mbed library sources

Dependents:   Encrypted my_mbed lklk CyaSSL_DTLS_Cellular ... more

Superseded

This library was superseded by mbed-dev - https://os.mbed.com/users/mbed_official/code/mbed-dev/.

Development branch of the mbed library sources. This library is kept in synch with the latest changes from the mbed SDK and it is not guaranteed to work.

If you are looking for a stable and tested release, please import one of the official mbed library releases:

Import librarymbed

The official Mbed 2 C/C++ SDK provides the software platform and libraries to build your applications.

targets/hal/TARGET_NXP/TARGET_LPC11XX_11CXX/pwmout_api.c

Committer:
mbed_official
Date:
2015-04-14
Revision:
513:5e2f3330d475
Parent:
236:6ac0938ee349
Child:
630:825f75ca301e

File content as of revision 513:5e2f3330d475:

/* mbed Microcontroller Library
 * Copyright (c) 2006-2013 ARM Limited
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#include "mbed_assert.h"
#include "pwmout_api.h"
#include "cmsis.h"
#include "pinmap.h"

#define TCR_CNT_EN       0x00000001
#define TCR_RESET        0x00000002

/* To have a PWM where we can change both the period and the duty cycle,
 * we need an entire timer. With the following conventions:
 *   * MR3 is used for the PWM period
 *   * MR0, MR1, MR2 are used for the duty cycle
 */
static const PinMap PinMap_PWM[] = {
    /* CT16B0 */
    {P0_8 , PWM_1, 0x02},   /* MR0 */
    {P0_9 , PWM_2, 0x02},   /* MR1 */

    /* CT16B1 */
    {P1_9 , PWM_3, 0x01},   /* MR0 */
    {P1_10, PWM_4, 0x02},   /* MR1 */

    /* CT32B0 */
    {P0_1 , PWM_5, 0x02},   /* MR2 */

    {NC   , NC    ,0x00}
};

typedef struct {
    uint8_t timer;
    uint8_t mr;
} timer_mr;

static timer_mr pwm_timer_map[5] = {
    {0, 0}, /* CT16B0, MR0 */
    {0, 1}, /* CT16B0, MR1 */

    {1, 0}, /* CT16B1, MR0 */
    {1, 1}, /* CT16B1, MR1 */

    {2, 2}, /* CT32B0, MR2 */
};

static LPC_TMR_TypeDef *Timers[3] = {
    LPC_TMR16B0, LPC_TMR16B1,
    LPC_TMR32B0
};

void pwmout_init(pwmout_t* obj, PinName pin) {
    // determine the channel
    PWMName pwm = (PWMName)pinmap_peripheral(pin, PinMap_PWM);
    MBED_ASSERT(pwm != (uint32_t)NC);

    obj->pwm = pwm;
    
    // Timer registers
    timer_mr tid = pwm_timer_map[pwm];
    LPC_TMR_TypeDef *timer = Timers[tid.timer];
    
    // Disable timer
    timer->TCR = 0;
    
    // Power the correspondent timer
    LPC_SYSCON->SYSAHBCLKCTRL |= 1 << (tid.timer + 7);
    
    /* Enable PWM function */
    timer->PWMC = (1 << 3)|(1 << 2)|(1 << 1)|(1 << 0);
    
    /* Reset Functionality on MR3 controlling the PWM period */
    timer->MCR = 1 << 10;
    
    if (timer == LPC_TMR16B0 || timer == LPC_TMR16B1) {
    /* Set 16-bit timer prescaler to avoid timer expire for default 20ms */
    /* This can be also modified by user application, but the prescaler value */
    /* might be trade-off to timer accuracy */
        timer->PR = 30;
    }

    // default to 20ms: standard for servos, and fine for e.g. brightness control
    pwmout_period_ms(obj, 20);
    pwmout_write    (obj, 0);
    
    // Wire pinout
    pinmap_pinout(pin, PinMap_PWM);
}

void pwmout_free(pwmout_t* obj) {
    // [TODO]
}

void pwmout_write(pwmout_t* obj, float value) {
    if (value < 0.0f) {
        value = 0.0;
    } else if (value > 1.0f) {
        value = 1.0;
    }

    timer_mr tid = pwm_timer_map[obj->pwm];
    LPC_TMR_TypeDef *timer = Timers[tid.timer];
    uint32_t t_off = timer->MR3 - (uint32_t)((float)(timer->MR3) * value);
    // to avoid spike pulse when duty is 0%
    if (value == 0) {
        t_off++;
    }

    timer->TCR = TCR_RESET;
    timer->MR[tid.mr] = t_off;
    timer->TCR = TCR_CNT_EN;
}

float pwmout_read(pwmout_t* obj) {
    timer_mr tid = pwm_timer_map[obj->pwm];
    LPC_TMR_TypeDef *timer = Timers[tid.timer];
    
    float v = (float)(timer->MR3 - timer->MR[tid.mr]) / (float)(timer->MR3);
    if (timer->MR[tid.mr] > timer->MR3) {
        v = 0.0f;
    }
    return (v > 1.0f) ? (1.0f) : (v);
}

void pwmout_period(pwmout_t* obj, float seconds) {
    pwmout_period_us(obj, seconds * 1000000.0f);
}

void pwmout_period_ms(pwmout_t* obj, int ms) {
    pwmout_period_us(obj, ms * 1000);
}

// Set the PWM period, keeping the duty cycle the same.
void pwmout_period_us(pwmout_t* obj, int us) {
    int i = 0;
    uint32_t period_ticks;
    
    timer_mr tid = pwm_timer_map[obj->pwm];
    LPC_TMR_TypeDef *timer = Timers[tid.timer];
    uint32_t old_period_ticks = timer->MR3;
    period_ticks = (SystemCoreClock / 1000000 * us) / (timer->PR + 1);

    timer->TCR = TCR_RESET;
    timer->MR3 = period_ticks;
    
    // Scale the pulse width to preserve the duty ratio
    if (old_period_ticks > 0) {
        for (i=0; i<3; i++) {
            uint32_t t_off = period_ticks - (uint32_t)(((uint64_t)timer->MR[i] * (uint64_t)period_ticks) / (uint64_t)old_period_ticks);
            timer->MR[i] = t_off;
        }
    }
    timer->TCR = TCR_CNT_EN;
}

void pwmout_pulsewidth(pwmout_t* obj, float seconds) {
    pwmout_pulsewidth_us(obj, seconds * 1000000.0f);
}

void pwmout_pulsewidth_ms(pwmout_t* obj, int ms) {
    pwmout_pulsewidth_us(obj, ms * 1000);
}

void pwmout_pulsewidth_us(pwmout_t* obj, int us) {
    timer_mr tid = pwm_timer_map[obj->pwm];
    LPC_TMR_TypeDef *timer = Timers[tid.timer];
    uint32_t t_on = (uint32_t)((((uint64_t)SystemCoreClock * (uint64_t)us) / (uint64_t)1000000) / (timer->PR + 1));
    
    timer->TCR = TCR_RESET;
    if (t_on > timer->MR3) {
        pwmout_period_us(obj, us);
    }
    uint32_t t_off = timer->MR3 - t_on;
    timer->MR[tid.mr] = t_off;
    timer->TCR = TCR_CNT_EN;
}