mbed library sources

Dependents:   Encrypted my_mbed lklk CyaSSL_DTLS_Cellular ... more

Superseded

This library was superseded by mbed-dev - https://os.mbed.com/users/mbed_official/code/mbed-dev/.

Development branch of the mbed library sources. This library is kept in synch with the latest changes from the mbed SDK and it is not guaranteed to work.

If you are looking for a stable and tested release, please import one of the official mbed library releases:

Import librarymbed

The official Mbed 2 C/C++ SDK provides the software platform and libraries to build your applications.

Committer:
mbed_official
Date:
Tue Dec 16 08:15:08 2014 +0000
Revision:
440:8a0b45cd594f
Parent:
227:7bd0639b8911
Synchronized with git revision 67fbbf0b635d0c0d93fbe433306c537c2ad206aa

Full URL: https://github.com/mbedmicro/mbed/commit/67fbbf0b635d0c0d93fbe433306c537c2ad206aa/

Targets: nrf51 - updating app_timer.c from Norid'c SDKv7.1.0

Who changed what in which revision?

UserRevisionLine numberNew contents of line
emilmont 10:3bc89ef62ce7 1 /* mbed Microcontroller Library
emilmont 10:3bc89ef62ce7 2 * Copyright (c) 2006-2013 ARM Limited
emilmont 10:3bc89ef62ce7 3 *
emilmont 10:3bc89ef62ce7 4 * Licensed under the Apache License, Version 2.0 (the "License");
emilmont 10:3bc89ef62ce7 5 * you may not use this file except in compliance with the License.
emilmont 10:3bc89ef62ce7 6 * You may obtain a copy of the License at
emilmont 10:3bc89ef62ce7 7 *
emilmont 10:3bc89ef62ce7 8 * http://www.apache.org/licenses/LICENSE-2.0
emilmont 10:3bc89ef62ce7 9 *
emilmont 10:3bc89ef62ce7 10 * Unless required by applicable law or agreed to in writing, software
emilmont 10:3bc89ef62ce7 11 * distributed under the License is distributed on an "AS IS" BASIS,
emilmont 10:3bc89ef62ce7 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
emilmont 10:3bc89ef62ce7 13 * See the License for the specific language governing permissions and
emilmont 10:3bc89ef62ce7 14 * limitations under the License.
emilmont 10:3bc89ef62ce7 15 */
mbed_official 227:7bd0639b8911 16 #include "mbed_assert.h"
emilmont 10:3bc89ef62ce7 17 #include "analogin_api.h"
emilmont 10:3bc89ef62ce7 18
emilmont 10:3bc89ef62ce7 19 #include "cmsis.h"
emilmont 10:3bc89ef62ce7 20 #include "pinmap.h"
emilmont 10:3bc89ef62ce7 21
emilmont 10:3bc89ef62ce7 22 #define ANALOGIN_MEDIAN_FILTER 1
emilmont 10:3bc89ef62ce7 23
emilmont 10:3bc89ef62ce7 24 #define ADC_10BIT_RANGE 0x3FF
emilmont 10:3bc89ef62ce7 25 #define ADC_12BIT_RANGE 0xFFF
emilmont 10:3bc89ef62ce7 26
emilmont 10:3bc89ef62ce7 27 static inline int div_round_up(int x, int y) {
emilmont 10:3bc89ef62ce7 28 return (x + (y - 1)) / y;
emilmont 10:3bc89ef62ce7 29 }
emilmont 10:3bc89ef62ce7 30
emilmont 10:3bc89ef62ce7 31 static const PinMap PinMap_ADC[] = {
emilmont 10:3bc89ef62ce7 32 {P0_23, ADC0_0, 1},
emilmont 10:3bc89ef62ce7 33 {P0_24, ADC0_1, 1},
emilmont 10:3bc89ef62ce7 34 {P0_25, ADC0_2, 1},
emilmont 10:3bc89ef62ce7 35 {P0_26, ADC0_3, 1},
emilmont 10:3bc89ef62ce7 36 {P1_30, ADC0_4, 3},
emilmont 10:3bc89ef62ce7 37 {P1_31, ADC0_5, 3},
emilmont 10:3bc89ef62ce7 38 {P0_2, ADC0_7, 2},
emilmont 10:3bc89ef62ce7 39 {P0_3, ADC0_6, 2},
emilmont 10:3bc89ef62ce7 40 {NC, NC, 0}
emilmont 10:3bc89ef62ce7 41 };
emilmont 10:3bc89ef62ce7 42
emilmont 10:3bc89ef62ce7 43 #define ADC_RANGE ADC_12BIT_RANGE
emilmont 10:3bc89ef62ce7 44
emilmont 10:3bc89ef62ce7 45 void analogin_init(analogin_t *obj, PinName pin) {
emilmont 10:3bc89ef62ce7 46 obj->adc = (ADCName)pinmap_peripheral(pin, PinMap_ADC);
mbed_official 227:7bd0639b8911 47 MBED_ASSERT(obj->adc != (ADCName)NC);
emilmont 10:3bc89ef62ce7 48
emilmont 10:3bc89ef62ce7 49 // ensure power is turned on
emilmont 10:3bc89ef62ce7 50 LPC_SC->PCONP |= (1 << 12);
emilmont 10:3bc89ef62ce7 51
emilmont 10:3bc89ef62ce7 52 // set PCLK of ADC to /1
emilmont 10:3bc89ef62ce7 53 LPC_SC->PCLKSEL0 &= ~(0x3 << 24);
emilmont 10:3bc89ef62ce7 54 LPC_SC->PCLKSEL0 |= (0x1 << 24);
emilmont 10:3bc89ef62ce7 55 uint32_t PCLK = SystemCoreClock;
emilmont 10:3bc89ef62ce7 56
emilmont 10:3bc89ef62ce7 57 // calculate minimum clock divider
emilmont 10:3bc89ef62ce7 58 // clkdiv = divider - 1
emilmont 10:3bc89ef62ce7 59 uint32_t MAX_ADC_CLK = 13000000;
emilmont 10:3bc89ef62ce7 60 uint32_t clkdiv = div_round_up(PCLK, MAX_ADC_CLK) - 1;
emilmont 10:3bc89ef62ce7 61
emilmont 10:3bc89ef62ce7 62 // Set the generic software-controlled ADC settings
emilmont 10:3bc89ef62ce7 63 LPC_ADC->ADCR = (0 << 0) // SEL: 0 = no channels selected
emilmont 10:3bc89ef62ce7 64 | (clkdiv << 8) // CLKDIV: PCLK max ~= 25MHz, /25 to give safe 1MHz at fastest
emilmont 10:3bc89ef62ce7 65 | (0 << 16) // BURST: 0 = software control
emilmont 10:3bc89ef62ce7 66 | (0 << 17) // CLKS: not applicable
emilmont 10:3bc89ef62ce7 67 | (1 << 21) // PDN: 1 = operational
emilmont 10:3bc89ef62ce7 68 | (0 << 24) // START: 0 = no start
emilmont 10:3bc89ef62ce7 69 | (0 << 27); // EDGE: not applicable
emilmont 10:3bc89ef62ce7 70
emilmont 10:3bc89ef62ce7 71 pinmap_pinout(pin, PinMap_ADC);
emilmont 10:3bc89ef62ce7 72 }
emilmont 10:3bc89ef62ce7 73
emilmont 10:3bc89ef62ce7 74 static inline uint32_t adc_read(analogin_t *obj) {
emilmont 10:3bc89ef62ce7 75 // Select the appropriate channel and start conversion
emilmont 10:3bc89ef62ce7 76 LPC_ADC->ADCR &= ~0xFF;
emilmont 10:3bc89ef62ce7 77 LPC_ADC->ADCR |= 1 << (int)obj->adc;
emilmont 10:3bc89ef62ce7 78 LPC_ADC->ADCR |= 1 << 24;
emilmont 10:3bc89ef62ce7 79
emilmont 10:3bc89ef62ce7 80 // Repeatedly get the sample data until DONE bit
emilmont 10:3bc89ef62ce7 81 unsigned int data;
emilmont 10:3bc89ef62ce7 82 do {
emilmont 10:3bc89ef62ce7 83 data = LPC_ADC->ADGDR;
emilmont 10:3bc89ef62ce7 84 } while ((data & ((unsigned int)1 << 31)) == 0);
emilmont 10:3bc89ef62ce7 85
emilmont 10:3bc89ef62ce7 86 // Stop conversion
emilmont 10:3bc89ef62ce7 87 LPC_ADC->ADCR &= ~(1 << 24);
emilmont 10:3bc89ef62ce7 88
emilmont 10:3bc89ef62ce7 89 return (data >> 4) & ADC_RANGE; // 12 bit
emilmont 10:3bc89ef62ce7 90 }
emilmont 10:3bc89ef62ce7 91
emilmont 10:3bc89ef62ce7 92 static inline void order(uint32_t *a, uint32_t *b) {
emilmont 10:3bc89ef62ce7 93 if (*a > *b) {
emilmont 10:3bc89ef62ce7 94 uint32_t t = *a;
emilmont 10:3bc89ef62ce7 95 *a = *b;
emilmont 10:3bc89ef62ce7 96 *b = t;
emilmont 10:3bc89ef62ce7 97 }
emilmont 10:3bc89ef62ce7 98 }
emilmont 10:3bc89ef62ce7 99
emilmont 10:3bc89ef62ce7 100 static inline uint32_t adc_read_u32(analogin_t *obj) {
emilmont 10:3bc89ef62ce7 101 uint32_t value;
emilmont 10:3bc89ef62ce7 102 #if ANALOGIN_MEDIAN_FILTER
emilmont 10:3bc89ef62ce7 103 uint32_t v1 = adc_read(obj);
emilmont 10:3bc89ef62ce7 104 uint32_t v2 = adc_read(obj);
emilmont 10:3bc89ef62ce7 105 uint32_t v3 = adc_read(obj);
emilmont 10:3bc89ef62ce7 106 order(&v1, &v2);
emilmont 10:3bc89ef62ce7 107 order(&v2, &v3);
emilmont 10:3bc89ef62ce7 108 order(&v1, &v2);
emilmont 10:3bc89ef62ce7 109 value = v2;
emilmont 10:3bc89ef62ce7 110 #else
emilmont 10:3bc89ef62ce7 111 value = adc_read(obj);
emilmont 10:3bc89ef62ce7 112 #endif
emilmont 10:3bc89ef62ce7 113 return value;
emilmont 10:3bc89ef62ce7 114 }
emilmont 10:3bc89ef62ce7 115
emilmont 10:3bc89ef62ce7 116 uint16_t analogin_read_u16(analogin_t *obj) {
emilmont 10:3bc89ef62ce7 117 uint32_t value = adc_read_u32(obj);
emilmont 10:3bc89ef62ce7 118
emilmont 10:3bc89ef62ce7 119 return (value << 4) | ((value >> 8) & 0x000F); // 12 bit
emilmont 10:3bc89ef62ce7 120 }
emilmont 10:3bc89ef62ce7 121
emilmont 10:3bc89ef62ce7 122 float analogin_read(analogin_t *obj) {
emilmont 10:3bc89ef62ce7 123 uint32_t value = adc_read_u32(obj);
emilmont 10:3bc89ef62ce7 124 return (float)value * (1.0f / (float)ADC_RANGE);
emilmont 10:3bc89ef62ce7 125 }