5f554d2a16 41 int c = 0;
lcockerton62 0:0a5f554d2a16 42 init();
DasSidG 4:9050c5d6925e 43 current_EEPROM_address = read_EEPROM_startup(measurements); // Read from the eeprom at startup to fill in the values of SoC
DasSidG 4:9050c5d6925e 44 ltc2943.accumulatedCharge(measurements.percentage_SOC); // Initialise the LTC2943 with the current state of charge
DasSidG 4:9050c5d6925e 45
lcockerton62 1:51477fe4851b 46 while (true) {
lcockerton62 2:94716229ecc3 47
lcockerton62 1:51477fe4851b 48 // Take measurements from the sensors
lcockerton62 1:51477fe4851b 49 take_measurements(measurements);
lcockerton62 0:0a5f554d2a16 50 // Dont want to read the temperature sensors during each iteration of the loop
lcockerton62 1:51477fe4851b 51 if (c == 0) {
lcockerton62 1:51477fe4851b 52 read_temperature_sensors(measurements);
lcockerton62 1:51477fe4851b 53 } else if(c >= 4) {
lcockerton62 0:0a5f554d2a16 54 c = -1;
lcockerton62 0:0a5f554d2a16 55 }
lcockerton62 0:0a5f554d2a16 56 c++;
lcockerton62 0:0a5f554d2a16 57
lcockerton62 1:51477fe4851b 58 // Check data for errors
lcockerton62 1:51477fe4851b 59 status = check_measurements(measurements);
lcockerton62 1:51477fe4851b 60
lcockerton62 0:0a5f554d2a16 61 // Update the SOC
lcockerton62 0:0a5f554d2a16 62 update_SOC();
lcockerton62 0:0a5f554d2a16 63
lcockerton62 1:51477fe4851b 64 //Store data in the eeprom
lcockerton62 1:51477fe4851b 65 write_SOC_EEPROM(measurements, current_EEPROM_address);
lcockerton62 0:0a5f554d2a16 66
lcockerton62 0:0a5f554d2a16 67 // CAN bus transactions
lcockerton62 1:51477fe4851b 68 transmit_data(measurements,status);
lcockerton62 0:0a5f554d2a16 69
lcockerton62 0:0a5f554d2a16 70 // Conserve power - enter a low powered mode
lcockerton62 2:94716229ecc3 71 delay_finished = false;
lcockerton62 1:51477fe4851b 72 loop_delay.attach(loop_delay_callback, LOOP_DELAY_S);
lcockerton62 1:51477fe4851b 73 while (!delay_finished) sleep();
lcockerton62 0:0a5f554d2a16 74 }
lcockerton62 0:0a5f554d2a16 75 }
lcockerton62 0:0a5f554d2a16 76
lcockerton62 1:51477fe4851b 77 void transmit_data(BMU_data measurements, uint32_t status)
lcockerton62 0:0a5f554d2a16 78 {
lcockerton62 0:0a5f554d2a16 79 /*
lcockerton62 0:0a5f554d2a16 80 Place all of the collected data onto the CAN bus
lcockerton62 0:0a5f554d2a16 81 */
lcockerton62 1:51477fe4851b 82 // Send cell voltaages voltages
lcockerton62 1:51477fe4851b 83 for(int i= 0; i < NO_CMUS; i++) {
lcockerton62 1:51477fe4851b 84 createVoltageTelemetry(i + 2 , measurements.cell_voltages[i].first_cell_voltages);
lcockerton62 1:51477fe4851b 85 createVoltageTelemetry(i + 3, measurements.cell_voltages[i].last_cell_voltages);
lcockerton62 1:51477fe4851b 86 }
lcockerton62 1:51477fe4851b 87
lcockerton62 1:51477fe4851b 88 // Create SOC CAN message
lcockerton62 1:51477fe4851b 89 createPackSOC(measurements.SOC, measurements.percentage_SOC);
lcockerton62 0:0a5f554d2a16 90
lcockerton62 1:51477fe4851b 91 // Min/max cell voltages
lcockerton62 1:51477fe4851b 92 createCellVoltageMAXMIN(measurements.max_cell_voltage, measurements.min_cell_voltage);
lcockerton62 2:94716229ecc3 93
lcockerton62 1:51477fe4851b 94 // Min/Max cell temperature
lcockerton62 1:51477fe4851b 95 createCellTemperatureMAXMIN(measurements.min_cell_temp,measurements.max_cell_temp);
lcockerton62 2:94716229ecc3 96
lcockerton62 2:94716229ecc3 97 // Battery voltage and current
lcockerton62 2:94716229ecc3 98 // @TODO make add the voltage and current
lcockerton62 1:51477fe4851b 99 createBatteryVI(measurements.battery_voltage,measurements.battery_current);
lcockerton62 2:94716229ecc3 100
lcockerton62 1:51477fe4851b 101 //Extended battery pack status
lcockerton62 1:51477fe4851b 102 createExtendedBatteryPackStatus(status);
lcockerton62 2:94716229ecc3 103
lcockerton62 0:0a5f554d2a16 104 }
lcockerton62 0:0a5f554d2a16 105
lcockerton62 1:51477fe4851b 106 uint16_t read_EEPROM_startup(BMU_data &measurements)
lcockerton62 0:0a5f554d2a16 107 {
lcockerton62 1:51477fe4851b 108 /* The first page of the EEPROM, specifically the first 2 addresses store a
lcockerton62 1:51477fe4851b 109 pointer of the first memory location of measurement data. The EEPROM only has a finite number of
lcockerton62 1:51477fe4851b 110 read/write cycles which is why we aren't writing to the same location throughout
lcockerton62 1:51477fe4851b 111 */
lcockerton62 1:51477fe4851b 112 uint16_t start_address;
lcockerton62 1:51477fe4851b 113 char start_address_array[2];
lcockerton62 1:51477fe4851b 114 char SOC_out[8]; // 4 bytes for the 2 floats one is SOC and the other % charge
lcockerton62 1:51477fe4851b 115 float *fp1,*fp2; // temporary storage for float conversion
lcockerton62 1:51477fe4851b 116
lcockerton62 1:51477fe4851b 117 // Get a pointer to the start address for the data stored in the eeprom
lcockerton62 1:51477fe4851b 118 i2c_page_read(0x0000,2,start_address_array);
lcockerton62 1:51477fe4851b 119
lcockerton62 1:51477fe4851b 120 // Read the data from this address
lcockerton62 1:51477fe4851b 121 start_address = (start_address_array[1]<< 8) | start_address_array[0]; // mbed little endian follow this convention
lcockerton62 1:51477fe4851b 122 i2c_page_read(start_address, 8,SOC_out);
lcockerton62 0:0a5f554d2a16 123
lcockerton62 1:51477fe4851b 124 // Convert the SOC_out values back into floats
lcockerton62 1:51477fe4851b 125 fp1 = (float*)(&SOC_out[0]);
lcockerton62 1:51477fe4851b 126 fp2 = (float*)(&SOC_out[4]);
lcockerton62 1:51477fe4851b 127 measurements.SOC = *fp1;
lcockerton62 1:51477fe4851b 128 measurements.percentage_SOC = *fp2;
lcockerton62 1:51477fe4851b 129
lcockerton62 1:51477fe4851b 130 // Select the next address to write to
lcockerton62 1:51477fe4851b 131 start_address += 0x0040;
lcockerton62 1:51477fe4851b 132 if(start_address > MAX_WRITE_ADDRESS) {
lcockerton62 1:51477fe4851b 133 start_address = START_WRITE_ADDRESS; // Loop round to the start of the eeprom
lcockerton62 1:51477fe4851b 134 }
lcockerton62 1:51477fe4851b 135
lcockerton62 1:51477fe4851b 136 // write the new address to location 0x0000
lcockerton62 1:51477fe4851b 137 start_address_array[0] = start_address | 0x00FF;
lcockerton62 1:51477fe4851b 138 start_address_array[1] = start_address >> 8;
lcockerton62 1:51477fe4851b 139 i2c_page_write(0x0000, 2, start_address_array);
lcockerton62 1:51477fe4851b 140
lcockerton62 1:51477fe4851b 141 return start_address;
lcockerton62 0:0a5f554d2a16 142 }
lcockerton62 0:0a5f554d2a16 143
lcockerton62 1:51477fe4851b 144 void write_SOC_EEPROM(BMU_data &measurements,uint16_t start_address)
lcockerton62 0:0a5f554d2a16 145 {
lcockerton62 1:51477fe4851b 146 char data_out[8];
lcockerton62 1:51477fe4851b 147 float *fp1,*fp2;
lcockerton62 1:51477fe4851b 148
lcockerton62 1:51477fe4851b 149 fp1 = (float*)(&measurements.SOC);
lcockerton62 1:51477fe4851b 150 fp2 = (float*)(&measurements.percentage_SOC);
lcockerton62 0:0a5f554d2a16 151
lcockerton62 1:51477fe4851b 152 for(int i = 0; i < 4; i++ ) {
lcockerton62 1:51477fe4851b 153 data_out[i] = *fp1;
lcockerton62 1:51477fe4851b 154 fp1++;
lcockerton62 1:51477fe4851b 155 }
lcockerton62 1:51477fe4851b 156 for(int j = 4; j < 7; j++ ) {
lcockerton62 1:51477fe4851b 157 data_out[j] = *fp2;
lcockerton62 1:51477fe4851b 158 fp2++;
lcockerton62 1:51477fe4851b 159 }
lcockerton62 1:51477fe4851b 160 i2c_page_write(start_address, 8,data_out);
lcockerton62 0:0a5f554d2a16 161 }
lcockerton62 0:0a5f554d2a16 162
lcockerton62 1:51477fe4851b 163 void read_temperature_sensors(BMU_data &measurements)
lcockerton62 0:0a5f554d2a16 164 {
lcockerton62 1:51477fe4851b 165 float min_temperature;
lcockerton62 1:51477fe4851b 166 float max_temperature;
lcockerton62 1:51477fe4851b 167
lcockerton62 1:51477fe4851b 168 probe[0]->convert_temperature(DS1820::all_devices);
lcockerton62 1:51477fe4851b 169 min_temperature = probe[0]->temperature('C');
lcockerton62 1:51477fe4851b 170 max_temperature = min_temperature; // Initially set the max and min temperature equal
lcockerton62 1:51477fe4851b 171 for (int i=1; i<devices_found; i++) {
lcockerton62 2:94716229ecc3 172
lcockerton62 1:51477fe4851b 173 measurements.temperature_measurements[i].ID = i;
lcockerton62 1:51477fe4851b 174 measurements.temperature_measurements[i].measurement = probe[i] ->temperature('C');
lcockerton62 2:94716229ecc3 175
lcockerton62 1:51477fe4851b 176 if(measurements.temperature_measurements[i].measurement > max_temperature) {
lcockerton62 1:51477fe4851b 177 max_temperature = measurements.temperature_measurements[i].measurement;
lcockerton62 2:94716229ecc3 178 } else if (measurements.temperature_measurements[i].measurement < min_temperature) {
lcockerton62 1:51477fe4851b 179 min_temperature = measurements.temperature_measurements[i].measurement;
lcockerton62 1:51477fe4851b 180 }
lcockerton62 1:51477fe4851b 181 }
lcockerton62 1:51477fe4851b 182 measurements.max_cell_temp.temperature = max_temperature;
lcockerton62 1:51477fe4851b 183 measurements.min_cell_temp.temperature = min_temperature;
lcockerton62 0:0a5f554d2a16 184 }
lcockerton62 0:0a5f554d2a16 185
lcockerton62 0:0a5f554d2a16 186 void update_SOC()
lcockerton62 0:0a5f554d2a16 187 {
lcockerton62 1:51477fe4851b 188 // Update the SOC value
lcockerton62 0:0a5f554d2a16 189 }
lcockerton62 0:0a5f554d2a16 190
lcockerton62 0:0a5f554d2a16 191
lcockerton62 1:51477fe4851b 192 uint32_t check_measurements(BMU_data &measurements)
lcockerton62 1:51477fe4851b 193 {
lcockerton62 1:51477fe4851b 194 uint32_t status;
lcockerton62 2:94716229ecc3 195
lcockerton62 2:94716229ecc3 196 if(measurements.max_cell_voltage.voltage > MAX_CELL_VOLTAGE) {
lcockerton62 2:94716229ecc3 197 status = status | CELL_OVER_VOLTAGE;
lcockerton62 2:94716229ecc3 198 } else if (measurements.min_cell_voltage.voltage < MIN_CELL_VOLTAGE) {
lcockerton62 1:51477fe4851b 199 status = status | CELL_UNDER_VOLTAGE;
lcockerton62 2:94716229ecc3 200 } else if (measurements.max_cell_temp.temperature > MAX_CELL_TEMPERATURE) {
lcockerton62 1:51477fe4851b 201 status = status | CELL_OVER_TEMPERATURE;
lcockerton62 1:51477fe4851b 202 }
lcockerton62 2:94716229ecc3 203
lcockerton62 1:51477fe4851b 204 /*
lcockerton62 1:51477fe4851b 205 @TODO also include errors for:
lcockerton62 1:51477fe4851b 206 *untrusted measurement
lcockerton62 1:51477fe4851b 207 *CMU timeout
lcockerton62 1:51477fe4851b 208 *SOC not valid
lcockerton62 1:51477fe4851b 209 */
lcockerton62 1:51477fe4851b 210 return status;
lcockerton62 1:51477fe4851b 211 }
lcockerton62 1:51477fe4851b 212
lcockerton62 1:51477fe4851b 213 void take_measurements(BMU_data &measurements)
lcockerton62 1:51477fe4851b 214 {
lcockerton62 2:94716229ecc3 215 // Here collect all measured data from the sensors
lcockerton62 1:51477fe4851b 216 /*
lcockerton62 1:51477fe4851b 217 TODO SOC and cell voltages
lcockerton62 1:51477fe4851b 218 */
DasSidG 4:9050c5d6925e 219
DasSidG 4:9050c5d6925e 220 //Current, SoC
DasSidG 4:9050c5d6925e 221 measurements.battery_current = (uint32_t) ltc2943.current()*1000; //*1000 to converet to mA
DasSidG 4:9050c5d6925e 222 measurements.percentage_SOC = ltc2943.accumulatedCharge();
DasSidG 4:9050c5d6925e 223 measurements.SOC = (measurements.percentage_SOC /100) * BATTERY_CAPACITY;
DasSidG 4:9050c5d6925e 224
lcockerton62 1:51477fe4851b 225 }
lcockerton62 1:51477fe4851b 226
lcockerton62 0:0a5f554d2a16 227 void init()
lcockerton62 0:0a5f554d2a16 228 {
lcockerton62 1:51477fe4851b 229 temperature_init(); // Initialise the temperature sensors
DasSidG 4:9050c5d6925e 230 LTC2943_initialise(); //Initialises the fixed parameters of the LTC2943
lcockerton62 0:0a5f554d2a16 231 }
lcockerton62 0:0a5f554d2a16 232