mbed library sources

Dependents:   Encrypted my_mbed lklk CyaSSL_DTLS_Cellular ... more

Superseded

This library was superseded by mbed-dev - https://os.mbed.com/users/mbed_official/code/mbed-dev/.

Development branch of the mbed library sources. This library is kept in synch with the latest changes from the mbed SDK and it is not guaranteed to work.

If you are looking for a stable and tested release, please import one of the official mbed library releases:

Import librarymbed

The official Mbed 2 C/C++ SDK provides the software platform and libraries to build your applications.

targets/hal/TARGET_NORDIC/TARGET_MCU_NRF51822/spi_api.c

Committer:
mbed_official
Date:
2014-11-10
Revision:
395:bfce16e86ea4
Parent:
300:55638feb26a4

File content as of revision 395:bfce16e86ea4:

/* mbed Microcontroller Library
 * Copyright (c) 2013 Nordic Semiconductor
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
//#include <math.h>
#include "mbed_assert.h"
#include "spi_api.h"
#include "cmsis.h"
#include "pinmap.h"
#include "mbed_error.h"

#define SPIS_MESSAGE_SIZE 1
volatile uint8_t m_tx_buf[SPIS_MESSAGE_SIZE] = {0};
volatile uint8_t m_rx_buf[SPIS_MESSAGE_SIZE] = {0};

// nRF51822's I2C_0 and SPI_0 (I2C_1, SPI_1 and SPIS1) share the same address.
// They can't be used at the same time. So we use two global variable to track the usage.
// See nRF51822 address information at nRF51822_PS v2.0.pdf - Table 15 Peripheral instance reference
extern volatile i2c_spi_peripheral_t i2c0_spi0_peripheral; // from i2c_api.c
extern volatile i2c_spi_peripheral_t i2c1_spi1_peripheral;

void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel)
{
    SPIName spi;
    
    if (ssel == NC && i2c0_spi0_peripheral.usage == I2C_SPI_PERIPHERAL_FOR_SPI &&
            i2c0_spi0_peripheral.sda_mosi == (uint8_t)mosi &&
            i2c0_spi0_peripheral.scl_miso == (uint8_t)miso &&
            i2c0_spi0_peripheral.sclk     == (uint8_t)sclk) {
        // The SPI with the same pins is already initialized
        spi = SPI_0;
        obj->peripheral = 0x1;
    } else if (ssel == NC && i2c1_spi1_peripheral.usage == I2C_SPI_PERIPHERAL_FOR_SPI &&
            i2c1_spi1_peripheral.sda_mosi == (uint8_t)mosi &&
            i2c1_spi1_peripheral.scl_miso == (uint8_t)miso &&
            i2c1_spi1_peripheral.sclk     == (uint8_t)sclk) {
        // The SPI with the same pins is already initialized
        spi = SPI_1;
        obj->peripheral = 0x2;
    } else if (i2c1_spi1_peripheral.usage == 0) {
        i2c1_spi1_peripheral.usage = I2C_SPI_PERIPHERAL_FOR_SPI;
        i2c1_spi1_peripheral.sda_mosi = (uint8_t)mosi;
        i2c1_spi1_peripheral.scl_miso = (uint8_t)miso;
        i2c1_spi1_peripheral.sclk     = (uint8_t)sclk;
        
        spi = SPI_1;
        obj->peripheral = 0x2;
    } else if (i2c0_spi0_peripheral.usage == 0) {
        i2c0_spi0_peripheral.usage = I2C_SPI_PERIPHERAL_FOR_SPI;
        i2c0_spi0_peripheral.sda_mosi = (uint8_t)mosi;
        i2c0_spi0_peripheral.scl_miso = (uint8_t)miso;
        i2c0_spi0_peripheral.sclk     = (uint8_t)sclk;
        
        spi = SPI_0;
        obj->peripheral = 0x1;
    } else {
        // No available peripheral
        error("No available SPI");
    }

    if (ssel==NC) {
        obj->spi  = (NRF_SPI_Type *)spi;
        obj->spis = (NRF_SPIS_Type *)NC;
    } else {
        obj->spi  = (NRF_SPI_Type *)NC;
        obj->spis = (NRF_SPIS_Type *)spi;
    }

    // pin out the spi pins
    if (ssel != NC) { //slave
        obj->spis->POWER = 0;
        obj->spis->POWER = 1;

        NRF_GPIO->PIN_CNF[mosi] = (GPIO_PIN_CNF_SENSE_Disabled << GPIO_PIN_CNF_SENSE_Pos)
                                    | (GPIO_PIN_CNF_DRIVE_S0S1 << GPIO_PIN_CNF_DRIVE_Pos)
                                    | (GPIO_PIN_CNF_PULL_Disabled << GPIO_PIN_CNF_PULL_Pos)
                                    | (GPIO_PIN_CNF_INPUT_Connect << GPIO_PIN_CNF_INPUT_Pos)
                                    | (GPIO_PIN_CNF_DIR_Input << GPIO_PIN_CNF_DIR_Pos);
        NRF_GPIO->PIN_CNF[miso] = (GPIO_PIN_CNF_SENSE_Disabled << GPIO_PIN_CNF_SENSE_Pos)
                                    | (GPIO_PIN_CNF_DRIVE_S0S1 << GPIO_PIN_CNF_DRIVE_Pos)
                                    | (GPIO_PIN_CNF_PULL_Disabled << GPIO_PIN_CNF_PULL_Pos)
                                    | (GPIO_PIN_CNF_INPUT_Connect << GPIO_PIN_CNF_INPUT_Pos)
                                    | (GPIO_PIN_CNF_DIR_Input << GPIO_PIN_CNF_DIR_Pos);
        NRF_GPIO->PIN_CNF[sclk] = (GPIO_PIN_CNF_SENSE_Disabled << GPIO_PIN_CNF_SENSE_Pos)
                                    | (GPIO_PIN_CNF_DRIVE_S0S1 << GPIO_PIN_CNF_DRIVE_Pos)
                                    | (GPIO_PIN_CNF_PULL_Disabled << GPIO_PIN_CNF_PULL_Pos)
                                    | (GPIO_PIN_CNF_INPUT_Connect << GPIO_PIN_CNF_INPUT_Pos)
                                    | (GPIO_PIN_CNF_DIR_Input << GPIO_PIN_CNF_DIR_Pos);
        NRF_GPIO->PIN_CNF[ssel] = (GPIO_PIN_CNF_SENSE_Disabled << GPIO_PIN_CNF_SENSE_Pos)
                                    | (GPIO_PIN_CNF_DRIVE_S0S1 << GPIO_PIN_CNF_DRIVE_Pos)
                                    | (GPIO_PIN_CNF_PULL_Disabled << GPIO_PIN_CNF_PULL_Pos)
                                    | (GPIO_PIN_CNF_INPUT_Connect << GPIO_PIN_CNF_INPUT_Pos)
                                    | (GPIO_PIN_CNF_DIR_Input << GPIO_PIN_CNF_DIR_Pos);

        obj->spis->PSELMOSI = mosi;
        obj->spis->PSELMISO = miso;
        obj->spis->PSELSCK  = sclk;
        obj->spis->PSELCSN  = ssel;

        obj->spis->EVENTS_END      = 0;
        obj->spis->EVENTS_ACQUIRED = 0;
        obj->spis->MAXRX           = SPIS_MESSAGE_SIZE;
        obj->spis->MAXTX           = SPIS_MESSAGE_SIZE;
        obj->spis->TXDPTR          = (uint32_t)&m_tx_buf[0];
        obj->spis->RXDPTR          = (uint32_t)&m_rx_buf[0];
        obj->spis->SHORTS          = (SPIS_SHORTS_END_ACQUIRE_Enabled << SPIS_SHORTS_END_ACQUIRE_Pos);

        spi_format(obj, 8, 0, 1);  // 8 bits, mode 0, slave
    } else { //master
        obj->spi->POWER = 0;
        obj->spi->POWER = 1;

        //NRF_GPIO->DIR |= (1<<mosi);
        NRF_GPIO->PIN_CNF[mosi] = (GPIO_PIN_CNF_SENSE_Disabled << GPIO_PIN_CNF_SENSE_Pos)
                                    | (GPIO_PIN_CNF_DRIVE_S0S1 << GPIO_PIN_CNF_DRIVE_Pos)
                                    | (GPIO_PIN_CNF_PULL_Disabled << GPIO_PIN_CNF_PULL_Pos)
                                    | (GPIO_PIN_CNF_INPUT_Connect << GPIO_PIN_CNF_INPUT_Pos)
                                    | (GPIO_PIN_CNF_DIR_Output << GPIO_PIN_CNF_DIR_Pos);
        obj->spi->PSELMOSI = mosi;

        NRF_GPIO->PIN_CNF[sclk] = (GPIO_PIN_CNF_SENSE_Disabled << GPIO_PIN_CNF_SENSE_Pos)
                                    | (GPIO_PIN_CNF_DRIVE_S0S1 << GPIO_PIN_CNF_DRIVE_Pos)
                                    | (GPIO_PIN_CNF_PULL_Disabled << GPIO_PIN_CNF_PULL_Pos)
                                    | (GPIO_PIN_CNF_INPUT_Connect << GPIO_PIN_CNF_INPUT_Pos)
                                    | (GPIO_PIN_CNF_DIR_Output << GPIO_PIN_CNF_DIR_Pos);
        obj->spi->PSELSCK = sclk;

        //NRF_GPIO->DIR &= ~(1<<miso);
        NRF_GPIO->PIN_CNF[miso] = (GPIO_PIN_CNF_SENSE_Disabled << GPIO_PIN_CNF_SENSE_Pos)
                                    | (GPIO_PIN_CNF_DRIVE_S0S1 << GPIO_PIN_CNF_DRIVE_Pos)
                                    | (GPIO_PIN_CNF_PULL_Disabled << GPIO_PIN_CNF_PULL_Pos)
                                    | (GPIO_PIN_CNF_INPUT_Connect << GPIO_PIN_CNF_INPUT_Pos)
                                    | (GPIO_PIN_CNF_DIR_Input << GPIO_PIN_CNF_DIR_Pos);

        obj->spi->PSELMISO = miso;

        obj->spi->EVENTS_READY = 0U;

        spi_format(obj, 8, 0, 0);  // 8 bits, mode 0, master
        spi_frequency(obj, 1000000);
    }
}

void spi_free(spi_t *obj)
{
}

static inline void spi_disable(spi_t *obj, int slave)
{
    if (slave) {
        obj->spis->ENABLE = (SPIS_ENABLE_ENABLE_Disabled << SPIS_ENABLE_ENABLE_Pos);
    } else {
        obj->spi->ENABLE = (SPI_ENABLE_ENABLE_Disabled << SPI_ENABLE_ENABLE_Pos);
    }
}

static inline void spi_enable(spi_t *obj, int slave)
{
    if (slave) {
        obj->spis->ENABLE = (SPIS_ENABLE_ENABLE_Enabled << SPIS_ENABLE_ENABLE_Pos);
    } else {
        obj->spi->ENABLE = (SPI_ENABLE_ENABLE_Enabled << SPI_ENABLE_ENABLE_Pos);
    }
}

void spi_format(spi_t *obj, int bits, int mode, int slave)
{
    uint32_t config_mode = 0;
    spi_disable(obj, slave);

    if (bits != 8) {
        error("Only 8bits SPI supported");
    }

    switch (mode) {
        case 0:
            config_mode = (SPI_CONFIG_CPHA_Leading << SPI_CONFIG_CPHA_Pos) | (SPI_CONFIG_CPOL_ActiveHigh << SPI_CONFIG_CPOL_Pos);
            break;
        case 1:
            config_mode = (SPI_CONFIG_CPHA_Trailing << SPI_CONFIG_CPHA_Pos) | (SPI_CONFIG_CPOL_ActiveHigh << SPI_CONFIG_CPOL_Pos);
            break;
        case 2:
            config_mode = (SPI_CONFIG_CPHA_Leading << SPI_CONFIG_CPHA_Pos) | (SPI_CONFIG_CPOL_ActiveLow << SPI_CONFIG_CPOL_Pos);
            break;
        case 3:
            config_mode = (SPI_CONFIG_CPHA_Trailing << SPI_CONFIG_CPHA_Pos) | (SPI_CONFIG_CPOL_ActiveLow << SPI_CONFIG_CPOL_Pos);
            break;
        default:
            error("SPI format error");
            break;
    }
    //default to msb first
    if (slave) {
        obj->spis->CONFIG = (config_mode | (SPI_CONFIG_ORDER_MsbFirst << SPI_CONFIG_ORDER_Pos));
    } else {
        obj->spi->CONFIG = (config_mode | (SPI_CONFIG_ORDER_MsbFirst << SPI_CONFIG_ORDER_Pos));
    }

    spi_enable(obj, slave);
}

void spi_frequency(spi_t *obj, int hz)
{
    if ((int)obj->spi==NC) {
        return;
    }
    spi_disable(obj, 0);

    if (hz<250000) { //125Kbps
        obj->spi->FREQUENCY = (uint32_t) SPI_FREQUENCY_FREQUENCY_K125;
    } else if (hz<500000) { //250Kbps
        obj->spi->FREQUENCY = (uint32_t) SPI_FREQUENCY_FREQUENCY_K250;
    } else if (hz<1000000) { //500Kbps
        obj->spi->FREQUENCY = (uint32_t) SPI_FREQUENCY_FREQUENCY_K500;
    } else if (hz<2000000) { //1Mbps
        obj->spi->FREQUENCY = (uint32_t) SPI_FREQUENCY_FREQUENCY_M1;
    } else if (hz<4000000) { //2Mbps
        obj->spi->FREQUENCY = (uint32_t) SPI_FREQUENCY_FREQUENCY_M2;
    } else if (hz<8000000) { //4Mbps
        obj->spi->FREQUENCY = (uint32_t) SPI_FREQUENCY_FREQUENCY_M4;
    } else { //8Mbps
        obj->spi->FREQUENCY = (uint32_t) SPI_FREQUENCY_FREQUENCY_M8;
    }

    spi_enable(obj, 0);
}

static inline int spi_readable(spi_t *obj)
{
    return (obj->spi->EVENTS_READY == 1);
}

static inline int spi_writeable(spi_t *obj)
{
    return (obj->spi->EVENTS_READY == 0);
}

static inline int spi_read(spi_t *obj)
{
    while (!spi_readable(obj)) {
    }

    obj->spi->EVENTS_READY = 0;
    return (int)obj->spi->RXD;
}

int spi_master_write(spi_t *obj, int value)
{
    while (!spi_writeable(obj)) {
    }
    obj->spi->TXD = (uint32_t)value;
    return spi_read(obj);
}

//static inline int spis_writeable(spi_t *obj) {
//    return (obj->spis->EVENTS_ACQUIRED==1);
//}

int spi_slave_receive(spi_t *obj)
{
    return obj->spis->EVENTS_END;
}

int spi_slave_read(spi_t *obj)
{
    return m_rx_buf[0];
}

void spi_slave_write(spi_t *obj, int value)
{
    m_tx_buf[0]                = value & 0xFF;
    obj->spis->TASKS_RELEASE   = 1;
    obj->spis->EVENTS_ACQUIRED = 0;
    obj->spis->EVENTS_END      = 0;
}