Demonstration TTN OTAA node

Dependencies:   BME280 DS1820 libmDot mbed-rtos mbed

This is an example application for the MultiTech mDot and connects to The Things Network using Over The Air Activation (OTAA). It sends data from a Dallas Semiconductors DS18B20 OneWire temperature sensor.

Register a device and generate a random AppKey for the currently used application Id: (You need to use your own device IDs, the ones shown here are examples only)

./ttnctl devices register 0080000000000000 INFO Generating random AppKey... INFO Registered device AppKey=000102030405060708090A0B0C0D0E0F DevEUI=0080000000000000

or to specify the same AppKey for a new device or to reregister the same device again:

./ttnctl devices register 0080000000000000 000102030405060708090A0B0C0D0E0F

./ttnctl devices info 0080000000000000 Dynamic device:

AppEUI: 70B3D50000000000 {0x70, 0xB3, 0xD5, 0x00, 0x00, 0x00, 0x00, 0x00}

DevEUI: 0080000000000000 {0x00, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}

AppKey: 000102030405060708090A0B0C0D0E0F {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F}

Copy the AppEUI and AppKey values provided in hex array notation above to the AppEUI and AppKey parameters below.

main.cpp

Committer:
SomeRandomBloke
Date:
2016-05-11
Revision:
15:8a0ebf59b8bb
Parent:
13:5369ba22389a

File content as of revision 15:8a0ebf59b8bb:

/** mDot_TTN_Node - Simple mDot temperature sensor using Dallas Semiconductors DS18B20 OneWire temperature sensor.
 * It used the AUTO_OTA join mode with parameters for The Things Network.
 *
 *
 * Uses MultiTech mDot developer board http://www.multitech.com/models/94558010LF
 * Requires a MultiTech MultiConnect Conduit http://www.multitech.com/models/94557203LF
 * http://www.multitech.net/developer/software/lora/conduit-mlinux-convert-to-basic-packet-forwarder/
 * http://forum.thethingsnetwork.org/t/setting-up-multitech-conduit-gateway-for-ttn/216/35
 *
 * Register a device and generate a random AppKey for the currently used application Id:
 * (You need to use your own device IDs, the ones shown here are examples only)
 *
 *./ttnctl devices register 0080000000000000
 * INFO Generating random AppKey...             
 * INFO Registered device                        AppKey=000102030405060708090A0B0C0D0E0F DevEUI=0080000000000000
 *
 * or to specify the same AppKey for a new device or to reregister the same device again:
 *
 * ./ttnctl devices register 0080000000000000 000102030405060708090A0B0C0D0E0F
 *
 * ./ttnctl devices info 0080000000000000
 * Dynamic device:
 *
 *  AppEUI:  70B3D50000000000
 *           {0x70, 0xB3, 0xD5, 0x00, 0x00, 0x00, 0x00, 0x00}
 *
 *  DevEUI:  0080000000000000
 *           {0x00, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}
 *
 *  AppKey:  000102030405060708090A0B0C0D0E0F
 *           {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F}
 *
 *
 * Copy the AppEUI and AppKey values provided in hex array notation above to the AppEUI and AppKey parameters below.
 *
 */

#include "mbed.h"
#include "DS1820.h"
//#include "BME280.h"
#include "mDot.h"
#include "MTSLog.h"
#include "MTSText.h"
#include <string>
#include <vector>

using namespace mts;

#define MIN(a,b) (((a)<(b))?(a):(b))
#define MAX(a,b) (((a)>(b))?(a):(b))

// AppEUI
uint8_t AppEUI[8]={0x70, 0xB3, 0xD5, 0x00, 0x00, 0x00, 0x00, 0x00};
// AppKey
uint8_t AppKey[16]={0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F};

// Some defines for the LoRa configuration
/*
 * EU868 Datarates
 * ---------------
 * DR0 - SF12BW125
 * DR1 - SF11BW125
 * DR2 - SF10BW125
 * DR3 - SF9BW125
 * DR4 - SF8BW125
 * DR5 - SF7BW125
 * DR6 - SF7BW250
 *
 * US915 Datarates
 * ---------------
 * DR0 - SF10BW125
 * DR1 - SF9BW125
 * DR2 - SF8BW125
 * DR3 - SF7BW125
 * DR4 - SF8BW500
 */
#define LORA_SF mDot::DR5
#define LORA_ACK 0
#define LORA_TXPOWER 14

// Ignoring sub band for EU modules.
static uint8_t config_frequency_sub_band = 1;

// DS18B20 OneWire pin
// D13 on Dev Board, pin 18 on mDot, Compatible with Oxford Flood Network PCB temperature sensor.
//#define DATA_PIN     PA_5
// A1 on Dev Board, pin 19 on mDot
#define DATA_PIN     PC_13

// Temperature sensor object
DS1820 probe(DATA_PIN);

// BME280 Temperature/Humidity/Pressure sensor
//BME280 sensor(I2C_SDA, I2C_SCL);

// Serial via USB for debugging only
Serial pc(USBTX,USBRX);

int main()
{
    int32_t ret;
    mDot* dot;
    std::vector<uint8_t> send_data;
    std::vector<uint8_t> recv_data;
    std::vector<uint8_t> nwkId;
    std::vector<uint8_t> nwkKey;

    float temperature = 0.0;
    float humidity = 0.0;
    float pressure = 0.0;

    pc.baud(115200);
    pc.printf("TTN OTAA mDot LoRa Temperature sensor\n\r");

    // get a mDot handle
    dot = mDot::getInstance();

//    dot->setLogLevel(MTSLog::WARNING_LEVEL);
    dot->setLogLevel(MTSLog::TRACE_LEVEL);

    logInfo("Checking Config");

    uint8_t *it = AppEUI;
    for (uint8_t i = 0; i<8; i++)
        nwkId.push_back((uint8_t) *it++);
    
    it = AppKey;
    for (uint8_t i = 0; i<16; i++)
        nwkKey.push_back((uint8_t) *it++);

    logInfo("Resetting Config");
    // reset to default config so we know what state we're in
    dot->resetConfig();

    // Set Spreading Factor, higher is lower data rate, smaller packets but longer range
    // Lower is higher data rate, larger packets and shorter range.
    logInfo("Set SF");
    if((ret = dot->setTxDataRate( LORA_SF )) != mDot::MDOT_OK) {
        logError("Failed to set SF %d:%s", ret, mDot::getReturnCodeString(ret).c_str());
    }

    logInfo("Set TxPower");
    if((ret = dot->setTxPower( LORA_TXPOWER )) != mDot::MDOT_OK) {
        logError("Failed to set Tx Power %d:%s", ret, mDot::getReturnCodeString(ret).c_str());
    }

    logInfo("Set Public mode");
    if((ret = dot->setPublicNetwork(true)) != mDot::MDOT_OK) {
        logError("failed to set Public Mode %d:%s", ret, mDot::getReturnCodeString(ret).c_str());
    }

    logInfo("Set AUTO_OTA Join mode");
    if((ret = dot->setJoinMode(mDot::AUTO_OTA)) != mDot::MDOT_OK) {
        logError("Failed to set AUTO_OTA Join Mode %d:%s", ret, mDot::getReturnCodeString(ret).c_str());
    }

    logInfo("Set Ack");
    // 1 retries on Ack, 0 to disable
    if((ret = dot->setAck( LORA_ACK)) != mDot::MDOT_OK) {
        logError("Failed to set Ack %d:%s", ret, mDot::getReturnCodeString(ret).c_str());
    }

    // Library ignores the frequency sub band for 868MHz in EU
    if ((ret = dot->setFrequencySubBand(config_frequency_sub_band)) != mDot::MDOT_OK) {
        logError("Failed to set frequency sub band %d:%s", ret, mDot::getReturnCodeString(ret).c_str());
    }

    logInfo("Set Network Id");
    if ((ret = dot->setNetworkId(nwkId)) != mDot::MDOT_OK) {
        logError("Failed to set Network Id %d:%s", ret, mDot::getReturnCodeString(ret).c_str());
    }
    logInfo("Set Network Key");
    if ((ret = dot->setNetworkKey(nwkKey)) != mDot::MDOT_OK) {
        logError("Failed to set Network Id %d:%s", ret, mDot::getReturnCodeString(ret).c_str());
    }

    logInfo("Saving Config");
    // Save config
    if (! dot->saveConfig()) {
        logError("failed to save configuration");
    }

    pc.printf("Device ID {");
    std::vector<uint8_t> deviceId;
    deviceId = dot->getDeviceId();
    for (std::vector<uint8_t>::iterator it = deviceId.begin() ; it != deviceId.end(); ++it) {
        pc.printf("0x%2.2X",*it );
        pc.printf("%s", it != (deviceId.end() -1 ) ? ", " : " " );
    }
    pc.printf("}\r\n");

    std::vector<uint8_t> netId;
    pc.printf("Network Id/App EUI {");
    netId = dot->getNetworkId();
    for (std::vector<uint8_t>::iterator it = netId.begin() ; it != netId.end(); ++it) {
        pc.printf("0x%2.2X", *it );
        pc.printf("%s", it != (netId.end() -1 ) ? ", " : " " );
    }
    pc.printf("}\r\n");

    std::vector<uint8_t> netKey;
    pc.printf("Network Key/App Key {");
    netKey = dot->getNetworkKey();
    for (std::vector<uint8_t>::iterator it = netKey.begin() ; it != netKey.end(); ++it) {
        pc.printf("0x%2.2X", *it );
        pc.printf("%s", it != (netKey.end() -1 ) ? ", " : " " );
    }
    pc.printf("}\r\n");

    // Display LoRa parameters
    // Display label and values in different colours, show pretty values not numeric values where applicable
/*
    pc.printf("Public Network: %s\r\n", (char*)(dot->getPublicNetwork() ? "Yes" : "No") );
    pc.printf("Frequency: %s\r\n", (char*)mDot::FrequencyBandStr(dot->getFrequencyBand()).c_str() );
    pc.printf("Sub Band: %s\r\n", (char*)mDot::FrequencySubBandStr(dot->getFrequencySubBand()).c_str() );
    pc.printf("Join Mode: %s\r\n", (char*)mDot::JoinModeStr(dot->getJoinMode()).c_str() );
    pc.printf("Join Retries: %d\r\n", dot->getJoinRetries() );
    pc.printf("Join Byte Order: %s\r\n", (char*)(dot->getJoinByteOrder() == 0 ? "LSB" : "MSB") );
    pc.printf("Link Check Count: %d\r\n", dot->getLinkCheckCount() );
    pc.printf("Link Check Thold: %d\r\n", dot->getLinkCheckThreshold() );
    pc.printf("Tx Data Rate: %s\r\n", (char*)mDot::DataRateStr(dot->getTxDataRate()).c_str() );
    pc.printf("Tx Power: %d\r\n", dot->getTxPower() );
    pc.printf("TxWait: %s, ", (dot->getTxWait() ? "Y" : "N" ));
    pc.printf("CRC: %s, ", (dot->getCrc() ? "Y" : "N") );
    pc.printf("Ack: %s\r\n", (dot->getAck() ? "Y" : "N")  );
*/
    logInfo("Joining Network");

    while ((ret = dot->joinNetwork()) != mDot::MDOT_OK) {
        logError("failed to join network [%d][%s]", ret, mDot::getReturnCodeString(ret).c_str());
        wait_ms(dot->getNextTxMs() + 1);
    }

    logInfo("Joined Network");

    // Display Network session key and data session key from Join command
/*
    std::vector<uint8_t> tmp = dot->getNetworkSessionKey();
    pc.printf("Network Session Key: ");
    pc.printf("%s\r\n", mts::Text::bin2hexString(tmp, " ").c_str());

    tmp = dot->getDataSessionKey();
    pc.printf("Data Session Key: ");
    pc.printf("%s\r\n", mts::Text::bin2hexString(tmp, " ").c_str());
*/
    // Set the Temperature sesnor resolution, 9 bits is enough and makes it faster to provide a reading.
    probe.setResolution(9);

    char dataBuf[50];
    while( 1 ) {
            // Output data as JSON e.g. {"t":21.3}
//            temperature = sensor.getTemperature();
//            humidity = sensor.getHumidity();
//            pressure = sensor.getPressure();

            //Start temperature conversion, wait until ready
        probe.convertTemperature(true, DS1820::all_devices);
            // Output data as JSON e.g. {"t":21.3}
        temperature = probe.temperature();
        sprintf(dataBuf, "{\"t\":%3.1f}", temperature );
//            sprintf(dataBuf, "%3.1f,%3.1f,%04.2f", temperature,humidity,pressure );
        pc.printf("%s\n",dataBuf);
            send_data.clear();
            // probably not the most efficent way to do this
            for( int i=0; i< strlen(dataBuf); i++ )
                send_data.push_back( dataBuf[i] );

            if ((ret = dot->send(send_data)) != mDot::MDOT_OK) {
                logError("failed to send: [%d][%s]", ret, mDot::getReturnCodeString(ret).c_str());
            } else {
                logInfo("send data: %s", Text::bin2hexString(send_data).c_str());
            }

           // Should  sleep here and wakeup after a set 5 minute interval.
            // in the 868 (EU) frequency band, we need to wait until another channel is available before transmitting again
            uint32_t sleep_time = std::max((uint32_t)300000, (uint32_t)dot->getNextTxMs()) / 1000;
//wait_ms(2000);
            // go to sleep and wake up automatically sleep_time seconds later
            dot->sleep(sleep_time, mDot::RTC_ALARM);
    }

}