CMSIS DSP library

Dependents:   performance_timer Surfboard_ gps2rtty Capstone ... more

Legacy Warning

This is an mbed 2 library. To learn more about mbed OS 5, visit the docs.

Committer:
mbed_official
Date:
Fri Nov 20 08:45:18 2015 +0000
Revision:
5:3762170b6d4d
Parent:
3:7a284390b0ce
Synchronized with git revision 2eb940b9a73af188d3004a2575fdfbb05febe62b

Full URL: https://github.com/mbedmicro/mbed/commit/2eb940b9a73af188d3004a2575fdfbb05febe62b/

Added option to build rpc library. closes #1426

Who changed what in which revision?

UserRevisionLine numberNew contents of line
emilmont 1:fdd22bb7aa52 1 /* ----------------------------------------------------------------------
mbed_official 5:3762170b6d4d 2 * Copyright (C) 2010-2014 ARM Limited. All rights reserved.
emilmont 1:fdd22bb7aa52 3 *
mbed_official 5:3762170b6d4d 4 * $Date: 19. March 2015
mbed_official 5:3762170b6d4d 5 * $Revision: V.1.4.5
emilmont 1:fdd22bb7aa52 6 *
emilmont 2:da51fb522205 7 * Project: CMSIS DSP Library
emilmont 2:da51fb522205 8 * Title: arm_cfft_radix4_q15.c
emilmont 1:fdd22bb7aa52 9 *
emilmont 2:da51fb522205 10 * Description: This file has function definition of Radix-4 FFT & IFFT function and
emilmont 2:da51fb522205 11 * In-place bit reversal using bit reversal table
emilmont 1:fdd22bb7aa52 12 *
emilmont 1:fdd22bb7aa52 13 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
emilmont 1:fdd22bb7aa52 14 *
mbed_official 3:7a284390b0ce 15 * Redistribution and use in source and binary forms, with or without
mbed_official 3:7a284390b0ce 16 * modification, are permitted provided that the following conditions
mbed_official 3:7a284390b0ce 17 * are met:
mbed_official 3:7a284390b0ce 18 * - Redistributions of source code must retain the above copyright
mbed_official 3:7a284390b0ce 19 * notice, this list of conditions and the following disclaimer.
mbed_official 3:7a284390b0ce 20 * - Redistributions in binary form must reproduce the above copyright
mbed_official 3:7a284390b0ce 21 * notice, this list of conditions and the following disclaimer in
mbed_official 3:7a284390b0ce 22 * the documentation and/or other materials provided with the
mbed_official 3:7a284390b0ce 23 * distribution.
mbed_official 3:7a284390b0ce 24 * - Neither the name of ARM LIMITED nor the names of its contributors
mbed_official 3:7a284390b0ce 25 * may be used to endorse or promote products derived from this
mbed_official 3:7a284390b0ce 26 * software without specific prior written permission.
mbed_official 3:7a284390b0ce 27 *
mbed_official 3:7a284390b0ce 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
mbed_official 3:7a284390b0ce 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
mbed_official 3:7a284390b0ce 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
mbed_official 3:7a284390b0ce 31 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
mbed_official 3:7a284390b0ce 32 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
mbed_official 3:7a284390b0ce 33 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
mbed_official 3:7a284390b0ce 34 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
mbed_official 3:7a284390b0ce 35 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
mbed_official 3:7a284390b0ce 36 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
mbed_official 3:7a284390b0ce 37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
mbed_official 3:7a284390b0ce 38 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
mbed_official 3:7a284390b0ce 39 * POSSIBILITY OF SUCH DAMAGE.
emilmont 1:fdd22bb7aa52 40 * -------------------------------------------------------------------- */
emilmont 1:fdd22bb7aa52 41
emilmont 1:fdd22bb7aa52 42 #include "arm_math.h"
emilmont 1:fdd22bb7aa52 43
mbed_official 3:7a284390b0ce 44
mbed_official 3:7a284390b0ce 45 void arm_radix4_butterfly_q15(
mbed_official 3:7a284390b0ce 46 q15_t * pSrc16,
mbed_official 3:7a284390b0ce 47 uint32_t fftLen,
mbed_official 3:7a284390b0ce 48 q15_t * pCoef16,
mbed_official 3:7a284390b0ce 49 uint32_t twidCoefModifier);
mbed_official 3:7a284390b0ce 50
mbed_official 3:7a284390b0ce 51 void arm_radix4_butterfly_inverse_q15(
mbed_official 3:7a284390b0ce 52 q15_t * pSrc16,
mbed_official 3:7a284390b0ce 53 uint32_t fftLen,
mbed_official 3:7a284390b0ce 54 q15_t * pCoef16,
mbed_official 3:7a284390b0ce 55 uint32_t twidCoefModifier);
mbed_official 3:7a284390b0ce 56
mbed_official 3:7a284390b0ce 57 void arm_bitreversal_q15(
mbed_official 3:7a284390b0ce 58 q15_t * pSrc,
mbed_official 3:7a284390b0ce 59 uint32_t fftLen,
mbed_official 3:7a284390b0ce 60 uint16_t bitRevFactor,
mbed_official 3:7a284390b0ce 61 uint16_t * pBitRevTab);
mbed_official 3:7a284390b0ce 62
emilmont 1:fdd22bb7aa52 63 /**
emilmont 1:fdd22bb7aa52 64 * @ingroup groupTransforms
emilmont 1:fdd22bb7aa52 65 */
emilmont 1:fdd22bb7aa52 66
emilmont 1:fdd22bb7aa52 67 /**
mbed_official 3:7a284390b0ce 68 * @addtogroup ComplexFFT
emilmont 1:fdd22bb7aa52 69 * @{
emilmont 1:fdd22bb7aa52 70 */
emilmont 1:fdd22bb7aa52 71
emilmont 1:fdd22bb7aa52 72
emilmont 1:fdd22bb7aa52 73 /**
emilmont 1:fdd22bb7aa52 74 * @details
emilmont 1:fdd22bb7aa52 75 * @brief Processing function for the Q15 CFFT/CIFFT.
mbed_official 5:3762170b6d4d 76 * @deprecated Do not use this function. It has been superseded by \ref arm_cfft_q15 and will be removed
emilmont 1:fdd22bb7aa52 77 * @param[in] *S points to an instance of the Q15 CFFT/CIFFT structure.
emilmont 1:fdd22bb7aa52 78 * @param[in, out] *pSrc points to the complex data buffer. Processing occurs in-place.
emilmont 1:fdd22bb7aa52 79 * @return none.
emilmont 1:fdd22bb7aa52 80 *
emilmont 1:fdd22bb7aa52 81 * \par Input and output formats:
emilmont 1:fdd22bb7aa52 82 * \par
emilmont 1:fdd22bb7aa52 83 * Internally input is downscaled by 2 for every stage to avoid saturations inside CFFT/CIFFT process.
emilmont 1:fdd22bb7aa52 84 * Hence the output format is different for different FFT sizes.
emilmont 1:fdd22bb7aa52 85 * The input and output formats for different FFT sizes and number of bits to upscale are mentioned in the tables below for CFFT and CIFFT:
emilmont 1:fdd22bb7aa52 86 * \par
emilmont 1:fdd22bb7aa52 87 * \image html CFFTQ15.gif "Input and Output Formats for Q15 CFFT"
emilmont 1:fdd22bb7aa52 88 * \image html CIFFTQ15.gif "Input and Output Formats for Q15 CIFFT"
emilmont 1:fdd22bb7aa52 89 */
emilmont 1:fdd22bb7aa52 90
emilmont 1:fdd22bb7aa52 91 void arm_cfft_radix4_q15(
emilmont 1:fdd22bb7aa52 92 const arm_cfft_radix4_instance_q15 * S,
emilmont 1:fdd22bb7aa52 93 q15_t * pSrc)
emilmont 1:fdd22bb7aa52 94 {
emilmont 1:fdd22bb7aa52 95 if(S->ifftFlag == 1u)
emilmont 1:fdd22bb7aa52 96 {
emilmont 1:fdd22bb7aa52 97 /* Complex IFFT radix-4 */
emilmont 1:fdd22bb7aa52 98 arm_radix4_butterfly_inverse_q15(pSrc, S->fftLen, S->pTwiddle,
emilmont 1:fdd22bb7aa52 99 S->twidCoefModifier);
emilmont 1:fdd22bb7aa52 100 }
emilmont 1:fdd22bb7aa52 101 else
emilmont 1:fdd22bb7aa52 102 {
emilmont 1:fdd22bb7aa52 103 /* Complex FFT radix-4 */
emilmont 1:fdd22bb7aa52 104 arm_radix4_butterfly_q15(pSrc, S->fftLen, S->pTwiddle,
emilmont 1:fdd22bb7aa52 105 S->twidCoefModifier);
emilmont 1:fdd22bb7aa52 106 }
emilmont 1:fdd22bb7aa52 107
emilmont 1:fdd22bb7aa52 108 if(S->bitReverseFlag == 1u)
emilmont 1:fdd22bb7aa52 109 {
emilmont 1:fdd22bb7aa52 110 /* Bit Reversal */
emilmont 1:fdd22bb7aa52 111 arm_bitreversal_q15(pSrc, S->fftLen, S->bitRevFactor, S->pBitRevTable);
emilmont 1:fdd22bb7aa52 112 }
emilmont 1:fdd22bb7aa52 113
emilmont 1:fdd22bb7aa52 114 }
emilmont 1:fdd22bb7aa52 115
emilmont 1:fdd22bb7aa52 116 /**
mbed_official 3:7a284390b0ce 117 * @} end of ComplexFFT group
emilmont 1:fdd22bb7aa52 118 */
emilmont 1:fdd22bb7aa52 119
emilmont 1:fdd22bb7aa52 120 /*
emilmont 1:fdd22bb7aa52 121 * Radix-4 FFT algorithm used is :
emilmont 1:fdd22bb7aa52 122 *
emilmont 1:fdd22bb7aa52 123 * Input real and imaginary data:
emilmont 1:fdd22bb7aa52 124 * x(n) = xa + j * ya
emilmont 1:fdd22bb7aa52 125 * x(n+N/4 ) = xb + j * yb
emilmont 1:fdd22bb7aa52 126 * x(n+N/2 ) = xc + j * yc
emilmont 1:fdd22bb7aa52 127 * x(n+3N 4) = xd + j * yd
emilmont 1:fdd22bb7aa52 128 *
emilmont 1:fdd22bb7aa52 129 *
emilmont 1:fdd22bb7aa52 130 * Output real and imaginary data:
emilmont 1:fdd22bb7aa52 131 * x(4r) = xa'+ j * ya'
emilmont 1:fdd22bb7aa52 132 * x(4r+1) = xb'+ j * yb'
emilmont 1:fdd22bb7aa52 133 * x(4r+2) = xc'+ j * yc'
emilmont 1:fdd22bb7aa52 134 * x(4r+3) = xd'+ j * yd'
emilmont 1:fdd22bb7aa52 135 *
emilmont 1:fdd22bb7aa52 136 *
emilmont 1:fdd22bb7aa52 137 * Twiddle factors for radix-4 FFT:
emilmont 1:fdd22bb7aa52 138 * Wn = co1 + j * (- si1)
emilmont 1:fdd22bb7aa52 139 * W2n = co2 + j * (- si2)
emilmont 1:fdd22bb7aa52 140 * W3n = co3 + j * (- si3)
emilmont 1:fdd22bb7aa52 141
emilmont 1:fdd22bb7aa52 142 * The real and imaginary output values for the radix-4 butterfly are
emilmont 1:fdd22bb7aa52 143 * xa' = xa + xb + xc + xd
emilmont 1:fdd22bb7aa52 144 * ya' = ya + yb + yc + yd
emilmont 1:fdd22bb7aa52 145 * xb' = (xa+yb-xc-yd)* co1 + (ya-xb-yc+xd)* (si1)
emilmont 1:fdd22bb7aa52 146 * yb' = (ya-xb-yc+xd)* co1 - (xa+yb-xc-yd)* (si1)
emilmont 1:fdd22bb7aa52 147 * xc' = (xa-xb+xc-xd)* co2 + (ya-yb+yc-yd)* (si2)
emilmont 1:fdd22bb7aa52 148 * yc' = (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2)
emilmont 1:fdd22bb7aa52 149 * xd' = (xa-yb-xc+yd)* co3 + (ya+xb-yc-xd)* (si3)
emilmont 1:fdd22bb7aa52 150 * yd' = (ya+xb-yc-xd)* co3 - (xa-yb-xc+yd)* (si3)
emilmont 1:fdd22bb7aa52 151 *
emilmont 1:fdd22bb7aa52 152 */
emilmont 1:fdd22bb7aa52 153
emilmont 1:fdd22bb7aa52 154 /**
emilmont 1:fdd22bb7aa52 155 * @brief Core function for the Q15 CFFT butterfly process.
emilmont 1:fdd22bb7aa52 156 * @param[in, out] *pSrc16 points to the in-place buffer of Q15 data type.
emilmont 1:fdd22bb7aa52 157 * @param[in] fftLen length of the FFT.
emilmont 1:fdd22bb7aa52 158 * @param[in] *pCoef16 points to twiddle coefficient buffer.
emilmont 1:fdd22bb7aa52 159 * @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
emilmont 1:fdd22bb7aa52 160 * @return none.
emilmont 1:fdd22bb7aa52 161 */
emilmont 1:fdd22bb7aa52 162
emilmont 1:fdd22bb7aa52 163 void arm_radix4_butterfly_q15(
emilmont 1:fdd22bb7aa52 164 q15_t * pSrc16,
emilmont 1:fdd22bb7aa52 165 uint32_t fftLen,
emilmont 1:fdd22bb7aa52 166 q15_t * pCoef16,
emilmont 1:fdd22bb7aa52 167 uint32_t twidCoefModifier)
emilmont 1:fdd22bb7aa52 168 {
emilmont 1:fdd22bb7aa52 169
mbed_official 3:7a284390b0ce 170 #ifndef ARM_MATH_CM0_FAMILY
emilmont 1:fdd22bb7aa52 171
emilmont 1:fdd22bb7aa52 172 /* Run the below code for Cortex-M4 and Cortex-M3 */
emilmont 1:fdd22bb7aa52 173
emilmont 1:fdd22bb7aa52 174 q31_t R, S, T, U;
emilmont 1:fdd22bb7aa52 175 q31_t C1, C2, C3, out1, out2;
mbed_official 5:3762170b6d4d 176 uint32_t n1, n2, ic, i0, j, k;
emilmont 1:fdd22bb7aa52 177
emilmont 1:fdd22bb7aa52 178 q15_t *ptr1;
mbed_official 5:3762170b6d4d 179 q15_t *pSi0;
mbed_official 5:3762170b6d4d 180 q15_t *pSi1;
mbed_official 5:3762170b6d4d 181 q15_t *pSi2;
mbed_official 5:3762170b6d4d 182 q15_t *pSi3;
emilmont 1:fdd22bb7aa52 183
emilmont 1:fdd22bb7aa52 184 q31_t xaya, xbyb, xcyc, xdyd;
emilmont 1:fdd22bb7aa52 185
emilmont 1:fdd22bb7aa52 186 /* Total process is divided into three stages */
emilmont 1:fdd22bb7aa52 187
emilmont 1:fdd22bb7aa52 188 /* process first stage, middle stages, & last stage */
emilmont 1:fdd22bb7aa52 189
emilmont 1:fdd22bb7aa52 190 /* Initializations for the first stage */
emilmont 1:fdd22bb7aa52 191 n2 = fftLen;
emilmont 1:fdd22bb7aa52 192 n1 = n2;
emilmont 1:fdd22bb7aa52 193
emilmont 1:fdd22bb7aa52 194 /* n2 = fftLen/4 */
emilmont 1:fdd22bb7aa52 195 n2 >>= 2u;
emilmont 1:fdd22bb7aa52 196
emilmont 1:fdd22bb7aa52 197 /* Index for twiddle coefficient */
emilmont 1:fdd22bb7aa52 198 ic = 0u;
emilmont 1:fdd22bb7aa52 199
emilmont 1:fdd22bb7aa52 200 /* Index for input read and output write */
emilmont 1:fdd22bb7aa52 201 j = n2;
mbed_official 5:3762170b6d4d 202
mbed_official 5:3762170b6d4d 203 pSi0 = pSrc16;
mbed_official 5:3762170b6d4d 204 pSi1 = pSi0 + 2 * n2;
mbed_official 5:3762170b6d4d 205 pSi2 = pSi1 + 2 * n2;
mbed_official 5:3762170b6d4d 206 pSi3 = pSi2 + 2 * n2;
emilmont 1:fdd22bb7aa52 207
emilmont 1:fdd22bb7aa52 208 /* Input is in 1.15(q15) format */
emilmont 1:fdd22bb7aa52 209
emilmont 1:fdd22bb7aa52 210 /* start of first stage process */
emilmont 1:fdd22bb7aa52 211 do
emilmont 1:fdd22bb7aa52 212 {
emilmont 1:fdd22bb7aa52 213 /* Butterfly implementation */
emilmont 1:fdd22bb7aa52 214
emilmont 1:fdd22bb7aa52 215 /* Reading i0, i0+fftLen/2 inputs */
emilmont 1:fdd22bb7aa52 216 /* Read ya (real), xa(imag) input */
mbed_official 5:3762170b6d4d 217 T = _SIMD32_OFFSET(pSi0);
mbed_official 5:3762170b6d4d 218 T = __SHADD16(T, 0); // this is just a SIMD arithmetic shift right by 1
mbed_official 5:3762170b6d4d 219 T = __SHADD16(T, 0); // it turns out doing this twice is 2 cycles, the alternative takes 3 cycles
mbed_official 5:3762170b6d4d 220 //in = ((int16_t) (T & 0xFFFF)) >> 2; // alternative code that takes 3 cycles
mbed_official 5:3762170b6d4d 221 //T = ((T >> 2) & 0xFFFF0000) | (in & 0xFFFF);
emilmont 1:fdd22bb7aa52 222
emilmont 1:fdd22bb7aa52 223 /* Read yc (real), xc(imag) input */
mbed_official 5:3762170b6d4d 224 S = _SIMD32_OFFSET(pSi2);
mbed_official 5:3762170b6d4d 225 S = __SHADD16(S, 0);
mbed_official 5:3762170b6d4d 226 S = __SHADD16(S, 0);
emilmont 1:fdd22bb7aa52 227
emilmont 1:fdd22bb7aa52 228 /* R = packed((ya + yc), (xa + xc) ) */
emilmont 1:fdd22bb7aa52 229 R = __QADD16(T, S);
emilmont 1:fdd22bb7aa52 230
emilmont 1:fdd22bb7aa52 231 /* S = packed((ya - yc), (xa - xc) ) */
emilmont 1:fdd22bb7aa52 232 S = __QSUB16(T, S);
emilmont 1:fdd22bb7aa52 233
emilmont 1:fdd22bb7aa52 234 /* Reading i0+fftLen/4 , i0+3fftLen/4 inputs */
emilmont 1:fdd22bb7aa52 235 /* Read yb (real), xb(imag) input */
mbed_official 5:3762170b6d4d 236 T = _SIMD32_OFFSET(pSi1);
mbed_official 5:3762170b6d4d 237 T = __SHADD16(T, 0);
mbed_official 5:3762170b6d4d 238 T = __SHADD16(T, 0);
emilmont 1:fdd22bb7aa52 239
emilmont 1:fdd22bb7aa52 240 /* Read yd (real), xd(imag) input */
mbed_official 5:3762170b6d4d 241 U = _SIMD32_OFFSET(pSi3);
mbed_official 5:3762170b6d4d 242 U = __SHADD16(U, 0);
mbed_official 5:3762170b6d4d 243 U = __SHADD16(U, 0);
emilmont 1:fdd22bb7aa52 244
emilmont 1:fdd22bb7aa52 245 /* T = packed((yb + yd), (xb + xd) ) */
emilmont 1:fdd22bb7aa52 246 T = __QADD16(T, U);
emilmont 1:fdd22bb7aa52 247
emilmont 1:fdd22bb7aa52 248 /* writing the butterfly processed i0 sample */
emilmont 1:fdd22bb7aa52 249 /* xa' = xa + xb + xc + xd */
emilmont 1:fdd22bb7aa52 250 /* ya' = ya + yb + yc + yd */
mbed_official 5:3762170b6d4d 251 _SIMD32_OFFSET(pSi0) = __SHADD16(R, T);
mbed_official 5:3762170b6d4d 252 pSi0 += 2;
emilmont 1:fdd22bb7aa52 253
emilmont 1:fdd22bb7aa52 254 /* R = packed((ya + yc) - (yb + yd), (xa + xc)- (xb + xd)) */
emilmont 1:fdd22bb7aa52 255 R = __QSUB16(R, T);
emilmont 1:fdd22bb7aa52 256
emilmont 1:fdd22bb7aa52 257 /* co2 & si2 are read from SIMD Coefficient pointer */
emilmont 1:fdd22bb7aa52 258 C2 = _SIMD32_OFFSET(pCoef16 + (4u * ic));
emilmont 1:fdd22bb7aa52 259
emilmont 1:fdd22bb7aa52 260 #ifndef ARM_MATH_BIG_ENDIAN
emilmont 1:fdd22bb7aa52 261
emilmont 1:fdd22bb7aa52 262 /* xc' = (xa-xb+xc-xd)* co2 + (ya-yb+yc-yd)* (si2) */
emilmont 1:fdd22bb7aa52 263 out1 = __SMUAD(C2, R) >> 16u;
emilmont 1:fdd22bb7aa52 264 /* yc' = (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */
emilmont 1:fdd22bb7aa52 265 out2 = __SMUSDX(C2, R);
emilmont 1:fdd22bb7aa52 266
emilmont 1:fdd22bb7aa52 267 #else
emilmont 1:fdd22bb7aa52 268
emilmont 1:fdd22bb7aa52 269 /* xc' = (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */
emilmont 1:fdd22bb7aa52 270 out1 = __SMUSDX(R, C2) >> 16u;
emilmont 1:fdd22bb7aa52 271 /* yc' = (xa-xb+xc-xd)* co2 + (ya-yb+yc-yd)* (si2) */
emilmont 1:fdd22bb7aa52 272 out2 = __SMUAD(C2, R);
emilmont 1:fdd22bb7aa52 273
emilmont 1:fdd22bb7aa52 274 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
emilmont 1:fdd22bb7aa52 275
emilmont 1:fdd22bb7aa52 276 /* Reading i0+fftLen/4 */
emilmont 1:fdd22bb7aa52 277 /* T = packed(yb, xb) */
mbed_official 5:3762170b6d4d 278 T = _SIMD32_OFFSET(pSi1);
mbed_official 5:3762170b6d4d 279 T = __SHADD16(T, 0);
mbed_official 5:3762170b6d4d 280 T = __SHADD16(T, 0);
emilmont 1:fdd22bb7aa52 281
emilmont 1:fdd22bb7aa52 282 /* writing the butterfly processed i0 + fftLen/4 sample */
emilmont 1:fdd22bb7aa52 283 /* writing output(xc', yc') in little endian format */
mbed_official 5:3762170b6d4d 284 _SIMD32_OFFSET(pSi1) =
emilmont 1:fdd22bb7aa52 285 (q31_t) ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);
mbed_official 5:3762170b6d4d 286 pSi1 += 2;
emilmont 1:fdd22bb7aa52 287
emilmont 1:fdd22bb7aa52 288 /* Butterfly calculations */
emilmont 1:fdd22bb7aa52 289 /* U = packed(yd, xd) */
mbed_official 5:3762170b6d4d 290 U = _SIMD32_OFFSET(pSi3);
mbed_official 5:3762170b6d4d 291 U = __SHADD16(U, 0);
mbed_official 5:3762170b6d4d 292 U = __SHADD16(U, 0);
emilmont 1:fdd22bb7aa52 293
emilmont 1:fdd22bb7aa52 294 /* T = packed(yb-yd, xb-xd) */
emilmont 1:fdd22bb7aa52 295 T = __QSUB16(T, U);
emilmont 1:fdd22bb7aa52 296
emilmont 1:fdd22bb7aa52 297 #ifndef ARM_MATH_BIG_ENDIAN
emilmont 1:fdd22bb7aa52 298
emilmont 1:fdd22bb7aa52 299 /* R = packed((ya-yc) + (xb- xd) , (xa-xc) - (yb-yd)) */
emilmont 1:fdd22bb7aa52 300 R = __QASX(S, T);
emilmont 1:fdd22bb7aa52 301 /* S = packed((ya-yc) - (xb- xd), (xa-xc) + (yb-yd)) */
emilmont 1:fdd22bb7aa52 302 S = __QSAX(S, T);
emilmont 1:fdd22bb7aa52 303
emilmont 1:fdd22bb7aa52 304 #else
emilmont 1:fdd22bb7aa52 305
emilmont 1:fdd22bb7aa52 306 /* R = packed((ya-yc) + (xb- xd) , (xa-xc) - (yb-yd)) */
emilmont 1:fdd22bb7aa52 307 R = __QSAX(S, T);
emilmont 1:fdd22bb7aa52 308 /* S = packed((ya-yc) - (xb- xd), (xa-xc) + (yb-yd)) */
emilmont 1:fdd22bb7aa52 309 S = __QASX(S, T);
emilmont 1:fdd22bb7aa52 310
emilmont 1:fdd22bb7aa52 311 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
emilmont 1:fdd22bb7aa52 312
emilmont 1:fdd22bb7aa52 313 /* co1 & si1 are read from SIMD Coefficient pointer */
emilmont 1:fdd22bb7aa52 314 C1 = _SIMD32_OFFSET(pCoef16 + (2u * ic));
emilmont 1:fdd22bb7aa52 315 /* Butterfly process for the i0+fftLen/2 sample */
emilmont 1:fdd22bb7aa52 316
emilmont 1:fdd22bb7aa52 317 #ifndef ARM_MATH_BIG_ENDIAN
emilmont 1:fdd22bb7aa52 318
emilmont 1:fdd22bb7aa52 319 /* xb' = (xa+yb-xc-yd)* co1 + (ya-xb-yc+xd)* (si1) */
emilmont 1:fdd22bb7aa52 320 out1 = __SMUAD(C1, S) >> 16u;
emilmont 1:fdd22bb7aa52 321 /* yb' = (ya-xb-yc+xd)* co1 - (xa+yb-xc-yd)* (si1) */
emilmont 1:fdd22bb7aa52 322 out2 = __SMUSDX(C1, S);
emilmont 1:fdd22bb7aa52 323
emilmont 1:fdd22bb7aa52 324 #else
emilmont 1:fdd22bb7aa52 325
emilmont 1:fdd22bb7aa52 326 /* xb' = (ya-xb-yc+xd)* co1 - (xa+yb-xc-yd)* (si1) */
emilmont 1:fdd22bb7aa52 327 out1 = __SMUSDX(S, C1) >> 16u;
emilmont 1:fdd22bb7aa52 328 /* yb' = (xa+yb-xc-yd)* co1 + (ya-xb-yc+xd)* (si1) */
emilmont 1:fdd22bb7aa52 329 out2 = __SMUAD(C1, S);
emilmont 1:fdd22bb7aa52 330
emilmont 1:fdd22bb7aa52 331 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
emilmont 1:fdd22bb7aa52 332
emilmont 1:fdd22bb7aa52 333 /* writing output(xb', yb') in little endian format */
mbed_official 5:3762170b6d4d 334 _SIMD32_OFFSET(pSi2) =
emilmont 1:fdd22bb7aa52 335 ((out2) & 0xFFFF0000) | ((out1) & 0x0000FFFF);
mbed_official 5:3762170b6d4d 336 pSi2 += 2;
emilmont 1:fdd22bb7aa52 337
emilmont 1:fdd22bb7aa52 338
emilmont 1:fdd22bb7aa52 339 /* co3 & si3 are read from SIMD Coefficient pointer */
emilmont 1:fdd22bb7aa52 340 C3 = _SIMD32_OFFSET(pCoef16 + (6u * ic));
emilmont 1:fdd22bb7aa52 341 /* Butterfly process for the i0+3fftLen/4 sample */
emilmont 1:fdd22bb7aa52 342
emilmont 1:fdd22bb7aa52 343 #ifndef ARM_MATH_BIG_ENDIAN
emilmont 1:fdd22bb7aa52 344
emilmont 1:fdd22bb7aa52 345 /* xd' = (xa-yb-xc+yd)* co3 + (ya+xb-yc-xd)* (si3) */
emilmont 1:fdd22bb7aa52 346 out1 = __SMUAD(C3, R) >> 16u;
emilmont 1:fdd22bb7aa52 347 /* yd' = (ya+xb-yc-xd)* co3 - (xa-yb-xc+yd)* (si3) */
emilmont 1:fdd22bb7aa52 348 out2 = __SMUSDX(C3, R);
emilmont 1:fdd22bb7aa52 349
emilmont 1:fdd22bb7aa52 350 #else
emilmont 1:fdd22bb7aa52 351
emilmont 1:fdd22bb7aa52 352 /* xd' = (ya+xb-yc-xd)* co3 - (xa-yb-xc+yd)* (si3) */
emilmont 1:fdd22bb7aa52 353 out1 = __SMUSDX(R, C3) >> 16u;
emilmont 1:fdd22bb7aa52 354 /* yd' = (xa-yb-xc+yd)* co3 + (ya+xb-yc-xd)* (si3) */
emilmont 1:fdd22bb7aa52 355 out2 = __SMUAD(C3, R);
emilmont 1:fdd22bb7aa52 356
emilmont 1:fdd22bb7aa52 357 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
emilmont 1:fdd22bb7aa52 358
emilmont 1:fdd22bb7aa52 359 /* writing output(xd', yd') in little endian format */
mbed_official 5:3762170b6d4d 360 _SIMD32_OFFSET(pSi3) =
emilmont 1:fdd22bb7aa52 361 ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);
mbed_official 5:3762170b6d4d 362 pSi3 += 2;
emilmont 1:fdd22bb7aa52 363
emilmont 1:fdd22bb7aa52 364 /* Twiddle coefficients index modifier */
emilmont 1:fdd22bb7aa52 365 ic = ic + twidCoefModifier;
emilmont 1:fdd22bb7aa52 366
emilmont 1:fdd22bb7aa52 367 } while(--j);
emilmont 1:fdd22bb7aa52 368 /* data is in 4.11(q11) format */
emilmont 1:fdd22bb7aa52 369
emilmont 1:fdd22bb7aa52 370 /* end of first stage process */
emilmont 1:fdd22bb7aa52 371
emilmont 1:fdd22bb7aa52 372
emilmont 1:fdd22bb7aa52 373 /* start of middle stage process */
emilmont 1:fdd22bb7aa52 374
emilmont 1:fdd22bb7aa52 375 /* Twiddle coefficients index modifier */
emilmont 1:fdd22bb7aa52 376 twidCoefModifier <<= 2u;
emilmont 1:fdd22bb7aa52 377
emilmont 1:fdd22bb7aa52 378 /* Calculation of Middle stage */
emilmont 1:fdd22bb7aa52 379 for (k = fftLen / 4u; k > 4u; k >>= 2u)
emilmont 1:fdd22bb7aa52 380 {
emilmont 1:fdd22bb7aa52 381 /* Initializations for the middle stage */
emilmont 1:fdd22bb7aa52 382 n1 = n2;
emilmont 1:fdd22bb7aa52 383 n2 >>= 2u;
emilmont 1:fdd22bb7aa52 384 ic = 0u;
emilmont 1:fdd22bb7aa52 385
emilmont 1:fdd22bb7aa52 386 for (j = 0u; j <= (n2 - 1u); j++)
emilmont 1:fdd22bb7aa52 387 {
emilmont 1:fdd22bb7aa52 388 /* index calculation for the coefficients */
emilmont 1:fdd22bb7aa52 389 C1 = _SIMD32_OFFSET(pCoef16 + (2u * ic));
emilmont 1:fdd22bb7aa52 390 C2 = _SIMD32_OFFSET(pCoef16 + (4u * ic));
emilmont 1:fdd22bb7aa52 391 C3 = _SIMD32_OFFSET(pCoef16 + (6u * ic));
emilmont 1:fdd22bb7aa52 392
emilmont 1:fdd22bb7aa52 393 /* Twiddle coefficients index modifier */
emilmont 1:fdd22bb7aa52 394 ic = ic + twidCoefModifier;
mbed_official 5:3762170b6d4d 395
mbed_official 5:3762170b6d4d 396 pSi0 = pSrc16 + 2 * j;
mbed_official 5:3762170b6d4d 397 pSi1 = pSi0 + 2 * n2;
mbed_official 5:3762170b6d4d 398 pSi2 = pSi1 + 2 * n2;
mbed_official 5:3762170b6d4d 399 pSi3 = pSi2 + 2 * n2;
emilmont 1:fdd22bb7aa52 400
emilmont 1:fdd22bb7aa52 401 /* Butterfly implementation */
emilmont 1:fdd22bb7aa52 402 for (i0 = j; i0 < fftLen; i0 += n1)
emilmont 1:fdd22bb7aa52 403 {
emilmont 1:fdd22bb7aa52 404 /* Reading i0, i0+fftLen/2 inputs */
emilmont 1:fdd22bb7aa52 405 /* Read ya (real), xa(imag) input */
mbed_official 5:3762170b6d4d 406 T = _SIMD32_OFFSET(pSi0);
emilmont 1:fdd22bb7aa52 407
emilmont 1:fdd22bb7aa52 408 /* Read yc (real), xc(imag) input */
mbed_official 5:3762170b6d4d 409 S = _SIMD32_OFFSET(pSi2);
emilmont 1:fdd22bb7aa52 410
emilmont 1:fdd22bb7aa52 411 /* R = packed( (ya + yc), (xa + xc)) */
emilmont 1:fdd22bb7aa52 412 R = __QADD16(T, S);
emilmont 1:fdd22bb7aa52 413
emilmont 1:fdd22bb7aa52 414 /* S = packed((ya - yc), (xa - xc)) */
emilmont 1:fdd22bb7aa52 415 S = __QSUB16(T, S);
emilmont 1:fdd22bb7aa52 416
emilmont 1:fdd22bb7aa52 417 /* Reading i0+fftLen/4 , i0+3fftLen/4 inputs */
emilmont 1:fdd22bb7aa52 418 /* Read yb (real), xb(imag) input */
mbed_official 5:3762170b6d4d 419 T = _SIMD32_OFFSET(pSi1);
emilmont 1:fdd22bb7aa52 420
emilmont 1:fdd22bb7aa52 421 /* Read yd (real), xd(imag) input */
mbed_official 5:3762170b6d4d 422 U = _SIMD32_OFFSET(pSi3);
emilmont 1:fdd22bb7aa52 423
emilmont 1:fdd22bb7aa52 424 /* T = packed( (yb + yd), (xb + xd)) */
emilmont 1:fdd22bb7aa52 425 T = __QADD16(T, U);
emilmont 1:fdd22bb7aa52 426
emilmont 1:fdd22bb7aa52 427 /* writing the butterfly processed i0 sample */
emilmont 1:fdd22bb7aa52 428
emilmont 1:fdd22bb7aa52 429 /* xa' = xa + xb + xc + xd */
emilmont 1:fdd22bb7aa52 430 /* ya' = ya + yb + yc + yd */
emilmont 1:fdd22bb7aa52 431 out1 = __SHADD16(R, T);
mbed_official 5:3762170b6d4d 432 out1 = __SHADD16(out1, 0);
mbed_official 5:3762170b6d4d 433 _SIMD32_OFFSET(pSi0) = out1;
mbed_official 5:3762170b6d4d 434 pSi0 += 2 * n1;
emilmont 1:fdd22bb7aa52 435
emilmont 1:fdd22bb7aa52 436 /* R = packed( (ya + yc) - (yb + yd), (xa + xc) - (xb + xd)) */
emilmont 1:fdd22bb7aa52 437 R = __SHSUB16(R, T);
emilmont 1:fdd22bb7aa52 438
emilmont 1:fdd22bb7aa52 439 #ifndef ARM_MATH_BIG_ENDIAN
emilmont 1:fdd22bb7aa52 440
emilmont 1:fdd22bb7aa52 441 /* (ya-yb+yc-yd)* (si2) + (xa-xb+xc-xd)* co2 */
emilmont 1:fdd22bb7aa52 442 out1 = __SMUAD(C2, R) >> 16u;
emilmont 1:fdd22bb7aa52 443
emilmont 1:fdd22bb7aa52 444 /* (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */
emilmont 1:fdd22bb7aa52 445 out2 = __SMUSDX(C2, R);
emilmont 1:fdd22bb7aa52 446
emilmont 1:fdd22bb7aa52 447 #else
emilmont 1:fdd22bb7aa52 448
emilmont 1:fdd22bb7aa52 449 /* (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */
emilmont 1:fdd22bb7aa52 450 out1 = __SMUSDX(R, C2) >> 16u;
emilmont 1:fdd22bb7aa52 451
emilmont 1:fdd22bb7aa52 452 /* (ya-yb+yc-yd)* (si2) + (xa-xb+xc-xd)* co2 */
emilmont 1:fdd22bb7aa52 453 out2 = __SMUAD(C2, R);
emilmont 1:fdd22bb7aa52 454
emilmont 1:fdd22bb7aa52 455 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
emilmont 1:fdd22bb7aa52 456
emilmont 1:fdd22bb7aa52 457 /* Reading i0+3fftLen/4 */
emilmont 1:fdd22bb7aa52 458 /* Read yb (real), xb(imag) input */
mbed_official 5:3762170b6d4d 459 T = _SIMD32_OFFSET(pSi1);
emilmont 1:fdd22bb7aa52 460
emilmont 1:fdd22bb7aa52 461 /* writing the butterfly processed i0 + fftLen/4 sample */
emilmont 1:fdd22bb7aa52 462 /* xc' = (xa-xb+xc-xd)* co2 + (ya-yb+yc-yd)* (si2) */
emilmont 1:fdd22bb7aa52 463 /* yc' = (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */
mbed_official 5:3762170b6d4d 464 _SIMD32_OFFSET(pSi1) =
emilmont 1:fdd22bb7aa52 465 ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);
mbed_official 5:3762170b6d4d 466 pSi1 += 2 * n1;
emilmont 1:fdd22bb7aa52 467
emilmont 1:fdd22bb7aa52 468 /* Butterfly calculations */
emilmont 1:fdd22bb7aa52 469
emilmont 1:fdd22bb7aa52 470 /* Read yd (real), xd(imag) input */
mbed_official 5:3762170b6d4d 471 U = _SIMD32_OFFSET(pSi3);
emilmont 1:fdd22bb7aa52 472
emilmont 1:fdd22bb7aa52 473 /* T = packed(yb-yd, xb-xd) */
emilmont 1:fdd22bb7aa52 474 T = __QSUB16(T, U);
emilmont 1:fdd22bb7aa52 475
emilmont 1:fdd22bb7aa52 476 #ifndef ARM_MATH_BIG_ENDIAN
emilmont 1:fdd22bb7aa52 477
emilmont 1:fdd22bb7aa52 478 /* R = packed((ya-yc) + (xb- xd) , (xa-xc) - (yb-yd)) */
emilmont 1:fdd22bb7aa52 479 R = __SHASX(S, T);
emilmont 1:fdd22bb7aa52 480
emilmont 1:fdd22bb7aa52 481 /* S = packed((ya-yc) - (xb- xd), (xa-xc) + (yb-yd)) */
emilmont 1:fdd22bb7aa52 482 S = __SHSAX(S, T);
emilmont 1:fdd22bb7aa52 483
emilmont 1:fdd22bb7aa52 484
emilmont 1:fdd22bb7aa52 485 /* Butterfly process for the i0+fftLen/2 sample */
emilmont 1:fdd22bb7aa52 486 out1 = __SMUAD(C1, S) >> 16u;
emilmont 1:fdd22bb7aa52 487 out2 = __SMUSDX(C1, S);
emilmont 1:fdd22bb7aa52 488
emilmont 1:fdd22bb7aa52 489 #else
emilmont 1:fdd22bb7aa52 490
emilmont 1:fdd22bb7aa52 491 /* R = packed((ya-yc) + (xb- xd) , (xa-xc) - (yb-yd)) */
emilmont 1:fdd22bb7aa52 492 R = __SHSAX(S, T);
emilmont 1:fdd22bb7aa52 493
emilmont 1:fdd22bb7aa52 494 /* S = packed((ya-yc) - (xb- xd), (xa-xc) + (yb-yd)) */
emilmont 1:fdd22bb7aa52 495 S = __SHASX(S, T);
emilmont 1:fdd22bb7aa52 496
emilmont 1:fdd22bb7aa52 497
emilmont 1:fdd22bb7aa52 498 /* Butterfly process for the i0+fftLen/2 sample */
emilmont 1:fdd22bb7aa52 499 out1 = __SMUSDX(S, C1) >> 16u;
emilmont 1:fdd22bb7aa52 500 out2 = __SMUAD(C1, S);
emilmont 1:fdd22bb7aa52 501
emilmont 1:fdd22bb7aa52 502 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
emilmont 1:fdd22bb7aa52 503
emilmont 1:fdd22bb7aa52 504 /* xb' = (xa+yb-xc-yd)* co1 + (ya-xb-yc+xd)* (si1) */
emilmont 1:fdd22bb7aa52 505 /* yb' = (ya-xb-yc+xd)* co1 - (xa+yb-xc-yd)* (si1) */
mbed_official 5:3762170b6d4d 506 _SIMD32_OFFSET(pSi2) =
emilmont 1:fdd22bb7aa52 507 ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);
mbed_official 5:3762170b6d4d 508 pSi2 += 2 * n1;
emilmont 1:fdd22bb7aa52 509
emilmont 1:fdd22bb7aa52 510 /* Butterfly process for the i0+3fftLen/4 sample */
emilmont 1:fdd22bb7aa52 511
emilmont 1:fdd22bb7aa52 512 #ifndef ARM_MATH_BIG_ENDIAN
emilmont 1:fdd22bb7aa52 513
emilmont 1:fdd22bb7aa52 514 out1 = __SMUAD(C3, R) >> 16u;
emilmont 1:fdd22bb7aa52 515 out2 = __SMUSDX(C3, R);
emilmont 1:fdd22bb7aa52 516
emilmont 1:fdd22bb7aa52 517 #else
emilmont 1:fdd22bb7aa52 518
emilmont 1:fdd22bb7aa52 519 out1 = __SMUSDX(R, C3) >> 16u;
emilmont 1:fdd22bb7aa52 520 out2 = __SMUAD(C3, R);
emilmont 1:fdd22bb7aa52 521
emilmont 1:fdd22bb7aa52 522 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
emilmont 1:fdd22bb7aa52 523
emilmont 1:fdd22bb7aa52 524 /* xd' = (xa-yb-xc+yd)* co3 + (ya+xb-yc-xd)* (si3) */
emilmont 1:fdd22bb7aa52 525 /* yd' = (ya+xb-yc-xd)* co3 - (xa-yb-xc+yd)* (si3) */
mbed_official 5:3762170b6d4d 526 _SIMD32_OFFSET(pSi3) =
emilmont 1:fdd22bb7aa52 527 ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);
mbed_official 5:3762170b6d4d 528 pSi3 += 2 * n1;
emilmont 1:fdd22bb7aa52 529 }
emilmont 1:fdd22bb7aa52 530 }
emilmont 1:fdd22bb7aa52 531 /* Twiddle coefficients index modifier */
emilmont 1:fdd22bb7aa52 532 twidCoefModifier <<= 2u;
emilmont 1:fdd22bb7aa52 533 }
emilmont 1:fdd22bb7aa52 534 /* end of middle stage process */
emilmont 1:fdd22bb7aa52 535
emilmont 1:fdd22bb7aa52 536
emilmont 1:fdd22bb7aa52 537 /* data is in 10.6(q6) format for the 1024 point */
emilmont 1:fdd22bb7aa52 538 /* data is in 8.8(q8) format for the 256 point */
emilmont 1:fdd22bb7aa52 539 /* data is in 6.10(q10) format for the 64 point */
emilmont 1:fdd22bb7aa52 540 /* data is in 4.12(q12) format for the 16 point */
emilmont 1:fdd22bb7aa52 541
emilmont 1:fdd22bb7aa52 542 /* Initializations for the last stage */
emilmont 1:fdd22bb7aa52 543 j = fftLen >> 2;
emilmont 1:fdd22bb7aa52 544
emilmont 1:fdd22bb7aa52 545 ptr1 = &pSrc16[0];
emilmont 1:fdd22bb7aa52 546
emilmont 1:fdd22bb7aa52 547 /* start of last stage process */
emilmont 1:fdd22bb7aa52 548
emilmont 1:fdd22bb7aa52 549 /* Butterfly implementation */
emilmont 1:fdd22bb7aa52 550 do
emilmont 1:fdd22bb7aa52 551 {
emilmont 1:fdd22bb7aa52 552 /* Read xa (real), ya(imag) input */
emilmont 1:fdd22bb7aa52 553 xaya = *__SIMD32(ptr1)++;
emilmont 1:fdd22bb7aa52 554
emilmont 1:fdd22bb7aa52 555 /* Read xb (real), yb(imag) input */
emilmont 1:fdd22bb7aa52 556 xbyb = *__SIMD32(ptr1)++;
emilmont 1:fdd22bb7aa52 557
emilmont 1:fdd22bb7aa52 558 /* Read xc (real), yc(imag) input */
emilmont 1:fdd22bb7aa52 559 xcyc = *__SIMD32(ptr1)++;
emilmont 1:fdd22bb7aa52 560
emilmont 1:fdd22bb7aa52 561 /* Read xd (real), yd(imag) input */
emilmont 1:fdd22bb7aa52 562 xdyd = *__SIMD32(ptr1)++;
emilmont 1:fdd22bb7aa52 563
emilmont 1:fdd22bb7aa52 564 /* R = packed((ya + yc), (xa + xc)) */
emilmont 1:fdd22bb7aa52 565 R = __QADD16(xaya, xcyc);
emilmont 1:fdd22bb7aa52 566
emilmont 1:fdd22bb7aa52 567 /* T = packed((yb + yd), (xb + xd)) */
emilmont 1:fdd22bb7aa52 568 T = __QADD16(xbyb, xdyd);
emilmont 1:fdd22bb7aa52 569
emilmont 1:fdd22bb7aa52 570 /* pointer updation for writing */
emilmont 1:fdd22bb7aa52 571 ptr1 = ptr1 - 8u;
emilmont 1:fdd22bb7aa52 572
emilmont 1:fdd22bb7aa52 573
emilmont 1:fdd22bb7aa52 574 /* xa' = xa + xb + xc + xd */
emilmont 1:fdd22bb7aa52 575 /* ya' = ya + yb + yc + yd */
emilmont 1:fdd22bb7aa52 576 *__SIMD32(ptr1)++ = __SHADD16(R, T);
emilmont 1:fdd22bb7aa52 577
emilmont 1:fdd22bb7aa52 578 /* T = packed((yb + yd), (xb + xd)) */
emilmont 1:fdd22bb7aa52 579 T = __QADD16(xbyb, xdyd);
emilmont 1:fdd22bb7aa52 580
emilmont 1:fdd22bb7aa52 581 /* xc' = (xa-xb+xc-xd) */
emilmont 1:fdd22bb7aa52 582 /* yc' = (ya-yb+yc-yd) */
emilmont 1:fdd22bb7aa52 583 *__SIMD32(ptr1)++ = __SHSUB16(R, T);
emilmont 1:fdd22bb7aa52 584
emilmont 1:fdd22bb7aa52 585 /* S = packed((ya - yc), (xa - xc)) */
emilmont 1:fdd22bb7aa52 586 S = __QSUB16(xaya, xcyc);
emilmont 1:fdd22bb7aa52 587
emilmont 1:fdd22bb7aa52 588 /* Read yd (real), xd(imag) input */
emilmont 1:fdd22bb7aa52 589 /* T = packed( (yb - yd), (xb - xd)) */
emilmont 1:fdd22bb7aa52 590 U = __QSUB16(xbyb, xdyd);
emilmont 1:fdd22bb7aa52 591
emilmont 1:fdd22bb7aa52 592 #ifndef ARM_MATH_BIG_ENDIAN
emilmont 1:fdd22bb7aa52 593
emilmont 1:fdd22bb7aa52 594 /* xb' = (xa+yb-xc-yd) */
emilmont 1:fdd22bb7aa52 595 /* yb' = (ya-xb-yc+xd) */
emilmont 1:fdd22bb7aa52 596 *__SIMD32(ptr1)++ = __SHSAX(S, U);
emilmont 1:fdd22bb7aa52 597
emilmont 1:fdd22bb7aa52 598
emilmont 1:fdd22bb7aa52 599 /* xd' = (xa-yb-xc+yd) */
emilmont 1:fdd22bb7aa52 600 /* yd' = (ya+xb-yc-xd) */
emilmont 1:fdd22bb7aa52 601 *__SIMD32(ptr1)++ = __SHASX(S, U);
emilmont 1:fdd22bb7aa52 602
emilmont 1:fdd22bb7aa52 603 #else
emilmont 1:fdd22bb7aa52 604
emilmont 1:fdd22bb7aa52 605 /* xb' = (xa+yb-xc-yd) */
emilmont 1:fdd22bb7aa52 606 /* yb' = (ya-xb-yc+xd) */
emilmont 1:fdd22bb7aa52 607 *__SIMD32(ptr1)++ = __SHASX(S, U);
emilmont 1:fdd22bb7aa52 608
emilmont 1:fdd22bb7aa52 609
emilmont 1:fdd22bb7aa52 610 /* xd' = (xa-yb-xc+yd) */
emilmont 1:fdd22bb7aa52 611 /* yd' = (ya+xb-yc-xd) */
emilmont 1:fdd22bb7aa52 612 *__SIMD32(ptr1)++ = __SHSAX(S, U);
emilmont 1:fdd22bb7aa52 613
emilmont 1:fdd22bb7aa52 614 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
emilmont 1:fdd22bb7aa52 615
emilmont 1:fdd22bb7aa52 616 } while(--j);
emilmont 1:fdd22bb7aa52 617
emilmont 1:fdd22bb7aa52 618 /* end of last stage process */
emilmont 1:fdd22bb7aa52 619
emilmont 1:fdd22bb7aa52 620 /* output is in 11.5(q5) format for the 1024 point */
emilmont 1:fdd22bb7aa52 621 /* output is in 9.7(q7) format for the 256 point */
emilmont 1:fdd22bb7aa52 622 /* output is in 7.9(q9) format for the 64 point */
emilmont 1:fdd22bb7aa52 623 /* output is in 5.11(q11) format for the 16 point */
emilmont 1:fdd22bb7aa52 624
emilmont 1:fdd22bb7aa52 625
emilmont 1:fdd22bb7aa52 626 #else
emilmont 1:fdd22bb7aa52 627
emilmont 1:fdd22bb7aa52 628 /* Run the below code for Cortex-M0 */
emilmont 1:fdd22bb7aa52 629
emilmont 1:fdd22bb7aa52 630 q15_t R0, R1, S0, S1, T0, T1, U0, U1;
emilmont 1:fdd22bb7aa52 631 q15_t Co1, Si1, Co2, Si2, Co3, Si3, out1, out2;
emilmont 1:fdd22bb7aa52 632 uint32_t n1, n2, ic, i0, i1, i2, i3, j, k;
emilmont 1:fdd22bb7aa52 633
emilmont 1:fdd22bb7aa52 634 /* Total process is divided into three stages */
emilmont 1:fdd22bb7aa52 635
emilmont 1:fdd22bb7aa52 636 /* process first stage, middle stages, & last stage */
emilmont 1:fdd22bb7aa52 637
emilmont 1:fdd22bb7aa52 638 /* Initializations for the first stage */
emilmont 1:fdd22bb7aa52 639 n2 = fftLen;
emilmont 1:fdd22bb7aa52 640 n1 = n2;
emilmont 1:fdd22bb7aa52 641
emilmont 1:fdd22bb7aa52 642 /* n2 = fftLen/4 */
emilmont 1:fdd22bb7aa52 643 n2 >>= 2u;
emilmont 1:fdd22bb7aa52 644
emilmont 1:fdd22bb7aa52 645 /* Index for twiddle coefficient */
emilmont 1:fdd22bb7aa52 646 ic = 0u;
emilmont 1:fdd22bb7aa52 647
emilmont 1:fdd22bb7aa52 648 /* Index for input read and output write */
emilmont 1:fdd22bb7aa52 649 i0 = 0u;
emilmont 1:fdd22bb7aa52 650 j = n2;
emilmont 1:fdd22bb7aa52 651
emilmont 1:fdd22bb7aa52 652 /* Input is in 1.15(q15) format */
emilmont 1:fdd22bb7aa52 653
emilmont 1:fdd22bb7aa52 654 /* start of first stage process */
emilmont 1:fdd22bb7aa52 655 do
emilmont 1:fdd22bb7aa52 656 {
emilmont 1:fdd22bb7aa52 657 /* Butterfly implementation */
emilmont 1:fdd22bb7aa52 658
emilmont 1:fdd22bb7aa52 659 /* index calculation for the input as, */
emilmont 1:fdd22bb7aa52 660 /* pSrc16[i0 + 0], pSrc16[i0 + fftLen/4], pSrc16[i0 + fftLen/2], pSrc16[i0 + 3fftLen/4] */
emilmont 1:fdd22bb7aa52 661 i1 = i0 + n2;
emilmont 1:fdd22bb7aa52 662 i2 = i1 + n2;
emilmont 1:fdd22bb7aa52 663 i3 = i2 + n2;
emilmont 1:fdd22bb7aa52 664
emilmont 1:fdd22bb7aa52 665 /* Reading i0, i0+fftLen/2 inputs */
emilmont 1:fdd22bb7aa52 666
emilmont 1:fdd22bb7aa52 667 /* input is down scale by 4 to avoid overflow */
emilmont 1:fdd22bb7aa52 668 /* Read ya (real), xa(imag) input */
emilmont 1:fdd22bb7aa52 669 T0 = pSrc16[i0 * 2u] >> 2u;
emilmont 1:fdd22bb7aa52 670 T1 = pSrc16[(i0 * 2u) + 1u] >> 2u;
emilmont 1:fdd22bb7aa52 671
emilmont 1:fdd22bb7aa52 672 /* input is down scale by 4 to avoid overflow */
emilmont 1:fdd22bb7aa52 673 /* Read yc (real), xc(imag) input */
emilmont 1:fdd22bb7aa52 674 S0 = pSrc16[i2 * 2u] >> 2u;
emilmont 1:fdd22bb7aa52 675 S1 = pSrc16[(i2 * 2u) + 1u] >> 2u;
emilmont 1:fdd22bb7aa52 676
emilmont 1:fdd22bb7aa52 677 /* R0 = (ya + yc) */
emilmont 1:fdd22bb7aa52 678 R0 = __SSAT(T0 + S0, 16u);
emilmont 1:fdd22bb7aa52 679 /* R1 = (xa + xc) */
emilmont 1:fdd22bb7aa52 680 R1 = __SSAT(T1 + S1, 16u);
emilmont 1:fdd22bb7aa52 681
emilmont 1:fdd22bb7aa52 682 /* S0 = (ya - yc) */
emilmont 1:fdd22bb7aa52 683 S0 = __SSAT(T0 - S0, 16);
emilmont 1:fdd22bb7aa52 684 /* S1 = (xa - xc) */
emilmont 1:fdd22bb7aa52 685 S1 = __SSAT(T1 - S1, 16);
emilmont 1:fdd22bb7aa52 686
emilmont 1:fdd22bb7aa52 687 /* Reading i0+fftLen/4 , i0+3fftLen/4 inputs */
emilmont 1:fdd22bb7aa52 688 /* input is down scale by 4 to avoid overflow */
emilmont 1:fdd22bb7aa52 689 /* Read yb (real), xb(imag) input */
emilmont 1:fdd22bb7aa52 690 T0 = pSrc16[i1 * 2u] >> 2u;
emilmont 1:fdd22bb7aa52 691 T1 = pSrc16[(i1 * 2u) + 1u] >> 2u;
emilmont 1:fdd22bb7aa52 692
emilmont 1:fdd22bb7aa52 693 /* input is down scale by 4 to avoid overflow */
emilmont 1:fdd22bb7aa52 694 /* Read yd (real), xd(imag) input */
emilmont 1:fdd22bb7aa52 695 U0 = pSrc16[i3 * 2u] >> 2u;
emilmont 1:fdd22bb7aa52 696 U1 = pSrc16[(i3 * 2u) + 1] >> 2u;
emilmont 1:fdd22bb7aa52 697
emilmont 1:fdd22bb7aa52 698 /* T0 = (yb + yd) */
emilmont 1:fdd22bb7aa52 699 T0 = __SSAT(T0 + U0, 16u);
emilmont 1:fdd22bb7aa52 700 /* T1 = (xb + xd) */
emilmont 1:fdd22bb7aa52 701 T1 = __SSAT(T1 + U1, 16u);
emilmont 1:fdd22bb7aa52 702
emilmont 1:fdd22bb7aa52 703 /* writing the butterfly processed i0 sample */
emilmont 1:fdd22bb7aa52 704 /* ya' = ya + yb + yc + yd */
emilmont 1:fdd22bb7aa52 705 /* xa' = xa + xb + xc + xd */
emilmont 1:fdd22bb7aa52 706 pSrc16[i0 * 2u] = (R0 >> 1u) + (T0 >> 1u);
emilmont 1:fdd22bb7aa52 707 pSrc16[(i0 * 2u) + 1u] = (R1 >> 1u) + (T1 >> 1u);
emilmont 1:fdd22bb7aa52 708
emilmont 1:fdd22bb7aa52 709 /* R0 = (ya + yc) - (yb + yd) */
emilmont 1:fdd22bb7aa52 710 /* R1 = (xa + xc) - (xb + xd) */
emilmont 1:fdd22bb7aa52 711 R0 = __SSAT(R0 - T0, 16u);
emilmont 1:fdd22bb7aa52 712 R1 = __SSAT(R1 - T1, 16u);
emilmont 1:fdd22bb7aa52 713
emilmont 1:fdd22bb7aa52 714 /* co2 & si2 are read from Coefficient pointer */
emilmont 1:fdd22bb7aa52 715 Co2 = pCoef16[2u * ic * 2u];
emilmont 1:fdd22bb7aa52 716 Si2 = pCoef16[(2u * ic * 2u) + 1];
emilmont 1:fdd22bb7aa52 717
emilmont 1:fdd22bb7aa52 718 /* xc' = (xa-xb+xc-xd)* co2 + (ya-yb+yc-yd)* (si2) */
mbed_official 5:3762170b6d4d 719 out1 = (q15_t) ((Co2 * R0 + Si2 * R1) >> 16u);
emilmont 1:fdd22bb7aa52 720 /* yc' = (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */
mbed_official 5:3762170b6d4d 721 out2 = (q15_t) ((-Si2 * R0 + Co2 * R1) >> 16u);
emilmont 1:fdd22bb7aa52 722
emilmont 1:fdd22bb7aa52 723 /* Reading i0+fftLen/4 */
emilmont 1:fdd22bb7aa52 724 /* input is down scale by 4 to avoid overflow */
emilmont 1:fdd22bb7aa52 725 /* T0 = yb, T1 = xb */
emilmont 1:fdd22bb7aa52 726 T0 = pSrc16[i1 * 2u] >> 2;
emilmont 1:fdd22bb7aa52 727 T1 = pSrc16[(i1 * 2u) + 1] >> 2;
emilmont 1:fdd22bb7aa52 728
emilmont 1:fdd22bb7aa52 729 /* writing the butterfly processed i0 + fftLen/4 sample */
emilmont 1:fdd22bb7aa52 730 /* writing output(xc', yc') in little endian format */
emilmont 1:fdd22bb7aa52 731 pSrc16[i1 * 2u] = out1;
emilmont 1:fdd22bb7aa52 732 pSrc16[(i1 * 2u) + 1] = out2;
emilmont 1:fdd22bb7aa52 733
emilmont 1:fdd22bb7aa52 734 /* Butterfly calculations */
emilmont 1:fdd22bb7aa52 735 /* input is down scale by 4 to avoid overflow */
emilmont 1:fdd22bb7aa52 736 /* U0 = yd, U1 = xd */
emilmont 1:fdd22bb7aa52 737 U0 = pSrc16[i3 * 2u] >> 2;
emilmont 1:fdd22bb7aa52 738 U1 = pSrc16[(i3 * 2u) + 1] >> 2;
emilmont 1:fdd22bb7aa52 739 /* T0 = yb-yd */
emilmont 1:fdd22bb7aa52 740 T0 = __SSAT(T0 - U0, 16);
emilmont 1:fdd22bb7aa52 741 /* T1 = xb-xd */
emilmont 1:fdd22bb7aa52 742 T1 = __SSAT(T1 - U1, 16);
emilmont 1:fdd22bb7aa52 743
emilmont 1:fdd22bb7aa52 744 /* R1 = (ya-yc) + (xb- xd), R0 = (xa-xc) - (yb-yd)) */
mbed_official 5:3762170b6d4d 745 R0 = (q15_t) __SSAT((q31_t) (S0 - T1), 16);
mbed_official 5:3762170b6d4d 746 R1 = (q15_t) __SSAT((q31_t) (S1 + T0), 16);
emilmont 1:fdd22bb7aa52 747
emilmont 1:fdd22bb7aa52 748 /* S1 = (ya-yc) - (xb- xd), S0 = (xa-xc) + (yb-yd)) */
mbed_official 5:3762170b6d4d 749 S0 = (q15_t) __SSAT(((q31_t) S0 + T1), 16u);
mbed_official 5:3762170b6d4d 750 S1 = (q15_t) __SSAT(((q31_t) S1 - T0), 16u);
emilmont 1:fdd22bb7aa52 751
emilmont 1:fdd22bb7aa52 752 /* co1 & si1 are read from Coefficient pointer */
emilmont 1:fdd22bb7aa52 753 Co1 = pCoef16[ic * 2u];
emilmont 1:fdd22bb7aa52 754 Si1 = pCoef16[(ic * 2u) + 1];
emilmont 1:fdd22bb7aa52 755 /* Butterfly process for the i0+fftLen/2 sample */
emilmont 1:fdd22bb7aa52 756 /* xb' = (xa+yb-xc-yd)* co1 + (ya-xb-yc+xd)* (si1) */
mbed_official 5:3762170b6d4d 757 out1 = (q15_t) ((Si1 * S1 + Co1 * S0) >> 16);
emilmont 1:fdd22bb7aa52 758 /* yb' = (ya-xb-yc+xd)* co1 - (xa+yb-xc-yd)* (si1) */
mbed_official 5:3762170b6d4d 759 out2 = (q15_t) ((-Si1 * S0 + Co1 * S1) >> 16);
emilmont 1:fdd22bb7aa52 760
emilmont 1:fdd22bb7aa52 761 /* writing output(xb', yb') in little endian format */
emilmont 1:fdd22bb7aa52 762 pSrc16[i2 * 2u] = out1;
emilmont 1:fdd22bb7aa52 763 pSrc16[(i2 * 2u) + 1] = out2;
emilmont 1:fdd22bb7aa52 764
emilmont 1:fdd22bb7aa52 765 /* Co3 & si3 are read from Coefficient pointer */
emilmont 1:fdd22bb7aa52 766 Co3 = pCoef16[3u * (ic * 2u)];
emilmont 1:fdd22bb7aa52 767 Si3 = pCoef16[(3u * (ic * 2u)) + 1];
emilmont 1:fdd22bb7aa52 768 /* Butterfly process for the i0+3fftLen/4 sample */
emilmont 1:fdd22bb7aa52 769 /* xd' = (xa-yb-xc+yd)* Co3 + (ya+xb-yc-xd)* (si3) */
mbed_official 5:3762170b6d4d 770 out1 = (q15_t) ((Si3 * R1 + Co3 * R0) >> 16u);
emilmont 1:fdd22bb7aa52 771 /* yd' = (ya+xb-yc-xd)* Co3 - (xa-yb-xc+yd)* (si3) */
mbed_official 5:3762170b6d4d 772 out2 = (q15_t) ((-Si3 * R0 + Co3 * R1) >> 16u);
emilmont 1:fdd22bb7aa52 773 /* writing output(xd', yd') in little endian format */
emilmont 1:fdd22bb7aa52 774 pSrc16[i3 * 2u] = out1;
emilmont 1:fdd22bb7aa52 775 pSrc16[(i3 * 2u) + 1] = out2;
emilmont 1:fdd22bb7aa52 776
emilmont 1:fdd22bb7aa52 777 /* Twiddle coefficients index modifier */
emilmont 1:fdd22bb7aa52 778 ic = ic + twidCoefModifier;
emilmont 1:fdd22bb7aa52 779
emilmont 1:fdd22bb7aa52 780 /* Updating input index */
emilmont 1:fdd22bb7aa52 781 i0 = i0 + 1u;
emilmont 1:fdd22bb7aa52 782
emilmont 1:fdd22bb7aa52 783 } while(--j);
emilmont 1:fdd22bb7aa52 784 /* data is in 4.11(q11) format */
emilmont 1:fdd22bb7aa52 785
emilmont 1:fdd22bb7aa52 786 /* end of first stage process */
emilmont 1:fdd22bb7aa52 787
emilmont 1:fdd22bb7aa52 788
emilmont 1:fdd22bb7aa52 789 /* start of middle stage process */
emilmont 1:fdd22bb7aa52 790
emilmont 1:fdd22bb7aa52 791 /* Twiddle coefficients index modifier */
emilmont 1:fdd22bb7aa52 792 twidCoefModifier <<= 2u;
emilmont 1:fdd22bb7aa52 793
emilmont 1:fdd22bb7aa52 794 /* Calculation of Middle stage */
emilmont 1:fdd22bb7aa52 795 for (k = fftLen / 4u; k > 4u; k >>= 2u)
emilmont 1:fdd22bb7aa52 796 {
emilmont 1:fdd22bb7aa52 797 /* Initializations for the middle stage */
emilmont 1:fdd22bb7aa52 798 n1 = n2;
emilmont 1:fdd22bb7aa52 799 n2 >>= 2u;
emilmont 1:fdd22bb7aa52 800 ic = 0u;
emilmont 1:fdd22bb7aa52 801
emilmont 1:fdd22bb7aa52 802 for (j = 0u; j <= (n2 - 1u); j++)
emilmont 1:fdd22bb7aa52 803 {
emilmont 1:fdd22bb7aa52 804 /* index calculation for the coefficients */
emilmont 1:fdd22bb7aa52 805 Co1 = pCoef16[ic * 2u];
emilmont 1:fdd22bb7aa52 806 Si1 = pCoef16[(ic * 2u) + 1u];
emilmont 1:fdd22bb7aa52 807 Co2 = pCoef16[2u * (ic * 2u)];
emilmont 1:fdd22bb7aa52 808 Si2 = pCoef16[(2u * (ic * 2u)) + 1u];
emilmont 1:fdd22bb7aa52 809 Co3 = pCoef16[3u * (ic * 2u)];
emilmont 1:fdd22bb7aa52 810 Si3 = pCoef16[(3u * (ic * 2u)) + 1u];
emilmont 1:fdd22bb7aa52 811
emilmont 1:fdd22bb7aa52 812 /* Twiddle coefficients index modifier */
emilmont 1:fdd22bb7aa52 813 ic = ic + twidCoefModifier;
emilmont 1:fdd22bb7aa52 814
emilmont 1:fdd22bb7aa52 815 /* Butterfly implementation */
emilmont 1:fdd22bb7aa52 816 for (i0 = j; i0 < fftLen; i0 += n1)
emilmont 1:fdd22bb7aa52 817 {
emilmont 1:fdd22bb7aa52 818 /* index calculation for the input as, */
emilmont 1:fdd22bb7aa52 819 /* pSrc16[i0 + 0], pSrc16[i0 + fftLen/4], pSrc16[i0 + fftLen/2], pSrc16[i0 + 3fftLen/4] */
emilmont 1:fdd22bb7aa52 820 i1 = i0 + n2;
emilmont 1:fdd22bb7aa52 821 i2 = i1 + n2;
emilmont 1:fdd22bb7aa52 822 i3 = i2 + n2;
emilmont 1:fdd22bb7aa52 823
emilmont 1:fdd22bb7aa52 824 /* Reading i0, i0+fftLen/2 inputs */
emilmont 1:fdd22bb7aa52 825 /* Read ya (real), xa(imag) input */
emilmont 1:fdd22bb7aa52 826 T0 = pSrc16[i0 * 2u];
emilmont 1:fdd22bb7aa52 827 T1 = pSrc16[(i0 * 2u) + 1u];
emilmont 1:fdd22bb7aa52 828
emilmont 1:fdd22bb7aa52 829 /* Read yc (real), xc(imag) input */
emilmont 1:fdd22bb7aa52 830 S0 = pSrc16[i2 * 2u];
emilmont 1:fdd22bb7aa52 831 S1 = pSrc16[(i2 * 2u) + 1u];
emilmont 1:fdd22bb7aa52 832
emilmont 1:fdd22bb7aa52 833 /* R0 = (ya + yc), R1 = (xa + xc) */
emilmont 1:fdd22bb7aa52 834 R0 = __SSAT(T0 + S0, 16);
emilmont 1:fdd22bb7aa52 835 R1 = __SSAT(T1 + S1, 16);
emilmont 1:fdd22bb7aa52 836
emilmont 1:fdd22bb7aa52 837 /* S0 = (ya - yc), S1 =(xa - xc) */
emilmont 1:fdd22bb7aa52 838 S0 = __SSAT(T0 - S0, 16);
emilmont 1:fdd22bb7aa52 839 S1 = __SSAT(T1 - S1, 16);
emilmont 1:fdd22bb7aa52 840
emilmont 1:fdd22bb7aa52 841 /* Reading i0+fftLen/4 , i0+3fftLen/4 inputs */
emilmont 1:fdd22bb7aa52 842 /* Read yb (real), xb(imag) input */
emilmont 1:fdd22bb7aa52 843 T0 = pSrc16[i1 * 2u];
emilmont 1:fdd22bb7aa52 844 T1 = pSrc16[(i1 * 2u) + 1u];
emilmont 1:fdd22bb7aa52 845
emilmont 1:fdd22bb7aa52 846 /* Read yd (real), xd(imag) input */
emilmont 1:fdd22bb7aa52 847 U0 = pSrc16[i3 * 2u];
emilmont 1:fdd22bb7aa52 848 U1 = pSrc16[(i3 * 2u) + 1u];
emilmont 1:fdd22bb7aa52 849
emilmont 1:fdd22bb7aa52 850
emilmont 1:fdd22bb7aa52 851 /* T0 = (yb + yd), T1 = (xb + xd) */
emilmont 1:fdd22bb7aa52 852 T0 = __SSAT(T0 + U0, 16);
emilmont 1:fdd22bb7aa52 853 T1 = __SSAT(T1 + U1, 16);
emilmont 1:fdd22bb7aa52 854
emilmont 1:fdd22bb7aa52 855 /* writing the butterfly processed i0 sample */
emilmont 1:fdd22bb7aa52 856
emilmont 1:fdd22bb7aa52 857 /* xa' = xa + xb + xc + xd */
emilmont 1:fdd22bb7aa52 858 /* ya' = ya + yb + yc + yd */
emilmont 1:fdd22bb7aa52 859 out1 = ((R0 >> 1u) + (T0 >> 1u)) >> 1u;
emilmont 1:fdd22bb7aa52 860 out2 = ((R1 >> 1u) + (T1 >> 1u)) >> 1u;
emilmont 1:fdd22bb7aa52 861
emilmont 1:fdd22bb7aa52 862 pSrc16[i0 * 2u] = out1;
emilmont 1:fdd22bb7aa52 863 pSrc16[(2u * i0) + 1u] = out2;
emilmont 1:fdd22bb7aa52 864
emilmont 1:fdd22bb7aa52 865 /* R0 = (ya + yc) - (yb + yd), R1 = (xa + xc) - (xb + xd) */
emilmont 1:fdd22bb7aa52 866 R0 = (R0 >> 1u) - (T0 >> 1u);
emilmont 1:fdd22bb7aa52 867 R1 = (R1 >> 1u) - (T1 >> 1u);
emilmont 1:fdd22bb7aa52 868
emilmont 1:fdd22bb7aa52 869 /* (ya-yb+yc-yd)* (si2) + (xa-xb+xc-xd)* co2 */
mbed_official 5:3762170b6d4d 870 out1 = (q15_t) ((Co2 * R0 + Si2 * R1) >> 16u);
emilmont 1:fdd22bb7aa52 871
emilmont 1:fdd22bb7aa52 872 /* (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */
mbed_official 5:3762170b6d4d 873 out2 = (q15_t) ((-Si2 * R0 + Co2 * R1) >> 16u);
emilmont 1:fdd22bb7aa52 874
emilmont 1:fdd22bb7aa52 875 /* Reading i0+3fftLen/4 */
emilmont 1:fdd22bb7aa52 876 /* Read yb (real), xb(imag) input */
emilmont 1:fdd22bb7aa52 877 T0 = pSrc16[i1 * 2u];
emilmont 1:fdd22bb7aa52 878 T1 = pSrc16[(i1 * 2u) + 1u];
emilmont 1:fdd22bb7aa52 879
emilmont 1:fdd22bb7aa52 880 /* writing the butterfly processed i0 + fftLen/4 sample */
emilmont 1:fdd22bb7aa52 881 /* xc' = (xa-xb+xc-xd)* co2 + (ya-yb+yc-yd)* (si2) */
emilmont 1:fdd22bb7aa52 882 /* yc' = (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */
emilmont 1:fdd22bb7aa52 883 pSrc16[i1 * 2u] = out1;
emilmont 1:fdd22bb7aa52 884 pSrc16[(i1 * 2u) + 1u] = out2;
emilmont 1:fdd22bb7aa52 885
emilmont 1:fdd22bb7aa52 886 /* Butterfly calculations */
emilmont 1:fdd22bb7aa52 887
emilmont 1:fdd22bb7aa52 888 /* Read yd (real), xd(imag) input */
emilmont 1:fdd22bb7aa52 889 U0 = pSrc16[i3 * 2u];
emilmont 1:fdd22bb7aa52 890 U1 = pSrc16[(i3 * 2u) + 1u];
emilmont 1:fdd22bb7aa52 891
emilmont 1:fdd22bb7aa52 892 /* T0 = yb-yd, T1 = xb-xd */
emilmont 1:fdd22bb7aa52 893 T0 = __SSAT(T0 - U0, 16);
emilmont 1:fdd22bb7aa52 894 T1 = __SSAT(T1 - U1, 16);
emilmont 1:fdd22bb7aa52 895
emilmont 1:fdd22bb7aa52 896 /* R0 = (ya-yc) + (xb- xd), R1 = (xa-xc) - (yb-yd)) */
emilmont 1:fdd22bb7aa52 897 R0 = (S0 >> 1u) - (T1 >> 1u);
emilmont 1:fdd22bb7aa52 898 R1 = (S1 >> 1u) + (T0 >> 1u);
emilmont 1:fdd22bb7aa52 899
emilmont 1:fdd22bb7aa52 900 /* S0 = (ya-yc) - (xb- xd), S1 = (xa-xc) + (yb-yd)) */
emilmont 1:fdd22bb7aa52 901 S0 = (S0 >> 1u) + (T1 >> 1u);
emilmont 1:fdd22bb7aa52 902 S1 = (S1 >> 1u) - (T0 >> 1u);
emilmont 1:fdd22bb7aa52 903
emilmont 1:fdd22bb7aa52 904 /* Butterfly process for the i0+fftLen/2 sample */
mbed_official 5:3762170b6d4d 905 out1 = (q15_t) ((Co1 * S0 + Si1 * S1) >> 16u);
emilmont 1:fdd22bb7aa52 906
mbed_official 5:3762170b6d4d 907 out2 = (q15_t) ((-Si1 * S0 + Co1 * S1) >> 16u);
emilmont 1:fdd22bb7aa52 908
emilmont 1:fdd22bb7aa52 909 /* xb' = (xa+yb-xc-yd)* co1 + (ya-xb-yc+xd)* (si1) */
emilmont 1:fdd22bb7aa52 910 /* yb' = (ya-xb-yc+xd)* co1 - (xa+yb-xc-yd)* (si1) */
emilmont 1:fdd22bb7aa52 911 pSrc16[i2 * 2u] = out1;
emilmont 1:fdd22bb7aa52 912 pSrc16[(i2 * 2u) + 1u] = out2;
emilmont 1:fdd22bb7aa52 913
emilmont 1:fdd22bb7aa52 914 /* Butterfly process for the i0+3fftLen/4 sample */
mbed_official 5:3762170b6d4d 915 out1 = (q15_t) ((Si3 * R1 + Co3 * R0) >> 16u);
emilmont 1:fdd22bb7aa52 916
mbed_official 5:3762170b6d4d 917 out2 = (q15_t) ((-Si3 * R0 + Co3 * R1) >> 16u);
emilmont 1:fdd22bb7aa52 918 /* xd' = (xa-yb-xc+yd)* Co3 + (ya+xb-yc-xd)* (si3) */
emilmont 1:fdd22bb7aa52 919 /* yd' = (ya+xb-yc-xd)* Co3 - (xa-yb-xc+yd)* (si3) */
emilmont 1:fdd22bb7aa52 920 pSrc16[i3 * 2u] = out1;
emilmont 1:fdd22bb7aa52 921 pSrc16[(i3 * 2u) + 1u] = out2;
emilmont 1:fdd22bb7aa52 922 }
emilmont 1:fdd22bb7aa52 923 }
emilmont 1:fdd22bb7aa52 924 /* Twiddle coefficients index modifier */
emilmont 1:fdd22bb7aa52 925 twidCoefModifier <<= 2u;
emilmont 1:fdd22bb7aa52 926 }
emilmont 1:fdd22bb7aa52 927 /* end of middle stage process */
emilmont 1:fdd22bb7aa52 928
emilmont 1:fdd22bb7aa52 929
emilmont 1:fdd22bb7aa52 930 /* data is in 10.6(q6) format for the 1024 point */
emilmont 1:fdd22bb7aa52 931 /* data is in 8.8(q8) format for the 256 point */
emilmont 1:fdd22bb7aa52 932 /* data is in 6.10(q10) format for the 64 point */
emilmont 1:fdd22bb7aa52 933 /* data is in 4.12(q12) format for the 16 point */
emilmont 1:fdd22bb7aa52 934
emilmont 1:fdd22bb7aa52 935 /* Initializations for the last stage */
emilmont 1:fdd22bb7aa52 936 n1 = n2;
emilmont 1:fdd22bb7aa52 937 n2 >>= 2u;
emilmont 1:fdd22bb7aa52 938
emilmont 1:fdd22bb7aa52 939 /* start of last stage process */
emilmont 1:fdd22bb7aa52 940
emilmont 1:fdd22bb7aa52 941 /* Butterfly implementation */
emilmont 1:fdd22bb7aa52 942 for (i0 = 0u; i0 <= (fftLen - n1); i0 += n1)
emilmont 1:fdd22bb7aa52 943 {
emilmont 1:fdd22bb7aa52 944 /* index calculation for the input as, */
emilmont 1:fdd22bb7aa52 945 /* pSrc16[i0 + 0], pSrc16[i0 + fftLen/4], pSrc16[i0 + fftLen/2], pSrc16[i0 + 3fftLen/4] */
emilmont 1:fdd22bb7aa52 946 i1 = i0 + n2;
emilmont 1:fdd22bb7aa52 947 i2 = i1 + n2;
emilmont 1:fdd22bb7aa52 948 i3 = i2 + n2;
emilmont 1:fdd22bb7aa52 949
emilmont 1:fdd22bb7aa52 950 /* Reading i0, i0+fftLen/2 inputs */
emilmont 1:fdd22bb7aa52 951 /* Read ya (real), xa(imag) input */
emilmont 1:fdd22bb7aa52 952 T0 = pSrc16[i0 * 2u];
emilmont 1:fdd22bb7aa52 953 T1 = pSrc16[(i0 * 2u) + 1u];
emilmont 1:fdd22bb7aa52 954
emilmont 1:fdd22bb7aa52 955 /* Read yc (real), xc(imag) input */
emilmont 1:fdd22bb7aa52 956 S0 = pSrc16[i2 * 2u];
emilmont 1:fdd22bb7aa52 957 S1 = pSrc16[(i2 * 2u) + 1u];
emilmont 1:fdd22bb7aa52 958
emilmont 1:fdd22bb7aa52 959 /* R0 = (ya + yc), R1 = (xa + xc) */
emilmont 1:fdd22bb7aa52 960 R0 = __SSAT(T0 + S0, 16u);
emilmont 1:fdd22bb7aa52 961 R1 = __SSAT(T1 + S1, 16u);
emilmont 1:fdd22bb7aa52 962
emilmont 1:fdd22bb7aa52 963 /* S0 = (ya - yc), S1 = (xa - xc) */
emilmont 1:fdd22bb7aa52 964 S0 = __SSAT(T0 - S0, 16u);
emilmont 1:fdd22bb7aa52 965 S1 = __SSAT(T1 - S1, 16u);
emilmont 1:fdd22bb7aa52 966
emilmont 1:fdd22bb7aa52 967 /* Reading i0+fftLen/4 , i0+3fftLen/4 inputs */
emilmont 1:fdd22bb7aa52 968 /* Read yb (real), xb(imag) input */
emilmont 1:fdd22bb7aa52 969 T0 = pSrc16[i1 * 2u];
emilmont 1:fdd22bb7aa52 970 T1 = pSrc16[(i1 * 2u) + 1u];
emilmont 1:fdd22bb7aa52 971 /* Read yd (real), xd(imag) input */
emilmont 1:fdd22bb7aa52 972 U0 = pSrc16[i3 * 2u];
emilmont 1:fdd22bb7aa52 973 U1 = pSrc16[(i3 * 2u) + 1u];
emilmont 1:fdd22bb7aa52 974
emilmont 1:fdd22bb7aa52 975 /* T0 = (yb + yd), T1 = (xb + xd)) */
emilmont 1:fdd22bb7aa52 976 T0 = __SSAT(T0 + U0, 16u);
emilmont 1:fdd22bb7aa52 977 T1 = __SSAT(T1 + U1, 16u);
emilmont 1:fdd22bb7aa52 978
emilmont 1:fdd22bb7aa52 979 /* writing the butterfly processed i0 sample */
emilmont 1:fdd22bb7aa52 980 /* xa' = xa + xb + xc + xd */
emilmont 1:fdd22bb7aa52 981 /* ya' = ya + yb + yc + yd */
emilmont 1:fdd22bb7aa52 982 pSrc16[i0 * 2u] = (R0 >> 1u) + (T0 >> 1u);
emilmont 1:fdd22bb7aa52 983 pSrc16[(i0 * 2u) + 1u] = (R1 >> 1u) + (T1 >> 1u);
emilmont 1:fdd22bb7aa52 984
emilmont 1:fdd22bb7aa52 985 /* R0 = (ya + yc) - (yb + yd), R1 = (xa + xc) - (xb + xd) */
emilmont 1:fdd22bb7aa52 986 R0 = (R0 >> 1u) - (T0 >> 1u);
emilmont 1:fdd22bb7aa52 987 R1 = (R1 >> 1u) - (T1 >> 1u);
emilmont 1:fdd22bb7aa52 988 /* Read yb (real), xb(imag) input */
emilmont 1:fdd22bb7aa52 989 T0 = pSrc16[i1 * 2u];
emilmont 1:fdd22bb7aa52 990 T1 = pSrc16[(i1 * 2u) + 1u];
emilmont 1:fdd22bb7aa52 991
emilmont 1:fdd22bb7aa52 992 /* writing the butterfly processed i0 + fftLen/4 sample */
emilmont 1:fdd22bb7aa52 993 /* xc' = (xa-xb+xc-xd) */
emilmont 1:fdd22bb7aa52 994 /* yc' = (ya-yb+yc-yd) */
emilmont 1:fdd22bb7aa52 995 pSrc16[i1 * 2u] = R0;
emilmont 1:fdd22bb7aa52 996 pSrc16[(i1 * 2u) + 1u] = R1;
emilmont 1:fdd22bb7aa52 997
emilmont 1:fdd22bb7aa52 998 /* Read yd (real), xd(imag) input */
emilmont 1:fdd22bb7aa52 999 U0 = pSrc16[i3 * 2u];
emilmont 1:fdd22bb7aa52 1000 U1 = pSrc16[(i3 * 2u) + 1u];
emilmont 1:fdd22bb7aa52 1001 /* T0 = (yb - yd), T1 = (xb - xd) */
emilmont 1:fdd22bb7aa52 1002 T0 = __SSAT(T0 - U0, 16u);
emilmont 1:fdd22bb7aa52 1003 T1 = __SSAT(T1 - U1, 16u);
emilmont 1:fdd22bb7aa52 1004
emilmont 1:fdd22bb7aa52 1005 /* writing the butterfly processed i0 + fftLen/2 sample */
emilmont 1:fdd22bb7aa52 1006 /* xb' = (xa+yb-xc-yd) */
emilmont 1:fdd22bb7aa52 1007 /* yb' = (ya-xb-yc+xd) */
emilmont 1:fdd22bb7aa52 1008 pSrc16[i2 * 2u] = (S0 >> 1u) + (T1 >> 1u);
emilmont 1:fdd22bb7aa52 1009 pSrc16[(i2 * 2u) + 1u] = (S1 >> 1u) - (T0 >> 1u);
emilmont 1:fdd22bb7aa52 1010
emilmont 1:fdd22bb7aa52 1011 /* writing the butterfly processed i0 + 3fftLen/4 sample */
emilmont 1:fdd22bb7aa52 1012 /* xd' = (xa-yb-xc+yd) */
emilmont 1:fdd22bb7aa52 1013 /* yd' = (ya+xb-yc-xd) */
emilmont 1:fdd22bb7aa52 1014 pSrc16[i3 * 2u] = (S0 >> 1u) - (T1 >> 1u);
emilmont 1:fdd22bb7aa52 1015 pSrc16[(i3 * 2u) + 1u] = (S1 >> 1u) + (T0 >> 1u);
emilmont 1:fdd22bb7aa52 1016
emilmont 1:fdd22bb7aa52 1017 }
emilmont 1:fdd22bb7aa52 1018
emilmont 1:fdd22bb7aa52 1019 /* end of last stage process */
emilmont 1:fdd22bb7aa52 1020
emilmont 1:fdd22bb7aa52 1021 /* output is in 11.5(q5) format for the 1024 point */
emilmont 1:fdd22bb7aa52 1022 /* output is in 9.7(q7) format for the 256 point */
emilmont 1:fdd22bb7aa52 1023 /* output is in 7.9(q9) format for the 64 point */
emilmont 1:fdd22bb7aa52 1024 /* output is in 5.11(q11) format for the 16 point */
emilmont 1:fdd22bb7aa52 1025
mbed_official 3:7a284390b0ce 1026 #endif /* #ifndef ARM_MATH_CM0_FAMILY */
emilmont 1:fdd22bb7aa52 1027
emilmont 1:fdd22bb7aa52 1028 }
emilmont 1:fdd22bb7aa52 1029
emilmont 1:fdd22bb7aa52 1030
emilmont 1:fdd22bb7aa52 1031 /**
emilmont 1:fdd22bb7aa52 1032 * @brief Core function for the Q15 CIFFT butterfly process.
emilmont 1:fdd22bb7aa52 1033 * @param[in, out] *pSrc16 points to the in-place buffer of Q15 data type.
emilmont 1:fdd22bb7aa52 1034 * @param[in] fftLen length of the FFT.
emilmont 1:fdd22bb7aa52 1035 * @param[in] *pCoef16 points to twiddle coefficient buffer.
emilmont 1:fdd22bb7aa52 1036 * @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
emilmont 1:fdd22bb7aa52 1037 * @return none.
emilmont 1:fdd22bb7aa52 1038 */
emilmont 1:fdd22bb7aa52 1039
emilmont 1:fdd22bb7aa52 1040 /*
emilmont 1:fdd22bb7aa52 1041 * Radix-4 IFFT algorithm used is :
emilmont 1:fdd22bb7aa52 1042 *
emilmont 1:fdd22bb7aa52 1043 * CIFFT uses same twiddle coefficients as CFFT function
emilmont 1:fdd22bb7aa52 1044 * x[k] = x[n] + (j)k * x[n + fftLen/4] + (-1)k * x[n+fftLen/2] + (-j)k * x[n+3*fftLen/4]
emilmont 1:fdd22bb7aa52 1045 *
emilmont 1:fdd22bb7aa52 1046 *
emilmont 1:fdd22bb7aa52 1047 * IFFT is implemented with following changes in equations from FFT
emilmont 1:fdd22bb7aa52 1048 *
emilmont 1:fdd22bb7aa52 1049 * Input real and imaginary data:
emilmont 1:fdd22bb7aa52 1050 * x(n) = xa + j * ya
emilmont 1:fdd22bb7aa52 1051 * x(n+N/4 ) = xb + j * yb
emilmont 1:fdd22bb7aa52 1052 * x(n+N/2 ) = xc + j * yc
emilmont 1:fdd22bb7aa52 1053 * x(n+3N 4) = xd + j * yd
emilmont 1:fdd22bb7aa52 1054 *
emilmont 1:fdd22bb7aa52 1055 *
emilmont 1:fdd22bb7aa52 1056 * Output real and imaginary data:
emilmont 1:fdd22bb7aa52 1057 * x(4r) = xa'+ j * ya'
emilmont 1:fdd22bb7aa52 1058 * x(4r+1) = xb'+ j * yb'
emilmont 1:fdd22bb7aa52 1059 * x(4r+2) = xc'+ j * yc'
emilmont 1:fdd22bb7aa52 1060 * x(4r+3) = xd'+ j * yd'
emilmont 1:fdd22bb7aa52 1061 *
emilmont 1:fdd22bb7aa52 1062 *
emilmont 1:fdd22bb7aa52 1063 * Twiddle factors for radix-4 IFFT:
emilmont 1:fdd22bb7aa52 1064 * Wn = co1 + j * (si1)
emilmont 1:fdd22bb7aa52 1065 * W2n = co2 + j * (si2)
emilmont 1:fdd22bb7aa52 1066 * W3n = co3 + j * (si3)
emilmont 1:fdd22bb7aa52 1067
emilmont 1:fdd22bb7aa52 1068 * The real and imaginary output values for the radix-4 butterfly are
emilmont 1:fdd22bb7aa52 1069 * xa' = xa + xb + xc + xd
emilmont 1:fdd22bb7aa52 1070 * ya' = ya + yb + yc + yd
emilmont 1:fdd22bb7aa52 1071 * xb' = (xa-yb-xc+yd)* co1 - (ya+xb-yc-xd)* (si1)
emilmont 1:fdd22bb7aa52 1072 * yb' = (ya+xb-yc-xd)* co1 + (xa-yb-xc+yd)* (si1)
emilmont 1:fdd22bb7aa52 1073 * xc' = (xa-xb+xc-xd)* co2 - (ya-yb+yc-yd)* (si2)
emilmont 1:fdd22bb7aa52 1074 * yc' = (ya-yb+yc-yd)* co2 + (xa-xb+xc-xd)* (si2)
emilmont 1:fdd22bb7aa52 1075 * xd' = (xa+yb-xc-yd)* co3 - (ya-xb-yc+xd)* (si3)
emilmont 1:fdd22bb7aa52 1076 * yd' = (ya-xb-yc+xd)* co3 + (xa+yb-xc-yd)* (si3)
emilmont 1:fdd22bb7aa52 1077 *
emilmont 1:fdd22bb7aa52 1078 */
emilmont 1:fdd22bb7aa52 1079
emilmont 1:fdd22bb7aa52 1080 void arm_radix4_butterfly_inverse_q15(
emilmont 1:fdd22bb7aa52 1081 q15_t * pSrc16,
emilmont 1:fdd22bb7aa52 1082 uint32_t fftLen,
emilmont 1:fdd22bb7aa52 1083 q15_t * pCoef16,
emilmont 1:fdd22bb7aa52 1084 uint32_t twidCoefModifier)
emilmont 1:fdd22bb7aa52 1085 {
emilmont 1:fdd22bb7aa52 1086
mbed_official 3:7a284390b0ce 1087 #ifndef ARM_MATH_CM0_FAMILY
emilmont 1:fdd22bb7aa52 1088
emilmont 1:fdd22bb7aa52 1089 /* Run the below code for Cortex-M4 and Cortex-M3 */
emilmont 1:fdd22bb7aa52 1090
emilmont 1:fdd22bb7aa52 1091 q31_t R, S, T, U;
emilmont 1:fdd22bb7aa52 1092 q31_t C1, C2, C3, out1, out2;
mbed_official 5:3762170b6d4d 1093 uint32_t n1, n2, ic, i0, j, k;
emilmont 1:fdd22bb7aa52 1094
emilmont 1:fdd22bb7aa52 1095 q15_t *ptr1;
mbed_official 5:3762170b6d4d 1096 q15_t *pSi0;
mbed_official 5:3762170b6d4d 1097 q15_t *pSi1;
mbed_official 5:3762170b6d4d 1098 q15_t *pSi2;
mbed_official 5:3762170b6d4d 1099 q15_t *pSi3;
emilmont 1:fdd22bb7aa52 1100
emilmont 1:fdd22bb7aa52 1101 q31_t xaya, xbyb, xcyc, xdyd;
emilmont 1:fdd22bb7aa52 1102
emilmont 1:fdd22bb7aa52 1103 /* Total process is divided into three stages */
emilmont 1:fdd22bb7aa52 1104
emilmont 1:fdd22bb7aa52 1105 /* process first stage, middle stages, & last stage */
emilmont 1:fdd22bb7aa52 1106
emilmont 1:fdd22bb7aa52 1107 /* Initializations for the first stage */
emilmont 1:fdd22bb7aa52 1108 n2 = fftLen;
emilmont 1:fdd22bb7aa52 1109 n1 = n2;
emilmont 1:fdd22bb7aa52 1110
emilmont 1:fdd22bb7aa52 1111 /* n2 = fftLen/4 */
emilmont 1:fdd22bb7aa52 1112 n2 >>= 2u;
emilmont 1:fdd22bb7aa52 1113
emilmont 1:fdd22bb7aa52 1114 /* Index for twiddle coefficient */
emilmont 1:fdd22bb7aa52 1115 ic = 0u;
emilmont 1:fdd22bb7aa52 1116
emilmont 1:fdd22bb7aa52 1117 /* Index for input read and output write */
emilmont 1:fdd22bb7aa52 1118 j = n2;
mbed_official 5:3762170b6d4d 1119
mbed_official 5:3762170b6d4d 1120 pSi0 = pSrc16;
mbed_official 5:3762170b6d4d 1121 pSi1 = pSi0 + 2 * n2;
mbed_official 5:3762170b6d4d 1122 pSi2 = pSi1 + 2 * n2;
mbed_official 5:3762170b6d4d 1123 pSi3 = pSi2 + 2 * n2;
emilmont 1:fdd22bb7aa52 1124
emilmont 1:fdd22bb7aa52 1125 /* Input is in 1.15(q15) format */
emilmont 1:fdd22bb7aa52 1126
emilmont 1:fdd22bb7aa52 1127 /* start of first stage process */
emilmont 1:fdd22bb7aa52 1128 do
emilmont 1:fdd22bb7aa52 1129 {
emilmont 1:fdd22bb7aa52 1130 /* Butterfly implementation */
emilmont 1:fdd22bb7aa52 1131
emilmont 1:fdd22bb7aa52 1132 /* Reading i0, i0+fftLen/2 inputs */
emilmont 1:fdd22bb7aa52 1133 /* Read ya (real), xa(imag) input */
mbed_official 5:3762170b6d4d 1134 T = _SIMD32_OFFSET(pSi0);
mbed_official 5:3762170b6d4d 1135 T = __SHADD16(T, 0);
mbed_official 5:3762170b6d4d 1136 T = __SHADD16(T, 0);
emilmont 1:fdd22bb7aa52 1137
emilmont 1:fdd22bb7aa52 1138 /* Read yc (real), xc(imag) input */
mbed_official 5:3762170b6d4d 1139 S = _SIMD32_OFFSET(pSi2);
mbed_official 5:3762170b6d4d 1140 S = __SHADD16(S, 0);
mbed_official 5:3762170b6d4d 1141 S = __SHADD16(S, 0);
emilmont 1:fdd22bb7aa52 1142
emilmont 1:fdd22bb7aa52 1143 /* R = packed((ya + yc), (xa + xc) ) */
emilmont 1:fdd22bb7aa52 1144 R = __QADD16(T, S);
emilmont 1:fdd22bb7aa52 1145
emilmont 1:fdd22bb7aa52 1146 /* S = packed((ya - yc), (xa - xc) ) */
emilmont 1:fdd22bb7aa52 1147 S = __QSUB16(T, S);
emilmont 1:fdd22bb7aa52 1148
emilmont 1:fdd22bb7aa52 1149 /* Reading i0+fftLen/4 , i0+3fftLen/4 inputs */
emilmont 1:fdd22bb7aa52 1150 /* Read yb (real), xb(imag) input */
mbed_official 5:3762170b6d4d 1151 T = _SIMD32_OFFSET(pSi1);
mbed_official 5:3762170b6d4d 1152 T = __SHADD16(T, 0);
mbed_official 5:3762170b6d4d 1153 T = __SHADD16(T, 0);
emilmont 1:fdd22bb7aa52 1154
emilmont 1:fdd22bb7aa52 1155 /* Read yd (real), xd(imag) input */
mbed_official 5:3762170b6d4d 1156 U = _SIMD32_OFFSET(pSi3);
mbed_official 5:3762170b6d4d 1157 U = __SHADD16(U, 0);
mbed_official 5:3762170b6d4d 1158 U = __SHADD16(U, 0);
emilmont 1:fdd22bb7aa52 1159
emilmont 1:fdd22bb7aa52 1160 /* T = packed((yb + yd), (xb + xd) ) */
emilmont 1:fdd22bb7aa52 1161 T = __QADD16(T, U);
emilmont 1:fdd22bb7aa52 1162
emilmont 1:fdd22bb7aa52 1163 /* writing the butterfly processed i0 sample */
emilmont 1:fdd22bb7aa52 1164 /* xa' = xa + xb + xc + xd */
emilmont 1:fdd22bb7aa52 1165 /* ya' = ya + yb + yc + yd */
mbed_official 5:3762170b6d4d 1166 _SIMD32_OFFSET(pSi0) = __SHADD16(R, T);
mbed_official 5:3762170b6d4d 1167 pSi0 += 2;
emilmont 1:fdd22bb7aa52 1168
emilmont 1:fdd22bb7aa52 1169 /* R = packed((ya + yc) - (yb + yd), (xa + xc)- (xb + xd)) */
emilmont 1:fdd22bb7aa52 1170 R = __QSUB16(R, T);
emilmont 1:fdd22bb7aa52 1171
emilmont 1:fdd22bb7aa52 1172 /* co2 & si2 are read from SIMD Coefficient pointer */
emilmont 1:fdd22bb7aa52 1173 C2 = _SIMD32_OFFSET(pCoef16 + (4u * ic));
emilmont 1:fdd22bb7aa52 1174
emilmont 1:fdd22bb7aa52 1175 #ifndef ARM_MATH_BIG_ENDIAN
emilmont 1:fdd22bb7aa52 1176
emilmont 1:fdd22bb7aa52 1177 /* xc' = (xa-xb+xc-xd)* co2 + (ya-yb+yc-yd)* (si2) */
emilmont 1:fdd22bb7aa52 1178 out1 = __SMUSD(C2, R) >> 16u;
emilmont 1:fdd22bb7aa52 1179 /* yc' = (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */
emilmont 1:fdd22bb7aa52 1180 out2 = __SMUADX(C2, R);
emilmont 1:fdd22bb7aa52 1181
emilmont 1:fdd22bb7aa52 1182 #else
emilmont 1:fdd22bb7aa52 1183
emilmont 1:fdd22bb7aa52 1184 /* xc' = (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */
emilmont 1:fdd22bb7aa52 1185 out1 = __SMUADX(C2, R) >> 16u;
emilmont 1:fdd22bb7aa52 1186 /* yc' = (xa-xb+xc-xd)* co2 + (ya-yb+yc-yd)* (si2) */
emilmont 1:fdd22bb7aa52 1187 out2 = __SMUSD(__QSUB16(0, C2), R);
emilmont 1:fdd22bb7aa52 1188
emilmont 1:fdd22bb7aa52 1189 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
emilmont 1:fdd22bb7aa52 1190
emilmont 1:fdd22bb7aa52 1191 /* Reading i0+fftLen/4 */
emilmont 1:fdd22bb7aa52 1192 /* T = packed(yb, xb) */
mbed_official 5:3762170b6d4d 1193 T = _SIMD32_OFFSET(pSi1);
mbed_official 5:3762170b6d4d 1194 T = __SHADD16(T, 0);
mbed_official 5:3762170b6d4d 1195 T = __SHADD16(T, 0);
emilmont 1:fdd22bb7aa52 1196
emilmont 1:fdd22bb7aa52 1197 /* writing the butterfly processed i0 + fftLen/4 sample */
emilmont 1:fdd22bb7aa52 1198 /* writing output(xc', yc') in little endian format */
mbed_official 5:3762170b6d4d 1199 _SIMD32_OFFSET(pSi1) =
emilmont 1:fdd22bb7aa52 1200 (q31_t) ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);
mbed_official 5:3762170b6d4d 1201 pSi1 += 2;
emilmont 1:fdd22bb7aa52 1202
emilmont 1:fdd22bb7aa52 1203 /* Butterfly calculations */
emilmont 1:fdd22bb7aa52 1204 /* U = packed(yd, xd) */
mbed_official 5:3762170b6d4d 1205 U = _SIMD32_OFFSET(pSi3);
mbed_official 5:3762170b6d4d 1206 U = __SHADD16(U, 0);
mbed_official 5:3762170b6d4d 1207 U = __SHADD16(U, 0);
emilmont 1:fdd22bb7aa52 1208
emilmont 1:fdd22bb7aa52 1209 /* T = packed(yb-yd, xb-xd) */
emilmont 1:fdd22bb7aa52 1210 T = __QSUB16(T, U);
emilmont 1:fdd22bb7aa52 1211
emilmont 1:fdd22bb7aa52 1212 #ifndef ARM_MATH_BIG_ENDIAN
emilmont 1:fdd22bb7aa52 1213
emilmont 1:fdd22bb7aa52 1214 /* R = packed((ya-yc) + (xb- xd) , (xa-xc) - (yb-yd)) */
emilmont 1:fdd22bb7aa52 1215 R = __QSAX(S, T);
emilmont 1:fdd22bb7aa52 1216 /* S = packed((ya-yc) + (xb- xd), (xa-xc) - (yb-yd)) */
emilmont 1:fdd22bb7aa52 1217 S = __QASX(S, T);
emilmont 1:fdd22bb7aa52 1218
emilmont 1:fdd22bb7aa52 1219 #else
emilmont 1:fdd22bb7aa52 1220
emilmont 1:fdd22bb7aa52 1221 /* R = packed((ya-yc) + (xb- xd) , (xa-xc) - (yb-yd)) */
emilmont 1:fdd22bb7aa52 1222 R = __QASX(S, T);
emilmont 1:fdd22bb7aa52 1223 /* S = packed((ya-yc) - (xb- xd), (xa-xc) + (yb-yd)) */
emilmont 1:fdd22bb7aa52 1224 S = __QSAX(S, T);
emilmont 1:fdd22bb7aa52 1225
emilmont 1:fdd22bb7aa52 1226 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
emilmont 1:fdd22bb7aa52 1227
emilmont 1:fdd22bb7aa52 1228 /* co1 & si1 are read from SIMD Coefficient pointer */
emilmont 1:fdd22bb7aa52 1229 C1 = _SIMD32_OFFSET(pCoef16 + (2u * ic));
emilmont 1:fdd22bb7aa52 1230 /* Butterfly process for the i0+fftLen/2 sample */
emilmont 1:fdd22bb7aa52 1231
emilmont 1:fdd22bb7aa52 1232 #ifndef ARM_MATH_BIG_ENDIAN
emilmont 1:fdd22bb7aa52 1233
emilmont 1:fdd22bb7aa52 1234 /* xb' = (xa+yb-xc-yd)* co1 + (ya-xb-yc+xd)* (si1) */
emilmont 1:fdd22bb7aa52 1235 out1 = __SMUSD(C1, S) >> 16u;
emilmont 1:fdd22bb7aa52 1236 /* yb' = (ya-xb-yc+xd)* co1 - (xa+yb-xc-yd)* (si1) */
emilmont 1:fdd22bb7aa52 1237 out2 = __SMUADX(C1, S);
emilmont 1:fdd22bb7aa52 1238
emilmont 1:fdd22bb7aa52 1239 #else
emilmont 1:fdd22bb7aa52 1240
emilmont 1:fdd22bb7aa52 1241 /* xb' = (ya-xb-yc+xd)* co1 - (xa+yb-xc-yd)* (si1) */
emilmont 1:fdd22bb7aa52 1242 out1 = __SMUADX(C1, S) >> 16u;
emilmont 1:fdd22bb7aa52 1243 /* yb' = (xa+yb-xc-yd)* co1 + (ya-xb-yc+xd)* (si1) */
emilmont 1:fdd22bb7aa52 1244 out2 = __SMUSD(__QSUB16(0, C1), S);
emilmont 1:fdd22bb7aa52 1245
emilmont 1:fdd22bb7aa52 1246 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
emilmont 1:fdd22bb7aa52 1247
emilmont 1:fdd22bb7aa52 1248 /* writing output(xb', yb') in little endian format */
mbed_official 5:3762170b6d4d 1249 _SIMD32_OFFSET(pSi2) =
emilmont 1:fdd22bb7aa52 1250 ((out2) & 0xFFFF0000) | ((out1) & 0x0000FFFF);
mbed_official 5:3762170b6d4d 1251 pSi2 += 2;
emilmont 1:fdd22bb7aa52 1252
emilmont 1:fdd22bb7aa52 1253
emilmont 1:fdd22bb7aa52 1254 /* co3 & si3 are read from SIMD Coefficient pointer */
emilmont 1:fdd22bb7aa52 1255 C3 = _SIMD32_OFFSET(pCoef16 + (6u * ic));
emilmont 1:fdd22bb7aa52 1256 /* Butterfly process for the i0+3fftLen/4 sample */
emilmont 1:fdd22bb7aa52 1257
emilmont 1:fdd22bb7aa52 1258 #ifndef ARM_MATH_BIG_ENDIAN
emilmont 1:fdd22bb7aa52 1259
emilmont 1:fdd22bb7aa52 1260 /* xd' = (xa-yb-xc+yd)* co3 + (ya+xb-yc-xd)* (si3) */
emilmont 1:fdd22bb7aa52 1261 out1 = __SMUSD(C3, R) >> 16u;
emilmont 1:fdd22bb7aa52 1262 /* yd' = (ya+xb-yc-xd)* co3 - (xa-yb-xc+yd)* (si3) */
emilmont 1:fdd22bb7aa52 1263 out2 = __SMUADX(C3, R);
emilmont 1:fdd22bb7aa52 1264
emilmont 1:fdd22bb7aa52 1265 #else
emilmont 1:fdd22bb7aa52 1266
emilmont 1:fdd22bb7aa52 1267 /* xd' = (ya+xb-yc-xd)* co3 - (xa-yb-xc+yd)* (si3) */
emilmont 1:fdd22bb7aa52 1268 out1 = __SMUADX(C3, R) >> 16u;
emilmont 1:fdd22bb7aa52 1269 /* yd' = (xa-yb-xc+yd)* co3 + (ya+xb-yc-xd)* (si3) */
emilmont 1:fdd22bb7aa52 1270 out2 = __SMUSD(__QSUB16(0, C3), R);
emilmont 1:fdd22bb7aa52 1271
emilmont 1:fdd22bb7aa52 1272 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
emilmont 1:fdd22bb7aa52 1273
emilmont 1:fdd22bb7aa52 1274 /* writing output(xd', yd') in little endian format */
mbed_official 5:3762170b6d4d 1275 _SIMD32_OFFSET(pSi3) =
emilmont 1:fdd22bb7aa52 1276 ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);
mbed_official 5:3762170b6d4d 1277 pSi3 += 2;
emilmont 1:fdd22bb7aa52 1278
emilmont 1:fdd22bb7aa52 1279 /* Twiddle coefficients index modifier */
emilmont 1:fdd22bb7aa52 1280 ic = ic + twidCoefModifier;
emilmont 1:fdd22bb7aa52 1281
emilmont 1:fdd22bb7aa52 1282 } while(--j);
emilmont 1:fdd22bb7aa52 1283 /* data is in 4.11(q11) format */
emilmont 1:fdd22bb7aa52 1284
emilmont 1:fdd22bb7aa52 1285 /* end of first stage process */
emilmont 1:fdd22bb7aa52 1286
emilmont 1:fdd22bb7aa52 1287
emilmont 1:fdd22bb7aa52 1288 /* start of middle stage process */
emilmont 1:fdd22bb7aa52 1289
emilmont 1:fdd22bb7aa52 1290 /* Twiddle coefficients index modifier */
emilmont 1:fdd22bb7aa52 1291 twidCoefModifier <<= 2u;
emilmont 1:fdd22bb7aa52 1292
emilmont 1:fdd22bb7aa52 1293 /* Calculation of Middle stage */
emilmont 1:fdd22bb7aa52 1294 for (k = fftLen / 4u; k > 4u; k >>= 2u)
emilmont 1:fdd22bb7aa52 1295 {
emilmont 1:fdd22bb7aa52 1296 /* Initializations for the middle stage */
emilmont 1:fdd22bb7aa52 1297 n1 = n2;
emilmont 1:fdd22bb7aa52 1298 n2 >>= 2u;
emilmont 1:fdd22bb7aa52 1299 ic = 0u;
emilmont 1:fdd22bb7aa52 1300
emilmont 1:fdd22bb7aa52 1301 for (j = 0u; j <= (n2 - 1u); j++)
emilmont 1:fdd22bb7aa52 1302 {
emilmont 1:fdd22bb7aa52 1303 /* index calculation for the coefficients */
emilmont 1:fdd22bb7aa52 1304 C1 = _SIMD32_OFFSET(pCoef16 + (2u * ic));
emilmont 1:fdd22bb7aa52 1305 C2 = _SIMD32_OFFSET(pCoef16 + (4u * ic));
emilmont 1:fdd22bb7aa52 1306 C3 = _SIMD32_OFFSET(pCoef16 + (6u * ic));
emilmont 1:fdd22bb7aa52 1307
emilmont 1:fdd22bb7aa52 1308 /* Twiddle coefficients index modifier */
emilmont 1:fdd22bb7aa52 1309 ic = ic + twidCoefModifier;
mbed_official 5:3762170b6d4d 1310
mbed_official 5:3762170b6d4d 1311 pSi0 = pSrc16 + 2 * j;
mbed_official 5:3762170b6d4d 1312 pSi1 = pSi0 + 2 * n2;
mbed_official 5:3762170b6d4d 1313 pSi2 = pSi1 + 2 * n2;
mbed_official 5:3762170b6d4d 1314 pSi3 = pSi2 + 2 * n2;
emilmont 1:fdd22bb7aa52 1315
emilmont 1:fdd22bb7aa52 1316 /* Butterfly implementation */
emilmont 1:fdd22bb7aa52 1317 for (i0 = j; i0 < fftLen; i0 += n1)
emilmont 1:fdd22bb7aa52 1318 {
emilmont 1:fdd22bb7aa52 1319 /* Reading i0, i0+fftLen/2 inputs */
emilmont 1:fdd22bb7aa52 1320 /* Read ya (real), xa(imag) input */
mbed_official 5:3762170b6d4d 1321 T = _SIMD32_OFFSET(pSi0);
emilmont 1:fdd22bb7aa52 1322
emilmont 1:fdd22bb7aa52 1323 /* Read yc (real), xc(imag) input */
mbed_official 5:3762170b6d4d 1324 S = _SIMD32_OFFSET(pSi2);
emilmont 1:fdd22bb7aa52 1325
emilmont 1:fdd22bb7aa52 1326 /* R = packed( (ya + yc), (xa + xc)) */
emilmont 1:fdd22bb7aa52 1327 R = __QADD16(T, S);
emilmont 1:fdd22bb7aa52 1328
emilmont 1:fdd22bb7aa52 1329 /* S = packed((ya - yc), (xa - xc)) */
emilmont 1:fdd22bb7aa52 1330 S = __QSUB16(T, S);
emilmont 1:fdd22bb7aa52 1331
emilmont 1:fdd22bb7aa52 1332 /* Reading i0+fftLen/4 , i0+3fftLen/4 inputs */
emilmont 1:fdd22bb7aa52 1333 /* Read yb (real), xb(imag) input */
mbed_official 5:3762170b6d4d 1334 T = _SIMD32_OFFSET(pSi1);
emilmont 1:fdd22bb7aa52 1335
emilmont 1:fdd22bb7aa52 1336 /* Read yd (real), xd(imag) input */
mbed_official 5:3762170b6d4d 1337 U = _SIMD32_OFFSET(pSi3);
emilmont 1:fdd22bb7aa52 1338
emilmont 1:fdd22bb7aa52 1339 /* T = packed( (yb + yd), (xb + xd)) */
emilmont 1:fdd22bb7aa52 1340 T = __QADD16(T, U);
emilmont 1:fdd22bb7aa52 1341
emilmont 1:fdd22bb7aa52 1342 /* writing the butterfly processed i0 sample */
emilmont 1:fdd22bb7aa52 1343
emilmont 1:fdd22bb7aa52 1344 /* xa' = xa + xb + xc + xd */
emilmont 1:fdd22bb7aa52 1345 /* ya' = ya + yb + yc + yd */
emilmont 1:fdd22bb7aa52 1346 out1 = __SHADD16(R, T);
mbed_official 5:3762170b6d4d 1347 out1 = __SHADD16(out1, 0);
mbed_official 5:3762170b6d4d 1348 _SIMD32_OFFSET(pSi0) = out1;
mbed_official 5:3762170b6d4d 1349 pSi0 += 2 * n1;
emilmont 1:fdd22bb7aa52 1350
emilmont 1:fdd22bb7aa52 1351 /* R = packed( (ya + yc) - (yb + yd), (xa + xc) - (xb + xd)) */
emilmont 1:fdd22bb7aa52 1352 R = __SHSUB16(R, T);
emilmont 1:fdd22bb7aa52 1353
emilmont 1:fdd22bb7aa52 1354 #ifndef ARM_MATH_BIG_ENDIAN
emilmont 1:fdd22bb7aa52 1355
emilmont 1:fdd22bb7aa52 1356 /* (ya-yb+yc-yd)* (si2) + (xa-xb+xc-xd)* co2 */
emilmont 1:fdd22bb7aa52 1357 out1 = __SMUSD(C2, R) >> 16u;
emilmont 1:fdd22bb7aa52 1358
emilmont 1:fdd22bb7aa52 1359 /* (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */
emilmont 1:fdd22bb7aa52 1360 out2 = __SMUADX(C2, R);
emilmont 1:fdd22bb7aa52 1361
emilmont 1:fdd22bb7aa52 1362 #else
emilmont 1:fdd22bb7aa52 1363
emilmont 1:fdd22bb7aa52 1364 /* (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */
emilmont 1:fdd22bb7aa52 1365 out1 = __SMUADX(R, C2) >> 16u;
emilmont 1:fdd22bb7aa52 1366
emilmont 1:fdd22bb7aa52 1367 /* (ya-yb+yc-yd)* (si2) + (xa-xb+xc-xd)* co2 */
emilmont 1:fdd22bb7aa52 1368 out2 = __SMUSD(__QSUB16(0, C2), R);
emilmont 1:fdd22bb7aa52 1369
emilmont 1:fdd22bb7aa52 1370 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
emilmont 1:fdd22bb7aa52 1371
emilmont 1:fdd22bb7aa52 1372 /* Reading i0+3fftLen/4 */
emilmont 1:fdd22bb7aa52 1373 /* Read yb (real), xb(imag) input */
mbed_official 5:3762170b6d4d 1374 T = _SIMD32_OFFSET(pSi1);
emilmont 1:fdd22bb7aa52 1375
emilmont 1:fdd22bb7aa52 1376 /* writing the butterfly processed i0 + fftLen/4 sample */
emilmont 1:fdd22bb7aa52 1377 /* xc' = (xa-xb+xc-xd)* co2 + (ya-yb+yc-yd)* (si2) */
emilmont 1:fdd22bb7aa52 1378 /* yc' = (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */
mbed_official 5:3762170b6d4d 1379 _SIMD32_OFFSET(pSi1) =
emilmont 1:fdd22bb7aa52 1380 ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);
mbed_official 5:3762170b6d4d 1381 pSi1 += 2 * n1;
emilmont 1:fdd22bb7aa52 1382
emilmont 1:fdd22bb7aa52 1383 /* Butterfly calculations */
emilmont 1:fdd22bb7aa52 1384
emilmont 1:fdd22bb7aa52 1385 /* Read yd (real), xd(imag) input */
mbed_official 5:3762170b6d4d 1386 U = _SIMD32_OFFSET(pSi3);
emilmont 1:fdd22bb7aa52 1387
emilmont 1:fdd22bb7aa52 1388 /* T = packed(yb-yd, xb-xd) */
emilmont 1:fdd22bb7aa52 1389 T = __QSUB16(T, U);
emilmont 1:fdd22bb7aa52 1390
emilmont 1:fdd22bb7aa52 1391 #ifndef ARM_MATH_BIG_ENDIAN
emilmont 1:fdd22bb7aa52 1392
emilmont 1:fdd22bb7aa52 1393 /* R = packed((ya-yc) + (xb- xd) , (xa-xc) - (yb-yd)) */
emilmont 1:fdd22bb7aa52 1394 R = __SHSAX(S, T);
emilmont 1:fdd22bb7aa52 1395
emilmont 1:fdd22bb7aa52 1396 /* S = packed((ya-yc) - (xb- xd), (xa-xc) + (yb-yd)) */
emilmont 1:fdd22bb7aa52 1397 S = __SHASX(S, T);
emilmont 1:fdd22bb7aa52 1398
emilmont 1:fdd22bb7aa52 1399
emilmont 1:fdd22bb7aa52 1400 /* Butterfly process for the i0+fftLen/2 sample */
emilmont 1:fdd22bb7aa52 1401 out1 = __SMUSD(C1, S) >> 16u;
emilmont 1:fdd22bb7aa52 1402 out2 = __SMUADX(C1, S);
emilmont 1:fdd22bb7aa52 1403
emilmont 1:fdd22bb7aa52 1404 #else
emilmont 1:fdd22bb7aa52 1405
emilmont 1:fdd22bb7aa52 1406 /* R = packed((ya-yc) + (xb- xd) , (xa-xc) - (yb-yd)) */
emilmont 1:fdd22bb7aa52 1407 R = __SHASX(S, T);
emilmont 1:fdd22bb7aa52 1408
emilmont 1:fdd22bb7aa52 1409 /* S = packed((ya-yc) - (xb- xd), (xa-xc) + (yb-yd)) */
emilmont 1:fdd22bb7aa52 1410 S = __SHSAX(S, T);
emilmont 1:fdd22bb7aa52 1411
emilmont 1:fdd22bb7aa52 1412
emilmont 1:fdd22bb7aa52 1413 /* Butterfly process for the i0+fftLen/2 sample */
emilmont 1:fdd22bb7aa52 1414 out1 = __SMUADX(S, C1) >> 16u;
emilmont 1:fdd22bb7aa52 1415 out2 = __SMUSD(__QSUB16(0, C1), S);
emilmont 1:fdd22bb7aa52 1416
emilmont 1:fdd22bb7aa52 1417 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
emilmont 1:fdd22bb7aa52 1418
emilmont 1:fdd22bb7aa52 1419 /* xb' = (xa+yb-xc-yd)* co1 + (ya-xb-yc+xd)* (si1) */
emilmont 1:fdd22bb7aa52 1420 /* yb' = (ya-xb-yc+xd)* co1 - (xa+yb-xc-yd)* (si1) */
mbed_official 5:3762170b6d4d 1421 _SIMD32_OFFSET(pSi2) =
emilmont 1:fdd22bb7aa52 1422 ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);
mbed_official 5:3762170b6d4d 1423 pSi2 += 2 * n1;
emilmont 1:fdd22bb7aa52 1424
emilmont 1:fdd22bb7aa52 1425 /* Butterfly process for the i0+3fftLen/4 sample */
emilmont 1:fdd22bb7aa52 1426
emilmont 1:fdd22bb7aa52 1427 #ifndef ARM_MATH_BIG_ENDIAN
emilmont 1:fdd22bb7aa52 1428
emilmont 1:fdd22bb7aa52 1429 out1 = __SMUSD(C3, R) >> 16u;
emilmont 1:fdd22bb7aa52 1430 out2 = __SMUADX(C3, R);
emilmont 1:fdd22bb7aa52 1431
emilmont 1:fdd22bb7aa52 1432 #else
emilmont 1:fdd22bb7aa52 1433
emilmont 1:fdd22bb7aa52 1434 out1 = __SMUADX(C3, R) >> 16u;
emilmont 1:fdd22bb7aa52 1435 out2 = __SMUSD(__QSUB16(0, C3), R);
emilmont 1:fdd22bb7aa52 1436
emilmont 1:fdd22bb7aa52 1437 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
emilmont 1:fdd22bb7aa52 1438
emilmont 1:fdd22bb7aa52 1439 /* xd' = (xa-yb-xc+yd)* co3 + (ya+xb-yc-xd)* (si3) */
emilmont 1:fdd22bb7aa52 1440 /* yd' = (ya+xb-yc-xd)* co3 - (xa-yb-xc+yd)* (si3) */
mbed_official 5:3762170b6d4d 1441 _SIMD32_OFFSET(pSi3) =
emilmont 1:fdd22bb7aa52 1442 ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);
mbed_official 5:3762170b6d4d 1443 pSi3 += 2 * n1;
emilmont 1:fdd22bb7aa52 1444 }
emilmont 1:fdd22bb7aa52 1445 }
emilmont 1:fdd22bb7aa52 1446 /* Twiddle coefficients index modifier */
emilmont 1:fdd22bb7aa52 1447 twidCoefModifier <<= 2u;
emilmont 1:fdd22bb7aa52 1448 }
emilmont 1:fdd22bb7aa52 1449 /* end of middle stage process */
emilmont 1:fdd22bb7aa52 1450
emilmont 1:fdd22bb7aa52 1451 /* data is in 10.6(q6) format for the 1024 point */
emilmont 1:fdd22bb7aa52 1452 /* data is in 8.8(q8) format for the 256 point */
emilmont 1:fdd22bb7aa52 1453 /* data is in 6.10(q10) format for the 64 point */
emilmont 1:fdd22bb7aa52 1454 /* data is in 4.12(q12) format for the 16 point */
emilmont 1:fdd22bb7aa52 1455
emilmont 1:fdd22bb7aa52 1456 /* Initializations for the last stage */
emilmont 1:fdd22bb7aa52 1457 j = fftLen >> 2;
emilmont 1:fdd22bb7aa52 1458
emilmont 1:fdd22bb7aa52 1459 ptr1 = &pSrc16[0];
emilmont 1:fdd22bb7aa52 1460
emilmont 1:fdd22bb7aa52 1461 /* start of last stage process */
emilmont 1:fdd22bb7aa52 1462
emilmont 1:fdd22bb7aa52 1463 /* Butterfly implementation */
emilmont 1:fdd22bb7aa52 1464 do
emilmont 1:fdd22bb7aa52 1465 {
emilmont 1:fdd22bb7aa52 1466 /* Read xa (real), ya(imag) input */
emilmont 1:fdd22bb7aa52 1467 xaya = *__SIMD32(ptr1)++;
emilmont 1:fdd22bb7aa52 1468
emilmont 1:fdd22bb7aa52 1469 /* Read xb (real), yb(imag) input */
emilmont 1:fdd22bb7aa52 1470 xbyb = *__SIMD32(ptr1)++;
emilmont 1:fdd22bb7aa52 1471
emilmont 1:fdd22bb7aa52 1472 /* Read xc (real), yc(imag) input */
emilmont 1:fdd22bb7aa52 1473 xcyc = *__SIMD32(ptr1)++;
emilmont 1:fdd22bb7aa52 1474
emilmont 1:fdd22bb7aa52 1475 /* Read xd (real), yd(imag) input */
emilmont 1:fdd22bb7aa52 1476 xdyd = *__SIMD32(ptr1)++;
emilmont 1:fdd22bb7aa52 1477
emilmont 1:fdd22bb7aa52 1478 /* R = packed((ya + yc), (xa + xc)) */
emilmont 1:fdd22bb7aa52 1479 R = __QADD16(xaya, xcyc);
emilmont 1:fdd22bb7aa52 1480
emilmont 1:fdd22bb7aa52 1481 /* T = packed((yb + yd), (xb + xd)) */
emilmont 1:fdd22bb7aa52 1482 T = __QADD16(xbyb, xdyd);
emilmont 1:fdd22bb7aa52 1483
emilmont 1:fdd22bb7aa52 1484 /* pointer updation for writing */
emilmont 1:fdd22bb7aa52 1485 ptr1 = ptr1 - 8u;
emilmont 1:fdd22bb7aa52 1486
emilmont 1:fdd22bb7aa52 1487
emilmont 1:fdd22bb7aa52 1488 /* xa' = xa + xb + xc + xd */
emilmont 1:fdd22bb7aa52 1489 /* ya' = ya + yb + yc + yd */
emilmont 1:fdd22bb7aa52 1490 *__SIMD32(ptr1)++ = __SHADD16(R, T);
emilmont 1:fdd22bb7aa52 1491
emilmont 1:fdd22bb7aa52 1492 /* T = packed((yb + yd), (xb + xd)) */
emilmont 1:fdd22bb7aa52 1493 T = __QADD16(xbyb, xdyd);
emilmont 1:fdd22bb7aa52 1494
emilmont 1:fdd22bb7aa52 1495 /* xc' = (xa-xb+xc-xd) */
emilmont 1:fdd22bb7aa52 1496 /* yc' = (ya-yb+yc-yd) */
emilmont 1:fdd22bb7aa52 1497 *__SIMD32(ptr1)++ = __SHSUB16(R, T);
emilmont 1:fdd22bb7aa52 1498
emilmont 1:fdd22bb7aa52 1499 /* S = packed((ya - yc), (xa - xc)) */
emilmont 1:fdd22bb7aa52 1500 S = __QSUB16(xaya, xcyc);
emilmont 1:fdd22bb7aa52 1501
emilmont 1:fdd22bb7aa52 1502 /* Read yd (real), xd(imag) input */
emilmont 1:fdd22bb7aa52 1503 /* T = packed( (yb - yd), (xb - xd)) */
emilmont 1:fdd22bb7aa52 1504 U = __QSUB16(xbyb, xdyd);
emilmont 1:fdd22bb7aa52 1505
emilmont 1:fdd22bb7aa52 1506 #ifndef ARM_MATH_BIG_ENDIAN
emilmont 1:fdd22bb7aa52 1507
emilmont 1:fdd22bb7aa52 1508 /* xb' = (xa+yb-xc-yd) */
emilmont 1:fdd22bb7aa52 1509 /* yb' = (ya-xb-yc+xd) */
emilmont 1:fdd22bb7aa52 1510 *__SIMD32(ptr1)++ = __SHASX(S, U);
emilmont 1:fdd22bb7aa52 1511
emilmont 1:fdd22bb7aa52 1512
emilmont 1:fdd22bb7aa52 1513 /* xd' = (xa-yb-xc+yd) */
emilmont 1:fdd22bb7aa52 1514 /* yd' = (ya+xb-yc-xd) */
emilmont 1:fdd22bb7aa52 1515 *__SIMD32(ptr1)++ = __SHSAX(S, U);
emilmont 1:fdd22bb7aa52 1516
emilmont 1:fdd22bb7aa52 1517 #else
emilmont 1:fdd22bb7aa52 1518
emilmont 1:fdd22bb7aa52 1519 /* xb' = (xa+yb-xc-yd) */
emilmont 1:fdd22bb7aa52 1520 /* yb' = (ya-xb-yc+xd) */
emilmont 1:fdd22bb7aa52 1521 *__SIMD32(ptr1)++ = __SHSAX(S, U);
emilmont 1:fdd22bb7aa52 1522
emilmont 1:fdd22bb7aa52 1523
emilmont 1:fdd22bb7aa52 1524 /* xd' = (xa-yb-xc+yd) */
emilmont 1:fdd22bb7aa52 1525 /* yd' = (ya+xb-yc-xd) */
emilmont 1:fdd22bb7aa52 1526 *__SIMD32(ptr1)++ = __SHASX(S, U);
emilmont 1:fdd22bb7aa52 1527
emilmont 1:fdd22bb7aa52 1528
emilmont 1:fdd22bb7aa52 1529 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
emilmont 1:fdd22bb7aa52 1530
emilmont 1:fdd22bb7aa52 1531 } while(--j);
emilmont 1:fdd22bb7aa52 1532
emilmont 1:fdd22bb7aa52 1533 /* end of last stage process */
emilmont 1:fdd22bb7aa52 1534
emilmont 1:fdd22bb7aa52 1535 /* output is in 11.5(q5) format for the 1024 point */
emilmont 1:fdd22bb7aa52 1536 /* output is in 9.7(q7) format for the 256 point */
emilmont 1:fdd22bb7aa52 1537 /* output is in 7.9(q9) format for the 64 point */
emilmont 1:fdd22bb7aa52 1538 /* output is in 5.11(q11) format for the 16 point */
emilmont 1:fdd22bb7aa52 1539
emilmont 1:fdd22bb7aa52 1540
emilmont 1:fdd22bb7aa52 1541 #else
emilmont 1:fdd22bb7aa52 1542
emilmont 1:fdd22bb7aa52 1543 /* Run the below code for Cortex-M0 */
emilmont 1:fdd22bb7aa52 1544
emilmont 1:fdd22bb7aa52 1545 q15_t R0, R1, S0, S1, T0, T1, U0, U1;
emilmont 1:fdd22bb7aa52 1546 q15_t Co1, Si1, Co2, Si2, Co3, Si3, out1, out2;
emilmont 1:fdd22bb7aa52 1547 uint32_t n1, n2, ic, i0, i1, i2, i3, j, k;
emilmont 1:fdd22bb7aa52 1548
emilmont 1:fdd22bb7aa52 1549 /* Total process is divided into three stages */
emilmont 1:fdd22bb7aa52 1550
emilmont 1:fdd22bb7aa52 1551 /* process first stage, middle stages, & last stage */
emilmont 1:fdd22bb7aa52 1552
emilmont 1:fdd22bb7aa52 1553 /* Initializations for the first stage */
emilmont 1:fdd22bb7aa52 1554 n2 = fftLen;
emilmont 1:fdd22bb7aa52 1555 n1 = n2;
emilmont 1:fdd22bb7aa52 1556
emilmont 1:fdd22bb7aa52 1557 /* n2 = fftLen/4 */
emilmont 1:fdd22bb7aa52 1558 n2 >>= 2u;
emilmont 1:fdd22bb7aa52 1559
emilmont 1:fdd22bb7aa52 1560 /* Index for twiddle coefficient */
emilmont 1:fdd22bb7aa52 1561 ic = 0u;
emilmont 1:fdd22bb7aa52 1562
emilmont 1:fdd22bb7aa52 1563 /* Index for input read and output write */
emilmont 1:fdd22bb7aa52 1564 i0 = 0u;
emilmont 1:fdd22bb7aa52 1565
emilmont 1:fdd22bb7aa52 1566 j = n2;
emilmont 1:fdd22bb7aa52 1567
emilmont 1:fdd22bb7aa52 1568 /* Input is in 1.15(q15) format */
emilmont 1:fdd22bb7aa52 1569
emilmont 1:fdd22bb7aa52 1570 /* Start of first stage process */
emilmont 1:fdd22bb7aa52 1571 do
emilmont 1:fdd22bb7aa52 1572 {
emilmont 1:fdd22bb7aa52 1573 /* Butterfly implementation */
emilmont 1:fdd22bb7aa52 1574
emilmont 1:fdd22bb7aa52 1575 /* index calculation for the input as, */
emilmont 1:fdd22bb7aa52 1576 /* pSrc16[i0 + 0], pSrc16[i0 + fftLen/4], pSrc16[i0 + fftLen/2], pSrc16[i0 + 3fftLen/4] */
emilmont 1:fdd22bb7aa52 1577 i1 = i0 + n2;
emilmont 1:fdd22bb7aa52 1578 i2 = i1 + n2;
emilmont 1:fdd22bb7aa52 1579 i3 = i2 + n2;
emilmont 1:fdd22bb7aa52 1580
emilmont 1:fdd22bb7aa52 1581 /* Reading i0, i0+fftLen/2 inputs */
emilmont 1:fdd22bb7aa52 1582 /* input is down scale by 4 to avoid overflow */
emilmont 1:fdd22bb7aa52 1583 /* Read ya (real), xa(imag) input */
emilmont 1:fdd22bb7aa52 1584 T0 = pSrc16[i0 * 2u] >> 2u;
emilmont 1:fdd22bb7aa52 1585 T1 = pSrc16[(i0 * 2u) + 1u] >> 2u;
emilmont 1:fdd22bb7aa52 1586 /* input is down scale by 4 to avoid overflow */
emilmont 1:fdd22bb7aa52 1587 /* Read yc (real), xc(imag) input */
emilmont 1:fdd22bb7aa52 1588 S0 = pSrc16[i2 * 2u] >> 2u;
emilmont 1:fdd22bb7aa52 1589 S1 = pSrc16[(i2 * 2u) + 1u] >> 2u;
emilmont 1:fdd22bb7aa52 1590
emilmont 1:fdd22bb7aa52 1591 /* R0 = (ya + yc), R1 = (xa + xc) */
emilmont 1:fdd22bb7aa52 1592 R0 = __SSAT(T0 + S0, 16u);
emilmont 1:fdd22bb7aa52 1593 R1 = __SSAT(T1 + S1, 16u);
emilmont 1:fdd22bb7aa52 1594 /* S0 = (ya - yc), S1 = (xa - xc) */
emilmont 1:fdd22bb7aa52 1595 S0 = __SSAT(T0 - S0, 16u);
emilmont 1:fdd22bb7aa52 1596 S1 = __SSAT(T1 - S1, 16u);
emilmont 1:fdd22bb7aa52 1597
emilmont 1:fdd22bb7aa52 1598 /* Reading i0+fftLen/4 , i0+3fftLen/4 inputs */
emilmont 1:fdd22bb7aa52 1599 /* input is down scale by 4 to avoid overflow */
emilmont 1:fdd22bb7aa52 1600 /* Read yb (real), xb(imag) input */
emilmont 1:fdd22bb7aa52 1601 T0 = pSrc16[i1 * 2u] >> 2u;
emilmont 1:fdd22bb7aa52 1602 T1 = pSrc16[(i1 * 2u) + 1u] >> 2u;
emilmont 1:fdd22bb7aa52 1603 /* Read yd (real), xd(imag) input */
emilmont 1:fdd22bb7aa52 1604 /* input is down scale by 4 to avoid overflow */
emilmont 1:fdd22bb7aa52 1605 U0 = pSrc16[i3 * 2u] >> 2u;
emilmont 1:fdd22bb7aa52 1606 U1 = pSrc16[(i3 * 2u) + 1u] >> 2u;
emilmont 1:fdd22bb7aa52 1607
emilmont 1:fdd22bb7aa52 1608 /* T0 = (yb + yd), T1 = (xb + xd) */
emilmont 1:fdd22bb7aa52 1609 T0 = __SSAT(T0 + U0, 16u);
emilmont 1:fdd22bb7aa52 1610 T1 = __SSAT(T1 + U1, 16u);
emilmont 1:fdd22bb7aa52 1611
emilmont 1:fdd22bb7aa52 1612 /* writing the butterfly processed i0 sample */
emilmont 1:fdd22bb7aa52 1613 /* xa' = xa + xb + xc + xd */
emilmont 1:fdd22bb7aa52 1614 /* ya' = ya + yb + yc + yd */
emilmont 1:fdd22bb7aa52 1615 pSrc16[i0 * 2u] = (R0 >> 1u) + (T0 >> 1u);
emilmont 1:fdd22bb7aa52 1616 pSrc16[(i0 * 2u) + 1u] = (R1 >> 1u) + (T1 >> 1u);
emilmont 1:fdd22bb7aa52 1617
emilmont 1:fdd22bb7aa52 1618 /* R0 = (ya + yc) - (yb + yd), R1 = (xa + xc)- (xb + xd) */
emilmont 1:fdd22bb7aa52 1619 R0 = __SSAT(R0 - T0, 16u);
emilmont 1:fdd22bb7aa52 1620 R1 = __SSAT(R1 - T1, 16u);
emilmont 1:fdd22bb7aa52 1621 /* co2 & si2 are read from Coefficient pointer */
emilmont 1:fdd22bb7aa52 1622 Co2 = pCoef16[2u * ic * 2u];
emilmont 1:fdd22bb7aa52 1623 Si2 = pCoef16[(2u * ic * 2u) + 1u];
emilmont 1:fdd22bb7aa52 1624 /* xc' = (xa-xb+xc-xd)* co2 - (ya-yb+yc-yd)* (si2) */
mbed_official 5:3762170b6d4d 1625 out1 = (q15_t) ((Co2 * R0 - Si2 * R1) >> 16u);
emilmont 1:fdd22bb7aa52 1626 /* yc' = (ya-yb+yc-yd)* co2 + (xa-xb+xc-xd)* (si2) */
mbed_official 5:3762170b6d4d 1627 out2 = (q15_t) ((Si2 * R0 + Co2 * R1) >> 16u);
emilmont 1:fdd22bb7aa52 1628
emilmont 1:fdd22bb7aa52 1629 /* Reading i0+fftLen/4 */
emilmont 1:fdd22bb7aa52 1630 /* input is down scale by 4 to avoid overflow */
emilmont 1:fdd22bb7aa52 1631 /* T0 = yb, T1 = xb */
emilmont 1:fdd22bb7aa52 1632 T0 = pSrc16[i1 * 2u] >> 2u;
emilmont 1:fdd22bb7aa52 1633 T1 = pSrc16[(i1 * 2u) + 1u] >> 2u;
emilmont 1:fdd22bb7aa52 1634
emilmont 1:fdd22bb7aa52 1635 /* writing the butterfly processed i0 + fftLen/4 sample */
emilmont 1:fdd22bb7aa52 1636 /* writing output(xc', yc') in little endian format */
emilmont 1:fdd22bb7aa52 1637 pSrc16[i1 * 2u] = out1;
emilmont 1:fdd22bb7aa52 1638 pSrc16[(i1 * 2u) + 1u] = out2;
emilmont 1:fdd22bb7aa52 1639
emilmont 1:fdd22bb7aa52 1640 /* Butterfly calculations */
emilmont 1:fdd22bb7aa52 1641 /* input is down scale by 4 to avoid overflow */
emilmont 1:fdd22bb7aa52 1642 /* U0 = yd, U1 = xd) */
emilmont 1:fdd22bb7aa52 1643 U0 = pSrc16[i3 * 2u] >> 2u;
emilmont 1:fdd22bb7aa52 1644 U1 = pSrc16[(i3 * 2u) + 1u] >> 2u;
emilmont 1:fdd22bb7aa52 1645
emilmont 1:fdd22bb7aa52 1646 /* T0 = yb-yd, T1 = xb-xd) */
emilmont 1:fdd22bb7aa52 1647 T0 = __SSAT(T0 - U0, 16u);
emilmont 1:fdd22bb7aa52 1648 T1 = __SSAT(T1 - U1, 16u);
emilmont 1:fdd22bb7aa52 1649 /* R0 = (ya-yc) - (xb- xd) , R1 = (xa-xc) + (yb-yd) */
mbed_official 5:3762170b6d4d 1650 R0 = (q15_t) __SSAT((q31_t) (S0 + T1), 16);
mbed_official 5:3762170b6d4d 1651 R1 = (q15_t) __SSAT((q31_t) (S1 - T0), 16);
emilmont 1:fdd22bb7aa52 1652 /* S = (ya-yc) + (xb- xd), S1 = (xa-xc) - (yb-yd) */
mbed_official 5:3762170b6d4d 1653 S0 = (q15_t) __SSAT((q31_t) (S0 - T1), 16);
mbed_official 5:3762170b6d4d 1654 S1 = (q15_t) __SSAT((q31_t) (S1 + T0), 16);
emilmont 1:fdd22bb7aa52 1655
emilmont 1:fdd22bb7aa52 1656 /* co1 & si1 are read from Coefficient pointer */
emilmont 1:fdd22bb7aa52 1657 Co1 = pCoef16[ic * 2u];
emilmont 1:fdd22bb7aa52 1658 Si1 = pCoef16[(ic * 2u) + 1u];
emilmont 1:fdd22bb7aa52 1659 /* Butterfly process for the i0+fftLen/2 sample */
emilmont 1:fdd22bb7aa52 1660 /* xb' = (xa-yb-xc+yd)* co1 - (ya+xb-yc-xd)* (si1) */
mbed_official 5:3762170b6d4d 1661 out1 = (q15_t) ((Co1 * S0 - Si1 * S1) >> 16u);
emilmont 1:fdd22bb7aa52 1662 /* yb' = (ya+xb-yc-xd)* co1 + (xa-yb-xc+yd)* (si1) */
mbed_official 5:3762170b6d4d 1663 out2 = (q15_t) ((Si1 * S0 + Co1 * S1) >> 16u);
emilmont 1:fdd22bb7aa52 1664 /* writing output(xb', yb') in little endian format */
emilmont 1:fdd22bb7aa52 1665 pSrc16[i2 * 2u] = out1;
emilmont 1:fdd22bb7aa52 1666 pSrc16[(i2 * 2u) + 1u] = out2;
emilmont 1:fdd22bb7aa52 1667
emilmont 1:fdd22bb7aa52 1668 /* Co3 & si3 are read from Coefficient pointer */
emilmont 1:fdd22bb7aa52 1669 Co3 = pCoef16[3u * ic * 2u];
emilmont 1:fdd22bb7aa52 1670 Si3 = pCoef16[(3u * ic * 2u) + 1u];
emilmont 1:fdd22bb7aa52 1671 /* Butterfly process for the i0+3fftLen/4 sample */
emilmont 1:fdd22bb7aa52 1672 /* xd' = (xa+yb-xc-yd)* Co3 - (ya-xb-yc+xd)* (si3) */
mbed_official 5:3762170b6d4d 1673 out1 = (q15_t) ((Co3 * R0 - Si3 * R1) >> 16u);
emilmont 1:fdd22bb7aa52 1674 /* yd' = (ya-xb-yc+xd)* Co3 + (xa+yb-xc-yd)* (si3) */
mbed_official 5:3762170b6d4d 1675 out2 = (q15_t) ((Si3 * R0 + Co3 * R1) >> 16u);
emilmont 1:fdd22bb7aa52 1676 /* writing output(xd', yd') in little endian format */
emilmont 1:fdd22bb7aa52 1677 pSrc16[i3 * 2u] = out1;
emilmont 1:fdd22bb7aa52 1678 pSrc16[(i3 * 2u) + 1u] = out2;
emilmont 1:fdd22bb7aa52 1679
emilmont 1:fdd22bb7aa52 1680 /* Twiddle coefficients index modifier */
emilmont 1:fdd22bb7aa52 1681 ic = ic + twidCoefModifier;
emilmont 1:fdd22bb7aa52 1682
emilmont 1:fdd22bb7aa52 1683 /* Updating input index */
emilmont 1:fdd22bb7aa52 1684 i0 = i0 + 1u;
emilmont 1:fdd22bb7aa52 1685
emilmont 1:fdd22bb7aa52 1686 } while(--j);
emilmont 1:fdd22bb7aa52 1687
emilmont 1:fdd22bb7aa52 1688 /* End of first stage process */
emilmont 1:fdd22bb7aa52 1689
emilmont 1:fdd22bb7aa52 1690 /* data is in 4.11(q11) format */
emilmont 1:fdd22bb7aa52 1691
emilmont 1:fdd22bb7aa52 1692
emilmont 1:fdd22bb7aa52 1693 /* Start of Middle stage process */
emilmont 1:fdd22bb7aa52 1694
emilmont 1:fdd22bb7aa52 1695 /* Twiddle coefficients index modifier */
emilmont 1:fdd22bb7aa52 1696 twidCoefModifier <<= 2u;
emilmont 1:fdd22bb7aa52 1697
emilmont 1:fdd22bb7aa52 1698 /* Calculation of Middle stage */
emilmont 1:fdd22bb7aa52 1699 for (k = fftLen / 4u; k > 4u; k >>= 2u)
emilmont 1:fdd22bb7aa52 1700 {
emilmont 1:fdd22bb7aa52 1701 /* Initializations for the middle stage */
emilmont 1:fdd22bb7aa52 1702 n1 = n2;
emilmont 1:fdd22bb7aa52 1703 n2 >>= 2u;
emilmont 1:fdd22bb7aa52 1704 ic = 0u;
emilmont 1:fdd22bb7aa52 1705
emilmont 1:fdd22bb7aa52 1706 for (j = 0u; j <= (n2 - 1u); j++)
emilmont 1:fdd22bb7aa52 1707 {
emilmont 1:fdd22bb7aa52 1708 /* index calculation for the coefficients */
emilmont 1:fdd22bb7aa52 1709 Co1 = pCoef16[ic * 2u];
emilmont 1:fdd22bb7aa52 1710 Si1 = pCoef16[(ic * 2u) + 1u];
emilmont 1:fdd22bb7aa52 1711 Co2 = pCoef16[2u * ic * 2u];
emilmont 1:fdd22bb7aa52 1712 Si2 = pCoef16[2u * ic * 2u + 1u];
emilmont 1:fdd22bb7aa52 1713 Co3 = pCoef16[3u * ic * 2u];
emilmont 1:fdd22bb7aa52 1714 Si3 = pCoef16[(3u * ic * 2u) + 1u];
emilmont 1:fdd22bb7aa52 1715
emilmont 1:fdd22bb7aa52 1716 /* Twiddle coefficients index modifier */
emilmont 1:fdd22bb7aa52 1717 ic = ic + twidCoefModifier;
emilmont 1:fdd22bb7aa52 1718
emilmont 1:fdd22bb7aa52 1719 /* Butterfly implementation */
emilmont 1:fdd22bb7aa52 1720 for (i0 = j; i0 < fftLen; i0 += n1)
emilmont 1:fdd22bb7aa52 1721 {
emilmont 1:fdd22bb7aa52 1722 /* index calculation for the input as, */
emilmont 1:fdd22bb7aa52 1723 /* pSrc16[i0 + 0], pSrc16[i0 + fftLen/4], pSrc16[i0 + fftLen/2], pSrc16[i0 + 3fftLen/4] */
emilmont 1:fdd22bb7aa52 1724 i1 = i0 + n2;
emilmont 1:fdd22bb7aa52 1725 i2 = i1 + n2;
emilmont 1:fdd22bb7aa52 1726 i3 = i2 + n2;
emilmont 1:fdd22bb7aa52 1727
emilmont 1:fdd22bb7aa52 1728 /* Reading i0, i0+fftLen/2 inputs */
emilmont 1:fdd22bb7aa52 1729 /* Read ya (real), xa(imag) input */
emilmont 1:fdd22bb7aa52 1730 T0 = pSrc16[i0 * 2u];
emilmont 1:fdd22bb7aa52 1731 T1 = pSrc16[(i0 * 2u) + 1u];
emilmont 1:fdd22bb7aa52 1732
emilmont 1:fdd22bb7aa52 1733 /* Read yc (real), xc(imag) input */
emilmont 1:fdd22bb7aa52 1734 S0 = pSrc16[i2 * 2u];
emilmont 1:fdd22bb7aa52 1735 S1 = pSrc16[(i2 * 2u) + 1u];
emilmont 1:fdd22bb7aa52 1736
emilmont 1:fdd22bb7aa52 1737
emilmont 1:fdd22bb7aa52 1738 /* R0 = (ya + yc), R1 = (xa + xc) */
emilmont 1:fdd22bb7aa52 1739 R0 = __SSAT(T0 + S0, 16u);
emilmont 1:fdd22bb7aa52 1740 R1 = __SSAT(T1 + S1, 16u);
emilmont 1:fdd22bb7aa52 1741 /* S0 = (ya - yc), S1 = (xa - xc) */
emilmont 1:fdd22bb7aa52 1742 S0 = __SSAT(T0 - S0, 16u);
emilmont 1:fdd22bb7aa52 1743 S1 = __SSAT(T1 - S1, 16u);
emilmont 1:fdd22bb7aa52 1744
emilmont 1:fdd22bb7aa52 1745 /* Reading i0+fftLen/4 , i0+3fftLen/4 inputs */
emilmont 1:fdd22bb7aa52 1746 /* Read yb (real), xb(imag) input */
emilmont 1:fdd22bb7aa52 1747 T0 = pSrc16[i1 * 2u];
emilmont 1:fdd22bb7aa52 1748 T1 = pSrc16[(i1 * 2u) + 1u];
emilmont 1:fdd22bb7aa52 1749
emilmont 1:fdd22bb7aa52 1750 /* Read yd (real), xd(imag) input */
emilmont 1:fdd22bb7aa52 1751 U0 = pSrc16[i3 * 2u];
emilmont 1:fdd22bb7aa52 1752 U1 = pSrc16[(i3 * 2u) + 1u];
emilmont 1:fdd22bb7aa52 1753
emilmont 1:fdd22bb7aa52 1754 /* T0 = (yb + yd), T1 = (xb + xd) */
emilmont 1:fdd22bb7aa52 1755 T0 = __SSAT(T0 + U0, 16u);
emilmont 1:fdd22bb7aa52 1756 T1 = __SSAT(T1 + U1, 16u);
emilmont 1:fdd22bb7aa52 1757
emilmont 1:fdd22bb7aa52 1758 /* writing the butterfly processed i0 sample */
emilmont 1:fdd22bb7aa52 1759 /* xa' = xa + xb + xc + xd */
emilmont 1:fdd22bb7aa52 1760 /* ya' = ya + yb + yc + yd */
emilmont 1:fdd22bb7aa52 1761 pSrc16[i0 * 2u] = ((R0 >> 1u) + (T0 >> 1u)) >> 1u;
emilmont 1:fdd22bb7aa52 1762 pSrc16[(i0 * 2u) + 1u] = ((R1 >> 1u) + (T1 >> 1u)) >> 1u;
emilmont 1:fdd22bb7aa52 1763
emilmont 1:fdd22bb7aa52 1764 /* R0 = (ya + yc) - (yb + yd), R1 = (xa + xc) - (xb + xd) */
emilmont 1:fdd22bb7aa52 1765 R0 = (R0 >> 1u) - (T0 >> 1u);
emilmont 1:fdd22bb7aa52 1766 R1 = (R1 >> 1u) - (T1 >> 1u);
emilmont 1:fdd22bb7aa52 1767
emilmont 1:fdd22bb7aa52 1768 /* (ya-yb+yc-yd)* (si2) - (xa-xb+xc-xd)* co2 */
mbed_official 5:3762170b6d4d 1769 out1 = (q15_t) ((Co2 * R0 - Si2 * R1) >> 16);
emilmont 1:fdd22bb7aa52 1770 /* (ya-yb+yc-yd)* co2 + (xa-xb+xc-xd)* (si2) */
mbed_official 5:3762170b6d4d 1771 out2 = (q15_t) ((Si2 * R0 + Co2 * R1) >> 16);
emilmont 1:fdd22bb7aa52 1772
emilmont 1:fdd22bb7aa52 1773 /* Reading i0+3fftLen/4 */
emilmont 1:fdd22bb7aa52 1774 /* Read yb (real), xb(imag) input */
emilmont 1:fdd22bb7aa52 1775 T0 = pSrc16[i1 * 2u];
emilmont 1:fdd22bb7aa52 1776 T1 = pSrc16[(i1 * 2u) + 1u];
emilmont 1:fdd22bb7aa52 1777
emilmont 1:fdd22bb7aa52 1778 /* writing the butterfly processed i0 + fftLen/4 sample */
emilmont 1:fdd22bb7aa52 1779 /* xc' = (xa-xb+xc-xd)* co2 - (ya-yb+yc-yd)* (si2) */
emilmont 1:fdd22bb7aa52 1780 /* yc' = (ya-yb+yc-yd)* co2 + (xa-xb+xc-xd)* (si2) */
emilmont 1:fdd22bb7aa52 1781 pSrc16[i1 * 2u] = out1;
emilmont 1:fdd22bb7aa52 1782 pSrc16[(i1 * 2u) + 1u] = out2;
emilmont 1:fdd22bb7aa52 1783
emilmont 1:fdd22bb7aa52 1784 /* Butterfly calculations */
emilmont 1:fdd22bb7aa52 1785 /* Read yd (real), xd(imag) input */
emilmont 1:fdd22bb7aa52 1786 U0 = pSrc16[i3 * 2u];
emilmont 1:fdd22bb7aa52 1787 U1 = pSrc16[(i3 * 2u) + 1u];
emilmont 1:fdd22bb7aa52 1788
emilmont 1:fdd22bb7aa52 1789 /* T0 = yb-yd, T1 = xb-xd) */
emilmont 1:fdd22bb7aa52 1790 T0 = __SSAT(T0 - U0, 16u);
emilmont 1:fdd22bb7aa52 1791 T1 = __SSAT(T1 - U1, 16u);
emilmont 1:fdd22bb7aa52 1792
emilmont 1:fdd22bb7aa52 1793 /* R0 = (ya-yc) - (xb- xd) , R1 = (xa-xc) + (yb-yd) */
emilmont 1:fdd22bb7aa52 1794 R0 = (S0 >> 1u) + (T1 >> 1u);
emilmont 1:fdd22bb7aa52 1795 R1 = (S1 >> 1u) - (T0 >> 1u);
emilmont 1:fdd22bb7aa52 1796
emilmont 1:fdd22bb7aa52 1797 /* S1 = (ya-yc) + (xb- xd), S1 = (xa-xc) - (yb-yd) */
emilmont 1:fdd22bb7aa52 1798 S0 = (S0 >> 1u) - (T1 >> 1u);
emilmont 1:fdd22bb7aa52 1799 S1 = (S1 >> 1u) + (T0 >> 1u);
emilmont 1:fdd22bb7aa52 1800
emilmont 1:fdd22bb7aa52 1801 /* Butterfly process for the i0+fftLen/2 sample */
mbed_official 5:3762170b6d4d 1802 out1 = (q15_t) ((Co1 * S0 - Si1 * S1) >> 16u);
mbed_official 5:3762170b6d4d 1803 out2 = (q15_t) ((Si1 * S0 + Co1 * S1) >> 16u);
emilmont 1:fdd22bb7aa52 1804 /* xb' = (xa-yb-xc+yd)* co1 - (ya+xb-yc-xd)* (si1) */
emilmont 1:fdd22bb7aa52 1805 /* yb' = (ya+xb-yc-xd)* co1 + (xa-yb-xc+yd)* (si1) */
emilmont 1:fdd22bb7aa52 1806 pSrc16[i2 * 2u] = out1;
emilmont 1:fdd22bb7aa52 1807 pSrc16[(i2 * 2u) + 1u] = out2;
emilmont 1:fdd22bb7aa52 1808
emilmont 1:fdd22bb7aa52 1809 /* Butterfly process for the i0+3fftLen/4 sample */
mbed_official 5:3762170b6d4d 1810 out1 = (q15_t) ((Co3 * R0 - Si3 * R1) >> 16u);
emilmont 1:fdd22bb7aa52 1811
mbed_official 5:3762170b6d4d 1812 out2 = (q15_t) ((Si3 * R0 + Co3 * R1) >> 16u);
emilmont 1:fdd22bb7aa52 1813 /* xd' = (xa+yb-xc-yd)* Co3 - (ya-xb-yc+xd)* (si3) */
emilmont 1:fdd22bb7aa52 1814 /* yd' = (ya-xb-yc+xd)* Co3 + (xa+yb-xc-yd)* (si3) */
emilmont 1:fdd22bb7aa52 1815 pSrc16[i3 * 2u] = out1;
emilmont 1:fdd22bb7aa52 1816 pSrc16[(i3 * 2u) + 1u] = out2;
emilmont 1:fdd22bb7aa52 1817
emilmont 1:fdd22bb7aa52 1818
emilmont 1:fdd22bb7aa52 1819 }
emilmont 1:fdd22bb7aa52 1820 }
emilmont 1:fdd22bb7aa52 1821 /* Twiddle coefficients index modifier */
emilmont 1:fdd22bb7aa52 1822 twidCoefModifier <<= 2u;
emilmont 1:fdd22bb7aa52 1823 }
emilmont 1:fdd22bb7aa52 1824 /* End of Middle stages process */
emilmont 1:fdd22bb7aa52 1825
emilmont 1:fdd22bb7aa52 1826
emilmont 1:fdd22bb7aa52 1827 /* data is in 10.6(q6) format for the 1024 point */
emilmont 1:fdd22bb7aa52 1828 /* data is in 8.8(q8) format for the 256 point */
emilmont 1:fdd22bb7aa52 1829 /* data is in 6.10(q10) format for the 64 point */
emilmont 1:fdd22bb7aa52 1830 /* data is in 4.12(q12) format for the 16 point */
emilmont 1:fdd22bb7aa52 1831
emilmont 1:fdd22bb7aa52 1832 /* start of last stage process */
emilmont 1:fdd22bb7aa52 1833
emilmont 1:fdd22bb7aa52 1834
emilmont 1:fdd22bb7aa52 1835 /* Initializations for the last stage */
emilmont 1:fdd22bb7aa52 1836 n1 = n2;
emilmont 1:fdd22bb7aa52 1837 n2 >>= 2u;
emilmont 1:fdd22bb7aa52 1838
emilmont 1:fdd22bb7aa52 1839 /* Butterfly implementation */
emilmont 1:fdd22bb7aa52 1840 for (i0 = 0u; i0 <= (fftLen - n1); i0 += n1)
emilmont 1:fdd22bb7aa52 1841 {
emilmont 1:fdd22bb7aa52 1842 /* index calculation for the input as, */
emilmont 1:fdd22bb7aa52 1843 /* pSrc16[i0 + 0], pSrc16[i0 + fftLen/4], pSrc16[i0 + fftLen/2], pSrc16[i0 + 3fftLen/4] */
emilmont 1:fdd22bb7aa52 1844 i1 = i0 + n2;
emilmont 1:fdd22bb7aa52 1845 i2 = i1 + n2;
emilmont 1:fdd22bb7aa52 1846 i3 = i2 + n2;
emilmont 1:fdd22bb7aa52 1847
emilmont 1:fdd22bb7aa52 1848 /* Reading i0, i0+fftLen/2 inputs */
emilmont 1:fdd22bb7aa52 1849 /* Read ya (real), xa(imag) input */
emilmont 1:fdd22bb7aa52 1850 T0 = pSrc16[i0 * 2u];
emilmont 1:fdd22bb7aa52 1851 T1 = pSrc16[(i0 * 2u) + 1u];
emilmont 1:fdd22bb7aa52 1852 /* Read yc (real), xc(imag) input */
emilmont 1:fdd22bb7aa52 1853 S0 = pSrc16[i2 * 2u];
emilmont 1:fdd22bb7aa52 1854 S1 = pSrc16[(i2 * 2u) + 1u];
emilmont 1:fdd22bb7aa52 1855
emilmont 1:fdd22bb7aa52 1856 /* R0 = (ya + yc), R1 = (xa + xc) */
emilmont 1:fdd22bb7aa52 1857 R0 = __SSAT(T0 + S0, 16u);
emilmont 1:fdd22bb7aa52 1858 R1 = __SSAT(T1 + S1, 16u);
emilmont 1:fdd22bb7aa52 1859 /* S0 = (ya - yc), S1 = (xa - xc) */
emilmont 1:fdd22bb7aa52 1860 S0 = __SSAT(T0 - S0, 16u);
emilmont 1:fdd22bb7aa52 1861 S1 = __SSAT(T1 - S1, 16u);
emilmont 1:fdd22bb7aa52 1862
emilmont 1:fdd22bb7aa52 1863 /* Reading i0+fftLen/4 , i0+3fftLen/4 inputs */
emilmont 1:fdd22bb7aa52 1864 /* Read yb (real), xb(imag) input */
emilmont 1:fdd22bb7aa52 1865 T0 = pSrc16[i1 * 2u];
emilmont 1:fdd22bb7aa52 1866 T1 = pSrc16[(i1 * 2u) + 1u];
emilmont 1:fdd22bb7aa52 1867 /* Read yd (real), xd(imag) input */
emilmont 1:fdd22bb7aa52 1868 U0 = pSrc16[i3 * 2u];
emilmont 1:fdd22bb7aa52 1869 U1 = pSrc16[(i3 * 2u) + 1u];
emilmont 1:fdd22bb7aa52 1870
emilmont 1:fdd22bb7aa52 1871 /* T0 = (yb + yd), T1 = (xb + xd) */
emilmont 1:fdd22bb7aa52 1872 T0 = __SSAT(T0 + U0, 16u);
emilmont 1:fdd22bb7aa52 1873 T1 = __SSAT(T1 + U1, 16u);
emilmont 1:fdd22bb7aa52 1874
emilmont 1:fdd22bb7aa52 1875 /* writing the butterfly processed i0 sample */
emilmont 1:fdd22bb7aa52 1876 /* xa' = xa + xb + xc + xd */
emilmont 1:fdd22bb7aa52 1877 /* ya' = ya + yb + yc + yd */
emilmont 1:fdd22bb7aa52 1878 pSrc16[i0 * 2u] = (R0 >> 1u) + (T0 >> 1u);
emilmont 1:fdd22bb7aa52 1879 pSrc16[(i0 * 2u) + 1u] = (R1 >> 1u) + (T1 >> 1u);
emilmont 1:fdd22bb7aa52 1880
emilmont 1:fdd22bb7aa52 1881 /* R0 = (ya + yc) - (yb + yd), R1 = (xa + xc) - (xb + xd) */
emilmont 1:fdd22bb7aa52 1882 R0 = (R0 >> 1u) - (T0 >> 1u);
emilmont 1:fdd22bb7aa52 1883 R1 = (R1 >> 1u) - (T1 >> 1u);
emilmont 1:fdd22bb7aa52 1884
emilmont 1:fdd22bb7aa52 1885 /* Read yb (real), xb(imag) input */
emilmont 1:fdd22bb7aa52 1886 T0 = pSrc16[i1 * 2u];
emilmont 1:fdd22bb7aa52 1887 T1 = pSrc16[(i1 * 2u) + 1u];
emilmont 1:fdd22bb7aa52 1888
emilmont 1:fdd22bb7aa52 1889 /* writing the butterfly processed i0 + fftLen/4 sample */
emilmont 1:fdd22bb7aa52 1890 /* xc' = (xa-xb+xc-xd) */
emilmont 1:fdd22bb7aa52 1891 /* yc' = (ya-yb+yc-yd) */
emilmont 1:fdd22bb7aa52 1892 pSrc16[i1 * 2u] = R0;
emilmont 1:fdd22bb7aa52 1893 pSrc16[(i1 * 2u) + 1u] = R1;
emilmont 1:fdd22bb7aa52 1894
emilmont 1:fdd22bb7aa52 1895 /* Read yd (real), xd(imag) input */
emilmont 1:fdd22bb7aa52 1896 U0 = pSrc16[i3 * 2u];
emilmont 1:fdd22bb7aa52 1897 U1 = pSrc16[(i3 * 2u) + 1u];
emilmont 1:fdd22bb7aa52 1898 /* T0 = (yb - yd), T1 = (xb - xd) */
emilmont 1:fdd22bb7aa52 1899 T0 = __SSAT(T0 - U0, 16u);
emilmont 1:fdd22bb7aa52 1900 T1 = __SSAT(T1 - U1, 16u);
emilmont 1:fdd22bb7aa52 1901
emilmont 1:fdd22bb7aa52 1902 /* writing the butterfly processed i0 + fftLen/2 sample */
emilmont 1:fdd22bb7aa52 1903 /* xb' = (xa-yb-xc+yd) */
emilmont 1:fdd22bb7aa52 1904 /* yb' = (ya+xb-yc-xd) */
emilmont 1:fdd22bb7aa52 1905 pSrc16[i2 * 2u] = (S0 >> 1u) - (T1 >> 1u);
emilmont 1:fdd22bb7aa52 1906 pSrc16[(i2 * 2u) + 1u] = (S1 >> 1u) + (T0 >> 1u);
emilmont 1:fdd22bb7aa52 1907
emilmont 1:fdd22bb7aa52 1908
emilmont 1:fdd22bb7aa52 1909 /* writing the butterfly processed i0 + 3fftLen/4 sample */
emilmont 1:fdd22bb7aa52 1910 /* xd' = (xa+yb-xc-yd) */
emilmont 1:fdd22bb7aa52 1911 /* yd' = (ya-xb-yc+xd) */
emilmont 1:fdd22bb7aa52 1912 pSrc16[i3 * 2u] = (S0 >> 1u) + (T1 >> 1u);
emilmont 1:fdd22bb7aa52 1913 pSrc16[(i3 * 2u) + 1u] = (S1 >> 1u) - (T0 >> 1u);
emilmont 1:fdd22bb7aa52 1914 }
emilmont 1:fdd22bb7aa52 1915 /* end of last stage process */
emilmont 1:fdd22bb7aa52 1916
emilmont 1:fdd22bb7aa52 1917 /* output is in 11.5(q5) format for the 1024 point */
emilmont 1:fdd22bb7aa52 1918 /* output is in 9.7(q7) format for the 256 point */
emilmont 1:fdd22bb7aa52 1919 /* output is in 7.9(q9) format for the 64 point */
emilmont 1:fdd22bb7aa52 1920 /* output is in 5.11(q11) format for the 16 point */
emilmont 1:fdd22bb7aa52 1921
mbed_official 3:7a284390b0ce 1922 #endif /* #ifndef ARM_MATH_CM0_FAMILY */
emilmont 1:fdd22bb7aa52 1923
emilmont 1:fdd22bb7aa52 1924 }