mbed library sources

Dependents:   Encrypted my_mbed lklk CyaSSL_DTLS_Cellular ... more

Superseded

This library was superseded by mbed-dev - https://os.mbed.com/users/mbed_official/code/mbed-dev/.

Development branch of the mbed library sources. This library is kept in synch with the latest changes from the mbed SDK and it is not guaranteed to work.

If you are looking for a stable and tested release, please import one of the official mbed library releases:

Import librarymbed

The official Mbed 2 C/C++ SDK provides the software platform and libraries to build your applications.

targets/hal/TARGET_NXP/TARGET_LPC15XX/spi_api.c

Committer:
mbed_official
Date:
2014-07-21
Revision:
261:ee1cf08b7bc7
Parent:
251:de9a1e4ffd79
Child:
266:69e8a32876bd

File content as of revision 261:ee1cf08b7bc7:

/* mbed Microcontroller Library
 * Copyright (c) 2006-2013 ARM Limited
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#include "mbed_assert.h"
#include <math.h>

#include "spi_api.h"
#include "cmsis.h"
#include "pinmap.h"
#include "error.h"

static const SWM_Map SWM_SPI_SSEL[] = {
    {4, 0},
    {5, 24},
};

static const SWM_Map SWM_SPI_SCLK[] = {
    {3, 8},
    {5, 0},
};

static const SWM_Map SWM_SPI_MOSI[] = {
    {3, 16},
    {5, 8},
};

static const SWM_Map SWM_SPI_MISO[] = {
    {3, 24},
    {5, 16},
};

// bit flags for used SPIs
static unsigned char spi_used = 0;
static int get_available_spi(void)
{
    int i;
    for (i=0; i<2; i++) {
        if ((spi_used & (1 << i)) == 0)
            return i;
    }
    return -1;
}

static inline void spi_disable(spi_t *obj);
static inline void spi_enable(spi_t *obj);

void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel)
{
    int spi_n = get_available_spi();
    if (spi_n == -1) {
        error("No available SPI");
    }

    obj->spi_n = spi_n;
    spi_used |= (1 << spi_n);

    obj->spi = (spi_n) ? (LPC_SPI0_Type *)(LPC_SPI1_BASE) : (LPC_SPI0_Type *)(LPC_SPI0_BASE);

    const SWM_Map *swm;
    uint32_t regVal;

    if (sclk != NC) {
        swm = &SWM_SPI_SCLK[obj->spi_n];
        regVal = LPC_SWM->PINASSIGN[swm->n] & ~(0xFF << swm->offset);
        LPC_SWM->PINASSIGN[swm->n] = regVal |  (sclk   << swm->offset);
    }

    if (mosi != NC) {
        swm = &SWM_SPI_MOSI[obj->spi_n];
        regVal = LPC_SWM->PINASSIGN[swm->n] & ~(0xFF << swm->offset);
        LPC_SWM->PINASSIGN[swm->n] = regVal |  (mosi   << swm->offset);
    }

    if (miso != NC) {
        swm = &SWM_SPI_MISO[obj->spi_n];
        regVal = LPC_SWM->PINASSIGN[swm->n] & ~(0xFF << swm->offset);
        LPC_SWM->PINASSIGN[swm->n] = regVal |  (miso   << swm->offset);
    }

    if (ssel != NC) {
        swm = &SWM_SPI_SSEL[obj->spi_n];
        regVal = LPC_SWM->PINASSIGN[swm->n] & ~(0xFF << swm->offset);
        LPC_SWM->PINASSIGN[swm->n] = regVal |  (ssel   << swm->offset);
    }

    // clear interrupts
    obj->spi->INTENCLR = 0x3f;

    // enable power and clocking
    LPC_SYSCON->SYSAHBCLKCTRL1 |=  (0x1 << (obj->spi_n + 9));
    LPC_SYSCON->PRESETCTRL1    |=  (0x1 << (obj->spi_n + 9));
    LPC_SYSCON->PRESETCTRL1    &= ~(0x1 << (obj->spi_n + 9));

    // set default format and frequency
    if (ssel == NC) {
        spi_format(obj, 8, 0, 0);  // 8 bits, mode 0, master
    } else {
        spi_format(obj, 8, 0, 1);  // 8 bits, mode 0, slave
    }
    spi_frequency(obj, 1000000);

    // enable the spi channel
    spi_enable(obj);
}

void spi_free(spi_t *obj)
{
}

void spi_format(spi_t *obj, int bits, int mode, int slave)
{
    spi_disable(obj);
    MBED_ASSERT((bits >= 1 && bits <= 16) && (mode >= 0 && mode <= 3));

    int polarity = (mode & 0x2) ? 1 : 0;
    int phase = (mode & 0x1) ? 1 : 0;

    // set it up
    int LEN = bits - 1;             // LEN  - Data Length
    int CPOL = (polarity) ? 1 : 0;  // CPOL - Clock Polarity select
    int CPHA = (phase) ? 1 : 0;     // CPHA - Clock Phase select

    uint32_t tmp = obj->spi->CFG;
    tmp &= ~((1 << 5) | (1 << 4) | (1 << 2));
    tmp |= (CPOL << 5) | (CPHA << 4) | ((slave ? 0 : 1) << 2);
    obj->spi->CFG = tmp;

    // select frame length
    tmp = obj->spi->TXDATCTL;
    tmp &= ~(0xf << 24);
    tmp |= (LEN << 24);
    obj->spi->TXDATCTL = tmp;

    spi_enable(obj);
}

void spi_frequency(spi_t *obj, int hz)
{
    spi_disable(obj);

    // rise DIV value if it cannot be divided
    obj->spi->DIV = (SystemCoreClock + (hz - 1))/hz - 1;
    obj->spi->DLY = 0;

    spi_enable(obj);
}

static inline void spi_disable(spi_t *obj)
{
    obj->spi->CFG &= ~(1 << 0);
}

static inline void spi_enable(spi_t *obj)
{
    obj->spi->CFG |= (1 << 0);
}

static inline int spi_readable(spi_t *obj)
{
    return obj->spi->STAT & (1 << 0);
}

static inline int spi_writeable(spi_t *obj)
{
    return obj->spi->STAT & (1 << 1);
}

static inline void spi_write(spi_t *obj, int value)
{
    while (!spi_writeable(obj));
    // end of transfer
    obj->spi->TXDATCTL |= (1 << 20);
    obj->spi->TXDAT = value;
}

static inline int spi_read(spi_t *obj)
{
    while (!spi_readable(obj));
    return obj->spi->RXDAT;
}

int spi_busy(spi_t *obj)
{
    // checking RXOV(Receiver Overrun interrupt flag)
    return obj->spi->STAT & (1 << 2);
}

int spi_master_write(spi_t *obj, int value)
{
    spi_write(obj, value);
    return spi_read(obj);
}

int spi_slave_receive(spi_t *obj)
{
    return (spi_readable(obj) && !spi_busy(obj)) ? (1) : (0);
}

int spi_slave_read(spi_t *obj)
{
    return obj->spi->RXDAT;
}

void spi_slave_write(spi_t *obj, int value)
{
    while (spi_writeable(obj) == 0) ;
    obj->spi->TXDAT = value;
}