ECG data acquisition with Analog device frontend and Redbear nano BLE

Dependencies:   BLE_API mbed nRF51822

Fork of BLENano_SimpleControls by RedBearLab

Reference Design

2 channel EKG with Redbear BLE reference and Analog Device amplifier to generate RAW EKG data fed into Medtrics MaaS service . Medtrics API can consumer raw input with given parameters of ADC sample frequency and scaling factor

Specification

  • Application Processor: nRF51822/BLE , Analog frontend: AD8232 /
  • Input Analog Voltage = 3.3V
  • 10 bit ADC input range = (0-1023) or scaling factor= 3.22mV/unit (this is ADC resolution)
  • ADC sample frequency (BLE pull rate) = 250Hz (4ms per sample)

/media/uploads/pkweitai/ble_-3-.jpg Reference IOS and Android app will be online soon!

Servo.cpp

Committer:
pkweitai
Date:
2017-01-07
Revision:
4:b95d3432a495
Parent:
1:81a97eb70d3d

File content as of revision 4:b95d3432a495:

/*

Copyright (c) 2012-2014 RedBearLab

Permission is hereby granted, free of charge, to any person obtaining a copy of this software 
and associated documentation files (the "Software"), to deal in the Software without restriction, 
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, 
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, 
subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, 
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR 
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE 
FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

*/

#include "Servo.h"

Servo::Servo(PinName pin) : _servo(pin)
{
    _servo.period_ms(20);
}

Servo::~Servo(void)
{
    
}

void Servo::write(unsigned char degree)
{
    convert(degree);
    _servo.pulsewidth_us(pulse);
}

void Servo::convert(unsigned char degree)
{
    // 0~180 degree correspond to 500~2500
    pulse = degree * 11 + 500;
}