Describes predefine macros for mbed online compiler (armcc)

Committer:
MACRUM
Date:
Thu Mar 16 21:58:09 2017 +0900
Revision:
6:40e873bbc5f7
Add licence header info

Who changed what in which revision?

UserRevisionLine numberNew contents of line
MACRUM 6:40e873bbc5f7 1 /* ----------------------------------------------------------------------
MACRUM 6:40e873bbc5f7 2 * Copyright (C) 2010-2015 ARM Limited. All rights reserved.
MACRUM 6:40e873bbc5f7 3 *
MACRUM 6:40e873bbc5f7 4 * $Date: 19. March 2015
MACRUM 6:40e873bbc5f7 5 * $Revision: V.1.4.5
MACRUM 6:40e873bbc5f7 6 *
MACRUM 6:40e873bbc5f7 7 * Project: CMSIS DSP Library
MACRUM 6:40e873bbc5f7 8 * Title: arm_math.h
MACRUM 6:40e873bbc5f7 9 *
MACRUM 6:40e873bbc5f7 10 * Description: Public header file for CMSIS DSP Library
MACRUM 6:40e873bbc5f7 11 *
MACRUM 6:40e873bbc5f7 12 * Target Processor: Cortex-M7/Cortex-M4/Cortex-M3/Cortex-M0
MACRUM 6:40e873bbc5f7 13 *
MACRUM 6:40e873bbc5f7 14 * Redistribution and use in source and binary forms, with or without
MACRUM 6:40e873bbc5f7 15 * modification, are permitted provided that the following conditions
MACRUM 6:40e873bbc5f7 16 * are met:
MACRUM 6:40e873bbc5f7 17 * - Redistributions of source code must retain the above copyright
MACRUM 6:40e873bbc5f7 18 * notice, this list of conditions and the following disclaimer.
MACRUM 6:40e873bbc5f7 19 * - Redistributions in binary form must reproduce the above copyright
MACRUM 6:40e873bbc5f7 20 * notice, this list of conditions and the following disclaimer in
MACRUM 6:40e873bbc5f7 21 * the documentation and/or other materials provided with the
MACRUM 6:40e873bbc5f7 22 * distribution.
MACRUM 6:40e873bbc5f7 23 * - Neither the name of ARM LIMITED nor the names of its contributors
MACRUM 6:40e873bbc5f7 24 * may be used to endorse or promote products derived from this
MACRUM 6:40e873bbc5f7 25 * software without specific prior written permission.
MACRUM 6:40e873bbc5f7 26 *
MACRUM 6:40e873bbc5f7 27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
MACRUM 6:40e873bbc5f7 28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
MACRUM 6:40e873bbc5f7 29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
MACRUM 6:40e873bbc5f7 30 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
MACRUM 6:40e873bbc5f7 31 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
MACRUM 6:40e873bbc5f7 32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
MACRUM 6:40e873bbc5f7 33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
MACRUM 6:40e873bbc5f7 34 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
MACRUM 6:40e873bbc5f7 35 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
MACRUM 6:40e873bbc5f7 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
MACRUM 6:40e873bbc5f7 37 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
MACRUM 6:40e873bbc5f7 38 * POSSIBILITY OF SUCH DAMAGE.
MACRUM 6:40e873bbc5f7 39 * -------------------------------------------------------------------- */
MACRUM 6:40e873bbc5f7 40
MACRUM 6:40e873bbc5f7 41 /**
MACRUM 6:40e873bbc5f7 42 \mainpage CMSIS DSP Software Library
MACRUM 6:40e873bbc5f7 43 *
MACRUM 6:40e873bbc5f7 44 * Introduction
MACRUM 6:40e873bbc5f7 45 * ------------
MACRUM 6:40e873bbc5f7 46 *
MACRUM 6:40e873bbc5f7 47 * This user manual describes the CMSIS DSP software library,
MACRUM 6:40e873bbc5f7 48 * a suite of common signal processing functions for use on Cortex-M processor based devices.
MACRUM 6:40e873bbc5f7 49 *
MACRUM 6:40e873bbc5f7 50 * The library is divided into a number of functions each covering a specific category:
MACRUM 6:40e873bbc5f7 51 * - Basic math functions
MACRUM 6:40e873bbc5f7 52 * - Fast math functions
MACRUM 6:40e873bbc5f7 53 * - Complex math functions
MACRUM 6:40e873bbc5f7 54 * - Filters
MACRUM 6:40e873bbc5f7 55 * - Matrix functions
MACRUM 6:40e873bbc5f7 56 * - Transforms
MACRUM 6:40e873bbc5f7 57 * - Motor control functions
MACRUM 6:40e873bbc5f7 58 * - Statistical functions
MACRUM 6:40e873bbc5f7 59 * - Support functions
MACRUM 6:40e873bbc5f7 60 * - Interpolation functions
MACRUM 6:40e873bbc5f7 61 *
MACRUM 6:40e873bbc5f7 62 * The library has separate functions for operating on 8-bit integers, 16-bit integers,
MACRUM 6:40e873bbc5f7 63 * 32-bit integer and 32-bit floating-point values.
MACRUM 6:40e873bbc5f7 64 *
MACRUM 6:40e873bbc5f7 65 * Using the Library
MACRUM 6:40e873bbc5f7 66 * ------------
MACRUM 6:40e873bbc5f7 67 *
MACRUM 6:40e873bbc5f7 68 * The library installer contains prebuilt versions of the libraries in the <code>Lib</code> folder.
MACRUM 6:40e873bbc5f7 69 * - arm_cortexM7lfdp_math.lib (Little endian and Double Precision Floating Point Unit on Cortex-M7)
MACRUM 6:40e873bbc5f7 70 * - arm_cortexM7bfdp_math.lib (Big endian and Double Precision Floating Point Unit on Cortex-M7)
MACRUM 6:40e873bbc5f7 71 * - arm_cortexM7lfsp_math.lib (Little endian and Single Precision Floating Point Unit on Cortex-M7)
MACRUM 6:40e873bbc5f7 72 * - arm_cortexM7bfsp_math.lib (Big endian and Single Precision Floating Point Unit on Cortex-M7)
MACRUM 6:40e873bbc5f7 73 * - arm_cortexM7l_math.lib (Little endian on Cortex-M7)
MACRUM 6:40e873bbc5f7 74 * - arm_cortexM7b_math.lib (Big endian on Cortex-M7)
MACRUM 6:40e873bbc5f7 75 * - arm_cortexM4lf_math.lib (Little endian and Floating Point Unit on Cortex-M4)
MACRUM 6:40e873bbc5f7 76 * - arm_cortexM4bf_math.lib (Big endian and Floating Point Unit on Cortex-M4)
MACRUM 6:40e873bbc5f7 77 * - arm_cortexM4l_math.lib (Little endian on Cortex-M4)
MACRUM 6:40e873bbc5f7 78 * - arm_cortexM4b_math.lib (Big endian on Cortex-M4)
MACRUM 6:40e873bbc5f7 79 * - arm_cortexM3l_math.lib (Little endian on Cortex-M3)
MACRUM 6:40e873bbc5f7 80 * - arm_cortexM3b_math.lib (Big endian on Cortex-M3)
MACRUM 6:40e873bbc5f7 81 * - arm_cortexM0l_math.lib (Little endian on Cortex-M0 / CortexM0+)
MACRUM 6:40e873bbc5f7 82 * - arm_cortexM0b_math.lib (Big endian on Cortex-M0 / CortexM0+)
MACRUM 6:40e873bbc5f7 83 *
MACRUM 6:40e873bbc5f7 84 * The library functions are declared in the public file <code>arm_math.h</code> which is placed in the <code>Include</code> folder.
MACRUM 6:40e873bbc5f7 85 * Simply include this file and link the appropriate library in the application and begin calling the library functions. The Library supports single
MACRUM 6:40e873bbc5f7 86 * public header file <code> arm_math.h</code> for Cortex-M7/M4/M3/M0/M0+ with little endian and big endian. Same header file will be used for floating point unit(FPU) variants.
MACRUM 6:40e873bbc5f7 87 * Define the appropriate pre processor MACRO ARM_MATH_CM7 or ARM_MATH_CM4 or ARM_MATH_CM3 or
MACRUM 6:40e873bbc5f7 88 * ARM_MATH_CM0 or ARM_MATH_CM0PLUS depending on the target processor in the application.
MACRUM 6:40e873bbc5f7 89 *
MACRUM 6:40e873bbc5f7 90 * Examples
MACRUM 6:40e873bbc5f7 91 * --------
MACRUM 6:40e873bbc5f7 92 *
MACRUM 6:40e873bbc5f7 93 * The library ships with a number of examples which demonstrate how to use the library functions.
MACRUM 6:40e873bbc5f7 94 *
MACRUM 6:40e873bbc5f7 95 * Toolchain Support
MACRUM 6:40e873bbc5f7 96 * ------------
MACRUM 6:40e873bbc5f7 97 *
MACRUM 6:40e873bbc5f7 98 * The library has been developed and tested with MDK-ARM version 5.14.0.0
MACRUM 6:40e873bbc5f7 99 * The library is being tested in GCC and IAR toolchains and updates on this activity will be made available shortly.
MACRUM 6:40e873bbc5f7 100 *
MACRUM 6:40e873bbc5f7 101 * Building the Library
MACRUM 6:40e873bbc5f7 102 * ------------
MACRUM 6:40e873bbc5f7 103 *
MACRUM 6:40e873bbc5f7 104 * The library installer contains a project file to re build libraries on MDK-ARM Tool chain in the <code>CMSIS\\DSP_Lib\\Source\\ARM</code> folder.
MACRUM 6:40e873bbc5f7 105 * - arm_cortexM_math.uvprojx
MACRUM 6:40e873bbc5f7 106 *
MACRUM 6:40e873bbc5f7 107 *
MACRUM 6:40e873bbc5f7 108 * The libraries can be built by opening the arm_cortexM_math.uvprojx project in MDK-ARM, selecting a specific target, and defining the optional pre processor MACROs detailed above.
MACRUM 6:40e873bbc5f7 109 *
MACRUM 6:40e873bbc5f7 110 * Pre-processor Macros
MACRUM 6:40e873bbc5f7 111 * ------------
MACRUM 6:40e873bbc5f7 112 *
MACRUM 6:40e873bbc5f7 113 * Each library project have differant pre-processor macros.
MACRUM 6:40e873bbc5f7 114 *
MACRUM 6:40e873bbc5f7 115 * - UNALIGNED_SUPPORT_DISABLE:
MACRUM 6:40e873bbc5f7 116 *
MACRUM 6:40e873bbc5f7 117 * Define macro UNALIGNED_SUPPORT_DISABLE, If the silicon does not support unaligned memory access
MACRUM 6:40e873bbc5f7 118 *
MACRUM 6:40e873bbc5f7 119 * - ARM_MATH_BIG_ENDIAN:
MACRUM 6:40e873bbc5f7 120 *
MACRUM 6:40e873bbc5f7 121 * Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets.
MACRUM 6:40e873bbc5f7 122 *
MACRUM 6:40e873bbc5f7 123 * - ARM_MATH_MATRIX_CHECK:
MACRUM 6:40e873bbc5f7 124 *
MACRUM 6:40e873bbc5f7 125 * Define macro ARM_MATH_MATRIX_CHECK for checking on the input and output sizes of matrices
MACRUM 6:40e873bbc5f7 126 *
MACRUM 6:40e873bbc5f7 127 * - ARM_MATH_ROUNDING:
MACRUM 6:40e873bbc5f7 128 *
MACRUM 6:40e873bbc5f7 129 * Define macro ARM_MATH_ROUNDING for rounding on support functions
MACRUM 6:40e873bbc5f7 130 *
MACRUM 6:40e873bbc5f7 131 * - ARM_MATH_CMx:
MACRUM 6:40e873bbc5f7 132 *
MACRUM 6:40e873bbc5f7 133 * Define macro ARM_MATH_CM4 for building the library on Cortex-M4 target, ARM_MATH_CM3 for building library on Cortex-M3 target
MACRUM 6:40e873bbc5f7 134 * and ARM_MATH_CM0 for building library on Cortex-M0 target, ARM_MATH_CM0PLUS for building library on Cortex-M0+ target, and
MACRUM 6:40e873bbc5f7 135 * ARM_MATH_CM7 for building the library on cortex-M7.
MACRUM 6:40e873bbc5f7 136 *
MACRUM 6:40e873bbc5f7 137 * - __FPU_PRESENT:
MACRUM 6:40e873bbc5f7 138 *
MACRUM 6:40e873bbc5f7 139 * Initialize macro __FPU_PRESENT = 1 when building on FPU supported Targets. Enable this macro for M4bf and M4lf libraries
MACRUM 6:40e873bbc5f7 140 *
MACRUM 6:40e873bbc5f7 141 * <hr>
MACRUM 6:40e873bbc5f7 142 * CMSIS-DSP in ARM::CMSIS Pack
MACRUM 6:40e873bbc5f7 143 * -----------------------------
MACRUM 6:40e873bbc5f7 144 *
MACRUM 6:40e873bbc5f7 145 * The following files relevant to CMSIS-DSP are present in the <b>ARM::CMSIS</b> Pack directories:
MACRUM 6:40e873bbc5f7 146 * |File/Folder |Content |
MACRUM 6:40e873bbc5f7 147 * |------------------------------|------------------------------------------------------------------------|
MACRUM 6:40e873bbc5f7 148 * |\b CMSIS\\Documentation\\DSP | This documentation |
MACRUM 6:40e873bbc5f7 149 * |\b CMSIS\\DSP_Lib | Software license agreement (license.txt) |
MACRUM 6:40e873bbc5f7 150 * |\b CMSIS\\DSP_Lib\\Examples | Example projects demonstrating the usage of the library functions |
MACRUM 6:40e873bbc5f7 151 * |\b CMSIS\\DSP_Lib\\Source | Source files for rebuilding the library |
MACRUM 6:40e873bbc5f7 152 *
MACRUM 6:40e873bbc5f7 153 * <hr>
MACRUM 6:40e873bbc5f7 154 * Revision History of CMSIS-DSP
MACRUM 6:40e873bbc5f7 155 * ------------
MACRUM 6:40e873bbc5f7 156 * Please refer to \ref ChangeLog_pg.
MACRUM 6:40e873bbc5f7 157 *
MACRUM 6:40e873bbc5f7 158 * Copyright Notice
MACRUM 6:40e873bbc5f7 159 * ------------
MACRUM 6:40e873bbc5f7 160 *
MACRUM 6:40e873bbc5f7 161 * Copyright (C) 2010-2015 ARM Limited. All rights reserved.
MACRUM 6:40e873bbc5f7 162 */
MACRUM 6:40e873bbc5f7 163
MACRUM 6:40e873bbc5f7 164
MACRUM 6:40e873bbc5f7 165 /**
MACRUM 6:40e873bbc5f7 166 * @defgroup groupMath Basic Math Functions
MACRUM 6:40e873bbc5f7 167 */
MACRUM 6:40e873bbc5f7 168
MACRUM 6:40e873bbc5f7 169 /**
MACRUM 6:40e873bbc5f7 170 * @defgroup groupFastMath Fast Math Functions
MACRUM 6:40e873bbc5f7 171 * This set of functions provides a fast approximation to sine, cosine, and square root.
MACRUM 6:40e873bbc5f7 172 * As compared to most of the other functions in the CMSIS math library, the fast math functions
MACRUM 6:40e873bbc5f7 173 * operate on individual values and not arrays.
MACRUM 6:40e873bbc5f7 174 * There are separate functions for Q15, Q31, and floating-point data.
MACRUM 6:40e873bbc5f7 175 *
MACRUM 6:40e873bbc5f7 176 */
MACRUM 6:40e873bbc5f7 177
MACRUM 6:40e873bbc5f7 178 /**
MACRUM 6:40e873bbc5f7 179 * @defgroup groupCmplxMath Complex Math Functions
MACRUM 6:40e873bbc5f7 180 * This set of functions operates on complex data vectors.
MACRUM 6:40e873bbc5f7 181 * The data in the complex arrays is stored in an interleaved fashion
MACRUM 6:40e873bbc5f7 182 * (real, imag, real, imag, ...).
MACRUM 6:40e873bbc5f7 183 * In the API functions, the number of samples in a complex array refers
MACRUM 6:40e873bbc5f7 184 * to the number of complex values; the array contains twice this number of
MACRUM 6:40e873bbc5f7 185 * real values.
MACRUM 6:40e873bbc5f7 186 */
MACRUM 6:40e873bbc5f7 187
MACRUM 6:40e873bbc5f7 188 /**
MACRUM 6:40e873bbc5f7 189 * @defgroup groupFilters Filtering Functions
MACRUM 6:40e873bbc5f7 190 */
MACRUM 6:40e873bbc5f7 191
MACRUM 6:40e873bbc5f7 192 /**
MACRUM 6:40e873bbc5f7 193 * @defgroup groupMatrix Matrix Functions
MACRUM 6:40e873bbc5f7 194 *
MACRUM 6:40e873bbc5f7 195 * This set of functions provides basic matrix math operations.
MACRUM 6:40e873bbc5f7 196 * The functions operate on matrix data structures. For example,
MACRUM 6:40e873bbc5f7 197 * the type
MACRUM 6:40e873bbc5f7 198 * definition for the floating-point matrix structure is shown
MACRUM 6:40e873bbc5f7 199 * below:
MACRUM 6:40e873bbc5f7 200 * <pre>
MACRUM 6:40e873bbc5f7 201 * typedef struct
MACRUM 6:40e873bbc5f7 202 * {
MACRUM 6:40e873bbc5f7 203 * uint16_t numRows; // number of rows of the matrix.
MACRUM 6:40e873bbc5f7 204 * uint16_t numCols; // number of columns of the matrix.
MACRUM 6:40e873bbc5f7 205 * float32_t *pData; // points to the data of the matrix.
MACRUM 6:40e873bbc5f7 206 * } arm_matrix_instance_f32;
MACRUM 6:40e873bbc5f7 207 * </pre>
MACRUM 6:40e873bbc5f7 208 * There are similar definitions for Q15 and Q31 data types.
MACRUM 6:40e873bbc5f7 209 *
MACRUM 6:40e873bbc5f7 210 * The structure specifies the size of the matrix and then points to
MACRUM 6:40e873bbc5f7 211 * an array of data. The array is of size <code>numRows X numCols</code>
MACRUM 6:40e873bbc5f7 212 * and the values are arranged in row order. That is, the
MACRUM 6:40e873bbc5f7 213 * matrix element (i, j) is stored at:
MACRUM 6:40e873bbc5f7 214 * <pre>
MACRUM 6:40e873bbc5f7 215 * pData[i*numCols + j]
MACRUM 6:40e873bbc5f7 216 * </pre>
MACRUM 6:40e873bbc5f7 217 *
MACRUM 6:40e873bbc5f7 218 * \par Init Functions
MACRUM 6:40e873bbc5f7 219 * There is an associated initialization function for each type of matrix
MACRUM 6:40e873bbc5f7 220 * data structure.
MACRUM 6:40e873bbc5f7 221 * The initialization function sets the values of the internal structure fields.
MACRUM 6:40e873bbc5f7 222 * Refer to the function <code>arm_mat_init_f32()</code>, <code>arm_mat_init_q31()</code>
MACRUM 6:40e873bbc5f7 223 * and <code>arm_mat_init_q15()</code> for floating-point, Q31 and Q15 types, respectively.
MACRUM 6:40e873bbc5f7 224 *
MACRUM 6:40e873bbc5f7 225 * \par
MACRUM 6:40e873bbc5f7 226 * Use of the initialization function is optional. However, if initialization function is used
MACRUM 6:40e873bbc5f7 227 * then the instance structure cannot be placed into a const data section.
MACRUM 6:40e873bbc5f7 228 * To place the instance structure in a const data
MACRUM 6:40e873bbc5f7 229 * section, manually initialize the data structure. For example:
MACRUM 6:40e873bbc5f7 230 * <pre>
MACRUM 6:40e873bbc5f7 231 * <code>arm_matrix_instance_f32 S = {nRows, nColumns, pData};</code>
MACRUM 6:40e873bbc5f7 232 * <code>arm_matrix_instance_q31 S = {nRows, nColumns, pData};</code>
MACRUM 6:40e873bbc5f7 233 * <code>arm_matrix_instance_q15 S = {nRows, nColumns, pData};</code>
MACRUM 6:40e873bbc5f7 234 * </pre>
MACRUM 6:40e873bbc5f7 235 * where <code>nRows</code> specifies the number of rows, <code>nColumns</code>
MACRUM 6:40e873bbc5f7 236 * specifies the number of columns, and <code>pData</code> points to the
MACRUM 6:40e873bbc5f7 237 * data array.
MACRUM 6:40e873bbc5f7 238 *
MACRUM 6:40e873bbc5f7 239 * \par Size Checking
MACRUM 6:40e873bbc5f7 240 * By default all of the matrix functions perform size checking on the input and
MACRUM 6:40e873bbc5f7 241 * output matrices. For example, the matrix addition function verifies that the
MACRUM 6:40e873bbc5f7 242 * two input matrices and the output matrix all have the same number of rows and
MACRUM 6:40e873bbc5f7 243 * columns. If the size check fails the functions return:
MACRUM 6:40e873bbc5f7 244 * <pre>
MACRUM 6:40e873bbc5f7 245 * ARM_MATH_SIZE_MISMATCH
MACRUM 6:40e873bbc5f7 246 * </pre>
MACRUM 6:40e873bbc5f7 247 * Otherwise the functions return
MACRUM 6:40e873bbc5f7 248 * <pre>
MACRUM 6:40e873bbc5f7 249 * ARM_MATH_SUCCESS
MACRUM 6:40e873bbc5f7 250 * </pre>
MACRUM 6:40e873bbc5f7 251 * There is some overhead associated with this matrix size checking.
MACRUM 6:40e873bbc5f7 252 * The matrix size checking is enabled via the \#define
MACRUM 6:40e873bbc5f7 253 * <pre>
MACRUM 6:40e873bbc5f7 254 * ARM_MATH_MATRIX_CHECK
MACRUM 6:40e873bbc5f7 255 * </pre>
MACRUM 6:40e873bbc5f7 256 * within the library project settings. By default this macro is defined
MACRUM 6:40e873bbc5f7 257 * and size checking is enabled. By changing the project settings and
MACRUM 6:40e873bbc5f7 258 * undefining this macro size checking is eliminated and the functions
MACRUM 6:40e873bbc5f7 259 * run a bit faster. With size checking disabled the functions always
MACRUM 6:40e873bbc5f7 260 * return <code>ARM_MATH_SUCCESS</code>.
MACRUM 6:40e873bbc5f7 261 */
MACRUM 6:40e873bbc5f7 262
MACRUM 6:40e873bbc5f7 263 /**
MACRUM 6:40e873bbc5f7 264 * @defgroup groupTransforms Transform Functions
MACRUM 6:40e873bbc5f7 265 */
MACRUM 6:40e873bbc5f7 266
MACRUM 6:40e873bbc5f7 267 /**
MACRUM 6:40e873bbc5f7 268 * @defgroup groupController Controller Functions
MACRUM 6:40e873bbc5f7 269 */
MACRUM 6:40e873bbc5f7 270
MACRUM 6:40e873bbc5f7 271 /**
MACRUM 6:40e873bbc5f7 272 * @defgroup groupStats Statistics Functions
MACRUM 6:40e873bbc5f7 273 */
MACRUM 6:40e873bbc5f7 274 /**
MACRUM 6:40e873bbc5f7 275 * @defgroup groupSupport Support Functions
MACRUM 6:40e873bbc5f7 276 */
MACRUM 6:40e873bbc5f7 277
MACRUM 6:40e873bbc5f7 278 /**
MACRUM 6:40e873bbc5f7 279 * @defgroup groupInterpolation Interpolation Functions
MACRUM 6:40e873bbc5f7 280 * These functions perform 1- and 2-dimensional interpolation of data.
MACRUM 6:40e873bbc5f7 281 * Linear interpolation is used for 1-dimensional data and
MACRUM 6:40e873bbc5f7 282 * bilinear interpolation is used for 2-dimensional data.
MACRUM 6:40e873bbc5f7 283 */
MACRUM 6:40e873bbc5f7 284
MACRUM 6:40e873bbc5f7 285 /**
MACRUM 6:40e873bbc5f7 286 * @defgroup groupExamples Examples
MACRUM 6:40e873bbc5f7 287 */
MACRUM 6:40e873bbc5f7 288 #ifndef _ARM_MATH_H
MACRUM 6:40e873bbc5f7 289 #define _ARM_MATH_H
MACRUM 6:40e873bbc5f7 290
MACRUM 6:40e873bbc5f7 291 #define __CMSIS_GENERIC /* disable NVIC and Systick functions */
MACRUM 6:40e873bbc5f7 292
MACRUM 6:40e873bbc5f7 293 #if defined(ARM_MATH_CM7)
MACRUM 6:40e873bbc5f7 294 #include "core_cm7.h"
MACRUM 6:40e873bbc5f7 295 #elif defined (ARM_MATH_CM4)
MACRUM 6:40e873bbc5f7 296 #include "core_cm4.h"
MACRUM 6:40e873bbc5f7 297 #elif defined (ARM_MATH_CM3)
MACRUM 6:40e873bbc5f7 298 #include "core_cm3.h"
MACRUM 6:40e873bbc5f7 299 #elif defined (ARM_MATH_CM0)
MACRUM 6:40e873bbc5f7 300 #include "core_cm0.h"
MACRUM 6:40e873bbc5f7 301 #define ARM_MATH_CM0_FAMILY
MACRUM 6:40e873bbc5f7 302 #elif defined (ARM_MATH_CM0PLUS)
MACRUM 6:40e873bbc5f7 303 #include "core_cm0plus.h"
MACRUM 6:40e873bbc5f7 304 #define ARM_MATH_CM0_FAMILY
MACRUM 6:40e873bbc5f7 305 #else
MACRUM 6:40e873bbc5f7 306 #error "Define according the used Cortex core ARM_MATH_CM7, ARM_MATH_CM4, ARM_MATH_CM3, ARM_MATH_CM0PLUS or ARM_MATH_CM0"
MACRUM 6:40e873bbc5f7 307 #endif
MACRUM 6:40e873bbc5f7 308
MACRUM 6:40e873bbc5f7 309 #undef __CMSIS_GENERIC /* enable NVIC and Systick functions */
MACRUM 6:40e873bbc5f7 310 #include "string.h"
MACRUM 6:40e873bbc5f7 311 #include "math.h"
MACRUM 6:40e873bbc5f7 312 #ifdef __cplusplus
MACRUM 6:40e873bbc5f7 313 extern "C"
MACRUM 6:40e873bbc5f7 314 {
MACRUM 6:40e873bbc5f7 315 #endif
MACRUM 6:40e873bbc5f7 316
MACRUM 6:40e873bbc5f7 317
MACRUM 6:40e873bbc5f7 318 /**
MACRUM 6:40e873bbc5f7 319 * @brief Macros required for reciprocal calculation in Normalized LMS
MACRUM 6:40e873bbc5f7 320 */
MACRUM 6:40e873bbc5f7 321
MACRUM 6:40e873bbc5f7 322 #define DELTA_Q31 (0x100)
MACRUM 6:40e873bbc5f7 323 #define DELTA_Q15 0x5
MACRUM 6:40e873bbc5f7 324 #define INDEX_MASK 0x0000003F
MACRUM 6:40e873bbc5f7 325 #ifndef PI
MACRUM 6:40e873bbc5f7 326 #define PI 3.14159265358979f
MACRUM 6:40e873bbc5f7 327 #endif
MACRUM 6:40e873bbc5f7 328
MACRUM 6:40e873bbc5f7 329 /**
MACRUM 6:40e873bbc5f7 330 * @brief Macros required for SINE and COSINE Fast math approximations
MACRUM 6:40e873bbc5f7 331 */
MACRUM 6:40e873bbc5f7 332
MACRUM 6:40e873bbc5f7 333 #define FAST_MATH_TABLE_SIZE 512
MACRUM 6:40e873bbc5f7 334 #define FAST_MATH_Q31_SHIFT (32 - 10)
MACRUM 6:40e873bbc5f7 335 #define FAST_MATH_Q15_SHIFT (16 - 10)
MACRUM 6:40e873bbc5f7 336 #define CONTROLLER_Q31_SHIFT (32 - 9)
MACRUM 6:40e873bbc5f7 337 #define TABLE_SIZE 256
MACRUM 6:40e873bbc5f7 338 #define TABLE_SPACING_Q31 0x400000
MACRUM 6:40e873bbc5f7 339 #define TABLE_SPACING_Q15 0x80
MACRUM 6:40e873bbc5f7 340
MACRUM 6:40e873bbc5f7 341 /**
MACRUM 6:40e873bbc5f7 342 * @brief Macros required for SINE and COSINE Controller functions
MACRUM 6:40e873bbc5f7 343 */
MACRUM 6:40e873bbc5f7 344 /* 1.31(q31) Fixed value of 2/360 */
MACRUM 6:40e873bbc5f7 345 /* -1 to +1 is divided into 360 values so total spacing is (2/360) */
MACRUM 6:40e873bbc5f7 346 #define INPUT_SPACING 0xB60B61
MACRUM 6:40e873bbc5f7 347
MACRUM 6:40e873bbc5f7 348 /**
MACRUM 6:40e873bbc5f7 349 * @brief Macro for Unaligned Support
MACRUM 6:40e873bbc5f7 350 */
MACRUM 6:40e873bbc5f7 351 #ifndef UNALIGNED_SUPPORT_DISABLE
MACRUM 6:40e873bbc5f7 352 #define ALIGN4
MACRUM 6:40e873bbc5f7 353 #else
MACRUM 6:40e873bbc5f7 354 #if defined (__GNUC__)
MACRUM 6:40e873bbc5f7 355 #define ALIGN4 __attribute__((aligned(4)))
MACRUM 6:40e873bbc5f7 356 #else
MACRUM 6:40e873bbc5f7 357 #define ALIGN4 __align(4)
MACRUM 6:40e873bbc5f7 358 #endif
MACRUM 6:40e873bbc5f7 359 #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
MACRUM 6:40e873bbc5f7 360
MACRUM 6:40e873bbc5f7 361 /**
MACRUM 6:40e873bbc5f7 362 * @brief Error status returned by some functions in the library.
MACRUM 6:40e873bbc5f7 363 */
MACRUM 6:40e873bbc5f7 364
MACRUM 6:40e873bbc5f7 365 typedef enum
MACRUM 6:40e873bbc5f7 366 {
MACRUM 6:40e873bbc5f7 367 ARM_MATH_SUCCESS = 0, /**< No error */
MACRUM 6:40e873bbc5f7 368 ARM_MATH_ARGUMENT_ERROR = -1, /**< One or more arguments are incorrect */
MACRUM 6:40e873bbc5f7 369 ARM_MATH_LENGTH_ERROR = -2, /**< Length of data buffer is incorrect */
MACRUM 6:40e873bbc5f7 370 ARM_MATH_SIZE_MISMATCH = -3, /**< Size of matrices is not compatible with the operation. */
MACRUM 6:40e873bbc5f7 371 ARM_MATH_NANINF = -4, /**< Not-a-number (NaN) or infinity is generated */
MACRUM 6:40e873bbc5f7 372 ARM_MATH_SINGULAR = -5, /**< Generated by matrix inversion if the input matrix is singular and cannot be inverted. */
MACRUM 6:40e873bbc5f7 373 ARM_MATH_TEST_FAILURE = -6 /**< Test Failed */
MACRUM 6:40e873bbc5f7 374 } arm_status;
MACRUM 6:40e873bbc5f7 375
MACRUM 6:40e873bbc5f7 376 /**
MACRUM 6:40e873bbc5f7 377 * @brief 8-bit fractional data type in 1.7 format.
MACRUM 6:40e873bbc5f7 378 */
MACRUM 6:40e873bbc5f7 379 typedef int8_t q7_t;
MACRUM 6:40e873bbc5f7 380
MACRUM 6:40e873bbc5f7 381 /**
MACRUM 6:40e873bbc5f7 382 * @brief 16-bit fractional data type in 1.15 format.
MACRUM 6:40e873bbc5f7 383 */
MACRUM 6:40e873bbc5f7 384 typedef int16_t q15_t;
MACRUM 6:40e873bbc5f7 385
MACRUM 6:40e873bbc5f7 386 /**
MACRUM 6:40e873bbc5f7 387 * @brief 32-bit fractional data type in 1.31 format.
MACRUM 6:40e873bbc5f7 388 */
MACRUM 6:40e873bbc5f7 389 typedef int32_t q31_t;
MACRUM 6:40e873bbc5f7 390
MACRUM 6:40e873bbc5f7 391 /**
MACRUM 6:40e873bbc5f7 392 * @brief 64-bit fractional data type in 1.63 format.
MACRUM 6:40e873bbc5f7 393 */
MACRUM 6:40e873bbc5f7 394 typedef int64_t q63_t;
MACRUM 6:40e873bbc5f7 395
MACRUM 6:40e873bbc5f7 396 /**
MACRUM 6:40e873bbc5f7 397 * @brief 32-bit floating-point type definition.
MACRUM 6:40e873bbc5f7 398 */
MACRUM 6:40e873bbc5f7 399 typedef float float32_t;
MACRUM 6:40e873bbc5f7 400
MACRUM 6:40e873bbc5f7 401 /**
MACRUM 6:40e873bbc5f7 402 * @brief 64-bit floating-point type definition.
MACRUM 6:40e873bbc5f7 403 */
MACRUM 6:40e873bbc5f7 404 typedef double float64_t;
MACRUM 6:40e873bbc5f7 405
MACRUM 6:40e873bbc5f7 406 /**
MACRUM 6:40e873bbc5f7 407 * @brief definition to read/write two 16 bit values.
MACRUM 6:40e873bbc5f7 408 */
MACRUM 6:40e873bbc5f7 409 #if defined __CC_ARM
MACRUM 6:40e873bbc5f7 410 #define __SIMD32_TYPE int32_t __packed
MACRUM 6:40e873bbc5f7 411 #define CMSIS_UNUSED __attribute__((unused))
MACRUM 6:40e873bbc5f7 412 #elif defined __ICCARM__
MACRUM 6:40e873bbc5f7 413 #define __SIMD32_TYPE int32_t __packed
MACRUM 6:40e873bbc5f7 414 #define CMSIS_UNUSED
MACRUM 6:40e873bbc5f7 415 #elif defined __GNUC__
MACRUM 6:40e873bbc5f7 416 #define __SIMD32_TYPE int32_t
MACRUM 6:40e873bbc5f7 417 #define CMSIS_UNUSED __attribute__((unused))
MACRUM 6:40e873bbc5f7 418 #elif defined __CSMC__ /* Cosmic */
MACRUM 6:40e873bbc5f7 419 #define __SIMD32_TYPE int32_t
MACRUM 6:40e873bbc5f7 420 #define CMSIS_UNUSED
MACRUM 6:40e873bbc5f7 421 #elif defined __TASKING__
MACRUM 6:40e873bbc5f7 422 #define __SIMD32_TYPE __unaligned int32_t
MACRUM 6:40e873bbc5f7 423 #define CMSIS_UNUSED
MACRUM 6:40e873bbc5f7 424 #else
MACRUM 6:40e873bbc5f7 425 #error Unknown compiler
MACRUM 6:40e873bbc5f7 426 #endif
MACRUM 6:40e873bbc5f7 427
MACRUM 6:40e873bbc5f7 428 #define __SIMD32(addr) (*(__SIMD32_TYPE **) & (addr))
MACRUM 6:40e873bbc5f7 429 #define __SIMD32_CONST(addr) ((__SIMD32_TYPE *)(addr))
MACRUM 6:40e873bbc5f7 430
MACRUM 6:40e873bbc5f7 431 #define _SIMD32_OFFSET(addr) (*(__SIMD32_TYPE *) (addr))
MACRUM 6:40e873bbc5f7 432
MACRUM 6:40e873bbc5f7 433 #define __SIMD64(addr) (*(int64_t **) & (addr))
MACRUM 6:40e873bbc5f7 434
MACRUM 6:40e873bbc5f7 435 #if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY)
MACRUM 6:40e873bbc5f7 436 /**
MACRUM 6:40e873bbc5f7 437 * @brief definition to pack two 16 bit values.
MACRUM 6:40e873bbc5f7 438 */
MACRUM 6:40e873bbc5f7 439 #define __PKHBT(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0x0000FFFF) | \
MACRUM 6:40e873bbc5f7 440 (((int32_t)(ARG2) << ARG3) & (int32_t)0xFFFF0000) )
MACRUM 6:40e873bbc5f7 441 #define __PKHTB(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0xFFFF0000) | \
MACRUM 6:40e873bbc5f7 442 (((int32_t)(ARG2) >> ARG3) & (int32_t)0x0000FFFF) )
MACRUM 6:40e873bbc5f7 443
MACRUM 6:40e873bbc5f7 444 #endif
MACRUM 6:40e873bbc5f7 445
MACRUM 6:40e873bbc5f7 446
MACRUM 6:40e873bbc5f7 447 /**
MACRUM 6:40e873bbc5f7 448 * @brief definition to pack four 8 bit values.
MACRUM 6:40e873bbc5f7 449 */
MACRUM 6:40e873bbc5f7 450 #ifndef ARM_MATH_BIG_ENDIAN
MACRUM 6:40e873bbc5f7 451
MACRUM 6:40e873bbc5f7 452 #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) << 0) & (int32_t)0x000000FF) | \
MACRUM 6:40e873bbc5f7 453 (((int32_t)(v1) << 8) & (int32_t)0x0000FF00) | \
MACRUM 6:40e873bbc5f7 454 (((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | \
MACRUM 6:40e873bbc5f7 455 (((int32_t)(v3) << 24) & (int32_t)0xFF000000) )
MACRUM 6:40e873bbc5f7 456 #else
MACRUM 6:40e873bbc5f7 457
MACRUM 6:40e873bbc5f7 458 #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) << 0) & (int32_t)0x000000FF) | \
MACRUM 6:40e873bbc5f7 459 (((int32_t)(v2) << 8) & (int32_t)0x0000FF00) | \
MACRUM 6:40e873bbc5f7 460 (((int32_t)(v1) << 16) & (int32_t)0x00FF0000) | \
MACRUM 6:40e873bbc5f7 461 (((int32_t)(v0) << 24) & (int32_t)0xFF000000) )
MACRUM 6:40e873bbc5f7 462
MACRUM 6:40e873bbc5f7 463 #endif
MACRUM 6:40e873bbc5f7 464
MACRUM 6:40e873bbc5f7 465
MACRUM 6:40e873bbc5f7 466 /**
MACRUM 6:40e873bbc5f7 467 * @brief Clips Q63 to Q31 values.
MACRUM 6:40e873bbc5f7 468 */
MACRUM 6:40e873bbc5f7 469 static __INLINE q31_t clip_q63_to_q31(
MACRUM 6:40e873bbc5f7 470 q63_t x)
MACRUM 6:40e873bbc5f7 471 {
MACRUM 6:40e873bbc5f7 472 return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
MACRUM 6:40e873bbc5f7 473 ((0x7FFFFFFF ^ ((q31_t) (x >> 63)))) : (q31_t) x;
MACRUM 6:40e873bbc5f7 474 }
MACRUM 6:40e873bbc5f7 475
MACRUM 6:40e873bbc5f7 476 /**
MACRUM 6:40e873bbc5f7 477 * @brief Clips Q63 to Q15 values.
MACRUM 6:40e873bbc5f7 478 */
MACRUM 6:40e873bbc5f7 479 static __INLINE q15_t clip_q63_to_q15(
MACRUM 6:40e873bbc5f7 480 q63_t x)
MACRUM 6:40e873bbc5f7 481 {
MACRUM 6:40e873bbc5f7 482 return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
MACRUM 6:40e873bbc5f7 483 ((0x7FFF ^ ((q15_t) (x >> 63)))) : (q15_t) (x >> 15);
MACRUM 6:40e873bbc5f7 484 }
MACRUM 6:40e873bbc5f7 485
MACRUM 6:40e873bbc5f7 486 /**
MACRUM 6:40e873bbc5f7 487 * @brief Clips Q31 to Q7 values.
MACRUM 6:40e873bbc5f7 488 */
MACRUM 6:40e873bbc5f7 489 static __INLINE q7_t clip_q31_to_q7(
MACRUM 6:40e873bbc5f7 490 q31_t x)
MACRUM 6:40e873bbc5f7 491 {
MACRUM 6:40e873bbc5f7 492 return ((q31_t) (x >> 24) != ((q31_t) x >> 23)) ?
MACRUM 6:40e873bbc5f7 493 ((0x7F ^ ((q7_t) (x >> 31)))) : (q7_t) x;
MACRUM 6:40e873bbc5f7 494 }
MACRUM 6:40e873bbc5f7 495
MACRUM 6:40e873bbc5f7 496 /**
MACRUM 6:40e873bbc5f7 497 * @brief Clips Q31 to Q15 values.
MACRUM 6:40e873bbc5f7 498 */
MACRUM 6:40e873bbc5f7 499 static __INLINE q15_t clip_q31_to_q15(
MACRUM 6:40e873bbc5f7 500 q31_t x)
MACRUM 6:40e873bbc5f7 501 {
MACRUM 6:40e873bbc5f7 502 return ((q31_t) (x >> 16) != ((q31_t) x >> 15)) ?
MACRUM 6:40e873bbc5f7 503 ((0x7FFF ^ ((q15_t) (x >> 31)))) : (q15_t) x;
MACRUM 6:40e873bbc5f7 504 }
MACRUM 6:40e873bbc5f7 505
MACRUM 6:40e873bbc5f7 506 /**
MACRUM 6:40e873bbc5f7 507 * @brief Multiplies 32 X 64 and returns 32 bit result in 2.30 format.
MACRUM 6:40e873bbc5f7 508 */
MACRUM 6:40e873bbc5f7 509
MACRUM 6:40e873bbc5f7 510 static __INLINE q63_t mult32x64(
MACRUM 6:40e873bbc5f7 511 q63_t x,
MACRUM 6:40e873bbc5f7 512 q31_t y)
MACRUM 6:40e873bbc5f7 513 {
MACRUM 6:40e873bbc5f7 514 return ((((q63_t) (x & 0x00000000FFFFFFFF) * y) >> 32) +
MACRUM 6:40e873bbc5f7 515 (((q63_t) (x >> 32) * y)));
MACRUM 6:40e873bbc5f7 516 }
MACRUM 6:40e873bbc5f7 517
MACRUM 6:40e873bbc5f7 518
MACRUM 6:40e873bbc5f7 519 //#if defined (ARM_MATH_CM0_FAMILY) && defined ( __CC_ARM )
MACRUM 6:40e873bbc5f7 520 //#define __CLZ __clz
MACRUM 6:40e873bbc5f7 521 //#endif
MACRUM 6:40e873bbc5f7 522
MACRUM 6:40e873bbc5f7 523 //note: function can be removed when all toolchain support __CLZ for Cortex-M0
MACRUM 6:40e873bbc5f7 524 #if defined (ARM_MATH_CM0_FAMILY) && ((defined (__ICCARM__)) )
MACRUM 6:40e873bbc5f7 525
MACRUM 6:40e873bbc5f7 526 static __INLINE uint32_t __CLZ(
MACRUM 6:40e873bbc5f7 527 q31_t data);
MACRUM 6:40e873bbc5f7 528
MACRUM 6:40e873bbc5f7 529
MACRUM 6:40e873bbc5f7 530 static __INLINE uint32_t __CLZ(
MACRUM 6:40e873bbc5f7 531 q31_t data)
MACRUM 6:40e873bbc5f7 532 {
MACRUM 6:40e873bbc5f7 533 uint32_t count = 0;
MACRUM 6:40e873bbc5f7 534 uint32_t mask = 0x80000000;
MACRUM 6:40e873bbc5f7 535
MACRUM 6:40e873bbc5f7 536 while((data & mask) == 0)
MACRUM 6:40e873bbc5f7 537 {
MACRUM 6:40e873bbc5f7 538 count += 1u;
MACRUM 6:40e873bbc5f7 539 mask = mask >> 1u;
MACRUM 6:40e873bbc5f7 540 }
MACRUM 6:40e873bbc5f7 541
MACRUM 6:40e873bbc5f7 542 return (count);
MACRUM 6:40e873bbc5f7 543
MACRUM 6:40e873bbc5f7 544 }
MACRUM 6:40e873bbc5f7 545
MACRUM 6:40e873bbc5f7 546 #endif
MACRUM 6:40e873bbc5f7 547
MACRUM 6:40e873bbc5f7 548 /**
MACRUM 6:40e873bbc5f7 549 * @brief Function to Calculates 1/in (reciprocal) value of Q31 Data type.
MACRUM 6:40e873bbc5f7 550 */
MACRUM 6:40e873bbc5f7 551
MACRUM 6:40e873bbc5f7 552 static __INLINE uint32_t arm_recip_q31(
MACRUM 6:40e873bbc5f7 553 q31_t in,
MACRUM 6:40e873bbc5f7 554 q31_t * dst,
MACRUM 6:40e873bbc5f7 555 q31_t * pRecipTable)
MACRUM 6:40e873bbc5f7 556 {
MACRUM 6:40e873bbc5f7 557
MACRUM 6:40e873bbc5f7 558 uint32_t out, tempVal;
MACRUM 6:40e873bbc5f7 559 uint32_t index, i;
MACRUM 6:40e873bbc5f7 560 uint32_t signBits;
MACRUM 6:40e873bbc5f7 561
MACRUM 6:40e873bbc5f7 562 if(in > 0)
MACRUM 6:40e873bbc5f7 563 {
MACRUM 6:40e873bbc5f7 564 signBits = __CLZ(in) - 1;
MACRUM 6:40e873bbc5f7 565 }
MACRUM 6:40e873bbc5f7 566 else
MACRUM 6:40e873bbc5f7 567 {
MACRUM 6:40e873bbc5f7 568 signBits = __CLZ(-in) - 1;
MACRUM 6:40e873bbc5f7 569 }
MACRUM 6:40e873bbc5f7 570
MACRUM 6:40e873bbc5f7 571 /* Convert input sample to 1.31 format */
MACRUM 6:40e873bbc5f7 572 in = in << signBits;
MACRUM 6:40e873bbc5f7 573
MACRUM 6:40e873bbc5f7 574 /* calculation of index for initial approximated Val */
MACRUM 6:40e873bbc5f7 575 index = (uint32_t) (in >> 24u);
MACRUM 6:40e873bbc5f7 576 index = (index & INDEX_MASK);
MACRUM 6:40e873bbc5f7 577
MACRUM 6:40e873bbc5f7 578 /* 1.31 with exp 1 */
MACRUM 6:40e873bbc5f7 579 out = pRecipTable[index];
MACRUM 6:40e873bbc5f7 580
MACRUM 6:40e873bbc5f7 581 /* calculation of reciprocal value */
MACRUM 6:40e873bbc5f7 582 /* running approximation for two iterations */
MACRUM 6:40e873bbc5f7 583 for (i = 0u; i < 2u; i++)
MACRUM 6:40e873bbc5f7 584 {
MACRUM 6:40e873bbc5f7 585 tempVal = (q31_t) (((q63_t) in * out) >> 31u);
MACRUM 6:40e873bbc5f7 586 tempVal = 0x7FFFFFFF - tempVal;
MACRUM 6:40e873bbc5f7 587 /* 1.31 with exp 1 */
MACRUM 6:40e873bbc5f7 588 //out = (q31_t) (((q63_t) out * tempVal) >> 30u);
MACRUM 6:40e873bbc5f7 589 out = (q31_t) clip_q63_to_q31(((q63_t) out * tempVal) >> 30u);
MACRUM 6:40e873bbc5f7 590 }
MACRUM 6:40e873bbc5f7 591
MACRUM 6:40e873bbc5f7 592 /* write output */
MACRUM 6:40e873bbc5f7 593 *dst = out;
MACRUM 6:40e873bbc5f7 594
MACRUM 6:40e873bbc5f7 595 /* return num of signbits of out = 1/in value */
MACRUM 6:40e873bbc5f7 596 return (signBits + 1u);
MACRUM 6:40e873bbc5f7 597
MACRUM 6:40e873bbc5f7 598 }
MACRUM 6:40e873bbc5f7 599
MACRUM 6:40e873bbc5f7 600 /**
MACRUM 6:40e873bbc5f7 601 * @brief Function to Calculates 1/in (reciprocal) value of Q15 Data type.
MACRUM 6:40e873bbc5f7 602 */
MACRUM 6:40e873bbc5f7 603 static __INLINE uint32_t arm_recip_q15(
MACRUM 6:40e873bbc5f7 604 q15_t in,
MACRUM 6:40e873bbc5f7 605 q15_t * dst,
MACRUM 6:40e873bbc5f7 606 q15_t * pRecipTable)
MACRUM 6:40e873bbc5f7 607 {
MACRUM 6:40e873bbc5f7 608
MACRUM 6:40e873bbc5f7 609 uint32_t out = 0, tempVal = 0;
MACRUM 6:40e873bbc5f7 610 uint32_t index = 0, i = 0;
MACRUM 6:40e873bbc5f7 611 uint32_t signBits = 0;
MACRUM 6:40e873bbc5f7 612
MACRUM 6:40e873bbc5f7 613 if(in > 0)
MACRUM 6:40e873bbc5f7 614 {
MACRUM 6:40e873bbc5f7 615 signBits = __CLZ(in) - 17;
MACRUM 6:40e873bbc5f7 616 }
MACRUM 6:40e873bbc5f7 617 else
MACRUM 6:40e873bbc5f7 618 {
MACRUM 6:40e873bbc5f7 619 signBits = __CLZ(-in) - 17;
MACRUM 6:40e873bbc5f7 620 }
MACRUM 6:40e873bbc5f7 621
MACRUM 6:40e873bbc5f7 622 /* Convert input sample to 1.15 format */
MACRUM 6:40e873bbc5f7 623 in = in << signBits;
MACRUM 6:40e873bbc5f7 624
MACRUM 6:40e873bbc5f7 625 /* calculation of index for initial approximated Val */
MACRUM 6:40e873bbc5f7 626 index = in >> 8;
MACRUM 6:40e873bbc5f7 627 index = (index & INDEX_MASK);
MACRUM 6:40e873bbc5f7 628
MACRUM 6:40e873bbc5f7 629 /* 1.15 with exp 1 */
MACRUM 6:40e873bbc5f7 630 out = pRecipTable[index];
MACRUM 6:40e873bbc5f7 631
MACRUM 6:40e873bbc5f7 632 /* calculation of reciprocal value */
MACRUM 6:40e873bbc5f7 633 /* running approximation for two iterations */
MACRUM 6:40e873bbc5f7 634 for (i = 0; i < 2; i++)
MACRUM 6:40e873bbc5f7 635 {
MACRUM 6:40e873bbc5f7 636 tempVal = (q15_t) (((q31_t) in * out) >> 15);
MACRUM 6:40e873bbc5f7 637 tempVal = 0x7FFF - tempVal;
MACRUM 6:40e873bbc5f7 638 /* 1.15 with exp 1 */
MACRUM 6:40e873bbc5f7 639 out = (q15_t) (((q31_t) out * tempVal) >> 14);
MACRUM 6:40e873bbc5f7 640 }
MACRUM 6:40e873bbc5f7 641
MACRUM 6:40e873bbc5f7 642 /* write output */
MACRUM 6:40e873bbc5f7 643 *dst = out;
MACRUM 6:40e873bbc5f7 644
MACRUM 6:40e873bbc5f7 645 /* return num of signbits of out = 1/in value */
MACRUM 6:40e873bbc5f7 646 return (signBits + 1);
MACRUM 6:40e873bbc5f7 647
MACRUM 6:40e873bbc5f7 648 }
MACRUM 6:40e873bbc5f7 649
MACRUM 6:40e873bbc5f7 650
MACRUM 6:40e873bbc5f7 651 /*
MACRUM 6:40e873bbc5f7 652 * @brief C custom defined intrinisic function for only M0 processors
MACRUM 6:40e873bbc5f7 653 */
MACRUM 6:40e873bbc5f7 654 #if defined(ARM_MATH_CM0_FAMILY)
MACRUM 6:40e873bbc5f7 655
MACRUM 6:40e873bbc5f7 656 static __INLINE q31_t __SSAT(
MACRUM 6:40e873bbc5f7 657 q31_t x,
MACRUM 6:40e873bbc5f7 658 uint32_t y)
MACRUM 6:40e873bbc5f7 659 {
MACRUM 6:40e873bbc5f7 660 int32_t posMax, negMin;
MACRUM 6:40e873bbc5f7 661 uint32_t i;
MACRUM 6:40e873bbc5f7 662
MACRUM 6:40e873bbc5f7 663 posMax = 1;
MACRUM 6:40e873bbc5f7 664 for (i = 0; i < (y - 1); i++)
MACRUM 6:40e873bbc5f7 665 {
MACRUM 6:40e873bbc5f7 666 posMax = posMax * 2;
MACRUM 6:40e873bbc5f7 667 }
MACRUM 6:40e873bbc5f7 668
MACRUM 6:40e873bbc5f7 669 if(x > 0)
MACRUM 6:40e873bbc5f7 670 {
MACRUM 6:40e873bbc5f7 671 posMax = (posMax - 1);
MACRUM 6:40e873bbc5f7 672
MACRUM 6:40e873bbc5f7 673 if(x > posMax)
MACRUM 6:40e873bbc5f7 674 {
MACRUM 6:40e873bbc5f7 675 x = posMax;
MACRUM 6:40e873bbc5f7 676 }
MACRUM 6:40e873bbc5f7 677 }
MACRUM 6:40e873bbc5f7 678 else
MACRUM 6:40e873bbc5f7 679 {
MACRUM 6:40e873bbc5f7 680 negMin = -posMax;
MACRUM 6:40e873bbc5f7 681
MACRUM 6:40e873bbc5f7 682 if(x < negMin)
MACRUM 6:40e873bbc5f7 683 {
MACRUM 6:40e873bbc5f7 684 x = negMin;
MACRUM 6:40e873bbc5f7 685 }
MACRUM 6:40e873bbc5f7 686 }
MACRUM 6:40e873bbc5f7 687 return (x);
MACRUM 6:40e873bbc5f7 688
MACRUM 6:40e873bbc5f7 689
MACRUM 6:40e873bbc5f7 690 }
MACRUM 6:40e873bbc5f7 691
MACRUM 6:40e873bbc5f7 692 #endif /* end of ARM_MATH_CM0_FAMILY */
MACRUM 6:40e873bbc5f7 693
MACRUM 6:40e873bbc5f7 694
MACRUM 6:40e873bbc5f7 695
MACRUM 6:40e873bbc5f7 696 /*
MACRUM 6:40e873bbc5f7 697 * @brief C custom defined intrinsic function for M3 and M0 processors
MACRUM 6:40e873bbc5f7 698 */
MACRUM 6:40e873bbc5f7 699 #if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY)
MACRUM 6:40e873bbc5f7 700
MACRUM 6:40e873bbc5f7 701 /*
MACRUM 6:40e873bbc5f7 702 * @brief C custom defined QADD8 for M3 and M0 processors
MACRUM 6:40e873bbc5f7 703 */
MACRUM 6:40e873bbc5f7 704 static __INLINE q31_t __QADD8(
MACRUM 6:40e873bbc5f7 705 q31_t x,
MACRUM 6:40e873bbc5f7 706 q31_t y)
MACRUM 6:40e873bbc5f7 707 {
MACRUM 6:40e873bbc5f7 708
MACRUM 6:40e873bbc5f7 709 q31_t sum;
MACRUM 6:40e873bbc5f7 710 q7_t r, s, t, u;
MACRUM 6:40e873bbc5f7 711
MACRUM 6:40e873bbc5f7 712 r = (q7_t) x;
MACRUM 6:40e873bbc5f7 713 s = (q7_t) y;
MACRUM 6:40e873bbc5f7 714
MACRUM 6:40e873bbc5f7 715 r = __SSAT((q31_t) (r + s), 8);
MACRUM 6:40e873bbc5f7 716 s = __SSAT(((q31_t) (((x << 16) >> 24) + ((y << 16) >> 24))), 8);
MACRUM 6:40e873bbc5f7 717 t = __SSAT(((q31_t) (((x << 8) >> 24) + ((y << 8) >> 24))), 8);
MACRUM 6:40e873bbc5f7 718 u = __SSAT(((q31_t) ((x >> 24) + (y >> 24))), 8);
MACRUM 6:40e873bbc5f7 719
MACRUM 6:40e873bbc5f7 720 sum =
MACRUM 6:40e873bbc5f7 721 (((q31_t) u << 24) & 0xFF000000) | (((q31_t) t << 16) & 0x00FF0000) |
MACRUM 6:40e873bbc5f7 722 (((q31_t) s << 8) & 0x0000FF00) | (r & 0x000000FF);
MACRUM 6:40e873bbc5f7 723
MACRUM 6:40e873bbc5f7 724 return sum;
MACRUM 6:40e873bbc5f7 725
MACRUM 6:40e873bbc5f7 726 }
MACRUM 6:40e873bbc5f7 727
MACRUM 6:40e873bbc5f7 728 /*
MACRUM 6:40e873bbc5f7 729 * @brief C custom defined QSUB8 for M3 and M0 processors
MACRUM 6:40e873bbc5f7 730 */
MACRUM 6:40e873bbc5f7 731 static __INLINE q31_t __QSUB8(
MACRUM 6:40e873bbc5f7 732 q31_t x,
MACRUM 6:40e873bbc5f7 733 q31_t y)
MACRUM 6:40e873bbc5f7 734 {
MACRUM 6:40e873bbc5f7 735
MACRUM 6:40e873bbc5f7 736 q31_t sum;
MACRUM 6:40e873bbc5f7 737 q31_t r, s, t, u;
MACRUM 6:40e873bbc5f7 738
MACRUM 6:40e873bbc5f7 739 r = (q7_t) x;
MACRUM 6:40e873bbc5f7 740 s = (q7_t) y;
MACRUM 6:40e873bbc5f7 741
MACRUM 6:40e873bbc5f7 742 r = __SSAT((r - s), 8);
MACRUM 6:40e873bbc5f7 743 s = __SSAT(((q31_t) (((x << 16) >> 24) - ((y << 16) >> 24))), 8) << 8;
MACRUM 6:40e873bbc5f7 744 t = __SSAT(((q31_t) (((x << 8) >> 24) - ((y << 8) >> 24))), 8) << 16;
MACRUM 6:40e873bbc5f7 745 u = __SSAT(((q31_t) ((x >> 24) - (y >> 24))), 8) << 24;
MACRUM 6:40e873bbc5f7 746
MACRUM 6:40e873bbc5f7 747 sum =
MACRUM 6:40e873bbc5f7 748 (u & 0xFF000000) | (t & 0x00FF0000) | (s & 0x0000FF00) | (r &
MACRUM 6:40e873bbc5f7 749 0x000000FF);
MACRUM 6:40e873bbc5f7 750
MACRUM 6:40e873bbc5f7 751 return sum;
MACRUM 6:40e873bbc5f7 752 }
MACRUM 6:40e873bbc5f7 753
MACRUM 6:40e873bbc5f7 754 /*
MACRUM 6:40e873bbc5f7 755 * @brief C custom defined QADD16 for M3 and M0 processors
MACRUM 6:40e873bbc5f7 756 */
MACRUM 6:40e873bbc5f7 757
MACRUM 6:40e873bbc5f7 758 /*
MACRUM 6:40e873bbc5f7 759 * @brief C custom defined QADD16 for M3 and M0 processors
MACRUM 6:40e873bbc5f7 760 */
MACRUM 6:40e873bbc5f7 761 static __INLINE q31_t __QADD16(
MACRUM 6:40e873bbc5f7 762 q31_t x,
MACRUM 6:40e873bbc5f7 763 q31_t y)
MACRUM 6:40e873bbc5f7 764 {
MACRUM 6:40e873bbc5f7 765
MACRUM 6:40e873bbc5f7 766 q31_t sum;
MACRUM 6:40e873bbc5f7 767 q31_t r, s;
MACRUM 6:40e873bbc5f7 768
MACRUM 6:40e873bbc5f7 769 r = (q15_t) x;
MACRUM 6:40e873bbc5f7 770 s = (q15_t) y;
MACRUM 6:40e873bbc5f7 771
MACRUM 6:40e873bbc5f7 772 r = __SSAT(r + s, 16);
MACRUM 6:40e873bbc5f7 773 s = __SSAT(((q31_t) ((x >> 16) + (y >> 16))), 16) << 16;
MACRUM 6:40e873bbc5f7 774
MACRUM 6:40e873bbc5f7 775 sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
MACRUM 6:40e873bbc5f7 776
MACRUM 6:40e873bbc5f7 777 return sum;
MACRUM 6:40e873bbc5f7 778
MACRUM 6:40e873bbc5f7 779 }
MACRUM 6:40e873bbc5f7 780
MACRUM 6:40e873bbc5f7 781 /*
MACRUM 6:40e873bbc5f7 782 * @brief C custom defined SHADD16 for M3 and M0 processors
MACRUM 6:40e873bbc5f7 783 */
MACRUM 6:40e873bbc5f7 784 static __INLINE q31_t __SHADD16(
MACRUM 6:40e873bbc5f7 785 q31_t x,
MACRUM 6:40e873bbc5f7 786 q31_t y)
MACRUM 6:40e873bbc5f7 787 {
MACRUM 6:40e873bbc5f7 788
MACRUM 6:40e873bbc5f7 789 q31_t sum;
MACRUM 6:40e873bbc5f7 790 q31_t r, s;
MACRUM 6:40e873bbc5f7 791
MACRUM 6:40e873bbc5f7 792 r = (q15_t) x;
MACRUM 6:40e873bbc5f7 793 s = (q15_t) y;
MACRUM 6:40e873bbc5f7 794
MACRUM 6:40e873bbc5f7 795 r = ((r >> 1) + (s >> 1));
MACRUM 6:40e873bbc5f7 796 s = ((q31_t) ((x >> 17) + (y >> 17))) << 16;
MACRUM 6:40e873bbc5f7 797
MACRUM 6:40e873bbc5f7 798 sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
MACRUM 6:40e873bbc5f7 799
MACRUM 6:40e873bbc5f7 800 return sum;
MACRUM 6:40e873bbc5f7 801
MACRUM 6:40e873bbc5f7 802 }
MACRUM 6:40e873bbc5f7 803
MACRUM 6:40e873bbc5f7 804 /*
MACRUM 6:40e873bbc5f7 805 * @brief C custom defined QSUB16 for M3 and M0 processors
MACRUM 6:40e873bbc5f7 806 */
MACRUM 6:40e873bbc5f7 807 static __INLINE q31_t __QSUB16(
MACRUM 6:40e873bbc5f7 808 q31_t x,
MACRUM 6:40e873bbc5f7 809 q31_t y)
MACRUM 6:40e873bbc5f7 810 {
MACRUM 6:40e873bbc5f7 811
MACRUM 6:40e873bbc5f7 812 q31_t sum;
MACRUM 6:40e873bbc5f7 813 q31_t r, s;
MACRUM 6:40e873bbc5f7 814
MACRUM 6:40e873bbc5f7 815 r = (q15_t) x;
MACRUM 6:40e873bbc5f7 816 s = (q15_t) y;
MACRUM 6:40e873bbc5f7 817
MACRUM 6:40e873bbc5f7 818 r = __SSAT(r - s, 16);
MACRUM 6:40e873bbc5f7 819 s = __SSAT(((q31_t) ((x >> 16) - (y >> 16))), 16) << 16;
MACRUM 6:40e873bbc5f7 820
MACRUM 6:40e873bbc5f7 821 sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
MACRUM 6:40e873bbc5f7 822
MACRUM 6:40e873bbc5f7 823 return sum;
MACRUM 6:40e873bbc5f7 824 }
MACRUM 6:40e873bbc5f7 825
MACRUM 6:40e873bbc5f7 826 /*
MACRUM 6:40e873bbc5f7 827 * @brief C custom defined SHSUB16 for M3 and M0 processors
MACRUM 6:40e873bbc5f7 828 */
MACRUM 6:40e873bbc5f7 829 static __INLINE q31_t __SHSUB16(
MACRUM 6:40e873bbc5f7 830 q31_t x,
MACRUM 6:40e873bbc5f7 831 q31_t y)
MACRUM 6:40e873bbc5f7 832 {
MACRUM 6:40e873bbc5f7 833
MACRUM 6:40e873bbc5f7 834 q31_t diff;
MACRUM 6:40e873bbc5f7 835 q31_t r, s;
MACRUM 6:40e873bbc5f7 836
MACRUM 6:40e873bbc5f7 837 r = (q15_t) x;
MACRUM 6:40e873bbc5f7 838 s = (q15_t) y;
MACRUM 6:40e873bbc5f7 839
MACRUM 6:40e873bbc5f7 840 r = ((r >> 1) - (s >> 1));
MACRUM 6:40e873bbc5f7 841 s = (((x >> 17) - (y >> 17)) << 16);
MACRUM 6:40e873bbc5f7 842
MACRUM 6:40e873bbc5f7 843 diff = (s & 0xFFFF0000) | (r & 0x0000FFFF);
MACRUM 6:40e873bbc5f7 844
MACRUM 6:40e873bbc5f7 845 return diff;
MACRUM 6:40e873bbc5f7 846 }
MACRUM 6:40e873bbc5f7 847
MACRUM 6:40e873bbc5f7 848 /*
MACRUM 6:40e873bbc5f7 849 * @brief C custom defined QASX for M3 and M0 processors
MACRUM 6:40e873bbc5f7 850 */
MACRUM 6:40e873bbc5f7 851 static __INLINE q31_t __QASX(
MACRUM 6:40e873bbc5f7 852 q31_t x,
MACRUM 6:40e873bbc5f7 853 q31_t y)
MACRUM 6:40e873bbc5f7 854 {
MACRUM 6:40e873bbc5f7 855
MACRUM 6:40e873bbc5f7 856 q31_t sum = 0;
MACRUM 6:40e873bbc5f7 857
MACRUM 6:40e873bbc5f7 858 sum =
MACRUM 6:40e873bbc5f7 859 ((sum +
MACRUM 6:40e873bbc5f7 860 clip_q31_to_q15((q31_t) ((q15_t) (x >> 16) + (q15_t) y))) << 16) +
MACRUM 6:40e873bbc5f7 861 clip_q31_to_q15((q31_t) ((q15_t) x - (q15_t) (y >> 16)));
MACRUM 6:40e873bbc5f7 862
MACRUM 6:40e873bbc5f7 863 return sum;
MACRUM 6:40e873bbc5f7 864 }
MACRUM 6:40e873bbc5f7 865
MACRUM 6:40e873bbc5f7 866 /*
MACRUM 6:40e873bbc5f7 867 * @brief C custom defined SHASX for M3 and M0 processors
MACRUM 6:40e873bbc5f7 868 */
MACRUM 6:40e873bbc5f7 869 static __INLINE q31_t __SHASX(
MACRUM 6:40e873bbc5f7 870 q31_t x,
MACRUM 6:40e873bbc5f7 871 q31_t y)
MACRUM 6:40e873bbc5f7 872 {
MACRUM 6:40e873bbc5f7 873
MACRUM 6:40e873bbc5f7 874 q31_t sum;
MACRUM 6:40e873bbc5f7 875 q31_t r, s;
MACRUM 6:40e873bbc5f7 876
MACRUM 6:40e873bbc5f7 877 r = (q15_t) x;
MACRUM 6:40e873bbc5f7 878 s = (q15_t) y;
MACRUM 6:40e873bbc5f7 879
MACRUM 6:40e873bbc5f7 880 r = ((r >> 1) - (y >> 17));
MACRUM 6:40e873bbc5f7 881 s = (((x >> 17) + (s >> 1)) << 16);
MACRUM 6:40e873bbc5f7 882
MACRUM 6:40e873bbc5f7 883 sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
MACRUM 6:40e873bbc5f7 884
MACRUM 6:40e873bbc5f7 885 return sum;
MACRUM 6:40e873bbc5f7 886 }
MACRUM 6:40e873bbc5f7 887
MACRUM 6:40e873bbc5f7 888
MACRUM 6:40e873bbc5f7 889 /*
MACRUM 6:40e873bbc5f7 890 * @brief C custom defined QSAX for M3 and M0 processors
MACRUM 6:40e873bbc5f7 891 */
MACRUM 6:40e873bbc5f7 892 static __INLINE q31_t __QSAX(
MACRUM 6:40e873bbc5f7 893 q31_t x,
MACRUM 6:40e873bbc5f7 894 q31_t y)
MACRUM 6:40e873bbc5f7 895 {
MACRUM 6:40e873bbc5f7 896
MACRUM 6:40e873bbc5f7 897 q31_t sum = 0;
MACRUM 6:40e873bbc5f7 898
MACRUM 6:40e873bbc5f7 899 sum =
MACRUM 6:40e873bbc5f7 900 ((sum +
MACRUM 6:40e873bbc5f7 901 clip_q31_to_q15((q31_t) ((q15_t) (x >> 16) - (q15_t) y))) << 16) +
MACRUM 6:40e873bbc5f7 902 clip_q31_to_q15((q31_t) ((q15_t) x + (q15_t) (y >> 16)));
MACRUM 6:40e873bbc5f7 903
MACRUM 6:40e873bbc5f7 904 return sum;
MACRUM 6:40e873bbc5f7 905 }
MACRUM 6:40e873bbc5f7 906
MACRUM 6:40e873bbc5f7 907 /*
MACRUM 6:40e873bbc5f7 908 * @brief C custom defined SHSAX for M3 and M0 processors
MACRUM 6:40e873bbc5f7 909 */
MACRUM 6:40e873bbc5f7 910 static __INLINE q31_t __SHSAX(
MACRUM 6:40e873bbc5f7 911 q31_t x,
MACRUM 6:40e873bbc5f7 912 q31_t y)
MACRUM 6:40e873bbc5f7 913 {
MACRUM 6:40e873bbc5f7 914
MACRUM 6:40e873bbc5f7 915 q31_t sum;
MACRUM 6:40e873bbc5f7 916 q31_t r, s;
MACRUM 6:40e873bbc5f7 917
MACRUM 6:40e873bbc5f7 918 r = (q15_t) x;
MACRUM 6:40e873bbc5f7 919 s = (q15_t) y;
MACRUM 6:40e873bbc5f7 920
MACRUM 6:40e873bbc5f7 921 r = ((r >> 1) + (y >> 17));
MACRUM 6:40e873bbc5f7 922 s = (((x >> 17) - (s >> 1)) << 16);
MACRUM 6:40e873bbc5f7 923
MACRUM 6:40e873bbc5f7 924 sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
MACRUM 6:40e873bbc5f7 925
MACRUM 6:40e873bbc5f7 926 return sum;
MACRUM 6:40e873bbc5f7 927 }
MACRUM 6:40e873bbc5f7 928
MACRUM 6:40e873bbc5f7 929 /*
MACRUM 6:40e873bbc5f7 930 * @brief C custom defined SMUSDX for M3 and M0 processors
MACRUM 6:40e873bbc5f7 931 */
MACRUM 6:40e873bbc5f7 932 static __INLINE q31_t __SMUSDX(
MACRUM 6:40e873bbc5f7 933 q31_t x,
MACRUM 6:40e873bbc5f7 934 q31_t y)
MACRUM 6:40e873bbc5f7 935 {
MACRUM 6:40e873bbc5f7 936
MACRUM 6:40e873bbc5f7 937 return ((q31_t) (((q15_t) x * (q15_t) (y >> 16)) -
MACRUM 6:40e873bbc5f7 938 ((q15_t) (x >> 16) * (q15_t) y)));
MACRUM 6:40e873bbc5f7 939 }
MACRUM 6:40e873bbc5f7 940
MACRUM 6:40e873bbc5f7 941 /*
MACRUM 6:40e873bbc5f7 942 * @brief C custom defined SMUADX for M3 and M0 processors
MACRUM 6:40e873bbc5f7 943 */
MACRUM 6:40e873bbc5f7 944 static __INLINE q31_t __SMUADX(
MACRUM 6:40e873bbc5f7 945 q31_t x,
MACRUM 6:40e873bbc5f7 946 q31_t y)
MACRUM 6:40e873bbc5f7 947 {
MACRUM 6:40e873bbc5f7 948
MACRUM 6:40e873bbc5f7 949 return ((q31_t) (((q15_t) x * (q15_t) (y >> 16)) +
MACRUM 6:40e873bbc5f7 950 ((q15_t) (x >> 16) * (q15_t) y)));
MACRUM 6:40e873bbc5f7 951 }
MACRUM 6:40e873bbc5f7 952
MACRUM 6:40e873bbc5f7 953 /*
MACRUM 6:40e873bbc5f7 954 * @brief C custom defined QADD for M3 and M0 processors
MACRUM 6:40e873bbc5f7 955 */
MACRUM 6:40e873bbc5f7 956 static __INLINE q31_t __QADD(
MACRUM 6:40e873bbc5f7 957 q31_t x,
MACRUM 6:40e873bbc5f7 958 q31_t y)
MACRUM 6:40e873bbc5f7 959 {
MACRUM 6:40e873bbc5f7 960 return clip_q63_to_q31((q63_t) x + y);
MACRUM 6:40e873bbc5f7 961 }
MACRUM 6:40e873bbc5f7 962
MACRUM 6:40e873bbc5f7 963 /*
MACRUM 6:40e873bbc5f7 964 * @brief C custom defined QSUB for M3 and M0 processors
MACRUM 6:40e873bbc5f7 965 */
MACRUM 6:40e873bbc5f7 966 static __INLINE q31_t __QSUB(
MACRUM 6:40e873bbc5f7 967 q31_t x,
MACRUM 6:40e873bbc5f7 968 q31_t y)
MACRUM 6:40e873bbc5f7 969 {
MACRUM 6:40e873bbc5f7 970 return clip_q63_to_q31((q63_t) x - y);
MACRUM 6:40e873bbc5f7 971 }
MACRUM 6:40e873bbc5f7 972
MACRUM 6:40e873bbc5f7 973 /*
MACRUM 6:40e873bbc5f7 974 * @brief C custom defined SMLAD for M3 and M0 processors
MACRUM 6:40e873bbc5f7 975 */
MACRUM 6:40e873bbc5f7 976 static __INLINE q31_t __SMLAD(
MACRUM 6:40e873bbc5f7 977 q31_t x,
MACRUM 6:40e873bbc5f7 978 q31_t y,
MACRUM 6:40e873bbc5f7 979 q31_t sum)
MACRUM 6:40e873bbc5f7 980 {
MACRUM 6:40e873bbc5f7 981
MACRUM 6:40e873bbc5f7 982 return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) +
MACRUM 6:40e873bbc5f7 983 ((q15_t) x * (q15_t) y));
MACRUM 6:40e873bbc5f7 984 }
MACRUM 6:40e873bbc5f7 985
MACRUM 6:40e873bbc5f7 986 /*
MACRUM 6:40e873bbc5f7 987 * @brief C custom defined SMLADX for M3 and M0 processors
MACRUM 6:40e873bbc5f7 988 */
MACRUM 6:40e873bbc5f7 989 static __INLINE q31_t __SMLADX(
MACRUM 6:40e873bbc5f7 990 q31_t x,
MACRUM 6:40e873bbc5f7 991 q31_t y,
MACRUM 6:40e873bbc5f7 992 q31_t sum)
MACRUM 6:40e873bbc5f7 993 {
MACRUM 6:40e873bbc5f7 994
MACRUM 6:40e873bbc5f7 995 return (sum + ((q15_t) (x >> 16) * (q15_t) (y)) +
MACRUM 6:40e873bbc5f7 996 ((q15_t) x * (q15_t) (y >> 16)));
MACRUM 6:40e873bbc5f7 997 }
MACRUM 6:40e873bbc5f7 998
MACRUM 6:40e873bbc5f7 999 /*
MACRUM 6:40e873bbc5f7 1000 * @brief C custom defined SMLSDX for M3 and M0 processors
MACRUM 6:40e873bbc5f7 1001 */
MACRUM 6:40e873bbc5f7 1002 static __INLINE q31_t __SMLSDX(
MACRUM 6:40e873bbc5f7 1003 q31_t x,
MACRUM 6:40e873bbc5f7 1004 q31_t y,
MACRUM 6:40e873bbc5f7 1005 q31_t sum)
MACRUM 6:40e873bbc5f7 1006 {
MACRUM 6:40e873bbc5f7 1007
MACRUM 6:40e873bbc5f7 1008 return (sum - ((q15_t) (x >> 16) * (q15_t) (y)) +
MACRUM 6:40e873bbc5f7 1009 ((q15_t) x * (q15_t) (y >> 16)));
MACRUM 6:40e873bbc5f7 1010 }
MACRUM 6:40e873bbc5f7 1011
MACRUM 6:40e873bbc5f7 1012 /*
MACRUM 6:40e873bbc5f7 1013 * @brief C custom defined SMLALD for M3 and M0 processors
MACRUM 6:40e873bbc5f7 1014 */
MACRUM 6:40e873bbc5f7 1015 static __INLINE q63_t __SMLALD(
MACRUM 6:40e873bbc5f7 1016 q31_t x,
MACRUM 6:40e873bbc5f7 1017 q31_t y,
MACRUM 6:40e873bbc5f7 1018 q63_t sum)
MACRUM 6:40e873bbc5f7 1019 {
MACRUM 6:40e873bbc5f7 1020
MACRUM 6:40e873bbc5f7 1021 return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) +
MACRUM 6:40e873bbc5f7 1022 ((q15_t) x * (q15_t) y));
MACRUM 6:40e873bbc5f7 1023 }
MACRUM 6:40e873bbc5f7 1024
MACRUM 6:40e873bbc5f7 1025 /*
MACRUM 6:40e873bbc5f7 1026 * @brief C custom defined SMLALDX for M3 and M0 processors
MACRUM 6:40e873bbc5f7 1027 */
MACRUM 6:40e873bbc5f7 1028 static __INLINE q63_t __SMLALDX(
MACRUM 6:40e873bbc5f7 1029 q31_t x,
MACRUM 6:40e873bbc5f7 1030 q31_t y,
MACRUM 6:40e873bbc5f7 1031 q63_t sum)
MACRUM 6:40e873bbc5f7 1032 {
MACRUM 6:40e873bbc5f7 1033
MACRUM 6:40e873bbc5f7 1034 return (sum + ((q15_t) (x >> 16) * (q15_t) y)) +
MACRUM 6:40e873bbc5f7 1035 ((q15_t) x * (q15_t) (y >> 16));
MACRUM 6:40e873bbc5f7 1036 }
MACRUM 6:40e873bbc5f7 1037
MACRUM 6:40e873bbc5f7 1038 /*
MACRUM 6:40e873bbc5f7 1039 * @brief C custom defined SMUAD for M3 and M0 processors
MACRUM 6:40e873bbc5f7 1040 */
MACRUM 6:40e873bbc5f7 1041 static __INLINE q31_t __SMUAD(
MACRUM 6:40e873bbc5f7 1042 q31_t x,
MACRUM 6:40e873bbc5f7 1043 q31_t y)
MACRUM 6:40e873bbc5f7 1044 {
MACRUM 6:40e873bbc5f7 1045
MACRUM 6:40e873bbc5f7 1046 return (((x >> 16) * (y >> 16)) +
MACRUM 6:40e873bbc5f7 1047 (((x << 16) >> 16) * ((y << 16) >> 16)));
MACRUM 6:40e873bbc5f7 1048 }
MACRUM 6:40e873bbc5f7 1049
MACRUM 6:40e873bbc5f7 1050 /*
MACRUM 6:40e873bbc5f7 1051 * @brief C custom defined SMUSD for M3 and M0 processors
MACRUM 6:40e873bbc5f7 1052 */
MACRUM 6:40e873bbc5f7 1053 static __INLINE q31_t __SMUSD(
MACRUM 6:40e873bbc5f7 1054 q31_t x,
MACRUM 6:40e873bbc5f7 1055 q31_t y)
MACRUM 6:40e873bbc5f7 1056 {
MACRUM 6:40e873bbc5f7 1057
MACRUM 6:40e873bbc5f7 1058 return (-((x >> 16) * (y >> 16)) +
MACRUM 6:40e873bbc5f7 1059 (((x << 16) >> 16) * ((y << 16) >> 16)));
MACRUM 6:40e873bbc5f7 1060 }
MACRUM 6:40e873bbc5f7 1061
MACRUM 6:40e873bbc5f7 1062
MACRUM 6:40e873bbc5f7 1063 /*
MACRUM 6:40e873bbc5f7 1064 * @brief C custom defined SXTB16 for M3 and M0 processors
MACRUM 6:40e873bbc5f7 1065 */
MACRUM 6:40e873bbc5f7 1066 static __INLINE q31_t __SXTB16(
MACRUM 6:40e873bbc5f7 1067 q31_t x)
MACRUM 6:40e873bbc5f7 1068 {
MACRUM 6:40e873bbc5f7 1069
MACRUM 6:40e873bbc5f7 1070 return ((((x << 24) >> 24) & 0x0000FFFF) |
MACRUM 6:40e873bbc5f7 1071 (((x << 8) >> 8) & 0xFFFF0000));
MACRUM 6:40e873bbc5f7 1072 }
MACRUM 6:40e873bbc5f7 1073
MACRUM 6:40e873bbc5f7 1074
MACRUM 6:40e873bbc5f7 1075 #endif /* defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) */
MACRUM 6:40e873bbc5f7 1076
MACRUM 6:40e873bbc5f7 1077
MACRUM 6:40e873bbc5f7 1078 /**
MACRUM 6:40e873bbc5f7 1079 * @brief Instance structure for the Q7 FIR filter.
MACRUM 6:40e873bbc5f7 1080 */
MACRUM 6:40e873bbc5f7 1081 typedef struct
MACRUM 6:40e873bbc5f7 1082 {
MACRUM 6:40e873bbc5f7 1083 uint16_t numTaps; /**< number of filter coefficients in the filter. */
MACRUM 6:40e873bbc5f7 1084 q7_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
MACRUM 6:40e873bbc5f7 1085 q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
MACRUM 6:40e873bbc5f7 1086 } arm_fir_instance_q7;
MACRUM 6:40e873bbc5f7 1087
MACRUM 6:40e873bbc5f7 1088 /**
MACRUM 6:40e873bbc5f7 1089 * @brief Instance structure for the Q15 FIR filter.
MACRUM 6:40e873bbc5f7 1090 */
MACRUM 6:40e873bbc5f7 1091 typedef struct
MACRUM 6:40e873bbc5f7 1092 {
MACRUM 6:40e873bbc5f7 1093 uint16_t numTaps; /**< number of filter coefficients in the filter. */
MACRUM 6:40e873bbc5f7 1094 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
MACRUM 6:40e873bbc5f7 1095 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
MACRUM 6:40e873bbc5f7 1096 } arm_fir_instance_q15;
MACRUM 6:40e873bbc5f7 1097
MACRUM 6:40e873bbc5f7 1098 /**
MACRUM 6:40e873bbc5f7 1099 * @brief Instance structure for the Q31 FIR filter.
MACRUM 6:40e873bbc5f7 1100 */
MACRUM 6:40e873bbc5f7 1101 typedef struct
MACRUM 6:40e873bbc5f7 1102 {
MACRUM 6:40e873bbc5f7 1103 uint16_t numTaps; /**< number of filter coefficients in the filter. */
MACRUM 6:40e873bbc5f7 1104 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
MACRUM 6:40e873bbc5f7 1105 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
MACRUM 6:40e873bbc5f7 1106 } arm_fir_instance_q31;
MACRUM 6:40e873bbc5f7 1107
MACRUM 6:40e873bbc5f7 1108 /**
MACRUM 6:40e873bbc5f7 1109 * @brief Instance structure for the floating-point FIR filter.
MACRUM 6:40e873bbc5f7 1110 */
MACRUM 6:40e873bbc5f7 1111 typedef struct
MACRUM 6:40e873bbc5f7 1112 {
MACRUM 6:40e873bbc5f7 1113 uint16_t numTaps; /**< number of filter coefficients in the filter. */
MACRUM 6:40e873bbc5f7 1114 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
MACRUM 6:40e873bbc5f7 1115 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
MACRUM 6:40e873bbc5f7 1116 } arm_fir_instance_f32;
MACRUM 6:40e873bbc5f7 1117
MACRUM 6:40e873bbc5f7 1118
MACRUM 6:40e873bbc5f7 1119 /**
MACRUM 6:40e873bbc5f7 1120 * @brief Processing function for the Q7 FIR filter.
MACRUM 6:40e873bbc5f7 1121 * @param[in] *S points to an instance of the Q7 FIR filter structure.
MACRUM 6:40e873bbc5f7 1122 * @param[in] *pSrc points to the block of input data.
MACRUM 6:40e873bbc5f7 1123 * @param[out] *pDst points to the block of output data.
MACRUM 6:40e873bbc5f7 1124 * @param[in] blockSize number of samples to process.
MACRUM 6:40e873bbc5f7 1125 * @return none.
MACRUM 6:40e873bbc5f7 1126 */
MACRUM 6:40e873bbc5f7 1127 void arm_fir_q7(
MACRUM 6:40e873bbc5f7 1128 const arm_fir_instance_q7 * S,
MACRUM 6:40e873bbc5f7 1129 q7_t * pSrc,
MACRUM 6:40e873bbc5f7 1130 q7_t * pDst,
MACRUM 6:40e873bbc5f7 1131 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 1132
MACRUM 6:40e873bbc5f7 1133
MACRUM 6:40e873bbc5f7 1134 /**
MACRUM 6:40e873bbc5f7 1135 * @brief Initialization function for the Q7 FIR filter.
MACRUM 6:40e873bbc5f7 1136 * @param[in,out] *S points to an instance of the Q7 FIR structure.
MACRUM 6:40e873bbc5f7 1137 * @param[in] numTaps Number of filter coefficients in the filter.
MACRUM 6:40e873bbc5f7 1138 * @param[in] *pCoeffs points to the filter coefficients.
MACRUM 6:40e873bbc5f7 1139 * @param[in] *pState points to the state buffer.
MACRUM 6:40e873bbc5f7 1140 * @param[in] blockSize number of samples that are processed.
MACRUM 6:40e873bbc5f7 1141 * @return none
MACRUM 6:40e873bbc5f7 1142 */
MACRUM 6:40e873bbc5f7 1143 void arm_fir_init_q7(
MACRUM 6:40e873bbc5f7 1144 arm_fir_instance_q7 * S,
MACRUM 6:40e873bbc5f7 1145 uint16_t numTaps,
MACRUM 6:40e873bbc5f7 1146 q7_t * pCoeffs,
MACRUM 6:40e873bbc5f7 1147 q7_t * pState,
MACRUM 6:40e873bbc5f7 1148 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 1149
MACRUM 6:40e873bbc5f7 1150
MACRUM 6:40e873bbc5f7 1151 /**
MACRUM 6:40e873bbc5f7 1152 * @brief Processing function for the Q15 FIR filter.
MACRUM 6:40e873bbc5f7 1153 * @param[in] *S points to an instance of the Q15 FIR structure.
MACRUM 6:40e873bbc5f7 1154 * @param[in] *pSrc points to the block of input data.
MACRUM 6:40e873bbc5f7 1155 * @param[out] *pDst points to the block of output data.
MACRUM 6:40e873bbc5f7 1156 * @param[in] blockSize number of samples to process.
MACRUM 6:40e873bbc5f7 1157 * @return none.
MACRUM 6:40e873bbc5f7 1158 */
MACRUM 6:40e873bbc5f7 1159 void arm_fir_q15(
MACRUM 6:40e873bbc5f7 1160 const arm_fir_instance_q15 * S,
MACRUM 6:40e873bbc5f7 1161 q15_t * pSrc,
MACRUM 6:40e873bbc5f7 1162 q15_t * pDst,
MACRUM 6:40e873bbc5f7 1163 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 1164
MACRUM 6:40e873bbc5f7 1165 /**
MACRUM 6:40e873bbc5f7 1166 * @brief Processing function for the fast Q15 FIR filter for Cortex-M3 and Cortex-M4.
MACRUM 6:40e873bbc5f7 1167 * @param[in] *S points to an instance of the Q15 FIR filter structure.
MACRUM 6:40e873bbc5f7 1168 * @param[in] *pSrc points to the block of input data.
MACRUM 6:40e873bbc5f7 1169 * @param[out] *pDst points to the block of output data.
MACRUM 6:40e873bbc5f7 1170 * @param[in] blockSize number of samples to process.
MACRUM 6:40e873bbc5f7 1171 * @return none.
MACRUM 6:40e873bbc5f7 1172 */
MACRUM 6:40e873bbc5f7 1173 void arm_fir_fast_q15(
MACRUM 6:40e873bbc5f7 1174 const arm_fir_instance_q15 * S,
MACRUM 6:40e873bbc5f7 1175 q15_t * pSrc,
MACRUM 6:40e873bbc5f7 1176 q15_t * pDst,
MACRUM 6:40e873bbc5f7 1177 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 1178
MACRUM 6:40e873bbc5f7 1179 /**
MACRUM 6:40e873bbc5f7 1180 * @brief Initialization function for the Q15 FIR filter.
MACRUM 6:40e873bbc5f7 1181 * @param[in,out] *S points to an instance of the Q15 FIR filter structure.
MACRUM 6:40e873bbc5f7 1182 * @param[in] numTaps Number of filter coefficients in the filter. Must be even and greater than or equal to 4.
MACRUM 6:40e873bbc5f7 1183 * @param[in] *pCoeffs points to the filter coefficients.
MACRUM 6:40e873bbc5f7 1184 * @param[in] *pState points to the state buffer.
MACRUM 6:40e873bbc5f7 1185 * @param[in] blockSize number of samples that are processed at a time.
MACRUM 6:40e873bbc5f7 1186 * @return The function returns ARM_MATH_SUCCESS if initialization was successful or ARM_MATH_ARGUMENT_ERROR if
MACRUM 6:40e873bbc5f7 1187 * <code>numTaps</code> is not a supported value.
MACRUM 6:40e873bbc5f7 1188 */
MACRUM 6:40e873bbc5f7 1189
MACRUM 6:40e873bbc5f7 1190 arm_status arm_fir_init_q15(
MACRUM 6:40e873bbc5f7 1191 arm_fir_instance_q15 * S,
MACRUM 6:40e873bbc5f7 1192 uint16_t numTaps,
MACRUM 6:40e873bbc5f7 1193 q15_t * pCoeffs,
MACRUM 6:40e873bbc5f7 1194 q15_t * pState,
MACRUM 6:40e873bbc5f7 1195 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 1196
MACRUM 6:40e873bbc5f7 1197 /**
MACRUM 6:40e873bbc5f7 1198 * @brief Processing function for the Q31 FIR filter.
MACRUM 6:40e873bbc5f7 1199 * @param[in] *S points to an instance of the Q31 FIR filter structure.
MACRUM 6:40e873bbc5f7 1200 * @param[in] *pSrc points to the block of input data.
MACRUM 6:40e873bbc5f7 1201 * @param[out] *pDst points to the block of output data.
MACRUM 6:40e873bbc5f7 1202 * @param[in] blockSize number of samples to process.
MACRUM 6:40e873bbc5f7 1203 * @return none.
MACRUM 6:40e873bbc5f7 1204 */
MACRUM 6:40e873bbc5f7 1205 void arm_fir_q31(
MACRUM 6:40e873bbc5f7 1206 const arm_fir_instance_q31 * S,
MACRUM 6:40e873bbc5f7 1207 q31_t * pSrc,
MACRUM 6:40e873bbc5f7 1208 q31_t * pDst,
MACRUM 6:40e873bbc5f7 1209 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 1210
MACRUM 6:40e873bbc5f7 1211 /**
MACRUM 6:40e873bbc5f7 1212 * @brief Processing function for the fast Q31 FIR filter for Cortex-M3 and Cortex-M4.
MACRUM 6:40e873bbc5f7 1213 * @param[in] *S points to an instance of the Q31 FIR structure.
MACRUM 6:40e873bbc5f7 1214 * @param[in] *pSrc points to the block of input data.
MACRUM 6:40e873bbc5f7 1215 * @param[out] *pDst points to the block of output data.
MACRUM 6:40e873bbc5f7 1216 * @param[in] blockSize number of samples to process.
MACRUM 6:40e873bbc5f7 1217 * @return none.
MACRUM 6:40e873bbc5f7 1218 */
MACRUM 6:40e873bbc5f7 1219 void arm_fir_fast_q31(
MACRUM 6:40e873bbc5f7 1220 const arm_fir_instance_q31 * S,
MACRUM 6:40e873bbc5f7 1221 q31_t * pSrc,
MACRUM 6:40e873bbc5f7 1222 q31_t * pDst,
MACRUM 6:40e873bbc5f7 1223 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 1224
MACRUM 6:40e873bbc5f7 1225 /**
MACRUM 6:40e873bbc5f7 1226 * @brief Initialization function for the Q31 FIR filter.
MACRUM 6:40e873bbc5f7 1227 * @param[in,out] *S points to an instance of the Q31 FIR structure.
MACRUM 6:40e873bbc5f7 1228 * @param[in] numTaps Number of filter coefficients in the filter.
MACRUM 6:40e873bbc5f7 1229 * @param[in] *pCoeffs points to the filter coefficients.
MACRUM 6:40e873bbc5f7 1230 * @param[in] *pState points to the state buffer.
MACRUM 6:40e873bbc5f7 1231 * @param[in] blockSize number of samples that are processed at a time.
MACRUM 6:40e873bbc5f7 1232 * @return none.
MACRUM 6:40e873bbc5f7 1233 */
MACRUM 6:40e873bbc5f7 1234 void arm_fir_init_q31(
MACRUM 6:40e873bbc5f7 1235 arm_fir_instance_q31 * S,
MACRUM 6:40e873bbc5f7 1236 uint16_t numTaps,
MACRUM 6:40e873bbc5f7 1237 q31_t * pCoeffs,
MACRUM 6:40e873bbc5f7 1238 q31_t * pState,
MACRUM 6:40e873bbc5f7 1239 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 1240
MACRUM 6:40e873bbc5f7 1241 /**
MACRUM 6:40e873bbc5f7 1242 * @brief Processing function for the floating-point FIR filter.
MACRUM 6:40e873bbc5f7 1243 * @param[in] *S points to an instance of the floating-point FIR structure.
MACRUM 6:40e873bbc5f7 1244 * @param[in] *pSrc points to the block of input data.
MACRUM 6:40e873bbc5f7 1245 * @param[out] *pDst points to the block of output data.
MACRUM 6:40e873bbc5f7 1246 * @param[in] blockSize number of samples to process.
MACRUM 6:40e873bbc5f7 1247 * @return none.
MACRUM 6:40e873bbc5f7 1248 */
MACRUM 6:40e873bbc5f7 1249 void arm_fir_f32(
MACRUM 6:40e873bbc5f7 1250 const arm_fir_instance_f32 * S,
MACRUM 6:40e873bbc5f7 1251 float32_t * pSrc,
MACRUM 6:40e873bbc5f7 1252 float32_t * pDst,
MACRUM 6:40e873bbc5f7 1253 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 1254
MACRUM 6:40e873bbc5f7 1255 /**
MACRUM 6:40e873bbc5f7 1256 * @brief Initialization function for the floating-point FIR filter.
MACRUM 6:40e873bbc5f7 1257 * @param[in,out] *S points to an instance of the floating-point FIR filter structure.
MACRUM 6:40e873bbc5f7 1258 * @param[in] numTaps Number of filter coefficients in the filter.
MACRUM 6:40e873bbc5f7 1259 * @param[in] *pCoeffs points to the filter coefficients.
MACRUM 6:40e873bbc5f7 1260 * @param[in] *pState points to the state buffer.
MACRUM 6:40e873bbc5f7 1261 * @param[in] blockSize number of samples that are processed at a time.
MACRUM 6:40e873bbc5f7 1262 * @return none.
MACRUM 6:40e873bbc5f7 1263 */
MACRUM 6:40e873bbc5f7 1264 void arm_fir_init_f32(
MACRUM 6:40e873bbc5f7 1265 arm_fir_instance_f32 * S,
MACRUM 6:40e873bbc5f7 1266 uint16_t numTaps,
MACRUM 6:40e873bbc5f7 1267 float32_t * pCoeffs,
MACRUM 6:40e873bbc5f7 1268 float32_t * pState,
MACRUM 6:40e873bbc5f7 1269 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 1270
MACRUM 6:40e873bbc5f7 1271
MACRUM 6:40e873bbc5f7 1272 /**
MACRUM 6:40e873bbc5f7 1273 * @brief Instance structure for the Q15 Biquad cascade filter.
MACRUM 6:40e873bbc5f7 1274 */
MACRUM 6:40e873bbc5f7 1275 typedef struct
MACRUM 6:40e873bbc5f7 1276 {
MACRUM 6:40e873bbc5f7 1277 int8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
MACRUM 6:40e873bbc5f7 1278 q15_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
MACRUM 6:40e873bbc5f7 1279 q15_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
MACRUM 6:40e873bbc5f7 1280 int8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
MACRUM 6:40e873bbc5f7 1281
MACRUM 6:40e873bbc5f7 1282 } arm_biquad_casd_df1_inst_q15;
MACRUM 6:40e873bbc5f7 1283
MACRUM 6:40e873bbc5f7 1284
MACRUM 6:40e873bbc5f7 1285 /**
MACRUM 6:40e873bbc5f7 1286 * @brief Instance structure for the Q31 Biquad cascade filter.
MACRUM 6:40e873bbc5f7 1287 */
MACRUM 6:40e873bbc5f7 1288 typedef struct
MACRUM 6:40e873bbc5f7 1289 {
MACRUM 6:40e873bbc5f7 1290 uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
MACRUM 6:40e873bbc5f7 1291 q31_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
MACRUM 6:40e873bbc5f7 1292 q31_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
MACRUM 6:40e873bbc5f7 1293 uint8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
MACRUM 6:40e873bbc5f7 1294
MACRUM 6:40e873bbc5f7 1295 } arm_biquad_casd_df1_inst_q31;
MACRUM 6:40e873bbc5f7 1296
MACRUM 6:40e873bbc5f7 1297 /**
MACRUM 6:40e873bbc5f7 1298 * @brief Instance structure for the floating-point Biquad cascade filter.
MACRUM 6:40e873bbc5f7 1299 */
MACRUM 6:40e873bbc5f7 1300 typedef struct
MACRUM 6:40e873bbc5f7 1301 {
MACRUM 6:40e873bbc5f7 1302 uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
MACRUM 6:40e873bbc5f7 1303 float32_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
MACRUM 6:40e873bbc5f7 1304 float32_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
MACRUM 6:40e873bbc5f7 1305
MACRUM 6:40e873bbc5f7 1306
MACRUM 6:40e873bbc5f7 1307 } arm_biquad_casd_df1_inst_f32;
MACRUM 6:40e873bbc5f7 1308
MACRUM 6:40e873bbc5f7 1309
MACRUM 6:40e873bbc5f7 1310
MACRUM 6:40e873bbc5f7 1311 /**
MACRUM 6:40e873bbc5f7 1312 * @brief Processing function for the Q15 Biquad cascade filter.
MACRUM 6:40e873bbc5f7 1313 * @param[in] *S points to an instance of the Q15 Biquad cascade structure.
MACRUM 6:40e873bbc5f7 1314 * @param[in] *pSrc points to the block of input data.
MACRUM 6:40e873bbc5f7 1315 * @param[out] *pDst points to the block of output data.
MACRUM 6:40e873bbc5f7 1316 * @param[in] blockSize number of samples to process.
MACRUM 6:40e873bbc5f7 1317 * @return none.
MACRUM 6:40e873bbc5f7 1318 */
MACRUM 6:40e873bbc5f7 1319
MACRUM 6:40e873bbc5f7 1320 void arm_biquad_cascade_df1_q15(
MACRUM 6:40e873bbc5f7 1321 const arm_biquad_casd_df1_inst_q15 * S,
MACRUM 6:40e873bbc5f7 1322 q15_t * pSrc,
MACRUM 6:40e873bbc5f7 1323 q15_t * pDst,
MACRUM 6:40e873bbc5f7 1324 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 1325
MACRUM 6:40e873bbc5f7 1326 /**
MACRUM 6:40e873bbc5f7 1327 * @brief Initialization function for the Q15 Biquad cascade filter.
MACRUM 6:40e873bbc5f7 1328 * @param[in,out] *S points to an instance of the Q15 Biquad cascade structure.
MACRUM 6:40e873bbc5f7 1329 * @param[in] numStages number of 2nd order stages in the filter.
MACRUM 6:40e873bbc5f7 1330 * @param[in] *pCoeffs points to the filter coefficients.
MACRUM 6:40e873bbc5f7 1331 * @param[in] *pState points to the state buffer.
MACRUM 6:40e873bbc5f7 1332 * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
MACRUM 6:40e873bbc5f7 1333 * @return none
MACRUM 6:40e873bbc5f7 1334 */
MACRUM 6:40e873bbc5f7 1335
MACRUM 6:40e873bbc5f7 1336 void arm_biquad_cascade_df1_init_q15(
MACRUM 6:40e873bbc5f7 1337 arm_biquad_casd_df1_inst_q15 * S,
MACRUM 6:40e873bbc5f7 1338 uint8_t numStages,
MACRUM 6:40e873bbc5f7 1339 q15_t * pCoeffs,
MACRUM 6:40e873bbc5f7 1340 q15_t * pState,
MACRUM 6:40e873bbc5f7 1341 int8_t postShift);
MACRUM 6:40e873bbc5f7 1342
MACRUM 6:40e873bbc5f7 1343
MACRUM 6:40e873bbc5f7 1344 /**
MACRUM 6:40e873bbc5f7 1345 * @brief Fast but less precise processing function for the Q15 Biquad cascade filter for Cortex-M3 and Cortex-M4.
MACRUM 6:40e873bbc5f7 1346 * @param[in] *S points to an instance of the Q15 Biquad cascade structure.
MACRUM 6:40e873bbc5f7 1347 * @param[in] *pSrc points to the block of input data.
MACRUM 6:40e873bbc5f7 1348 * @param[out] *pDst points to the block of output data.
MACRUM 6:40e873bbc5f7 1349 * @param[in] blockSize number of samples to process.
MACRUM 6:40e873bbc5f7 1350 * @return none.
MACRUM 6:40e873bbc5f7 1351 */
MACRUM 6:40e873bbc5f7 1352
MACRUM 6:40e873bbc5f7 1353 void arm_biquad_cascade_df1_fast_q15(
MACRUM 6:40e873bbc5f7 1354 const arm_biquad_casd_df1_inst_q15 * S,
MACRUM 6:40e873bbc5f7 1355 q15_t * pSrc,
MACRUM 6:40e873bbc5f7 1356 q15_t * pDst,
MACRUM 6:40e873bbc5f7 1357 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 1358
MACRUM 6:40e873bbc5f7 1359
MACRUM 6:40e873bbc5f7 1360 /**
MACRUM 6:40e873bbc5f7 1361 * @brief Processing function for the Q31 Biquad cascade filter
MACRUM 6:40e873bbc5f7 1362 * @param[in] *S points to an instance of the Q31 Biquad cascade structure.
MACRUM 6:40e873bbc5f7 1363 * @param[in] *pSrc points to the block of input data.
MACRUM 6:40e873bbc5f7 1364 * @param[out] *pDst points to the block of output data.
MACRUM 6:40e873bbc5f7 1365 * @param[in] blockSize number of samples to process.
MACRUM 6:40e873bbc5f7 1366 * @return none.
MACRUM 6:40e873bbc5f7 1367 */
MACRUM 6:40e873bbc5f7 1368
MACRUM 6:40e873bbc5f7 1369 void arm_biquad_cascade_df1_q31(
MACRUM 6:40e873bbc5f7 1370 const arm_biquad_casd_df1_inst_q31 * S,
MACRUM 6:40e873bbc5f7 1371 q31_t * pSrc,
MACRUM 6:40e873bbc5f7 1372 q31_t * pDst,
MACRUM 6:40e873bbc5f7 1373 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 1374
MACRUM 6:40e873bbc5f7 1375 /**
MACRUM 6:40e873bbc5f7 1376 * @brief Fast but less precise processing function for the Q31 Biquad cascade filter for Cortex-M3 and Cortex-M4.
MACRUM 6:40e873bbc5f7 1377 * @param[in] *S points to an instance of the Q31 Biquad cascade structure.
MACRUM 6:40e873bbc5f7 1378 * @param[in] *pSrc points to the block of input data.
MACRUM 6:40e873bbc5f7 1379 * @param[out] *pDst points to the block of output data.
MACRUM 6:40e873bbc5f7 1380 * @param[in] blockSize number of samples to process.
MACRUM 6:40e873bbc5f7 1381 * @return none.
MACRUM 6:40e873bbc5f7 1382 */
MACRUM 6:40e873bbc5f7 1383
MACRUM 6:40e873bbc5f7 1384 void arm_biquad_cascade_df1_fast_q31(
MACRUM 6:40e873bbc5f7 1385 const arm_biquad_casd_df1_inst_q31 * S,
MACRUM 6:40e873bbc5f7 1386 q31_t * pSrc,
MACRUM 6:40e873bbc5f7 1387 q31_t * pDst,
MACRUM 6:40e873bbc5f7 1388 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 1389
MACRUM 6:40e873bbc5f7 1390 /**
MACRUM 6:40e873bbc5f7 1391 * @brief Initialization function for the Q31 Biquad cascade filter.
MACRUM 6:40e873bbc5f7 1392 * @param[in,out] *S points to an instance of the Q31 Biquad cascade structure.
MACRUM 6:40e873bbc5f7 1393 * @param[in] numStages number of 2nd order stages in the filter.
MACRUM 6:40e873bbc5f7 1394 * @param[in] *pCoeffs points to the filter coefficients.
MACRUM 6:40e873bbc5f7 1395 * @param[in] *pState points to the state buffer.
MACRUM 6:40e873bbc5f7 1396 * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
MACRUM 6:40e873bbc5f7 1397 * @return none
MACRUM 6:40e873bbc5f7 1398 */
MACRUM 6:40e873bbc5f7 1399
MACRUM 6:40e873bbc5f7 1400 void arm_biquad_cascade_df1_init_q31(
MACRUM 6:40e873bbc5f7 1401 arm_biquad_casd_df1_inst_q31 * S,
MACRUM 6:40e873bbc5f7 1402 uint8_t numStages,
MACRUM 6:40e873bbc5f7 1403 q31_t * pCoeffs,
MACRUM 6:40e873bbc5f7 1404 q31_t * pState,
MACRUM 6:40e873bbc5f7 1405 int8_t postShift);
MACRUM 6:40e873bbc5f7 1406
MACRUM 6:40e873bbc5f7 1407 /**
MACRUM 6:40e873bbc5f7 1408 * @brief Processing function for the floating-point Biquad cascade filter.
MACRUM 6:40e873bbc5f7 1409 * @param[in] *S points to an instance of the floating-point Biquad cascade structure.
MACRUM 6:40e873bbc5f7 1410 * @param[in] *pSrc points to the block of input data.
MACRUM 6:40e873bbc5f7 1411 * @param[out] *pDst points to the block of output data.
MACRUM 6:40e873bbc5f7 1412 * @param[in] blockSize number of samples to process.
MACRUM 6:40e873bbc5f7 1413 * @return none.
MACRUM 6:40e873bbc5f7 1414 */
MACRUM 6:40e873bbc5f7 1415
MACRUM 6:40e873bbc5f7 1416 void arm_biquad_cascade_df1_f32(
MACRUM 6:40e873bbc5f7 1417 const arm_biquad_casd_df1_inst_f32 * S,
MACRUM 6:40e873bbc5f7 1418 float32_t * pSrc,
MACRUM 6:40e873bbc5f7 1419 float32_t * pDst,
MACRUM 6:40e873bbc5f7 1420 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 1421
MACRUM 6:40e873bbc5f7 1422 /**
MACRUM 6:40e873bbc5f7 1423 * @brief Initialization function for the floating-point Biquad cascade filter.
MACRUM 6:40e873bbc5f7 1424 * @param[in,out] *S points to an instance of the floating-point Biquad cascade structure.
MACRUM 6:40e873bbc5f7 1425 * @param[in] numStages number of 2nd order stages in the filter.
MACRUM 6:40e873bbc5f7 1426 * @param[in] *pCoeffs points to the filter coefficients.
MACRUM 6:40e873bbc5f7 1427 * @param[in] *pState points to the state buffer.
MACRUM 6:40e873bbc5f7 1428 * @return none
MACRUM 6:40e873bbc5f7 1429 */
MACRUM 6:40e873bbc5f7 1430
MACRUM 6:40e873bbc5f7 1431 void arm_biquad_cascade_df1_init_f32(
MACRUM 6:40e873bbc5f7 1432 arm_biquad_casd_df1_inst_f32 * S,
MACRUM 6:40e873bbc5f7 1433 uint8_t numStages,
MACRUM 6:40e873bbc5f7 1434 float32_t * pCoeffs,
MACRUM 6:40e873bbc5f7 1435 float32_t * pState);
MACRUM 6:40e873bbc5f7 1436
MACRUM 6:40e873bbc5f7 1437
MACRUM 6:40e873bbc5f7 1438 /**
MACRUM 6:40e873bbc5f7 1439 * @brief Instance structure for the floating-point matrix structure.
MACRUM 6:40e873bbc5f7 1440 */
MACRUM 6:40e873bbc5f7 1441
MACRUM 6:40e873bbc5f7 1442 typedef struct
MACRUM 6:40e873bbc5f7 1443 {
MACRUM 6:40e873bbc5f7 1444 uint16_t numRows; /**< number of rows of the matrix. */
MACRUM 6:40e873bbc5f7 1445 uint16_t numCols; /**< number of columns of the matrix. */
MACRUM 6:40e873bbc5f7 1446 float32_t *pData; /**< points to the data of the matrix. */
MACRUM 6:40e873bbc5f7 1447 } arm_matrix_instance_f32;
MACRUM 6:40e873bbc5f7 1448
MACRUM 6:40e873bbc5f7 1449
MACRUM 6:40e873bbc5f7 1450 /**
MACRUM 6:40e873bbc5f7 1451 * @brief Instance structure for the floating-point matrix structure.
MACRUM 6:40e873bbc5f7 1452 */
MACRUM 6:40e873bbc5f7 1453
MACRUM 6:40e873bbc5f7 1454 typedef struct
MACRUM 6:40e873bbc5f7 1455 {
MACRUM 6:40e873bbc5f7 1456 uint16_t numRows; /**< number of rows of the matrix. */
MACRUM 6:40e873bbc5f7 1457 uint16_t numCols; /**< number of columns of the matrix. */
MACRUM 6:40e873bbc5f7 1458 float64_t *pData; /**< points to the data of the matrix. */
MACRUM 6:40e873bbc5f7 1459 } arm_matrix_instance_f64;
MACRUM 6:40e873bbc5f7 1460
MACRUM 6:40e873bbc5f7 1461 /**
MACRUM 6:40e873bbc5f7 1462 * @brief Instance structure for the Q15 matrix structure.
MACRUM 6:40e873bbc5f7 1463 */
MACRUM 6:40e873bbc5f7 1464
MACRUM 6:40e873bbc5f7 1465 typedef struct
MACRUM 6:40e873bbc5f7 1466 {
MACRUM 6:40e873bbc5f7 1467 uint16_t numRows; /**< number of rows of the matrix. */
MACRUM 6:40e873bbc5f7 1468 uint16_t numCols; /**< number of columns of the matrix. */
MACRUM 6:40e873bbc5f7 1469 q15_t *pData; /**< points to the data of the matrix. */
MACRUM 6:40e873bbc5f7 1470
MACRUM 6:40e873bbc5f7 1471 } arm_matrix_instance_q15;
MACRUM 6:40e873bbc5f7 1472
MACRUM 6:40e873bbc5f7 1473 /**
MACRUM 6:40e873bbc5f7 1474 * @brief Instance structure for the Q31 matrix structure.
MACRUM 6:40e873bbc5f7 1475 */
MACRUM 6:40e873bbc5f7 1476
MACRUM 6:40e873bbc5f7 1477 typedef struct
MACRUM 6:40e873bbc5f7 1478 {
MACRUM 6:40e873bbc5f7 1479 uint16_t numRows; /**< number of rows of the matrix. */
MACRUM 6:40e873bbc5f7 1480 uint16_t numCols; /**< number of columns of the matrix. */
MACRUM 6:40e873bbc5f7 1481 q31_t *pData; /**< points to the data of the matrix. */
MACRUM 6:40e873bbc5f7 1482
MACRUM 6:40e873bbc5f7 1483 } arm_matrix_instance_q31;
MACRUM 6:40e873bbc5f7 1484
MACRUM 6:40e873bbc5f7 1485
MACRUM 6:40e873bbc5f7 1486
MACRUM 6:40e873bbc5f7 1487 /**
MACRUM 6:40e873bbc5f7 1488 * @brief Floating-point matrix addition.
MACRUM 6:40e873bbc5f7 1489 * @param[in] *pSrcA points to the first input matrix structure
MACRUM 6:40e873bbc5f7 1490 * @param[in] *pSrcB points to the second input matrix structure
MACRUM 6:40e873bbc5f7 1491 * @param[out] *pDst points to output matrix structure
MACRUM 6:40e873bbc5f7 1492 * @return The function returns either
MACRUM 6:40e873bbc5f7 1493 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
MACRUM 6:40e873bbc5f7 1494 */
MACRUM 6:40e873bbc5f7 1495
MACRUM 6:40e873bbc5f7 1496 arm_status arm_mat_add_f32(
MACRUM 6:40e873bbc5f7 1497 const arm_matrix_instance_f32 * pSrcA,
MACRUM 6:40e873bbc5f7 1498 const arm_matrix_instance_f32 * pSrcB,
MACRUM 6:40e873bbc5f7 1499 arm_matrix_instance_f32 * pDst);
MACRUM 6:40e873bbc5f7 1500
MACRUM 6:40e873bbc5f7 1501 /**
MACRUM 6:40e873bbc5f7 1502 * @brief Q15 matrix addition.
MACRUM 6:40e873bbc5f7 1503 * @param[in] *pSrcA points to the first input matrix structure
MACRUM 6:40e873bbc5f7 1504 * @param[in] *pSrcB points to the second input matrix structure
MACRUM 6:40e873bbc5f7 1505 * @param[out] *pDst points to output matrix structure
MACRUM 6:40e873bbc5f7 1506 * @return The function returns either
MACRUM 6:40e873bbc5f7 1507 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
MACRUM 6:40e873bbc5f7 1508 */
MACRUM 6:40e873bbc5f7 1509
MACRUM 6:40e873bbc5f7 1510 arm_status arm_mat_add_q15(
MACRUM 6:40e873bbc5f7 1511 const arm_matrix_instance_q15 * pSrcA,
MACRUM 6:40e873bbc5f7 1512 const arm_matrix_instance_q15 * pSrcB,
MACRUM 6:40e873bbc5f7 1513 arm_matrix_instance_q15 * pDst);
MACRUM 6:40e873bbc5f7 1514
MACRUM 6:40e873bbc5f7 1515 /**
MACRUM 6:40e873bbc5f7 1516 * @brief Q31 matrix addition.
MACRUM 6:40e873bbc5f7 1517 * @param[in] *pSrcA points to the first input matrix structure
MACRUM 6:40e873bbc5f7 1518 * @param[in] *pSrcB points to the second input matrix structure
MACRUM 6:40e873bbc5f7 1519 * @param[out] *pDst points to output matrix structure
MACRUM 6:40e873bbc5f7 1520 * @return The function returns either
MACRUM 6:40e873bbc5f7 1521 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
MACRUM 6:40e873bbc5f7 1522 */
MACRUM 6:40e873bbc5f7 1523
MACRUM 6:40e873bbc5f7 1524 arm_status arm_mat_add_q31(
MACRUM 6:40e873bbc5f7 1525 const arm_matrix_instance_q31 * pSrcA,
MACRUM 6:40e873bbc5f7 1526 const arm_matrix_instance_q31 * pSrcB,
MACRUM 6:40e873bbc5f7 1527 arm_matrix_instance_q31 * pDst);
MACRUM 6:40e873bbc5f7 1528
MACRUM 6:40e873bbc5f7 1529 /**
MACRUM 6:40e873bbc5f7 1530 * @brief Floating-point, complex, matrix multiplication.
MACRUM 6:40e873bbc5f7 1531 * @param[in] *pSrcA points to the first input matrix structure
MACRUM 6:40e873bbc5f7 1532 * @param[in] *pSrcB points to the second input matrix structure
MACRUM 6:40e873bbc5f7 1533 * @param[out] *pDst points to output matrix structure
MACRUM 6:40e873bbc5f7 1534 * @return The function returns either
MACRUM 6:40e873bbc5f7 1535 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
MACRUM 6:40e873bbc5f7 1536 */
MACRUM 6:40e873bbc5f7 1537
MACRUM 6:40e873bbc5f7 1538 arm_status arm_mat_cmplx_mult_f32(
MACRUM 6:40e873bbc5f7 1539 const arm_matrix_instance_f32 * pSrcA,
MACRUM 6:40e873bbc5f7 1540 const arm_matrix_instance_f32 * pSrcB,
MACRUM 6:40e873bbc5f7 1541 arm_matrix_instance_f32 * pDst);
MACRUM 6:40e873bbc5f7 1542
MACRUM 6:40e873bbc5f7 1543 /**
MACRUM 6:40e873bbc5f7 1544 * @brief Q15, complex, matrix multiplication.
MACRUM 6:40e873bbc5f7 1545 * @param[in] *pSrcA points to the first input matrix structure
MACRUM 6:40e873bbc5f7 1546 * @param[in] *pSrcB points to the second input matrix structure
MACRUM 6:40e873bbc5f7 1547 * @param[out] *pDst points to output matrix structure
MACRUM 6:40e873bbc5f7 1548 * @return The function returns either
MACRUM 6:40e873bbc5f7 1549 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
MACRUM 6:40e873bbc5f7 1550 */
MACRUM 6:40e873bbc5f7 1551
MACRUM 6:40e873bbc5f7 1552 arm_status arm_mat_cmplx_mult_q15(
MACRUM 6:40e873bbc5f7 1553 const arm_matrix_instance_q15 * pSrcA,
MACRUM 6:40e873bbc5f7 1554 const arm_matrix_instance_q15 * pSrcB,
MACRUM 6:40e873bbc5f7 1555 arm_matrix_instance_q15 * pDst,
MACRUM 6:40e873bbc5f7 1556 q15_t * pScratch);
MACRUM 6:40e873bbc5f7 1557
MACRUM 6:40e873bbc5f7 1558 /**
MACRUM 6:40e873bbc5f7 1559 * @brief Q31, complex, matrix multiplication.
MACRUM 6:40e873bbc5f7 1560 * @param[in] *pSrcA points to the first input matrix structure
MACRUM 6:40e873bbc5f7 1561 * @param[in] *pSrcB points to the second input matrix structure
MACRUM 6:40e873bbc5f7 1562 * @param[out] *pDst points to output matrix structure
MACRUM 6:40e873bbc5f7 1563 * @return The function returns either
MACRUM 6:40e873bbc5f7 1564 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
MACRUM 6:40e873bbc5f7 1565 */
MACRUM 6:40e873bbc5f7 1566
MACRUM 6:40e873bbc5f7 1567 arm_status arm_mat_cmplx_mult_q31(
MACRUM 6:40e873bbc5f7 1568 const arm_matrix_instance_q31 * pSrcA,
MACRUM 6:40e873bbc5f7 1569 const arm_matrix_instance_q31 * pSrcB,
MACRUM 6:40e873bbc5f7 1570 arm_matrix_instance_q31 * pDst);
MACRUM 6:40e873bbc5f7 1571
MACRUM 6:40e873bbc5f7 1572
MACRUM 6:40e873bbc5f7 1573 /**
MACRUM 6:40e873bbc5f7 1574 * @brief Floating-point matrix transpose.
MACRUM 6:40e873bbc5f7 1575 * @param[in] *pSrc points to the input matrix
MACRUM 6:40e873bbc5f7 1576 * @param[out] *pDst points to the output matrix
MACRUM 6:40e873bbc5f7 1577 * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
MACRUM 6:40e873bbc5f7 1578 * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
MACRUM 6:40e873bbc5f7 1579 */
MACRUM 6:40e873bbc5f7 1580
MACRUM 6:40e873bbc5f7 1581 arm_status arm_mat_trans_f32(
MACRUM 6:40e873bbc5f7 1582 const arm_matrix_instance_f32 * pSrc,
MACRUM 6:40e873bbc5f7 1583 arm_matrix_instance_f32 * pDst);
MACRUM 6:40e873bbc5f7 1584
MACRUM 6:40e873bbc5f7 1585
MACRUM 6:40e873bbc5f7 1586 /**
MACRUM 6:40e873bbc5f7 1587 * @brief Q15 matrix transpose.
MACRUM 6:40e873bbc5f7 1588 * @param[in] *pSrc points to the input matrix
MACRUM 6:40e873bbc5f7 1589 * @param[out] *pDst points to the output matrix
MACRUM 6:40e873bbc5f7 1590 * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
MACRUM 6:40e873bbc5f7 1591 * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
MACRUM 6:40e873bbc5f7 1592 */
MACRUM 6:40e873bbc5f7 1593
MACRUM 6:40e873bbc5f7 1594 arm_status arm_mat_trans_q15(
MACRUM 6:40e873bbc5f7 1595 const arm_matrix_instance_q15 * pSrc,
MACRUM 6:40e873bbc5f7 1596 arm_matrix_instance_q15 * pDst);
MACRUM 6:40e873bbc5f7 1597
MACRUM 6:40e873bbc5f7 1598 /**
MACRUM 6:40e873bbc5f7 1599 * @brief Q31 matrix transpose.
MACRUM 6:40e873bbc5f7 1600 * @param[in] *pSrc points to the input matrix
MACRUM 6:40e873bbc5f7 1601 * @param[out] *pDst points to the output matrix
MACRUM 6:40e873bbc5f7 1602 * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
MACRUM 6:40e873bbc5f7 1603 * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
MACRUM 6:40e873bbc5f7 1604 */
MACRUM 6:40e873bbc5f7 1605
MACRUM 6:40e873bbc5f7 1606 arm_status arm_mat_trans_q31(
MACRUM 6:40e873bbc5f7 1607 const arm_matrix_instance_q31 * pSrc,
MACRUM 6:40e873bbc5f7 1608 arm_matrix_instance_q31 * pDst);
MACRUM 6:40e873bbc5f7 1609
MACRUM 6:40e873bbc5f7 1610
MACRUM 6:40e873bbc5f7 1611 /**
MACRUM 6:40e873bbc5f7 1612 * @brief Floating-point matrix multiplication
MACRUM 6:40e873bbc5f7 1613 * @param[in] *pSrcA points to the first input matrix structure
MACRUM 6:40e873bbc5f7 1614 * @param[in] *pSrcB points to the second input matrix structure
MACRUM 6:40e873bbc5f7 1615 * @param[out] *pDst points to output matrix structure
MACRUM 6:40e873bbc5f7 1616 * @return The function returns either
MACRUM 6:40e873bbc5f7 1617 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
MACRUM 6:40e873bbc5f7 1618 */
MACRUM 6:40e873bbc5f7 1619
MACRUM 6:40e873bbc5f7 1620 arm_status arm_mat_mult_f32(
MACRUM 6:40e873bbc5f7 1621 const arm_matrix_instance_f32 * pSrcA,
MACRUM 6:40e873bbc5f7 1622 const arm_matrix_instance_f32 * pSrcB,
MACRUM 6:40e873bbc5f7 1623 arm_matrix_instance_f32 * pDst);
MACRUM 6:40e873bbc5f7 1624
MACRUM 6:40e873bbc5f7 1625 /**
MACRUM 6:40e873bbc5f7 1626 * @brief Q15 matrix multiplication
MACRUM 6:40e873bbc5f7 1627 * @param[in] *pSrcA points to the first input matrix structure
MACRUM 6:40e873bbc5f7 1628 * @param[in] *pSrcB points to the second input matrix structure
MACRUM 6:40e873bbc5f7 1629 * @param[out] *pDst points to output matrix structure
MACRUM 6:40e873bbc5f7 1630 * @param[in] *pState points to the array for storing intermediate results
MACRUM 6:40e873bbc5f7 1631 * @return The function returns either
MACRUM 6:40e873bbc5f7 1632 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
MACRUM 6:40e873bbc5f7 1633 */
MACRUM 6:40e873bbc5f7 1634
MACRUM 6:40e873bbc5f7 1635 arm_status arm_mat_mult_q15(
MACRUM 6:40e873bbc5f7 1636 const arm_matrix_instance_q15 * pSrcA,
MACRUM 6:40e873bbc5f7 1637 const arm_matrix_instance_q15 * pSrcB,
MACRUM 6:40e873bbc5f7 1638 arm_matrix_instance_q15 * pDst,
MACRUM 6:40e873bbc5f7 1639 q15_t * pState);
MACRUM 6:40e873bbc5f7 1640
MACRUM 6:40e873bbc5f7 1641 /**
MACRUM 6:40e873bbc5f7 1642 * @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
MACRUM 6:40e873bbc5f7 1643 * @param[in] *pSrcA points to the first input matrix structure
MACRUM 6:40e873bbc5f7 1644 * @param[in] *pSrcB points to the second input matrix structure
MACRUM 6:40e873bbc5f7 1645 * @param[out] *pDst points to output matrix structure
MACRUM 6:40e873bbc5f7 1646 * @param[in] *pState points to the array for storing intermediate results
MACRUM 6:40e873bbc5f7 1647 * @return The function returns either
MACRUM 6:40e873bbc5f7 1648 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
MACRUM 6:40e873bbc5f7 1649 */
MACRUM 6:40e873bbc5f7 1650
MACRUM 6:40e873bbc5f7 1651 arm_status arm_mat_mult_fast_q15(
MACRUM 6:40e873bbc5f7 1652 const arm_matrix_instance_q15 * pSrcA,
MACRUM 6:40e873bbc5f7 1653 const arm_matrix_instance_q15 * pSrcB,
MACRUM 6:40e873bbc5f7 1654 arm_matrix_instance_q15 * pDst,
MACRUM 6:40e873bbc5f7 1655 q15_t * pState);
MACRUM 6:40e873bbc5f7 1656
MACRUM 6:40e873bbc5f7 1657 /**
MACRUM 6:40e873bbc5f7 1658 * @brief Q31 matrix multiplication
MACRUM 6:40e873bbc5f7 1659 * @param[in] *pSrcA points to the first input matrix structure
MACRUM 6:40e873bbc5f7 1660 * @param[in] *pSrcB points to the second input matrix structure
MACRUM 6:40e873bbc5f7 1661 * @param[out] *pDst points to output matrix structure
MACRUM 6:40e873bbc5f7 1662 * @return The function returns either
MACRUM 6:40e873bbc5f7 1663 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
MACRUM 6:40e873bbc5f7 1664 */
MACRUM 6:40e873bbc5f7 1665
MACRUM 6:40e873bbc5f7 1666 arm_status arm_mat_mult_q31(
MACRUM 6:40e873bbc5f7 1667 const arm_matrix_instance_q31 * pSrcA,
MACRUM 6:40e873bbc5f7 1668 const arm_matrix_instance_q31 * pSrcB,
MACRUM 6:40e873bbc5f7 1669 arm_matrix_instance_q31 * pDst);
MACRUM 6:40e873bbc5f7 1670
MACRUM 6:40e873bbc5f7 1671 /**
MACRUM 6:40e873bbc5f7 1672 * @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
MACRUM 6:40e873bbc5f7 1673 * @param[in] *pSrcA points to the first input matrix structure
MACRUM 6:40e873bbc5f7 1674 * @param[in] *pSrcB points to the second input matrix structure
MACRUM 6:40e873bbc5f7 1675 * @param[out] *pDst points to output matrix structure
MACRUM 6:40e873bbc5f7 1676 * @return The function returns either
MACRUM 6:40e873bbc5f7 1677 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
MACRUM 6:40e873bbc5f7 1678 */
MACRUM 6:40e873bbc5f7 1679
MACRUM 6:40e873bbc5f7 1680 arm_status arm_mat_mult_fast_q31(
MACRUM 6:40e873bbc5f7 1681 const arm_matrix_instance_q31 * pSrcA,
MACRUM 6:40e873bbc5f7 1682 const arm_matrix_instance_q31 * pSrcB,
MACRUM 6:40e873bbc5f7 1683 arm_matrix_instance_q31 * pDst);
MACRUM 6:40e873bbc5f7 1684
MACRUM 6:40e873bbc5f7 1685
MACRUM 6:40e873bbc5f7 1686 /**
MACRUM 6:40e873bbc5f7 1687 * @brief Floating-point matrix subtraction
MACRUM 6:40e873bbc5f7 1688 * @param[in] *pSrcA points to the first input matrix structure
MACRUM 6:40e873bbc5f7 1689 * @param[in] *pSrcB points to the second input matrix structure
MACRUM 6:40e873bbc5f7 1690 * @param[out] *pDst points to output matrix structure
MACRUM 6:40e873bbc5f7 1691 * @return The function returns either
MACRUM 6:40e873bbc5f7 1692 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
MACRUM 6:40e873bbc5f7 1693 */
MACRUM 6:40e873bbc5f7 1694
MACRUM 6:40e873bbc5f7 1695 arm_status arm_mat_sub_f32(
MACRUM 6:40e873bbc5f7 1696 const arm_matrix_instance_f32 * pSrcA,
MACRUM 6:40e873bbc5f7 1697 const arm_matrix_instance_f32 * pSrcB,
MACRUM 6:40e873bbc5f7 1698 arm_matrix_instance_f32 * pDst);
MACRUM 6:40e873bbc5f7 1699
MACRUM 6:40e873bbc5f7 1700 /**
MACRUM 6:40e873bbc5f7 1701 * @brief Q15 matrix subtraction
MACRUM 6:40e873bbc5f7 1702 * @param[in] *pSrcA points to the first input matrix structure
MACRUM 6:40e873bbc5f7 1703 * @param[in] *pSrcB points to the second input matrix structure
MACRUM 6:40e873bbc5f7 1704 * @param[out] *pDst points to output matrix structure
MACRUM 6:40e873bbc5f7 1705 * @return The function returns either
MACRUM 6:40e873bbc5f7 1706 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
MACRUM 6:40e873bbc5f7 1707 */
MACRUM 6:40e873bbc5f7 1708
MACRUM 6:40e873bbc5f7 1709 arm_status arm_mat_sub_q15(
MACRUM 6:40e873bbc5f7 1710 const arm_matrix_instance_q15 * pSrcA,
MACRUM 6:40e873bbc5f7 1711 const arm_matrix_instance_q15 * pSrcB,
MACRUM 6:40e873bbc5f7 1712 arm_matrix_instance_q15 * pDst);
MACRUM 6:40e873bbc5f7 1713
MACRUM 6:40e873bbc5f7 1714 /**
MACRUM 6:40e873bbc5f7 1715 * @brief Q31 matrix subtraction
MACRUM 6:40e873bbc5f7 1716 * @param[in] *pSrcA points to the first input matrix structure
MACRUM 6:40e873bbc5f7 1717 * @param[in] *pSrcB points to the second input matrix structure
MACRUM 6:40e873bbc5f7 1718 * @param[out] *pDst points to output matrix structure
MACRUM 6:40e873bbc5f7 1719 * @return The function returns either
MACRUM 6:40e873bbc5f7 1720 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
MACRUM 6:40e873bbc5f7 1721 */
MACRUM 6:40e873bbc5f7 1722
MACRUM 6:40e873bbc5f7 1723 arm_status arm_mat_sub_q31(
MACRUM 6:40e873bbc5f7 1724 const arm_matrix_instance_q31 * pSrcA,
MACRUM 6:40e873bbc5f7 1725 const arm_matrix_instance_q31 * pSrcB,
MACRUM 6:40e873bbc5f7 1726 arm_matrix_instance_q31 * pDst);
MACRUM 6:40e873bbc5f7 1727
MACRUM 6:40e873bbc5f7 1728 /**
MACRUM 6:40e873bbc5f7 1729 * @brief Floating-point matrix scaling.
MACRUM 6:40e873bbc5f7 1730 * @param[in] *pSrc points to the input matrix
MACRUM 6:40e873bbc5f7 1731 * @param[in] scale scale factor
MACRUM 6:40e873bbc5f7 1732 * @param[out] *pDst points to the output matrix
MACRUM 6:40e873bbc5f7 1733 * @return The function returns either
MACRUM 6:40e873bbc5f7 1734 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
MACRUM 6:40e873bbc5f7 1735 */
MACRUM 6:40e873bbc5f7 1736
MACRUM 6:40e873bbc5f7 1737 arm_status arm_mat_scale_f32(
MACRUM 6:40e873bbc5f7 1738 const arm_matrix_instance_f32 * pSrc,
MACRUM 6:40e873bbc5f7 1739 float32_t scale,
MACRUM 6:40e873bbc5f7 1740 arm_matrix_instance_f32 * pDst);
MACRUM 6:40e873bbc5f7 1741
MACRUM 6:40e873bbc5f7 1742 /**
MACRUM 6:40e873bbc5f7 1743 * @brief Q15 matrix scaling.
MACRUM 6:40e873bbc5f7 1744 * @param[in] *pSrc points to input matrix
MACRUM 6:40e873bbc5f7 1745 * @param[in] scaleFract fractional portion of the scale factor
MACRUM 6:40e873bbc5f7 1746 * @param[in] shift number of bits to shift the result by
MACRUM 6:40e873bbc5f7 1747 * @param[out] *pDst points to output matrix
MACRUM 6:40e873bbc5f7 1748 * @return The function returns either
MACRUM 6:40e873bbc5f7 1749 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
MACRUM 6:40e873bbc5f7 1750 */
MACRUM 6:40e873bbc5f7 1751
MACRUM 6:40e873bbc5f7 1752 arm_status arm_mat_scale_q15(
MACRUM 6:40e873bbc5f7 1753 const arm_matrix_instance_q15 * pSrc,
MACRUM 6:40e873bbc5f7 1754 q15_t scaleFract,
MACRUM 6:40e873bbc5f7 1755 int32_t shift,
MACRUM 6:40e873bbc5f7 1756 arm_matrix_instance_q15 * pDst);
MACRUM 6:40e873bbc5f7 1757
MACRUM 6:40e873bbc5f7 1758 /**
MACRUM 6:40e873bbc5f7 1759 * @brief Q31 matrix scaling.
MACRUM 6:40e873bbc5f7 1760 * @param[in] *pSrc points to input matrix
MACRUM 6:40e873bbc5f7 1761 * @param[in] scaleFract fractional portion of the scale factor
MACRUM 6:40e873bbc5f7 1762 * @param[in] shift number of bits to shift the result by
MACRUM 6:40e873bbc5f7 1763 * @param[out] *pDst points to output matrix structure
MACRUM 6:40e873bbc5f7 1764 * @return The function returns either
MACRUM 6:40e873bbc5f7 1765 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
MACRUM 6:40e873bbc5f7 1766 */
MACRUM 6:40e873bbc5f7 1767
MACRUM 6:40e873bbc5f7 1768 arm_status arm_mat_scale_q31(
MACRUM 6:40e873bbc5f7 1769 const arm_matrix_instance_q31 * pSrc,
MACRUM 6:40e873bbc5f7 1770 q31_t scaleFract,
MACRUM 6:40e873bbc5f7 1771 int32_t shift,
MACRUM 6:40e873bbc5f7 1772 arm_matrix_instance_q31 * pDst);
MACRUM 6:40e873bbc5f7 1773
MACRUM 6:40e873bbc5f7 1774
MACRUM 6:40e873bbc5f7 1775 /**
MACRUM 6:40e873bbc5f7 1776 * @brief Q31 matrix initialization.
MACRUM 6:40e873bbc5f7 1777 * @param[in,out] *S points to an instance of the floating-point matrix structure.
MACRUM 6:40e873bbc5f7 1778 * @param[in] nRows number of rows in the matrix.
MACRUM 6:40e873bbc5f7 1779 * @param[in] nColumns number of columns in the matrix.
MACRUM 6:40e873bbc5f7 1780 * @param[in] *pData points to the matrix data array.
MACRUM 6:40e873bbc5f7 1781 * @return none
MACRUM 6:40e873bbc5f7 1782 */
MACRUM 6:40e873bbc5f7 1783
MACRUM 6:40e873bbc5f7 1784 void arm_mat_init_q31(
MACRUM 6:40e873bbc5f7 1785 arm_matrix_instance_q31 * S,
MACRUM 6:40e873bbc5f7 1786 uint16_t nRows,
MACRUM 6:40e873bbc5f7 1787 uint16_t nColumns,
MACRUM 6:40e873bbc5f7 1788 q31_t * pData);
MACRUM 6:40e873bbc5f7 1789
MACRUM 6:40e873bbc5f7 1790 /**
MACRUM 6:40e873bbc5f7 1791 * @brief Q15 matrix initialization.
MACRUM 6:40e873bbc5f7 1792 * @param[in,out] *S points to an instance of the floating-point matrix structure.
MACRUM 6:40e873bbc5f7 1793 * @param[in] nRows number of rows in the matrix.
MACRUM 6:40e873bbc5f7 1794 * @param[in] nColumns number of columns in the matrix.
MACRUM 6:40e873bbc5f7 1795 * @param[in] *pData points to the matrix data array.
MACRUM 6:40e873bbc5f7 1796 * @return none
MACRUM 6:40e873bbc5f7 1797 */
MACRUM 6:40e873bbc5f7 1798
MACRUM 6:40e873bbc5f7 1799 void arm_mat_init_q15(
MACRUM 6:40e873bbc5f7 1800 arm_matrix_instance_q15 * S,
MACRUM 6:40e873bbc5f7 1801 uint16_t nRows,
MACRUM 6:40e873bbc5f7 1802 uint16_t nColumns,
MACRUM 6:40e873bbc5f7 1803 q15_t * pData);
MACRUM 6:40e873bbc5f7 1804
MACRUM 6:40e873bbc5f7 1805 /**
MACRUM 6:40e873bbc5f7 1806 * @brief Floating-point matrix initialization.
MACRUM 6:40e873bbc5f7 1807 * @param[in,out] *S points to an instance of the floating-point matrix structure.
MACRUM 6:40e873bbc5f7 1808 * @param[in] nRows number of rows in the matrix.
MACRUM 6:40e873bbc5f7 1809 * @param[in] nColumns number of columns in the matrix.
MACRUM 6:40e873bbc5f7 1810 * @param[in] *pData points to the matrix data array.
MACRUM 6:40e873bbc5f7 1811 * @return none
MACRUM 6:40e873bbc5f7 1812 */
MACRUM 6:40e873bbc5f7 1813
MACRUM 6:40e873bbc5f7 1814 void arm_mat_init_f32(
MACRUM 6:40e873bbc5f7 1815 arm_matrix_instance_f32 * S,
MACRUM 6:40e873bbc5f7 1816 uint16_t nRows,
MACRUM 6:40e873bbc5f7 1817 uint16_t nColumns,
MACRUM 6:40e873bbc5f7 1818 float32_t * pData);
MACRUM 6:40e873bbc5f7 1819
MACRUM 6:40e873bbc5f7 1820
MACRUM 6:40e873bbc5f7 1821
MACRUM 6:40e873bbc5f7 1822 /**
MACRUM 6:40e873bbc5f7 1823 * @brief Instance structure for the Q15 PID Control.
MACRUM 6:40e873bbc5f7 1824 */
MACRUM 6:40e873bbc5f7 1825 typedef struct
MACRUM 6:40e873bbc5f7 1826 {
MACRUM 6:40e873bbc5f7 1827 q15_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
MACRUM 6:40e873bbc5f7 1828 #ifdef ARM_MATH_CM0_FAMILY
MACRUM 6:40e873bbc5f7 1829 q15_t A1;
MACRUM 6:40e873bbc5f7 1830 q15_t A2;
MACRUM 6:40e873bbc5f7 1831 #else
MACRUM 6:40e873bbc5f7 1832 q31_t A1; /**< The derived gain A1 = -Kp - 2Kd | Kd.*/
MACRUM 6:40e873bbc5f7 1833 #endif
MACRUM 6:40e873bbc5f7 1834 q15_t state[3]; /**< The state array of length 3. */
MACRUM 6:40e873bbc5f7 1835 q15_t Kp; /**< The proportional gain. */
MACRUM 6:40e873bbc5f7 1836 q15_t Ki; /**< The integral gain. */
MACRUM 6:40e873bbc5f7 1837 q15_t Kd; /**< The derivative gain. */
MACRUM 6:40e873bbc5f7 1838 } arm_pid_instance_q15;
MACRUM 6:40e873bbc5f7 1839
MACRUM 6:40e873bbc5f7 1840 /**
MACRUM 6:40e873bbc5f7 1841 * @brief Instance structure for the Q31 PID Control.
MACRUM 6:40e873bbc5f7 1842 */
MACRUM 6:40e873bbc5f7 1843 typedef struct
MACRUM 6:40e873bbc5f7 1844 {
MACRUM 6:40e873bbc5f7 1845 q31_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
MACRUM 6:40e873bbc5f7 1846 q31_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
MACRUM 6:40e873bbc5f7 1847 q31_t A2; /**< The derived gain, A2 = Kd . */
MACRUM 6:40e873bbc5f7 1848 q31_t state[3]; /**< The state array of length 3. */
MACRUM 6:40e873bbc5f7 1849 q31_t Kp; /**< The proportional gain. */
MACRUM 6:40e873bbc5f7 1850 q31_t Ki; /**< The integral gain. */
MACRUM 6:40e873bbc5f7 1851 q31_t Kd; /**< The derivative gain. */
MACRUM 6:40e873bbc5f7 1852
MACRUM 6:40e873bbc5f7 1853 } arm_pid_instance_q31;
MACRUM 6:40e873bbc5f7 1854
MACRUM 6:40e873bbc5f7 1855 /**
MACRUM 6:40e873bbc5f7 1856 * @brief Instance structure for the floating-point PID Control.
MACRUM 6:40e873bbc5f7 1857 */
MACRUM 6:40e873bbc5f7 1858 typedef struct
MACRUM 6:40e873bbc5f7 1859 {
MACRUM 6:40e873bbc5f7 1860 float32_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
MACRUM 6:40e873bbc5f7 1861 float32_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
MACRUM 6:40e873bbc5f7 1862 float32_t A2; /**< The derived gain, A2 = Kd . */
MACRUM 6:40e873bbc5f7 1863 float32_t state[3]; /**< The state array of length 3. */
MACRUM 6:40e873bbc5f7 1864 float32_t Kp; /**< The proportional gain. */
MACRUM 6:40e873bbc5f7 1865 float32_t Ki; /**< The integral gain. */
MACRUM 6:40e873bbc5f7 1866 float32_t Kd; /**< The derivative gain. */
MACRUM 6:40e873bbc5f7 1867 } arm_pid_instance_f32;
MACRUM 6:40e873bbc5f7 1868
MACRUM 6:40e873bbc5f7 1869
MACRUM 6:40e873bbc5f7 1870
MACRUM 6:40e873bbc5f7 1871 /**
MACRUM 6:40e873bbc5f7 1872 * @brief Initialization function for the floating-point PID Control.
MACRUM 6:40e873bbc5f7 1873 * @param[in,out] *S points to an instance of the PID structure.
MACRUM 6:40e873bbc5f7 1874 * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
MACRUM 6:40e873bbc5f7 1875 * @return none.
MACRUM 6:40e873bbc5f7 1876 */
MACRUM 6:40e873bbc5f7 1877 void arm_pid_init_f32(
MACRUM 6:40e873bbc5f7 1878 arm_pid_instance_f32 * S,
MACRUM 6:40e873bbc5f7 1879 int32_t resetStateFlag);
MACRUM 6:40e873bbc5f7 1880
MACRUM 6:40e873bbc5f7 1881 /**
MACRUM 6:40e873bbc5f7 1882 * @brief Reset function for the floating-point PID Control.
MACRUM 6:40e873bbc5f7 1883 * @param[in,out] *S is an instance of the floating-point PID Control structure
MACRUM 6:40e873bbc5f7 1884 * @return none
MACRUM 6:40e873bbc5f7 1885 */
MACRUM 6:40e873bbc5f7 1886 void arm_pid_reset_f32(
MACRUM 6:40e873bbc5f7 1887 arm_pid_instance_f32 * S);
MACRUM 6:40e873bbc5f7 1888
MACRUM 6:40e873bbc5f7 1889
MACRUM 6:40e873bbc5f7 1890 /**
MACRUM 6:40e873bbc5f7 1891 * @brief Initialization function for the Q31 PID Control.
MACRUM 6:40e873bbc5f7 1892 * @param[in,out] *S points to an instance of the Q15 PID structure.
MACRUM 6:40e873bbc5f7 1893 * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
MACRUM 6:40e873bbc5f7 1894 * @return none.
MACRUM 6:40e873bbc5f7 1895 */
MACRUM 6:40e873bbc5f7 1896 void arm_pid_init_q31(
MACRUM 6:40e873bbc5f7 1897 arm_pid_instance_q31 * S,
MACRUM 6:40e873bbc5f7 1898 int32_t resetStateFlag);
MACRUM 6:40e873bbc5f7 1899
MACRUM 6:40e873bbc5f7 1900
MACRUM 6:40e873bbc5f7 1901 /**
MACRUM 6:40e873bbc5f7 1902 * @brief Reset function for the Q31 PID Control.
MACRUM 6:40e873bbc5f7 1903 * @param[in,out] *S points to an instance of the Q31 PID Control structure
MACRUM 6:40e873bbc5f7 1904 * @return none
MACRUM 6:40e873bbc5f7 1905 */
MACRUM 6:40e873bbc5f7 1906
MACRUM 6:40e873bbc5f7 1907 void arm_pid_reset_q31(
MACRUM 6:40e873bbc5f7 1908 arm_pid_instance_q31 * S);
MACRUM 6:40e873bbc5f7 1909
MACRUM 6:40e873bbc5f7 1910 /**
MACRUM 6:40e873bbc5f7 1911 * @brief Initialization function for the Q15 PID Control.
MACRUM 6:40e873bbc5f7 1912 * @param[in,out] *S points to an instance of the Q15 PID structure.
MACRUM 6:40e873bbc5f7 1913 * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
MACRUM 6:40e873bbc5f7 1914 * @return none.
MACRUM 6:40e873bbc5f7 1915 */
MACRUM 6:40e873bbc5f7 1916 void arm_pid_init_q15(
MACRUM 6:40e873bbc5f7 1917 arm_pid_instance_q15 * S,
MACRUM 6:40e873bbc5f7 1918 int32_t resetStateFlag);
MACRUM 6:40e873bbc5f7 1919
MACRUM 6:40e873bbc5f7 1920 /**
MACRUM 6:40e873bbc5f7 1921 * @brief Reset function for the Q15 PID Control.
MACRUM 6:40e873bbc5f7 1922 * @param[in,out] *S points to an instance of the q15 PID Control structure
MACRUM 6:40e873bbc5f7 1923 * @return none
MACRUM 6:40e873bbc5f7 1924 */
MACRUM 6:40e873bbc5f7 1925 void arm_pid_reset_q15(
MACRUM 6:40e873bbc5f7 1926 arm_pid_instance_q15 * S);
MACRUM 6:40e873bbc5f7 1927
MACRUM 6:40e873bbc5f7 1928
MACRUM 6:40e873bbc5f7 1929 /**
MACRUM 6:40e873bbc5f7 1930 * @brief Instance structure for the floating-point Linear Interpolate function.
MACRUM 6:40e873bbc5f7 1931 */
MACRUM 6:40e873bbc5f7 1932 typedef struct
MACRUM 6:40e873bbc5f7 1933 {
MACRUM 6:40e873bbc5f7 1934 uint32_t nValues; /**< nValues */
MACRUM 6:40e873bbc5f7 1935 float32_t x1; /**< x1 */
MACRUM 6:40e873bbc5f7 1936 float32_t xSpacing; /**< xSpacing */
MACRUM 6:40e873bbc5f7 1937 float32_t *pYData; /**< pointer to the table of Y values */
MACRUM 6:40e873bbc5f7 1938 } arm_linear_interp_instance_f32;
MACRUM 6:40e873bbc5f7 1939
MACRUM 6:40e873bbc5f7 1940 /**
MACRUM 6:40e873bbc5f7 1941 * @brief Instance structure for the floating-point bilinear interpolation function.
MACRUM 6:40e873bbc5f7 1942 */
MACRUM 6:40e873bbc5f7 1943
MACRUM 6:40e873bbc5f7 1944 typedef struct
MACRUM 6:40e873bbc5f7 1945 {
MACRUM 6:40e873bbc5f7 1946 uint16_t numRows; /**< number of rows in the data table. */
MACRUM 6:40e873bbc5f7 1947 uint16_t numCols; /**< number of columns in the data table. */
MACRUM 6:40e873bbc5f7 1948 float32_t *pData; /**< points to the data table. */
MACRUM 6:40e873bbc5f7 1949 } arm_bilinear_interp_instance_f32;
MACRUM 6:40e873bbc5f7 1950
MACRUM 6:40e873bbc5f7 1951 /**
MACRUM 6:40e873bbc5f7 1952 * @brief Instance structure for the Q31 bilinear interpolation function.
MACRUM 6:40e873bbc5f7 1953 */
MACRUM 6:40e873bbc5f7 1954
MACRUM 6:40e873bbc5f7 1955 typedef struct
MACRUM 6:40e873bbc5f7 1956 {
MACRUM 6:40e873bbc5f7 1957 uint16_t numRows; /**< number of rows in the data table. */
MACRUM 6:40e873bbc5f7 1958 uint16_t numCols; /**< number of columns in the data table. */
MACRUM 6:40e873bbc5f7 1959 q31_t *pData; /**< points to the data table. */
MACRUM 6:40e873bbc5f7 1960 } arm_bilinear_interp_instance_q31;
MACRUM 6:40e873bbc5f7 1961
MACRUM 6:40e873bbc5f7 1962 /**
MACRUM 6:40e873bbc5f7 1963 * @brief Instance structure for the Q15 bilinear interpolation function.
MACRUM 6:40e873bbc5f7 1964 */
MACRUM 6:40e873bbc5f7 1965
MACRUM 6:40e873bbc5f7 1966 typedef struct
MACRUM 6:40e873bbc5f7 1967 {
MACRUM 6:40e873bbc5f7 1968 uint16_t numRows; /**< number of rows in the data table. */
MACRUM 6:40e873bbc5f7 1969 uint16_t numCols; /**< number of columns in the data table. */
MACRUM 6:40e873bbc5f7 1970 q15_t *pData; /**< points to the data table. */
MACRUM 6:40e873bbc5f7 1971 } arm_bilinear_interp_instance_q15;
MACRUM 6:40e873bbc5f7 1972
MACRUM 6:40e873bbc5f7 1973 /**
MACRUM 6:40e873bbc5f7 1974 * @brief Instance structure for the Q15 bilinear interpolation function.
MACRUM 6:40e873bbc5f7 1975 */
MACRUM 6:40e873bbc5f7 1976
MACRUM 6:40e873bbc5f7 1977 typedef struct
MACRUM 6:40e873bbc5f7 1978 {
MACRUM 6:40e873bbc5f7 1979 uint16_t numRows; /**< number of rows in the data table. */
MACRUM 6:40e873bbc5f7 1980 uint16_t numCols; /**< number of columns in the data table. */
MACRUM 6:40e873bbc5f7 1981 q7_t *pData; /**< points to the data table. */
MACRUM 6:40e873bbc5f7 1982 } arm_bilinear_interp_instance_q7;
MACRUM 6:40e873bbc5f7 1983
MACRUM 6:40e873bbc5f7 1984
MACRUM 6:40e873bbc5f7 1985 /**
MACRUM 6:40e873bbc5f7 1986 * @brief Q7 vector multiplication.
MACRUM 6:40e873bbc5f7 1987 * @param[in] *pSrcA points to the first input vector
MACRUM 6:40e873bbc5f7 1988 * @param[in] *pSrcB points to the second input vector
MACRUM 6:40e873bbc5f7 1989 * @param[out] *pDst points to the output vector
MACRUM 6:40e873bbc5f7 1990 * @param[in] blockSize number of samples in each vector
MACRUM 6:40e873bbc5f7 1991 * @return none.
MACRUM 6:40e873bbc5f7 1992 */
MACRUM 6:40e873bbc5f7 1993
MACRUM 6:40e873bbc5f7 1994 void arm_mult_q7(
MACRUM 6:40e873bbc5f7 1995 q7_t * pSrcA,
MACRUM 6:40e873bbc5f7 1996 q7_t * pSrcB,
MACRUM 6:40e873bbc5f7 1997 q7_t * pDst,
MACRUM 6:40e873bbc5f7 1998 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 1999
MACRUM 6:40e873bbc5f7 2000 /**
MACRUM 6:40e873bbc5f7 2001 * @brief Q15 vector multiplication.
MACRUM 6:40e873bbc5f7 2002 * @param[in] *pSrcA points to the first input vector
MACRUM 6:40e873bbc5f7 2003 * @param[in] *pSrcB points to the second input vector
MACRUM 6:40e873bbc5f7 2004 * @param[out] *pDst points to the output vector
MACRUM 6:40e873bbc5f7 2005 * @param[in] blockSize number of samples in each vector
MACRUM 6:40e873bbc5f7 2006 * @return none.
MACRUM 6:40e873bbc5f7 2007 */
MACRUM 6:40e873bbc5f7 2008
MACRUM 6:40e873bbc5f7 2009 void arm_mult_q15(
MACRUM 6:40e873bbc5f7 2010 q15_t * pSrcA,
MACRUM 6:40e873bbc5f7 2011 q15_t * pSrcB,
MACRUM 6:40e873bbc5f7 2012 q15_t * pDst,
MACRUM 6:40e873bbc5f7 2013 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 2014
MACRUM 6:40e873bbc5f7 2015 /**
MACRUM 6:40e873bbc5f7 2016 * @brief Q31 vector multiplication.
MACRUM 6:40e873bbc5f7 2017 * @param[in] *pSrcA points to the first input vector
MACRUM 6:40e873bbc5f7 2018 * @param[in] *pSrcB points to the second input vector
MACRUM 6:40e873bbc5f7 2019 * @param[out] *pDst points to the output vector
MACRUM 6:40e873bbc5f7 2020 * @param[in] blockSize number of samples in each vector
MACRUM 6:40e873bbc5f7 2021 * @return none.
MACRUM 6:40e873bbc5f7 2022 */
MACRUM 6:40e873bbc5f7 2023
MACRUM 6:40e873bbc5f7 2024 void arm_mult_q31(
MACRUM 6:40e873bbc5f7 2025 q31_t * pSrcA,
MACRUM 6:40e873bbc5f7 2026 q31_t * pSrcB,
MACRUM 6:40e873bbc5f7 2027 q31_t * pDst,
MACRUM 6:40e873bbc5f7 2028 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 2029
MACRUM 6:40e873bbc5f7 2030 /**
MACRUM 6:40e873bbc5f7 2031 * @brief Floating-point vector multiplication.
MACRUM 6:40e873bbc5f7 2032 * @param[in] *pSrcA points to the first input vector
MACRUM 6:40e873bbc5f7 2033 * @param[in] *pSrcB points to the second input vector
MACRUM 6:40e873bbc5f7 2034 * @param[out] *pDst points to the output vector
MACRUM 6:40e873bbc5f7 2035 * @param[in] blockSize number of samples in each vector
MACRUM 6:40e873bbc5f7 2036 * @return none.
MACRUM 6:40e873bbc5f7 2037 */
MACRUM 6:40e873bbc5f7 2038
MACRUM 6:40e873bbc5f7 2039 void arm_mult_f32(
MACRUM 6:40e873bbc5f7 2040 float32_t * pSrcA,
MACRUM 6:40e873bbc5f7 2041 float32_t * pSrcB,
MACRUM 6:40e873bbc5f7 2042 float32_t * pDst,
MACRUM 6:40e873bbc5f7 2043 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 2044
MACRUM 6:40e873bbc5f7 2045
MACRUM 6:40e873bbc5f7 2046
MACRUM 6:40e873bbc5f7 2047
MACRUM 6:40e873bbc5f7 2048
MACRUM 6:40e873bbc5f7 2049
MACRUM 6:40e873bbc5f7 2050 /**
MACRUM 6:40e873bbc5f7 2051 * @brief Instance structure for the Q15 CFFT/CIFFT function.
MACRUM 6:40e873bbc5f7 2052 */
MACRUM 6:40e873bbc5f7 2053
MACRUM 6:40e873bbc5f7 2054 typedef struct
MACRUM 6:40e873bbc5f7 2055 {
MACRUM 6:40e873bbc5f7 2056 uint16_t fftLen; /**< length of the FFT. */
MACRUM 6:40e873bbc5f7 2057 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
MACRUM 6:40e873bbc5f7 2058 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
MACRUM 6:40e873bbc5f7 2059 q15_t *pTwiddle; /**< points to the Sin twiddle factor table. */
MACRUM 6:40e873bbc5f7 2060 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
MACRUM 6:40e873bbc5f7 2061 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
MACRUM 6:40e873bbc5f7 2062 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
MACRUM 6:40e873bbc5f7 2063 } arm_cfft_radix2_instance_q15;
MACRUM 6:40e873bbc5f7 2064
MACRUM 6:40e873bbc5f7 2065 /* Deprecated */
MACRUM 6:40e873bbc5f7 2066 arm_status arm_cfft_radix2_init_q15(
MACRUM 6:40e873bbc5f7 2067 arm_cfft_radix2_instance_q15 * S,
MACRUM 6:40e873bbc5f7 2068 uint16_t fftLen,
MACRUM 6:40e873bbc5f7 2069 uint8_t ifftFlag,
MACRUM 6:40e873bbc5f7 2070 uint8_t bitReverseFlag);
MACRUM 6:40e873bbc5f7 2071
MACRUM 6:40e873bbc5f7 2072 /* Deprecated */
MACRUM 6:40e873bbc5f7 2073 void arm_cfft_radix2_q15(
MACRUM 6:40e873bbc5f7 2074 const arm_cfft_radix2_instance_q15 * S,
MACRUM 6:40e873bbc5f7 2075 q15_t * pSrc);
MACRUM 6:40e873bbc5f7 2076
MACRUM 6:40e873bbc5f7 2077
MACRUM 6:40e873bbc5f7 2078
MACRUM 6:40e873bbc5f7 2079 /**
MACRUM 6:40e873bbc5f7 2080 * @brief Instance structure for the Q15 CFFT/CIFFT function.
MACRUM 6:40e873bbc5f7 2081 */
MACRUM 6:40e873bbc5f7 2082
MACRUM 6:40e873bbc5f7 2083 typedef struct
MACRUM 6:40e873bbc5f7 2084 {
MACRUM 6:40e873bbc5f7 2085 uint16_t fftLen; /**< length of the FFT. */
MACRUM 6:40e873bbc5f7 2086 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
MACRUM 6:40e873bbc5f7 2087 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
MACRUM 6:40e873bbc5f7 2088 q15_t *pTwiddle; /**< points to the twiddle factor table. */
MACRUM 6:40e873bbc5f7 2089 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
MACRUM 6:40e873bbc5f7 2090 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
MACRUM 6:40e873bbc5f7 2091 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
MACRUM 6:40e873bbc5f7 2092 } arm_cfft_radix4_instance_q15;
MACRUM 6:40e873bbc5f7 2093
MACRUM 6:40e873bbc5f7 2094 /* Deprecated */
MACRUM 6:40e873bbc5f7 2095 arm_status arm_cfft_radix4_init_q15(
MACRUM 6:40e873bbc5f7 2096 arm_cfft_radix4_instance_q15 * S,
MACRUM 6:40e873bbc5f7 2097 uint16_t fftLen,
MACRUM 6:40e873bbc5f7 2098 uint8_t ifftFlag,
MACRUM 6:40e873bbc5f7 2099 uint8_t bitReverseFlag);
MACRUM 6:40e873bbc5f7 2100
MACRUM 6:40e873bbc5f7 2101 /* Deprecated */
MACRUM 6:40e873bbc5f7 2102 void arm_cfft_radix4_q15(
MACRUM 6:40e873bbc5f7 2103 const arm_cfft_radix4_instance_q15 * S,
MACRUM 6:40e873bbc5f7 2104 q15_t * pSrc);
MACRUM 6:40e873bbc5f7 2105
MACRUM 6:40e873bbc5f7 2106 /**
MACRUM 6:40e873bbc5f7 2107 * @brief Instance structure for the Radix-2 Q31 CFFT/CIFFT function.
MACRUM 6:40e873bbc5f7 2108 */
MACRUM 6:40e873bbc5f7 2109
MACRUM 6:40e873bbc5f7 2110 typedef struct
MACRUM 6:40e873bbc5f7 2111 {
MACRUM 6:40e873bbc5f7 2112 uint16_t fftLen; /**< length of the FFT. */
MACRUM 6:40e873bbc5f7 2113 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
MACRUM 6:40e873bbc5f7 2114 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
MACRUM 6:40e873bbc5f7 2115 q31_t *pTwiddle; /**< points to the Twiddle factor table. */
MACRUM 6:40e873bbc5f7 2116 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
MACRUM 6:40e873bbc5f7 2117 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
MACRUM 6:40e873bbc5f7 2118 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
MACRUM 6:40e873bbc5f7 2119 } arm_cfft_radix2_instance_q31;
MACRUM 6:40e873bbc5f7 2120
MACRUM 6:40e873bbc5f7 2121 /* Deprecated */
MACRUM 6:40e873bbc5f7 2122 arm_status arm_cfft_radix2_init_q31(
MACRUM 6:40e873bbc5f7 2123 arm_cfft_radix2_instance_q31 * S,
MACRUM 6:40e873bbc5f7 2124 uint16_t fftLen,
MACRUM 6:40e873bbc5f7 2125 uint8_t ifftFlag,
MACRUM 6:40e873bbc5f7 2126 uint8_t bitReverseFlag);
MACRUM 6:40e873bbc5f7 2127
MACRUM 6:40e873bbc5f7 2128 /* Deprecated */
MACRUM 6:40e873bbc5f7 2129 void arm_cfft_radix2_q31(
MACRUM 6:40e873bbc5f7 2130 const arm_cfft_radix2_instance_q31 * S,
MACRUM 6:40e873bbc5f7 2131 q31_t * pSrc);
MACRUM 6:40e873bbc5f7 2132
MACRUM 6:40e873bbc5f7 2133 /**
MACRUM 6:40e873bbc5f7 2134 * @brief Instance structure for the Q31 CFFT/CIFFT function.
MACRUM 6:40e873bbc5f7 2135 */
MACRUM 6:40e873bbc5f7 2136
MACRUM 6:40e873bbc5f7 2137 typedef struct
MACRUM 6:40e873bbc5f7 2138 {
MACRUM 6:40e873bbc5f7 2139 uint16_t fftLen; /**< length of the FFT. */
MACRUM 6:40e873bbc5f7 2140 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
MACRUM 6:40e873bbc5f7 2141 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
MACRUM 6:40e873bbc5f7 2142 q31_t *pTwiddle; /**< points to the twiddle factor table. */
MACRUM 6:40e873bbc5f7 2143 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
MACRUM 6:40e873bbc5f7 2144 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
MACRUM 6:40e873bbc5f7 2145 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
MACRUM 6:40e873bbc5f7 2146 } arm_cfft_radix4_instance_q31;
MACRUM 6:40e873bbc5f7 2147
MACRUM 6:40e873bbc5f7 2148 /* Deprecated */
MACRUM 6:40e873bbc5f7 2149 void arm_cfft_radix4_q31(
MACRUM 6:40e873bbc5f7 2150 const arm_cfft_radix4_instance_q31 * S,
MACRUM 6:40e873bbc5f7 2151 q31_t * pSrc);
MACRUM 6:40e873bbc5f7 2152
MACRUM 6:40e873bbc5f7 2153 /* Deprecated */
MACRUM 6:40e873bbc5f7 2154 arm_status arm_cfft_radix4_init_q31(
MACRUM 6:40e873bbc5f7 2155 arm_cfft_radix4_instance_q31 * S,
MACRUM 6:40e873bbc5f7 2156 uint16_t fftLen,
MACRUM 6:40e873bbc5f7 2157 uint8_t ifftFlag,
MACRUM 6:40e873bbc5f7 2158 uint8_t bitReverseFlag);
MACRUM 6:40e873bbc5f7 2159
MACRUM 6:40e873bbc5f7 2160 /**
MACRUM 6:40e873bbc5f7 2161 * @brief Instance structure for the floating-point CFFT/CIFFT function.
MACRUM 6:40e873bbc5f7 2162 */
MACRUM 6:40e873bbc5f7 2163
MACRUM 6:40e873bbc5f7 2164 typedef struct
MACRUM 6:40e873bbc5f7 2165 {
MACRUM 6:40e873bbc5f7 2166 uint16_t fftLen; /**< length of the FFT. */
MACRUM 6:40e873bbc5f7 2167 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
MACRUM 6:40e873bbc5f7 2168 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
MACRUM 6:40e873bbc5f7 2169 float32_t *pTwiddle; /**< points to the Twiddle factor table. */
MACRUM 6:40e873bbc5f7 2170 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
MACRUM 6:40e873bbc5f7 2171 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
MACRUM 6:40e873bbc5f7 2172 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
MACRUM 6:40e873bbc5f7 2173 float32_t onebyfftLen; /**< value of 1/fftLen. */
MACRUM 6:40e873bbc5f7 2174 } arm_cfft_radix2_instance_f32;
MACRUM 6:40e873bbc5f7 2175
MACRUM 6:40e873bbc5f7 2176 /* Deprecated */
MACRUM 6:40e873bbc5f7 2177 arm_status arm_cfft_radix2_init_f32(
MACRUM 6:40e873bbc5f7 2178 arm_cfft_radix2_instance_f32 * S,
MACRUM 6:40e873bbc5f7 2179 uint16_t fftLen,
MACRUM 6:40e873bbc5f7 2180 uint8_t ifftFlag,
MACRUM 6:40e873bbc5f7 2181 uint8_t bitReverseFlag);
MACRUM 6:40e873bbc5f7 2182
MACRUM 6:40e873bbc5f7 2183 /* Deprecated */
MACRUM 6:40e873bbc5f7 2184 void arm_cfft_radix2_f32(
MACRUM 6:40e873bbc5f7 2185 const arm_cfft_radix2_instance_f32 * S,
MACRUM 6:40e873bbc5f7 2186 float32_t * pSrc);
MACRUM 6:40e873bbc5f7 2187
MACRUM 6:40e873bbc5f7 2188 /**
MACRUM 6:40e873bbc5f7 2189 * @brief Instance structure for the floating-point CFFT/CIFFT function.
MACRUM 6:40e873bbc5f7 2190 */
MACRUM 6:40e873bbc5f7 2191
MACRUM 6:40e873bbc5f7 2192 typedef struct
MACRUM 6:40e873bbc5f7 2193 {
MACRUM 6:40e873bbc5f7 2194 uint16_t fftLen; /**< length of the FFT. */
MACRUM 6:40e873bbc5f7 2195 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
MACRUM 6:40e873bbc5f7 2196 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
MACRUM 6:40e873bbc5f7 2197 float32_t *pTwiddle; /**< points to the Twiddle factor table. */
MACRUM 6:40e873bbc5f7 2198 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
MACRUM 6:40e873bbc5f7 2199 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
MACRUM 6:40e873bbc5f7 2200 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
MACRUM 6:40e873bbc5f7 2201 float32_t onebyfftLen; /**< value of 1/fftLen. */
MACRUM 6:40e873bbc5f7 2202 } arm_cfft_radix4_instance_f32;
MACRUM 6:40e873bbc5f7 2203
MACRUM 6:40e873bbc5f7 2204 /* Deprecated */
MACRUM 6:40e873bbc5f7 2205 arm_status arm_cfft_radix4_init_f32(
MACRUM 6:40e873bbc5f7 2206 arm_cfft_radix4_instance_f32 * S,
MACRUM 6:40e873bbc5f7 2207 uint16_t fftLen,
MACRUM 6:40e873bbc5f7 2208 uint8_t ifftFlag,
MACRUM 6:40e873bbc5f7 2209 uint8_t bitReverseFlag);
MACRUM 6:40e873bbc5f7 2210
MACRUM 6:40e873bbc5f7 2211 /* Deprecated */
MACRUM 6:40e873bbc5f7 2212 void arm_cfft_radix4_f32(
MACRUM 6:40e873bbc5f7 2213 const arm_cfft_radix4_instance_f32 * S,
MACRUM 6:40e873bbc5f7 2214 float32_t * pSrc);
MACRUM 6:40e873bbc5f7 2215
MACRUM 6:40e873bbc5f7 2216 /**
MACRUM 6:40e873bbc5f7 2217 * @brief Instance structure for the fixed-point CFFT/CIFFT function.
MACRUM 6:40e873bbc5f7 2218 */
MACRUM 6:40e873bbc5f7 2219
MACRUM 6:40e873bbc5f7 2220 typedef struct
MACRUM 6:40e873bbc5f7 2221 {
MACRUM 6:40e873bbc5f7 2222 uint16_t fftLen; /**< length of the FFT. */
MACRUM 6:40e873bbc5f7 2223 const q15_t *pTwiddle; /**< points to the Twiddle factor table. */
MACRUM 6:40e873bbc5f7 2224 const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
MACRUM 6:40e873bbc5f7 2225 uint16_t bitRevLength; /**< bit reversal table length. */
MACRUM 6:40e873bbc5f7 2226 } arm_cfft_instance_q15;
MACRUM 6:40e873bbc5f7 2227
MACRUM 6:40e873bbc5f7 2228 void arm_cfft_q15(
MACRUM 6:40e873bbc5f7 2229 const arm_cfft_instance_q15 * S,
MACRUM 6:40e873bbc5f7 2230 q15_t * p1,
MACRUM 6:40e873bbc5f7 2231 uint8_t ifftFlag,
MACRUM 6:40e873bbc5f7 2232 uint8_t bitReverseFlag);
MACRUM 6:40e873bbc5f7 2233
MACRUM 6:40e873bbc5f7 2234 /**
MACRUM 6:40e873bbc5f7 2235 * @brief Instance structure for the fixed-point CFFT/CIFFT function.
MACRUM 6:40e873bbc5f7 2236 */
MACRUM 6:40e873bbc5f7 2237
MACRUM 6:40e873bbc5f7 2238 typedef struct
MACRUM 6:40e873bbc5f7 2239 {
MACRUM 6:40e873bbc5f7 2240 uint16_t fftLen; /**< length of the FFT. */
MACRUM 6:40e873bbc5f7 2241 const q31_t *pTwiddle; /**< points to the Twiddle factor table. */
MACRUM 6:40e873bbc5f7 2242 const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
MACRUM 6:40e873bbc5f7 2243 uint16_t bitRevLength; /**< bit reversal table length. */
MACRUM 6:40e873bbc5f7 2244 } arm_cfft_instance_q31;
MACRUM 6:40e873bbc5f7 2245
MACRUM 6:40e873bbc5f7 2246 void arm_cfft_q31(
MACRUM 6:40e873bbc5f7 2247 const arm_cfft_instance_q31 * S,
MACRUM 6:40e873bbc5f7 2248 q31_t * p1,
MACRUM 6:40e873bbc5f7 2249 uint8_t ifftFlag,
MACRUM 6:40e873bbc5f7 2250 uint8_t bitReverseFlag);
MACRUM 6:40e873bbc5f7 2251
MACRUM 6:40e873bbc5f7 2252 /**
MACRUM 6:40e873bbc5f7 2253 * @brief Instance structure for the floating-point CFFT/CIFFT function.
MACRUM 6:40e873bbc5f7 2254 */
MACRUM 6:40e873bbc5f7 2255
MACRUM 6:40e873bbc5f7 2256 typedef struct
MACRUM 6:40e873bbc5f7 2257 {
MACRUM 6:40e873bbc5f7 2258 uint16_t fftLen; /**< length of the FFT. */
MACRUM 6:40e873bbc5f7 2259 const float32_t *pTwiddle; /**< points to the Twiddle factor table. */
MACRUM 6:40e873bbc5f7 2260 const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
MACRUM 6:40e873bbc5f7 2261 uint16_t bitRevLength; /**< bit reversal table length. */
MACRUM 6:40e873bbc5f7 2262 } arm_cfft_instance_f32;
MACRUM 6:40e873bbc5f7 2263
MACRUM 6:40e873bbc5f7 2264 void arm_cfft_f32(
MACRUM 6:40e873bbc5f7 2265 const arm_cfft_instance_f32 * S,
MACRUM 6:40e873bbc5f7 2266 float32_t * p1,
MACRUM 6:40e873bbc5f7 2267 uint8_t ifftFlag,
MACRUM 6:40e873bbc5f7 2268 uint8_t bitReverseFlag);
MACRUM 6:40e873bbc5f7 2269
MACRUM 6:40e873bbc5f7 2270 /**
MACRUM 6:40e873bbc5f7 2271 * @brief Instance structure for the Q15 RFFT/RIFFT function.
MACRUM 6:40e873bbc5f7 2272 */
MACRUM 6:40e873bbc5f7 2273
MACRUM 6:40e873bbc5f7 2274 typedef struct
MACRUM 6:40e873bbc5f7 2275 {
MACRUM 6:40e873bbc5f7 2276 uint32_t fftLenReal; /**< length of the real FFT. */
MACRUM 6:40e873bbc5f7 2277 uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
MACRUM 6:40e873bbc5f7 2278 uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
MACRUM 6:40e873bbc5f7 2279 uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
MACRUM 6:40e873bbc5f7 2280 q15_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
MACRUM 6:40e873bbc5f7 2281 q15_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
MACRUM 6:40e873bbc5f7 2282 const arm_cfft_instance_q15 *pCfft; /**< points to the complex FFT instance. */
MACRUM 6:40e873bbc5f7 2283 } arm_rfft_instance_q15;
MACRUM 6:40e873bbc5f7 2284
MACRUM 6:40e873bbc5f7 2285 arm_status arm_rfft_init_q15(
MACRUM 6:40e873bbc5f7 2286 arm_rfft_instance_q15 * S,
MACRUM 6:40e873bbc5f7 2287 uint32_t fftLenReal,
MACRUM 6:40e873bbc5f7 2288 uint32_t ifftFlagR,
MACRUM 6:40e873bbc5f7 2289 uint32_t bitReverseFlag);
MACRUM 6:40e873bbc5f7 2290
MACRUM 6:40e873bbc5f7 2291 void arm_rfft_q15(
MACRUM 6:40e873bbc5f7 2292 const arm_rfft_instance_q15 * S,
MACRUM 6:40e873bbc5f7 2293 q15_t * pSrc,
MACRUM 6:40e873bbc5f7 2294 q15_t * pDst);
MACRUM 6:40e873bbc5f7 2295
MACRUM 6:40e873bbc5f7 2296 /**
MACRUM 6:40e873bbc5f7 2297 * @brief Instance structure for the Q31 RFFT/RIFFT function.
MACRUM 6:40e873bbc5f7 2298 */
MACRUM 6:40e873bbc5f7 2299
MACRUM 6:40e873bbc5f7 2300 typedef struct
MACRUM 6:40e873bbc5f7 2301 {
MACRUM 6:40e873bbc5f7 2302 uint32_t fftLenReal; /**< length of the real FFT. */
MACRUM 6:40e873bbc5f7 2303 uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
MACRUM 6:40e873bbc5f7 2304 uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
MACRUM 6:40e873bbc5f7 2305 uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
MACRUM 6:40e873bbc5f7 2306 q31_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
MACRUM 6:40e873bbc5f7 2307 q31_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
MACRUM 6:40e873bbc5f7 2308 const arm_cfft_instance_q31 *pCfft; /**< points to the complex FFT instance. */
MACRUM 6:40e873bbc5f7 2309 } arm_rfft_instance_q31;
MACRUM 6:40e873bbc5f7 2310
MACRUM 6:40e873bbc5f7 2311 arm_status arm_rfft_init_q31(
MACRUM 6:40e873bbc5f7 2312 arm_rfft_instance_q31 * S,
MACRUM 6:40e873bbc5f7 2313 uint32_t fftLenReal,
MACRUM 6:40e873bbc5f7 2314 uint32_t ifftFlagR,
MACRUM 6:40e873bbc5f7 2315 uint32_t bitReverseFlag);
MACRUM 6:40e873bbc5f7 2316
MACRUM 6:40e873bbc5f7 2317 void arm_rfft_q31(
MACRUM 6:40e873bbc5f7 2318 const arm_rfft_instance_q31 * S,
MACRUM 6:40e873bbc5f7 2319 q31_t * pSrc,
MACRUM 6:40e873bbc5f7 2320 q31_t * pDst);
MACRUM 6:40e873bbc5f7 2321
MACRUM 6:40e873bbc5f7 2322 /**
MACRUM 6:40e873bbc5f7 2323 * @brief Instance structure for the floating-point RFFT/RIFFT function.
MACRUM 6:40e873bbc5f7 2324 */
MACRUM 6:40e873bbc5f7 2325
MACRUM 6:40e873bbc5f7 2326 typedef struct
MACRUM 6:40e873bbc5f7 2327 {
MACRUM 6:40e873bbc5f7 2328 uint32_t fftLenReal; /**< length of the real FFT. */
MACRUM 6:40e873bbc5f7 2329 uint16_t fftLenBy2; /**< length of the complex FFT. */
MACRUM 6:40e873bbc5f7 2330 uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
MACRUM 6:40e873bbc5f7 2331 uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
MACRUM 6:40e873bbc5f7 2332 uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
MACRUM 6:40e873bbc5f7 2333 float32_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
MACRUM 6:40e873bbc5f7 2334 float32_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
MACRUM 6:40e873bbc5f7 2335 arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
MACRUM 6:40e873bbc5f7 2336 } arm_rfft_instance_f32;
MACRUM 6:40e873bbc5f7 2337
MACRUM 6:40e873bbc5f7 2338 arm_status arm_rfft_init_f32(
MACRUM 6:40e873bbc5f7 2339 arm_rfft_instance_f32 * S,
MACRUM 6:40e873bbc5f7 2340 arm_cfft_radix4_instance_f32 * S_CFFT,
MACRUM 6:40e873bbc5f7 2341 uint32_t fftLenReal,
MACRUM 6:40e873bbc5f7 2342 uint32_t ifftFlagR,
MACRUM 6:40e873bbc5f7 2343 uint32_t bitReverseFlag);
MACRUM 6:40e873bbc5f7 2344
MACRUM 6:40e873bbc5f7 2345 void arm_rfft_f32(
MACRUM 6:40e873bbc5f7 2346 const arm_rfft_instance_f32 * S,
MACRUM 6:40e873bbc5f7 2347 float32_t * pSrc,
MACRUM 6:40e873bbc5f7 2348 float32_t * pDst);
MACRUM 6:40e873bbc5f7 2349
MACRUM 6:40e873bbc5f7 2350 /**
MACRUM 6:40e873bbc5f7 2351 * @brief Instance structure for the floating-point RFFT/RIFFT function.
MACRUM 6:40e873bbc5f7 2352 */
MACRUM 6:40e873bbc5f7 2353
MACRUM 6:40e873bbc5f7 2354 typedef struct
MACRUM 6:40e873bbc5f7 2355 {
MACRUM 6:40e873bbc5f7 2356 arm_cfft_instance_f32 Sint; /**< Internal CFFT structure. */
MACRUM 6:40e873bbc5f7 2357 uint16_t fftLenRFFT; /**< length of the real sequence */
MACRUM 6:40e873bbc5f7 2358 float32_t * pTwiddleRFFT; /**< Twiddle factors real stage */
MACRUM 6:40e873bbc5f7 2359 } arm_rfft_fast_instance_f32 ;
MACRUM 6:40e873bbc5f7 2360
MACRUM 6:40e873bbc5f7 2361 arm_status arm_rfft_fast_init_f32 (
MACRUM 6:40e873bbc5f7 2362 arm_rfft_fast_instance_f32 * S,
MACRUM 6:40e873bbc5f7 2363 uint16_t fftLen);
MACRUM 6:40e873bbc5f7 2364
MACRUM 6:40e873bbc5f7 2365 void arm_rfft_fast_f32(
MACRUM 6:40e873bbc5f7 2366 arm_rfft_fast_instance_f32 * S,
MACRUM 6:40e873bbc5f7 2367 float32_t * p, float32_t * pOut,
MACRUM 6:40e873bbc5f7 2368 uint8_t ifftFlag);
MACRUM 6:40e873bbc5f7 2369
MACRUM 6:40e873bbc5f7 2370 /**
MACRUM 6:40e873bbc5f7 2371 * @brief Instance structure for the floating-point DCT4/IDCT4 function.
MACRUM 6:40e873bbc5f7 2372 */
MACRUM 6:40e873bbc5f7 2373
MACRUM 6:40e873bbc5f7 2374 typedef struct
MACRUM 6:40e873bbc5f7 2375 {
MACRUM 6:40e873bbc5f7 2376 uint16_t N; /**< length of the DCT4. */
MACRUM 6:40e873bbc5f7 2377 uint16_t Nby2; /**< half of the length of the DCT4. */
MACRUM 6:40e873bbc5f7 2378 float32_t normalize; /**< normalizing factor. */
MACRUM 6:40e873bbc5f7 2379 float32_t *pTwiddle; /**< points to the twiddle factor table. */
MACRUM 6:40e873bbc5f7 2380 float32_t *pCosFactor; /**< points to the cosFactor table. */
MACRUM 6:40e873bbc5f7 2381 arm_rfft_instance_f32 *pRfft; /**< points to the real FFT instance. */
MACRUM 6:40e873bbc5f7 2382 arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
MACRUM 6:40e873bbc5f7 2383 } arm_dct4_instance_f32;
MACRUM 6:40e873bbc5f7 2384
MACRUM 6:40e873bbc5f7 2385 /**
MACRUM 6:40e873bbc5f7 2386 * @brief Initialization function for the floating-point DCT4/IDCT4.
MACRUM 6:40e873bbc5f7 2387 * @param[in,out] *S points to an instance of floating-point DCT4/IDCT4 structure.
MACRUM 6:40e873bbc5f7 2388 * @param[in] *S_RFFT points to an instance of floating-point RFFT/RIFFT structure.
MACRUM 6:40e873bbc5f7 2389 * @param[in] *S_CFFT points to an instance of floating-point CFFT/CIFFT structure.
MACRUM 6:40e873bbc5f7 2390 * @param[in] N length of the DCT4.
MACRUM 6:40e873bbc5f7 2391 * @param[in] Nby2 half of the length of the DCT4.
MACRUM 6:40e873bbc5f7 2392 * @param[in] normalize normalizing factor.
MACRUM 6:40e873bbc5f7 2393 * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported transform length.
MACRUM 6:40e873bbc5f7 2394 */
MACRUM 6:40e873bbc5f7 2395
MACRUM 6:40e873bbc5f7 2396 arm_status arm_dct4_init_f32(
MACRUM 6:40e873bbc5f7 2397 arm_dct4_instance_f32 * S,
MACRUM 6:40e873bbc5f7 2398 arm_rfft_instance_f32 * S_RFFT,
MACRUM 6:40e873bbc5f7 2399 arm_cfft_radix4_instance_f32 * S_CFFT,
MACRUM 6:40e873bbc5f7 2400 uint16_t N,
MACRUM 6:40e873bbc5f7 2401 uint16_t Nby2,
MACRUM 6:40e873bbc5f7 2402 float32_t normalize);
MACRUM 6:40e873bbc5f7 2403
MACRUM 6:40e873bbc5f7 2404 /**
MACRUM 6:40e873bbc5f7 2405 * @brief Processing function for the floating-point DCT4/IDCT4.
MACRUM 6:40e873bbc5f7 2406 * @param[in] *S points to an instance of the floating-point DCT4/IDCT4 structure.
MACRUM 6:40e873bbc5f7 2407 * @param[in] *pState points to state buffer.
MACRUM 6:40e873bbc5f7 2408 * @param[in,out] *pInlineBuffer points to the in-place input and output buffer.
MACRUM 6:40e873bbc5f7 2409 * @return none.
MACRUM 6:40e873bbc5f7 2410 */
MACRUM 6:40e873bbc5f7 2411
MACRUM 6:40e873bbc5f7 2412 void arm_dct4_f32(
MACRUM 6:40e873bbc5f7 2413 const arm_dct4_instance_f32 * S,
MACRUM 6:40e873bbc5f7 2414 float32_t * pState,
MACRUM 6:40e873bbc5f7 2415 float32_t * pInlineBuffer);
MACRUM 6:40e873bbc5f7 2416
MACRUM 6:40e873bbc5f7 2417 /**
MACRUM 6:40e873bbc5f7 2418 * @brief Instance structure for the Q31 DCT4/IDCT4 function.
MACRUM 6:40e873bbc5f7 2419 */
MACRUM 6:40e873bbc5f7 2420
MACRUM 6:40e873bbc5f7 2421 typedef struct
MACRUM 6:40e873bbc5f7 2422 {
MACRUM 6:40e873bbc5f7 2423 uint16_t N; /**< length of the DCT4. */
MACRUM 6:40e873bbc5f7 2424 uint16_t Nby2; /**< half of the length of the DCT4. */
MACRUM 6:40e873bbc5f7 2425 q31_t normalize; /**< normalizing factor. */
MACRUM 6:40e873bbc5f7 2426 q31_t *pTwiddle; /**< points to the twiddle factor table. */
MACRUM 6:40e873bbc5f7 2427 q31_t *pCosFactor; /**< points to the cosFactor table. */
MACRUM 6:40e873bbc5f7 2428 arm_rfft_instance_q31 *pRfft; /**< points to the real FFT instance. */
MACRUM 6:40e873bbc5f7 2429 arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */
MACRUM 6:40e873bbc5f7 2430 } arm_dct4_instance_q31;
MACRUM 6:40e873bbc5f7 2431
MACRUM 6:40e873bbc5f7 2432 /**
MACRUM 6:40e873bbc5f7 2433 * @brief Initialization function for the Q31 DCT4/IDCT4.
MACRUM 6:40e873bbc5f7 2434 * @param[in,out] *S points to an instance of Q31 DCT4/IDCT4 structure.
MACRUM 6:40e873bbc5f7 2435 * @param[in] *S_RFFT points to an instance of Q31 RFFT/RIFFT structure
MACRUM 6:40e873bbc5f7 2436 * @param[in] *S_CFFT points to an instance of Q31 CFFT/CIFFT structure
MACRUM 6:40e873bbc5f7 2437 * @param[in] N length of the DCT4.
MACRUM 6:40e873bbc5f7 2438 * @param[in] Nby2 half of the length of the DCT4.
MACRUM 6:40e873bbc5f7 2439 * @param[in] normalize normalizing factor.
MACRUM 6:40e873bbc5f7 2440 * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length.
MACRUM 6:40e873bbc5f7 2441 */
MACRUM 6:40e873bbc5f7 2442
MACRUM 6:40e873bbc5f7 2443 arm_status arm_dct4_init_q31(
MACRUM 6:40e873bbc5f7 2444 arm_dct4_instance_q31 * S,
MACRUM 6:40e873bbc5f7 2445 arm_rfft_instance_q31 * S_RFFT,
MACRUM 6:40e873bbc5f7 2446 arm_cfft_radix4_instance_q31 * S_CFFT,
MACRUM 6:40e873bbc5f7 2447 uint16_t N,
MACRUM 6:40e873bbc5f7 2448 uint16_t Nby2,
MACRUM 6:40e873bbc5f7 2449 q31_t normalize);
MACRUM 6:40e873bbc5f7 2450
MACRUM 6:40e873bbc5f7 2451 /**
MACRUM 6:40e873bbc5f7 2452 * @brief Processing function for the Q31 DCT4/IDCT4.
MACRUM 6:40e873bbc5f7 2453 * @param[in] *S points to an instance of the Q31 DCT4 structure.
MACRUM 6:40e873bbc5f7 2454 * @param[in] *pState points to state buffer.
MACRUM 6:40e873bbc5f7 2455 * @param[in,out] *pInlineBuffer points to the in-place input and output buffer.
MACRUM 6:40e873bbc5f7 2456 * @return none.
MACRUM 6:40e873bbc5f7 2457 */
MACRUM 6:40e873bbc5f7 2458
MACRUM 6:40e873bbc5f7 2459 void arm_dct4_q31(
MACRUM 6:40e873bbc5f7 2460 const arm_dct4_instance_q31 * S,
MACRUM 6:40e873bbc5f7 2461 q31_t * pState,
MACRUM 6:40e873bbc5f7 2462 q31_t * pInlineBuffer);
MACRUM 6:40e873bbc5f7 2463
MACRUM 6:40e873bbc5f7 2464 /**
MACRUM 6:40e873bbc5f7 2465 * @brief Instance structure for the Q15 DCT4/IDCT4 function.
MACRUM 6:40e873bbc5f7 2466 */
MACRUM 6:40e873bbc5f7 2467
MACRUM 6:40e873bbc5f7 2468 typedef struct
MACRUM 6:40e873bbc5f7 2469 {
MACRUM 6:40e873bbc5f7 2470 uint16_t N; /**< length of the DCT4. */
MACRUM 6:40e873bbc5f7 2471 uint16_t Nby2; /**< half of the length of the DCT4. */
MACRUM 6:40e873bbc5f7 2472 q15_t normalize; /**< normalizing factor. */
MACRUM 6:40e873bbc5f7 2473 q15_t *pTwiddle; /**< points to the twiddle factor table. */
MACRUM 6:40e873bbc5f7 2474 q15_t *pCosFactor; /**< points to the cosFactor table. */
MACRUM 6:40e873bbc5f7 2475 arm_rfft_instance_q15 *pRfft; /**< points to the real FFT instance. */
MACRUM 6:40e873bbc5f7 2476 arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */
MACRUM 6:40e873bbc5f7 2477 } arm_dct4_instance_q15;
MACRUM 6:40e873bbc5f7 2478
MACRUM 6:40e873bbc5f7 2479 /**
MACRUM 6:40e873bbc5f7 2480 * @brief Initialization function for the Q15 DCT4/IDCT4.
MACRUM 6:40e873bbc5f7 2481 * @param[in,out] *S points to an instance of Q15 DCT4/IDCT4 structure.
MACRUM 6:40e873bbc5f7 2482 * @param[in] *S_RFFT points to an instance of Q15 RFFT/RIFFT structure.
MACRUM 6:40e873bbc5f7 2483 * @param[in] *S_CFFT points to an instance of Q15 CFFT/CIFFT structure.
MACRUM 6:40e873bbc5f7 2484 * @param[in] N length of the DCT4.
MACRUM 6:40e873bbc5f7 2485 * @param[in] Nby2 half of the length of the DCT4.
MACRUM 6:40e873bbc5f7 2486 * @param[in] normalize normalizing factor.
MACRUM 6:40e873bbc5f7 2487 * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length.
MACRUM 6:40e873bbc5f7 2488 */
MACRUM 6:40e873bbc5f7 2489
MACRUM 6:40e873bbc5f7 2490 arm_status arm_dct4_init_q15(
MACRUM 6:40e873bbc5f7 2491 arm_dct4_instance_q15 * S,
MACRUM 6:40e873bbc5f7 2492 arm_rfft_instance_q15 * S_RFFT,
MACRUM 6:40e873bbc5f7 2493 arm_cfft_radix4_instance_q15 * S_CFFT,
MACRUM 6:40e873bbc5f7 2494 uint16_t N,
MACRUM 6:40e873bbc5f7 2495 uint16_t Nby2,
MACRUM 6:40e873bbc5f7 2496 q15_t normalize);
MACRUM 6:40e873bbc5f7 2497
MACRUM 6:40e873bbc5f7 2498 /**
MACRUM 6:40e873bbc5f7 2499 * @brief Processing function for the Q15 DCT4/IDCT4.
MACRUM 6:40e873bbc5f7 2500 * @param[in] *S points to an instance of the Q15 DCT4 structure.
MACRUM 6:40e873bbc5f7 2501 * @param[in] *pState points to state buffer.
MACRUM 6:40e873bbc5f7 2502 * @param[in,out] *pInlineBuffer points to the in-place input and output buffer.
MACRUM 6:40e873bbc5f7 2503 * @return none.
MACRUM 6:40e873bbc5f7 2504 */
MACRUM 6:40e873bbc5f7 2505
MACRUM 6:40e873bbc5f7 2506 void arm_dct4_q15(
MACRUM 6:40e873bbc5f7 2507 const arm_dct4_instance_q15 * S,
MACRUM 6:40e873bbc5f7 2508 q15_t * pState,
MACRUM 6:40e873bbc5f7 2509 q15_t * pInlineBuffer);
MACRUM 6:40e873bbc5f7 2510
MACRUM 6:40e873bbc5f7 2511 /**
MACRUM 6:40e873bbc5f7 2512 * @brief Floating-point vector addition.
MACRUM 6:40e873bbc5f7 2513 * @param[in] *pSrcA points to the first input vector
MACRUM 6:40e873bbc5f7 2514 * @param[in] *pSrcB points to the second input vector
MACRUM 6:40e873bbc5f7 2515 * @param[out] *pDst points to the output vector
MACRUM 6:40e873bbc5f7 2516 * @param[in] blockSize number of samples in each vector
MACRUM 6:40e873bbc5f7 2517 * @return none.
MACRUM 6:40e873bbc5f7 2518 */
MACRUM 6:40e873bbc5f7 2519
MACRUM 6:40e873bbc5f7 2520 void arm_add_f32(
MACRUM 6:40e873bbc5f7 2521 float32_t * pSrcA,
MACRUM 6:40e873bbc5f7 2522 float32_t * pSrcB,
MACRUM 6:40e873bbc5f7 2523 float32_t * pDst,
MACRUM 6:40e873bbc5f7 2524 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 2525
MACRUM 6:40e873bbc5f7 2526 /**
MACRUM 6:40e873bbc5f7 2527 * @brief Q7 vector addition.
MACRUM 6:40e873bbc5f7 2528 * @param[in] *pSrcA points to the first input vector
MACRUM 6:40e873bbc5f7 2529 * @param[in] *pSrcB points to the second input vector
MACRUM 6:40e873bbc5f7 2530 * @param[out] *pDst points to the output vector
MACRUM 6:40e873bbc5f7 2531 * @param[in] blockSize number of samples in each vector
MACRUM 6:40e873bbc5f7 2532 * @return none.
MACRUM 6:40e873bbc5f7 2533 */
MACRUM 6:40e873bbc5f7 2534
MACRUM 6:40e873bbc5f7 2535 void arm_add_q7(
MACRUM 6:40e873bbc5f7 2536 q7_t * pSrcA,
MACRUM 6:40e873bbc5f7 2537 q7_t * pSrcB,
MACRUM 6:40e873bbc5f7 2538 q7_t * pDst,
MACRUM 6:40e873bbc5f7 2539 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 2540
MACRUM 6:40e873bbc5f7 2541 /**
MACRUM 6:40e873bbc5f7 2542 * @brief Q15 vector addition.
MACRUM 6:40e873bbc5f7 2543 * @param[in] *pSrcA points to the first input vector
MACRUM 6:40e873bbc5f7 2544 * @param[in] *pSrcB points to the second input vector
MACRUM 6:40e873bbc5f7 2545 * @param[out] *pDst points to the output vector
MACRUM 6:40e873bbc5f7 2546 * @param[in] blockSize number of samples in each vector
MACRUM 6:40e873bbc5f7 2547 * @return none.
MACRUM 6:40e873bbc5f7 2548 */
MACRUM 6:40e873bbc5f7 2549
MACRUM 6:40e873bbc5f7 2550 void arm_add_q15(
MACRUM 6:40e873bbc5f7 2551 q15_t * pSrcA,
MACRUM 6:40e873bbc5f7 2552 q15_t * pSrcB,
MACRUM 6:40e873bbc5f7 2553 q15_t * pDst,
MACRUM 6:40e873bbc5f7 2554 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 2555
MACRUM 6:40e873bbc5f7 2556 /**
MACRUM 6:40e873bbc5f7 2557 * @brief Q31 vector addition.
MACRUM 6:40e873bbc5f7 2558 * @param[in] *pSrcA points to the first input vector
MACRUM 6:40e873bbc5f7 2559 * @param[in] *pSrcB points to the second input vector
MACRUM 6:40e873bbc5f7 2560 * @param[out] *pDst points to the output vector
MACRUM 6:40e873bbc5f7 2561 * @param[in] blockSize number of samples in each vector
MACRUM 6:40e873bbc5f7 2562 * @return none.
MACRUM 6:40e873bbc5f7 2563 */
MACRUM 6:40e873bbc5f7 2564
MACRUM 6:40e873bbc5f7 2565 void arm_add_q31(
MACRUM 6:40e873bbc5f7 2566 q31_t * pSrcA,
MACRUM 6:40e873bbc5f7 2567 q31_t * pSrcB,
MACRUM 6:40e873bbc5f7 2568 q31_t * pDst,
MACRUM 6:40e873bbc5f7 2569 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 2570
MACRUM 6:40e873bbc5f7 2571 /**
MACRUM 6:40e873bbc5f7 2572 * @brief Floating-point vector subtraction.
MACRUM 6:40e873bbc5f7 2573 * @param[in] *pSrcA points to the first input vector
MACRUM 6:40e873bbc5f7 2574 * @param[in] *pSrcB points to the second input vector
MACRUM 6:40e873bbc5f7 2575 * @param[out] *pDst points to the output vector
MACRUM 6:40e873bbc5f7 2576 * @param[in] blockSize number of samples in each vector
MACRUM 6:40e873bbc5f7 2577 * @return none.
MACRUM 6:40e873bbc5f7 2578 */
MACRUM 6:40e873bbc5f7 2579
MACRUM 6:40e873bbc5f7 2580 void arm_sub_f32(
MACRUM 6:40e873bbc5f7 2581 float32_t * pSrcA,
MACRUM 6:40e873bbc5f7 2582 float32_t * pSrcB,
MACRUM 6:40e873bbc5f7 2583 float32_t * pDst,
MACRUM 6:40e873bbc5f7 2584 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 2585
MACRUM 6:40e873bbc5f7 2586 /**
MACRUM 6:40e873bbc5f7 2587 * @brief Q7 vector subtraction.
MACRUM 6:40e873bbc5f7 2588 * @param[in] *pSrcA points to the first input vector
MACRUM 6:40e873bbc5f7 2589 * @param[in] *pSrcB points to the second input vector
MACRUM 6:40e873bbc5f7 2590 * @param[out] *pDst points to the output vector
MACRUM 6:40e873bbc5f7 2591 * @param[in] blockSize number of samples in each vector
MACRUM 6:40e873bbc5f7 2592 * @return none.
MACRUM 6:40e873bbc5f7 2593 */
MACRUM 6:40e873bbc5f7 2594
MACRUM 6:40e873bbc5f7 2595 void arm_sub_q7(
MACRUM 6:40e873bbc5f7 2596 q7_t * pSrcA,
MACRUM 6:40e873bbc5f7 2597 q7_t * pSrcB,
MACRUM 6:40e873bbc5f7 2598 q7_t * pDst,
MACRUM 6:40e873bbc5f7 2599 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 2600
MACRUM 6:40e873bbc5f7 2601 /**
MACRUM 6:40e873bbc5f7 2602 * @brief Q15 vector subtraction.
MACRUM 6:40e873bbc5f7 2603 * @param[in] *pSrcA points to the first input vector
MACRUM 6:40e873bbc5f7 2604 * @param[in] *pSrcB points to the second input vector
MACRUM 6:40e873bbc5f7 2605 * @param[out] *pDst points to the output vector
MACRUM 6:40e873bbc5f7 2606 * @param[in] blockSize number of samples in each vector
MACRUM 6:40e873bbc5f7 2607 * @return none.
MACRUM 6:40e873bbc5f7 2608 */
MACRUM 6:40e873bbc5f7 2609
MACRUM 6:40e873bbc5f7 2610 void arm_sub_q15(
MACRUM 6:40e873bbc5f7 2611 q15_t * pSrcA,
MACRUM 6:40e873bbc5f7 2612 q15_t * pSrcB,
MACRUM 6:40e873bbc5f7 2613 q15_t * pDst,
MACRUM 6:40e873bbc5f7 2614 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 2615
MACRUM 6:40e873bbc5f7 2616 /**
MACRUM 6:40e873bbc5f7 2617 * @brief Q31 vector subtraction.
MACRUM 6:40e873bbc5f7 2618 * @param[in] *pSrcA points to the first input vector
MACRUM 6:40e873bbc5f7 2619 * @param[in] *pSrcB points to the second input vector
MACRUM 6:40e873bbc5f7 2620 * @param[out] *pDst points to the output vector
MACRUM 6:40e873bbc5f7 2621 * @param[in] blockSize number of samples in each vector
MACRUM 6:40e873bbc5f7 2622 * @return none.
MACRUM 6:40e873bbc5f7 2623 */
MACRUM 6:40e873bbc5f7 2624
MACRUM 6:40e873bbc5f7 2625 void arm_sub_q31(
MACRUM 6:40e873bbc5f7 2626 q31_t * pSrcA,
MACRUM 6:40e873bbc5f7 2627 q31_t * pSrcB,
MACRUM 6:40e873bbc5f7 2628 q31_t * pDst,
MACRUM 6:40e873bbc5f7 2629 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 2630
MACRUM 6:40e873bbc5f7 2631 /**
MACRUM 6:40e873bbc5f7 2632 * @brief Multiplies a floating-point vector by a scalar.
MACRUM 6:40e873bbc5f7 2633 * @param[in] *pSrc points to the input vector
MACRUM 6:40e873bbc5f7 2634 * @param[in] scale scale factor to be applied
MACRUM 6:40e873bbc5f7 2635 * @param[out] *pDst points to the output vector
MACRUM 6:40e873bbc5f7 2636 * @param[in] blockSize number of samples in the vector
MACRUM 6:40e873bbc5f7 2637 * @return none.
MACRUM 6:40e873bbc5f7 2638 */
MACRUM 6:40e873bbc5f7 2639
MACRUM 6:40e873bbc5f7 2640 void arm_scale_f32(
MACRUM 6:40e873bbc5f7 2641 float32_t * pSrc,
MACRUM 6:40e873bbc5f7 2642 float32_t scale,
MACRUM 6:40e873bbc5f7 2643 float32_t * pDst,
MACRUM 6:40e873bbc5f7 2644 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 2645
MACRUM 6:40e873bbc5f7 2646 /**
MACRUM 6:40e873bbc5f7 2647 * @brief Multiplies a Q7 vector by a scalar.
MACRUM 6:40e873bbc5f7 2648 * @param[in] *pSrc points to the input vector
MACRUM 6:40e873bbc5f7 2649 * @param[in] scaleFract fractional portion of the scale value
MACRUM 6:40e873bbc5f7 2650 * @param[in] shift number of bits to shift the result by
MACRUM 6:40e873bbc5f7 2651 * @param[out] *pDst points to the output vector
MACRUM 6:40e873bbc5f7 2652 * @param[in] blockSize number of samples in the vector
MACRUM 6:40e873bbc5f7 2653 * @return none.
MACRUM 6:40e873bbc5f7 2654 */
MACRUM 6:40e873bbc5f7 2655
MACRUM 6:40e873bbc5f7 2656 void arm_scale_q7(
MACRUM 6:40e873bbc5f7 2657 q7_t * pSrc,
MACRUM 6:40e873bbc5f7 2658 q7_t scaleFract,
MACRUM 6:40e873bbc5f7 2659 int8_t shift,
MACRUM 6:40e873bbc5f7 2660 q7_t * pDst,
MACRUM 6:40e873bbc5f7 2661 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 2662
MACRUM 6:40e873bbc5f7 2663 /**
MACRUM 6:40e873bbc5f7 2664 * @brief Multiplies a Q15 vector by a scalar.
MACRUM 6:40e873bbc5f7 2665 * @param[in] *pSrc points to the input vector
MACRUM 6:40e873bbc5f7 2666 * @param[in] scaleFract fractional portion of the scale value
MACRUM 6:40e873bbc5f7 2667 * @param[in] shift number of bits to shift the result by
MACRUM 6:40e873bbc5f7 2668 * @param[out] *pDst points to the output vector
MACRUM 6:40e873bbc5f7 2669 * @param[in] blockSize number of samples in the vector
MACRUM 6:40e873bbc5f7 2670 * @return none.
MACRUM 6:40e873bbc5f7 2671 */
MACRUM 6:40e873bbc5f7 2672
MACRUM 6:40e873bbc5f7 2673 void arm_scale_q15(
MACRUM 6:40e873bbc5f7 2674 q15_t * pSrc,
MACRUM 6:40e873bbc5f7 2675 q15_t scaleFract,
MACRUM 6:40e873bbc5f7 2676 int8_t shift,
MACRUM 6:40e873bbc5f7 2677 q15_t * pDst,
MACRUM 6:40e873bbc5f7 2678 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 2679
MACRUM 6:40e873bbc5f7 2680 /**
MACRUM 6:40e873bbc5f7 2681 * @brief Multiplies a Q31 vector by a scalar.
MACRUM 6:40e873bbc5f7 2682 * @param[in] *pSrc points to the input vector
MACRUM 6:40e873bbc5f7 2683 * @param[in] scaleFract fractional portion of the scale value
MACRUM 6:40e873bbc5f7 2684 * @param[in] shift number of bits to shift the result by
MACRUM 6:40e873bbc5f7 2685 * @param[out] *pDst points to the output vector
MACRUM 6:40e873bbc5f7 2686 * @param[in] blockSize number of samples in the vector
MACRUM 6:40e873bbc5f7 2687 * @return none.
MACRUM 6:40e873bbc5f7 2688 */
MACRUM 6:40e873bbc5f7 2689
MACRUM 6:40e873bbc5f7 2690 void arm_scale_q31(
MACRUM 6:40e873bbc5f7 2691 q31_t * pSrc,
MACRUM 6:40e873bbc5f7 2692 q31_t scaleFract,
MACRUM 6:40e873bbc5f7 2693 int8_t shift,
MACRUM 6:40e873bbc5f7 2694 q31_t * pDst,
MACRUM 6:40e873bbc5f7 2695 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 2696
MACRUM 6:40e873bbc5f7 2697 /**
MACRUM 6:40e873bbc5f7 2698 * @brief Q7 vector absolute value.
MACRUM 6:40e873bbc5f7 2699 * @param[in] *pSrc points to the input buffer
MACRUM 6:40e873bbc5f7 2700 * @param[out] *pDst points to the output buffer
MACRUM 6:40e873bbc5f7 2701 * @param[in] blockSize number of samples in each vector
MACRUM 6:40e873bbc5f7 2702 * @return none.
MACRUM 6:40e873bbc5f7 2703 */
MACRUM 6:40e873bbc5f7 2704
MACRUM 6:40e873bbc5f7 2705 void arm_abs_q7(
MACRUM 6:40e873bbc5f7 2706 q7_t * pSrc,
MACRUM 6:40e873bbc5f7 2707 q7_t * pDst,
MACRUM 6:40e873bbc5f7 2708 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 2709
MACRUM 6:40e873bbc5f7 2710 /**
MACRUM 6:40e873bbc5f7 2711 * @brief Floating-point vector absolute value.
MACRUM 6:40e873bbc5f7 2712 * @param[in] *pSrc points to the input buffer
MACRUM 6:40e873bbc5f7 2713 * @param[out] *pDst points to the output buffer
MACRUM 6:40e873bbc5f7 2714 * @param[in] blockSize number of samples in each vector
MACRUM 6:40e873bbc5f7 2715 * @return none.
MACRUM 6:40e873bbc5f7 2716 */
MACRUM 6:40e873bbc5f7 2717
MACRUM 6:40e873bbc5f7 2718 void arm_abs_f32(
MACRUM 6:40e873bbc5f7 2719 float32_t * pSrc,
MACRUM 6:40e873bbc5f7 2720 float32_t * pDst,
MACRUM 6:40e873bbc5f7 2721 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 2722
MACRUM 6:40e873bbc5f7 2723 /**
MACRUM 6:40e873bbc5f7 2724 * @brief Q15 vector absolute value.
MACRUM 6:40e873bbc5f7 2725 * @param[in] *pSrc points to the input buffer
MACRUM 6:40e873bbc5f7 2726 * @param[out] *pDst points to the output buffer
MACRUM 6:40e873bbc5f7 2727 * @param[in] blockSize number of samples in each vector
MACRUM 6:40e873bbc5f7 2728 * @return none.
MACRUM 6:40e873bbc5f7 2729 */
MACRUM 6:40e873bbc5f7 2730
MACRUM 6:40e873bbc5f7 2731 void arm_abs_q15(
MACRUM 6:40e873bbc5f7 2732 q15_t * pSrc,
MACRUM 6:40e873bbc5f7 2733 q15_t * pDst,
MACRUM 6:40e873bbc5f7 2734 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 2735
MACRUM 6:40e873bbc5f7 2736 /**
MACRUM 6:40e873bbc5f7 2737 * @brief Q31 vector absolute value.
MACRUM 6:40e873bbc5f7 2738 * @param[in] *pSrc points to the input buffer
MACRUM 6:40e873bbc5f7 2739 * @param[out] *pDst points to the output buffer
MACRUM 6:40e873bbc5f7 2740 * @param[in] blockSize number of samples in each vector
MACRUM 6:40e873bbc5f7 2741 * @return none.
MACRUM 6:40e873bbc5f7 2742 */
MACRUM 6:40e873bbc5f7 2743
MACRUM 6:40e873bbc5f7 2744 void arm_abs_q31(
MACRUM 6:40e873bbc5f7 2745 q31_t * pSrc,
MACRUM 6:40e873bbc5f7 2746 q31_t * pDst,
MACRUM 6:40e873bbc5f7 2747 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 2748
MACRUM 6:40e873bbc5f7 2749 /**
MACRUM 6:40e873bbc5f7 2750 * @brief Dot product of floating-point vectors.
MACRUM 6:40e873bbc5f7 2751 * @param[in] *pSrcA points to the first input vector
MACRUM 6:40e873bbc5f7 2752 * @param[in] *pSrcB points to the second input vector
MACRUM 6:40e873bbc5f7 2753 * @param[in] blockSize number of samples in each vector
MACRUM 6:40e873bbc5f7 2754 * @param[out] *result output result returned here
MACRUM 6:40e873bbc5f7 2755 * @return none.
MACRUM 6:40e873bbc5f7 2756 */
MACRUM 6:40e873bbc5f7 2757
MACRUM 6:40e873bbc5f7 2758 void arm_dot_prod_f32(
MACRUM 6:40e873bbc5f7 2759 float32_t * pSrcA,
MACRUM 6:40e873bbc5f7 2760 float32_t * pSrcB,
MACRUM 6:40e873bbc5f7 2761 uint32_t blockSize,
MACRUM 6:40e873bbc5f7 2762 float32_t * result);
MACRUM 6:40e873bbc5f7 2763
MACRUM 6:40e873bbc5f7 2764 /**
MACRUM 6:40e873bbc5f7 2765 * @brief Dot product of Q7 vectors.
MACRUM 6:40e873bbc5f7 2766 * @param[in] *pSrcA points to the first input vector
MACRUM 6:40e873bbc5f7 2767 * @param[in] *pSrcB points to the second input vector
MACRUM 6:40e873bbc5f7 2768 * @param[in] blockSize number of samples in each vector
MACRUM 6:40e873bbc5f7 2769 * @param[out] *result output result returned here
MACRUM 6:40e873bbc5f7 2770 * @return none.
MACRUM 6:40e873bbc5f7 2771 */
MACRUM 6:40e873bbc5f7 2772
MACRUM 6:40e873bbc5f7 2773 void arm_dot_prod_q7(
MACRUM 6:40e873bbc5f7 2774 q7_t * pSrcA,
MACRUM 6:40e873bbc5f7 2775 q7_t * pSrcB,
MACRUM 6:40e873bbc5f7 2776 uint32_t blockSize,
MACRUM 6:40e873bbc5f7 2777 q31_t * result);
MACRUM 6:40e873bbc5f7 2778
MACRUM 6:40e873bbc5f7 2779 /**
MACRUM 6:40e873bbc5f7 2780 * @brief Dot product of Q15 vectors.
MACRUM 6:40e873bbc5f7 2781 * @param[in] *pSrcA points to the first input vector
MACRUM 6:40e873bbc5f7 2782 * @param[in] *pSrcB points to the second input vector
MACRUM 6:40e873bbc5f7 2783 * @param[in] blockSize number of samples in each vector
MACRUM 6:40e873bbc5f7 2784 * @param[out] *result output result returned here
MACRUM 6:40e873bbc5f7 2785 * @return none.
MACRUM 6:40e873bbc5f7 2786 */
MACRUM 6:40e873bbc5f7 2787
MACRUM 6:40e873bbc5f7 2788 void arm_dot_prod_q15(
MACRUM 6:40e873bbc5f7 2789 q15_t * pSrcA,
MACRUM 6:40e873bbc5f7 2790 q15_t * pSrcB,
MACRUM 6:40e873bbc5f7 2791 uint32_t blockSize,
MACRUM 6:40e873bbc5f7 2792 q63_t * result);
MACRUM 6:40e873bbc5f7 2793
MACRUM 6:40e873bbc5f7 2794 /**
MACRUM 6:40e873bbc5f7 2795 * @brief Dot product of Q31 vectors.
MACRUM 6:40e873bbc5f7 2796 * @param[in] *pSrcA points to the first input vector
MACRUM 6:40e873bbc5f7 2797 * @param[in] *pSrcB points to the second input vector
MACRUM 6:40e873bbc5f7 2798 * @param[in] blockSize number of samples in each vector
MACRUM 6:40e873bbc5f7 2799 * @param[out] *result output result returned here
MACRUM 6:40e873bbc5f7 2800 * @return none.
MACRUM 6:40e873bbc5f7 2801 */
MACRUM 6:40e873bbc5f7 2802
MACRUM 6:40e873bbc5f7 2803 void arm_dot_prod_q31(
MACRUM 6:40e873bbc5f7 2804 q31_t * pSrcA,
MACRUM 6:40e873bbc5f7 2805 q31_t * pSrcB,
MACRUM 6:40e873bbc5f7 2806 uint32_t blockSize,
MACRUM 6:40e873bbc5f7 2807 q63_t * result);
MACRUM 6:40e873bbc5f7 2808
MACRUM 6:40e873bbc5f7 2809 /**
MACRUM 6:40e873bbc5f7 2810 * @brief Shifts the elements of a Q7 vector a specified number of bits.
MACRUM 6:40e873bbc5f7 2811 * @param[in] *pSrc points to the input vector
MACRUM 6:40e873bbc5f7 2812 * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
MACRUM 6:40e873bbc5f7 2813 * @param[out] *pDst points to the output vector
MACRUM 6:40e873bbc5f7 2814 * @param[in] blockSize number of samples in the vector
MACRUM 6:40e873bbc5f7 2815 * @return none.
MACRUM 6:40e873bbc5f7 2816 */
MACRUM 6:40e873bbc5f7 2817
MACRUM 6:40e873bbc5f7 2818 void arm_shift_q7(
MACRUM 6:40e873bbc5f7 2819 q7_t * pSrc,
MACRUM 6:40e873bbc5f7 2820 int8_t shiftBits,
MACRUM 6:40e873bbc5f7 2821 q7_t * pDst,
MACRUM 6:40e873bbc5f7 2822 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 2823
MACRUM 6:40e873bbc5f7 2824 /**
MACRUM 6:40e873bbc5f7 2825 * @brief Shifts the elements of a Q15 vector a specified number of bits.
MACRUM 6:40e873bbc5f7 2826 * @param[in] *pSrc points to the input vector
MACRUM 6:40e873bbc5f7 2827 * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
MACRUM 6:40e873bbc5f7 2828 * @param[out] *pDst points to the output vector
MACRUM 6:40e873bbc5f7 2829 * @param[in] blockSize number of samples in the vector
MACRUM 6:40e873bbc5f7 2830 * @return none.
MACRUM 6:40e873bbc5f7 2831 */
MACRUM 6:40e873bbc5f7 2832
MACRUM 6:40e873bbc5f7 2833 void arm_shift_q15(
MACRUM 6:40e873bbc5f7 2834 q15_t * pSrc,
MACRUM 6:40e873bbc5f7 2835 int8_t shiftBits,
MACRUM 6:40e873bbc5f7 2836 q15_t * pDst,
MACRUM 6:40e873bbc5f7 2837 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 2838
MACRUM 6:40e873bbc5f7 2839 /**
MACRUM 6:40e873bbc5f7 2840 * @brief Shifts the elements of a Q31 vector a specified number of bits.
MACRUM 6:40e873bbc5f7 2841 * @param[in] *pSrc points to the input vector
MACRUM 6:40e873bbc5f7 2842 * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
MACRUM 6:40e873bbc5f7 2843 * @param[out] *pDst points to the output vector
MACRUM 6:40e873bbc5f7 2844 * @param[in] blockSize number of samples in the vector
MACRUM 6:40e873bbc5f7 2845 * @return none.
MACRUM 6:40e873bbc5f7 2846 */
MACRUM 6:40e873bbc5f7 2847
MACRUM 6:40e873bbc5f7 2848 void arm_shift_q31(
MACRUM 6:40e873bbc5f7 2849 q31_t * pSrc,
MACRUM 6:40e873bbc5f7 2850 int8_t shiftBits,
MACRUM 6:40e873bbc5f7 2851 q31_t * pDst,
MACRUM 6:40e873bbc5f7 2852 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 2853
MACRUM 6:40e873bbc5f7 2854 /**
MACRUM 6:40e873bbc5f7 2855 * @brief Adds a constant offset to a floating-point vector.
MACRUM 6:40e873bbc5f7 2856 * @param[in] *pSrc points to the input vector
MACRUM 6:40e873bbc5f7 2857 * @param[in] offset is the offset to be added
MACRUM 6:40e873bbc5f7 2858 * @param[out] *pDst points to the output vector
MACRUM 6:40e873bbc5f7 2859 * @param[in] blockSize number of samples in the vector
MACRUM 6:40e873bbc5f7 2860 * @return none.
MACRUM 6:40e873bbc5f7 2861 */
MACRUM 6:40e873bbc5f7 2862
MACRUM 6:40e873bbc5f7 2863 void arm_offset_f32(
MACRUM 6:40e873bbc5f7 2864 float32_t * pSrc,
MACRUM 6:40e873bbc5f7 2865 float32_t offset,
MACRUM 6:40e873bbc5f7 2866 float32_t * pDst,
MACRUM 6:40e873bbc5f7 2867 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 2868
MACRUM 6:40e873bbc5f7 2869 /**
MACRUM 6:40e873bbc5f7 2870 * @brief Adds a constant offset to a Q7 vector.
MACRUM 6:40e873bbc5f7 2871 * @param[in] *pSrc points to the input vector
MACRUM 6:40e873bbc5f7 2872 * @param[in] offset is the offset to be added
MACRUM 6:40e873bbc5f7 2873 * @param[out] *pDst points to the output vector
MACRUM 6:40e873bbc5f7 2874 * @param[in] blockSize number of samples in the vector
MACRUM 6:40e873bbc5f7 2875 * @return none.
MACRUM 6:40e873bbc5f7 2876 */
MACRUM 6:40e873bbc5f7 2877
MACRUM 6:40e873bbc5f7 2878 void arm_offset_q7(
MACRUM 6:40e873bbc5f7 2879 q7_t * pSrc,
MACRUM 6:40e873bbc5f7 2880 q7_t offset,
MACRUM 6:40e873bbc5f7 2881 q7_t * pDst,
MACRUM 6:40e873bbc5f7 2882 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 2883
MACRUM 6:40e873bbc5f7 2884 /**
MACRUM 6:40e873bbc5f7 2885 * @brief Adds a constant offset to a Q15 vector.
MACRUM 6:40e873bbc5f7 2886 * @param[in] *pSrc points to the input vector
MACRUM 6:40e873bbc5f7 2887 * @param[in] offset is the offset to be added
MACRUM 6:40e873bbc5f7 2888 * @param[out] *pDst points to the output vector
MACRUM 6:40e873bbc5f7 2889 * @param[in] blockSize number of samples in the vector
MACRUM 6:40e873bbc5f7 2890 * @return none.
MACRUM 6:40e873bbc5f7 2891 */
MACRUM 6:40e873bbc5f7 2892
MACRUM 6:40e873bbc5f7 2893 void arm_offset_q15(
MACRUM 6:40e873bbc5f7 2894 q15_t * pSrc,
MACRUM 6:40e873bbc5f7 2895 q15_t offset,
MACRUM 6:40e873bbc5f7 2896 q15_t * pDst,
MACRUM 6:40e873bbc5f7 2897 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 2898
MACRUM 6:40e873bbc5f7 2899 /**
MACRUM 6:40e873bbc5f7 2900 * @brief Adds a constant offset to a Q31 vector.
MACRUM 6:40e873bbc5f7 2901 * @param[in] *pSrc points to the input vector
MACRUM 6:40e873bbc5f7 2902 * @param[in] offset is the offset to be added
MACRUM 6:40e873bbc5f7 2903 * @param[out] *pDst points to the output vector
MACRUM 6:40e873bbc5f7 2904 * @param[in] blockSize number of samples in the vector
MACRUM 6:40e873bbc5f7 2905 * @return none.
MACRUM 6:40e873bbc5f7 2906 */
MACRUM 6:40e873bbc5f7 2907
MACRUM 6:40e873bbc5f7 2908 void arm_offset_q31(
MACRUM 6:40e873bbc5f7 2909 q31_t * pSrc,
MACRUM 6:40e873bbc5f7 2910 q31_t offset,
MACRUM 6:40e873bbc5f7 2911 q31_t * pDst,
MACRUM 6:40e873bbc5f7 2912 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 2913
MACRUM 6:40e873bbc5f7 2914 /**
MACRUM 6:40e873bbc5f7 2915 * @brief Negates the elements of a floating-point vector.
MACRUM 6:40e873bbc5f7 2916 * @param[in] *pSrc points to the input vector
MACRUM 6:40e873bbc5f7 2917 * @param[out] *pDst points to the output vector
MACRUM 6:40e873bbc5f7 2918 * @param[in] blockSize number of samples in the vector
MACRUM 6:40e873bbc5f7 2919 * @return none.
MACRUM 6:40e873bbc5f7 2920 */
MACRUM 6:40e873bbc5f7 2921
MACRUM 6:40e873bbc5f7 2922 void arm_negate_f32(
MACRUM 6:40e873bbc5f7 2923 float32_t * pSrc,
MACRUM 6:40e873bbc5f7 2924 float32_t * pDst,
MACRUM 6:40e873bbc5f7 2925 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 2926
MACRUM 6:40e873bbc5f7 2927 /**
MACRUM 6:40e873bbc5f7 2928 * @brief Negates the elements of a Q7 vector.
MACRUM 6:40e873bbc5f7 2929 * @param[in] *pSrc points to the input vector
MACRUM 6:40e873bbc5f7 2930 * @param[out] *pDst points to the output vector
MACRUM 6:40e873bbc5f7 2931 * @param[in] blockSize number of samples in the vector
MACRUM 6:40e873bbc5f7 2932 * @return none.
MACRUM 6:40e873bbc5f7 2933 */
MACRUM 6:40e873bbc5f7 2934
MACRUM 6:40e873bbc5f7 2935 void arm_negate_q7(
MACRUM 6:40e873bbc5f7 2936 q7_t * pSrc,
MACRUM 6:40e873bbc5f7 2937 q7_t * pDst,
MACRUM 6:40e873bbc5f7 2938 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 2939
MACRUM 6:40e873bbc5f7 2940 /**
MACRUM 6:40e873bbc5f7 2941 * @brief Negates the elements of a Q15 vector.
MACRUM 6:40e873bbc5f7 2942 * @param[in] *pSrc points to the input vector
MACRUM 6:40e873bbc5f7 2943 * @param[out] *pDst points to the output vector
MACRUM 6:40e873bbc5f7 2944 * @param[in] blockSize number of samples in the vector
MACRUM 6:40e873bbc5f7 2945 * @return none.
MACRUM 6:40e873bbc5f7 2946 */
MACRUM 6:40e873bbc5f7 2947
MACRUM 6:40e873bbc5f7 2948 void arm_negate_q15(
MACRUM 6:40e873bbc5f7 2949 q15_t * pSrc,
MACRUM 6:40e873bbc5f7 2950 q15_t * pDst,
MACRUM 6:40e873bbc5f7 2951 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 2952
MACRUM 6:40e873bbc5f7 2953 /**
MACRUM 6:40e873bbc5f7 2954 * @brief Negates the elements of a Q31 vector.
MACRUM 6:40e873bbc5f7 2955 * @param[in] *pSrc points to the input vector
MACRUM 6:40e873bbc5f7 2956 * @param[out] *pDst points to the output vector
MACRUM 6:40e873bbc5f7 2957 * @param[in] blockSize number of samples in the vector
MACRUM 6:40e873bbc5f7 2958 * @return none.
MACRUM 6:40e873bbc5f7 2959 */
MACRUM 6:40e873bbc5f7 2960
MACRUM 6:40e873bbc5f7 2961 void arm_negate_q31(
MACRUM 6:40e873bbc5f7 2962 q31_t * pSrc,
MACRUM 6:40e873bbc5f7 2963 q31_t * pDst,
MACRUM 6:40e873bbc5f7 2964 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 2965 /**
MACRUM 6:40e873bbc5f7 2966 * @brief Copies the elements of a floating-point vector.
MACRUM 6:40e873bbc5f7 2967 * @param[in] *pSrc input pointer
MACRUM 6:40e873bbc5f7 2968 * @param[out] *pDst output pointer
MACRUM 6:40e873bbc5f7 2969 * @param[in] blockSize number of samples to process
MACRUM 6:40e873bbc5f7 2970 * @return none.
MACRUM 6:40e873bbc5f7 2971 */
MACRUM 6:40e873bbc5f7 2972 void arm_copy_f32(
MACRUM 6:40e873bbc5f7 2973 float32_t * pSrc,
MACRUM 6:40e873bbc5f7 2974 float32_t * pDst,
MACRUM 6:40e873bbc5f7 2975 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 2976
MACRUM 6:40e873bbc5f7 2977 /**
MACRUM 6:40e873bbc5f7 2978 * @brief Copies the elements of a Q7 vector.
MACRUM 6:40e873bbc5f7 2979 * @param[in] *pSrc input pointer
MACRUM 6:40e873bbc5f7 2980 * @param[out] *pDst output pointer
MACRUM 6:40e873bbc5f7 2981 * @param[in] blockSize number of samples to process
MACRUM 6:40e873bbc5f7 2982 * @return none.
MACRUM 6:40e873bbc5f7 2983 */
MACRUM 6:40e873bbc5f7 2984 void arm_copy_q7(
MACRUM 6:40e873bbc5f7 2985 q7_t * pSrc,
MACRUM 6:40e873bbc5f7 2986 q7_t * pDst,
MACRUM 6:40e873bbc5f7 2987 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 2988
MACRUM 6:40e873bbc5f7 2989 /**
MACRUM 6:40e873bbc5f7 2990 * @brief Copies the elements of a Q15 vector.
MACRUM 6:40e873bbc5f7 2991 * @param[in] *pSrc input pointer
MACRUM 6:40e873bbc5f7 2992 * @param[out] *pDst output pointer
MACRUM 6:40e873bbc5f7 2993 * @param[in] blockSize number of samples to process
MACRUM 6:40e873bbc5f7 2994 * @return none.
MACRUM 6:40e873bbc5f7 2995 */
MACRUM 6:40e873bbc5f7 2996 void arm_copy_q15(
MACRUM 6:40e873bbc5f7 2997 q15_t * pSrc,
MACRUM 6:40e873bbc5f7 2998 q15_t * pDst,
MACRUM 6:40e873bbc5f7 2999 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 3000
MACRUM 6:40e873bbc5f7 3001 /**
MACRUM 6:40e873bbc5f7 3002 * @brief Copies the elements of a Q31 vector.
MACRUM 6:40e873bbc5f7 3003 * @param[in] *pSrc input pointer
MACRUM 6:40e873bbc5f7 3004 * @param[out] *pDst output pointer
MACRUM 6:40e873bbc5f7 3005 * @param[in] blockSize number of samples to process
MACRUM 6:40e873bbc5f7 3006 * @return none.
MACRUM 6:40e873bbc5f7 3007 */
MACRUM 6:40e873bbc5f7 3008 void arm_copy_q31(
MACRUM 6:40e873bbc5f7 3009 q31_t * pSrc,
MACRUM 6:40e873bbc5f7 3010 q31_t * pDst,
MACRUM 6:40e873bbc5f7 3011 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 3012 /**
MACRUM 6:40e873bbc5f7 3013 * @brief Fills a constant value into a floating-point vector.
MACRUM 6:40e873bbc5f7 3014 * @param[in] value input value to be filled
MACRUM 6:40e873bbc5f7 3015 * @param[out] *pDst output pointer
MACRUM 6:40e873bbc5f7 3016 * @param[in] blockSize number of samples to process
MACRUM 6:40e873bbc5f7 3017 * @return none.
MACRUM 6:40e873bbc5f7 3018 */
MACRUM 6:40e873bbc5f7 3019 void arm_fill_f32(
MACRUM 6:40e873bbc5f7 3020 float32_t value,
MACRUM 6:40e873bbc5f7 3021 float32_t * pDst,
MACRUM 6:40e873bbc5f7 3022 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 3023
MACRUM 6:40e873bbc5f7 3024 /**
MACRUM 6:40e873bbc5f7 3025 * @brief Fills a constant value into a Q7 vector.
MACRUM 6:40e873bbc5f7 3026 * @param[in] value input value to be filled
MACRUM 6:40e873bbc5f7 3027 * @param[out] *pDst output pointer
MACRUM 6:40e873bbc5f7 3028 * @param[in] blockSize number of samples to process
MACRUM 6:40e873bbc5f7 3029 * @return none.
MACRUM 6:40e873bbc5f7 3030 */
MACRUM 6:40e873bbc5f7 3031 void arm_fill_q7(
MACRUM 6:40e873bbc5f7 3032 q7_t value,
MACRUM 6:40e873bbc5f7 3033 q7_t * pDst,
MACRUM 6:40e873bbc5f7 3034 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 3035
MACRUM 6:40e873bbc5f7 3036 /**
MACRUM 6:40e873bbc5f7 3037 * @brief Fills a constant value into a Q15 vector.
MACRUM 6:40e873bbc5f7 3038 * @param[in] value input value to be filled
MACRUM 6:40e873bbc5f7 3039 * @param[out] *pDst output pointer
MACRUM 6:40e873bbc5f7 3040 * @param[in] blockSize number of samples to process
MACRUM 6:40e873bbc5f7 3041 * @return none.
MACRUM 6:40e873bbc5f7 3042 */
MACRUM 6:40e873bbc5f7 3043 void arm_fill_q15(
MACRUM 6:40e873bbc5f7 3044 q15_t value,
MACRUM 6:40e873bbc5f7 3045 q15_t * pDst,
MACRUM 6:40e873bbc5f7 3046 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 3047
MACRUM 6:40e873bbc5f7 3048 /**
MACRUM 6:40e873bbc5f7 3049 * @brief Fills a constant value into a Q31 vector.
MACRUM 6:40e873bbc5f7 3050 * @param[in] value input value to be filled
MACRUM 6:40e873bbc5f7 3051 * @param[out] *pDst output pointer
MACRUM 6:40e873bbc5f7 3052 * @param[in] blockSize number of samples to process
MACRUM 6:40e873bbc5f7 3053 * @return none.
MACRUM 6:40e873bbc5f7 3054 */
MACRUM 6:40e873bbc5f7 3055 void arm_fill_q31(
MACRUM 6:40e873bbc5f7 3056 q31_t value,
MACRUM 6:40e873bbc5f7 3057 q31_t * pDst,
MACRUM 6:40e873bbc5f7 3058 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 3059
MACRUM 6:40e873bbc5f7 3060 /**
MACRUM 6:40e873bbc5f7 3061 * @brief Convolution of floating-point sequences.
MACRUM 6:40e873bbc5f7 3062 * @param[in] *pSrcA points to the first input sequence.
MACRUM 6:40e873bbc5f7 3063 * @param[in] srcALen length of the first input sequence.
MACRUM 6:40e873bbc5f7 3064 * @param[in] *pSrcB points to the second input sequence.
MACRUM 6:40e873bbc5f7 3065 * @param[in] srcBLen length of the second input sequence.
MACRUM 6:40e873bbc5f7 3066 * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
MACRUM 6:40e873bbc5f7 3067 * @return none.
MACRUM 6:40e873bbc5f7 3068 */
MACRUM 6:40e873bbc5f7 3069
MACRUM 6:40e873bbc5f7 3070 void arm_conv_f32(
MACRUM 6:40e873bbc5f7 3071 float32_t * pSrcA,
MACRUM 6:40e873bbc5f7 3072 uint32_t srcALen,
MACRUM 6:40e873bbc5f7 3073 float32_t * pSrcB,
MACRUM 6:40e873bbc5f7 3074 uint32_t srcBLen,
MACRUM 6:40e873bbc5f7 3075 float32_t * pDst);
MACRUM 6:40e873bbc5f7 3076
MACRUM 6:40e873bbc5f7 3077
MACRUM 6:40e873bbc5f7 3078 /**
MACRUM 6:40e873bbc5f7 3079 * @brief Convolution of Q15 sequences.
MACRUM 6:40e873bbc5f7 3080 * @param[in] *pSrcA points to the first input sequence.
MACRUM 6:40e873bbc5f7 3081 * @param[in] srcALen length of the first input sequence.
MACRUM 6:40e873bbc5f7 3082 * @param[in] *pSrcB points to the second input sequence.
MACRUM 6:40e873bbc5f7 3083 * @param[in] srcBLen length of the second input sequence.
MACRUM 6:40e873bbc5f7 3084 * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
MACRUM 6:40e873bbc5f7 3085 * @param[in] *pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
MACRUM 6:40e873bbc5f7 3086 * @param[in] *pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
MACRUM 6:40e873bbc5f7 3087 * @return none.
MACRUM 6:40e873bbc5f7 3088 */
MACRUM 6:40e873bbc5f7 3089
MACRUM 6:40e873bbc5f7 3090
MACRUM 6:40e873bbc5f7 3091 void arm_conv_opt_q15(
MACRUM 6:40e873bbc5f7 3092 q15_t * pSrcA,
MACRUM 6:40e873bbc5f7 3093 uint32_t srcALen,
MACRUM 6:40e873bbc5f7 3094 q15_t * pSrcB,
MACRUM 6:40e873bbc5f7 3095 uint32_t srcBLen,
MACRUM 6:40e873bbc5f7 3096 q15_t * pDst,
MACRUM 6:40e873bbc5f7 3097 q15_t * pScratch1,
MACRUM 6:40e873bbc5f7 3098 q15_t * pScratch2);
MACRUM 6:40e873bbc5f7 3099
MACRUM 6:40e873bbc5f7 3100
MACRUM 6:40e873bbc5f7 3101 /**
MACRUM 6:40e873bbc5f7 3102 * @brief Convolution of Q15 sequences.
MACRUM 6:40e873bbc5f7 3103 * @param[in] *pSrcA points to the first input sequence.
MACRUM 6:40e873bbc5f7 3104 * @param[in] srcALen length of the first input sequence.
MACRUM 6:40e873bbc5f7 3105 * @param[in] *pSrcB points to the second input sequence.
MACRUM 6:40e873bbc5f7 3106 * @param[in] srcBLen length of the second input sequence.
MACRUM 6:40e873bbc5f7 3107 * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
MACRUM 6:40e873bbc5f7 3108 * @return none.
MACRUM 6:40e873bbc5f7 3109 */
MACRUM 6:40e873bbc5f7 3110
MACRUM 6:40e873bbc5f7 3111 void arm_conv_q15(
MACRUM 6:40e873bbc5f7 3112 q15_t * pSrcA,
MACRUM 6:40e873bbc5f7 3113 uint32_t srcALen,
MACRUM 6:40e873bbc5f7 3114 q15_t * pSrcB,
MACRUM 6:40e873bbc5f7 3115 uint32_t srcBLen,
MACRUM 6:40e873bbc5f7 3116 q15_t * pDst);
MACRUM 6:40e873bbc5f7 3117
MACRUM 6:40e873bbc5f7 3118 /**
MACRUM 6:40e873bbc5f7 3119 * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
MACRUM 6:40e873bbc5f7 3120 * @param[in] *pSrcA points to the first input sequence.
MACRUM 6:40e873bbc5f7 3121 * @param[in] srcALen length of the first input sequence.
MACRUM 6:40e873bbc5f7 3122 * @param[in] *pSrcB points to the second input sequence.
MACRUM 6:40e873bbc5f7 3123 * @param[in] srcBLen length of the second input sequence.
MACRUM 6:40e873bbc5f7 3124 * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
MACRUM 6:40e873bbc5f7 3125 * @return none.
MACRUM 6:40e873bbc5f7 3126 */
MACRUM 6:40e873bbc5f7 3127
MACRUM 6:40e873bbc5f7 3128 void arm_conv_fast_q15(
MACRUM 6:40e873bbc5f7 3129 q15_t * pSrcA,
MACRUM 6:40e873bbc5f7 3130 uint32_t srcALen,
MACRUM 6:40e873bbc5f7 3131 q15_t * pSrcB,
MACRUM 6:40e873bbc5f7 3132 uint32_t srcBLen,
MACRUM 6:40e873bbc5f7 3133 q15_t * pDst);
MACRUM 6:40e873bbc5f7 3134
MACRUM 6:40e873bbc5f7 3135 /**
MACRUM 6:40e873bbc5f7 3136 * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
MACRUM 6:40e873bbc5f7 3137 * @param[in] *pSrcA points to the first input sequence.
MACRUM 6:40e873bbc5f7 3138 * @param[in] srcALen length of the first input sequence.
MACRUM 6:40e873bbc5f7 3139 * @param[in] *pSrcB points to the second input sequence.
MACRUM 6:40e873bbc5f7 3140 * @param[in] srcBLen length of the second input sequence.
MACRUM 6:40e873bbc5f7 3141 * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
MACRUM 6:40e873bbc5f7 3142 * @param[in] *pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
MACRUM 6:40e873bbc5f7 3143 * @param[in] *pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
MACRUM 6:40e873bbc5f7 3144 * @return none.
MACRUM 6:40e873bbc5f7 3145 */
MACRUM 6:40e873bbc5f7 3146
MACRUM 6:40e873bbc5f7 3147 void arm_conv_fast_opt_q15(
MACRUM 6:40e873bbc5f7 3148 q15_t * pSrcA,
MACRUM 6:40e873bbc5f7 3149 uint32_t srcALen,
MACRUM 6:40e873bbc5f7 3150 q15_t * pSrcB,
MACRUM 6:40e873bbc5f7 3151 uint32_t srcBLen,
MACRUM 6:40e873bbc5f7 3152 q15_t * pDst,
MACRUM 6:40e873bbc5f7 3153 q15_t * pScratch1,
MACRUM 6:40e873bbc5f7 3154 q15_t * pScratch2);
MACRUM 6:40e873bbc5f7 3155
MACRUM 6:40e873bbc5f7 3156
MACRUM 6:40e873bbc5f7 3157
MACRUM 6:40e873bbc5f7 3158 /**
MACRUM 6:40e873bbc5f7 3159 * @brief Convolution of Q31 sequences.
MACRUM 6:40e873bbc5f7 3160 * @param[in] *pSrcA points to the first input sequence.
MACRUM 6:40e873bbc5f7 3161 * @param[in] srcALen length of the first input sequence.
MACRUM 6:40e873bbc5f7 3162 * @param[in] *pSrcB points to the second input sequence.
MACRUM 6:40e873bbc5f7 3163 * @param[in] srcBLen length of the second input sequence.
MACRUM 6:40e873bbc5f7 3164 * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
MACRUM 6:40e873bbc5f7 3165 * @return none.
MACRUM 6:40e873bbc5f7 3166 */
MACRUM 6:40e873bbc5f7 3167
MACRUM 6:40e873bbc5f7 3168 void arm_conv_q31(
MACRUM 6:40e873bbc5f7 3169 q31_t * pSrcA,
MACRUM 6:40e873bbc5f7 3170 uint32_t srcALen,
MACRUM 6:40e873bbc5f7 3171 q31_t * pSrcB,
MACRUM 6:40e873bbc5f7 3172 uint32_t srcBLen,
MACRUM 6:40e873bbc5f7 3173 q31_t * pDst);
MACRUM 6:40e873bbc5f7 3174
MACRUM 6:40e873bbc5f7 3175 /**
MACRUM 6:40e873bbc5f7 3176 * @brief Convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
MACRUM 6:40e873bbc5f7 3177 * @param[in] *pSrcA points to the first input sequence.
MACRUM 6:40e873bbc5f7 3178 * @param[in] srcALen length of the first input sequence.
MACRUM 6:40e873bbc5f7 3179 * @param[in] *pSrcB points to the second input sequence.
MACRUM 6:40e873bbc5f7 3180 * @param[in] srcBLen length of the second input sequence.
MACRUM 6:40e873bbc5f7 3181 * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
MACRUM 6:40e873bbc5f7 3182 * @return none.
MACRUM 6:40e873bbc5f7 3183 */
MACRUM 6:40e873bbc5f7 3184
MACRUM 6:40e873bbc5f7 3185 void arm_conv_fast_q31(
MACRUM 6:40e873bbc5f7 3186 q31_t * pSrcA,
MACRUM 6:40e873bbc5f7 3187 uint32_t srcALen,
MACRUM 6:40e873bbc5f7 3188 q31_t * pSrcB,
MACRUM 6:40e873bbc5f7 3189 uint32_t srcBLen,
MACRUM 6:40e873bbc5f7 3190 q31_t * pDst);
MACRUM 6:40e873bbc5f7 3191
MACRUM 6:40e873bbc5f7 3192
MACRUM 6:40e873bbc5f7 3193 /**
MACRUM 6:40e873bbc5f7 3194 * @brief Convolution of Q7 sequences.
MACRUM 6:40e873bbc5f7 3195 * @param[in] *pSrcA points to the first input sequence.
MACRUM 6:40e873bbc5f7 3196 * @param[in] srcALen length of the first input sequence.
MACRUM 6:40e873bbc5f7 3197 * @param[in] *pSrcB points to the second input sequence.
MACRUM 6:40e873bbc5f7 3198 * @param[in] srcBLen length of the second input sequence.
MACRUM 6:40e873bbc5f7 3199 * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
MACRUM 6:40e873bbc5f7 3200 * @param[in] *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
MACRUM 6:40e873bbc5f7 3201 * @param[in] *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
MACRUM 6:40e873bbc5f7 3202 * @return none.
MACRUM 6:40e873bbc5f7 3203 */
MACRUM 6:40e873bbc5f7 3204
MACRUM 6:40e873bbc5f7 3205 void arm_conv_opt_q7(
MACRUM 6:40e873bbc5f7 3206 q7_t * pSrcA,
MACRUM 6:40e873bbc5f7 3207 uint32_t srcALen,
MACRUM 6:40e873bbc5f7 3208 q7_t * pSrcB,
MACRUM 6:40e873bbc5f7 3209 uint32_t srcBLen,
MACRUM 6:40e873bbc5f7 3210 q7_t * pDst,
MACRUM 6:40e873bbc5f7 3211 q15_t * pScratch1,
MACRUM 6:40e873bbc5f7 3212 q15_t * pScratch2);
MACRUM 6:40e873bbc5f7 3213
MACRUM 6:40e873bbc5f7 3214
MACRUM 6:40e873bbc5f7 3215
MACRUM 6:40e873bbc5f7 3216 /**
MACRUM 6:40e873bbc5f7 3217 * @brief Convolution of Q7 sequences.
MACRUM 6:40e873bbc5f7 3218 * @param[in] *pSrcA points to the first input sequence.
MACRUM 6:40e873bbc5f7 3219 * @param[in] srcALen length of the first input sequence.
MACRUM 6:40e873bbc5f7 3220 * @param[in] *pSrcB points to the second input sequence.
MACRUM 6:40e873bbc5f7 3221 * @param[in] srcBLen length of the second input sequence.
MACRUM 6:40e873bbc5f7 3222 * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
MACRUM 6:40e873bbc5f7 3223 * @return none.
MACRUM 6:40e873bbc5f7 3224 */
MACRUM 6:40e873bbc5f7 3225
MACRUM 6:40e873bbc5f7 3226 void arm_conv_q7(
MACRUM 6:40e873bbc5f7 3227 q7_t * pSrcA,
MACRUM 6:40e873bbc5f7 3228 uint32_t srcALen,
MACRUM 6:40e873bbc5f7 3229 q7_t * pSrcB,
MACRUM 6:40e873bbc5f7 3230 uint32_t srcBLen,
MACRUM 6:40e873bbc5f7 3231 q7_t * pDst);
MACRUM 6:40e873bbc5f7 3232
MACRUM 6:40e873bbc5f7 3233
MACRUM 6:40e873bbc5f7 3234 /**
MACRUM 6:40e873bbc5f7 3235 * @brief Partial convolution of floating-point sequences.
MACRUM 6:40e873bbc5f7 3236 * @param[in] *pSrcA points to the first input sequence.
MACRUM 6:40e873bbc5f7 3237 * @param[in] srcALen length of the first input sequence.
MACRUM 6:40e873bbc5f7 3238 * @param[in] *pSrcB points to the second input sequence.
MACRUM 6:40e873bbc5f7 3239 * @param[in] srcBLen length of the second input sequence.
MACRUM 6:40e873bbc5f7 3240 * @param[out] *pDst points to the block of output data
MACRUM 6:40e873bbc5f7 3241 * @param[in] firstIndex is the first output sample to start with.
MACRUM 6:40e873bbc5f7 3242 * @param[in] numPoints is the number of output points to be computed.
MACRUM 6:40e873bbc5f7 3243 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
MACRUM 6:40e873bbc5f7 3244 */
MACRUM 6:40e873bbc5f7 3245
MACRUM 6:40e873bbc5f7 3246 arm_status arm_conv_partial_f32(
MACRUM 6:40e873bbc5f7 3247 float32_t * pSrcA,
MACRUM 6:40e873bbc5f7 3248 uint32_t srcALen,
MACRUM 6:40e873bbc5f7 3249 float32_t * pSrcB,
MACRUM 6:40e873bbc5f7 3250 uint32_t srcBLen,
MACRUM 6:40e873bbc5f7 3251 float32_t * pDst,
MACRUM 6:40e873bbc5f7 3252 uint32_t firstIndex,
MACRUM 6:40e873bbc5f7 3253 uint32_t numPoints);
MACRUM 6:40e873bbc5f7 3254
MACRUM 6:40e873bbc5f7 3255 /**
MACRUM 6:40e873bbc5f7 3256 * @brief Partial convolution of Q15 sequences.
MACRUM 6:40e873bbc5f7 3257 * @param[in] *pSrcA points to the first input sequence.
MACRUM 6:40e873bbc5f7 3258 * @param[in] srcALen length of the first input sequence.
MACRUM 6:40e873bbc5f7 3259 * @param[in] *pSrcB points to the second input sequence.
MACRUM 6:40e873bbc5f7 3260 * @param[in] srcBLen length of the second input sequence.
MACRUM 6:40e873bbc5f7 3261 * @param[out] *pDst points to the block of output data
MACRUM 6:40e873bbc5f7 3262 * @param[in] firstIndex is the first output sample to start with.
MACRUM 6:40e873bbc5f7 3263 * @param[in] numPoints is the number of output points to be computed.
MACRUM 6:40e873bbc5f7 3264 * @param[in] * pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
MACRUM 6:40e873bbc5f7 3265 * @param[in] * pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
MACRUM 6:40e873bbc5f7 3266 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
MACRUM 6:40e873bbc5f7 3267 */
MACRUM 6:40e873bbc5f7 3268
MACRUM 6:40e873bbc5f7 3269 arm_status arm_conv_partial_opt_q15(
MACRUM 6:40e873bbc5f7 3270 q15_t * pSrcA,
MACRUM 6:40e873bbc5f7 3271 uint32_t srcALen,
MACRUM 6:40e873bbc5f7 3272 q15_t * pSrcB,
MACRUM 6:40e873bbc5f7 3273 uint32_t srcBLen,
MACRUM 6:40e873bbc5f7 3274 q15_t * pDst,
MACRUM 6:40e873bbc5f7 3275 uint32_t firstIndex,
MACRUM 6:40e873bbc5f7 3276 uint32_t numPoints,
MACRUM 6:40e873bbc5f7 3277 q15_t * pScratch1,
MACRUM 6:40e873bbc5f7 3278 q15_t * pScratch2);
MACRUM 6:40e873bbc5f7 3279
MACRUM 6:40e873bbc5f7 3280
MACRUM 6:40e873bbc5f7 3281 /**
MACRUM 6:40e873bbc5f7 3282 * @brief Partial convolution of Q15 sequences.
MACRUM 6:40e873bbc5f7 3283 * @param[in] *pSrcA points to the first input sequence.
MACRUM 6:40e873bbc5f7 3284 * @param[in] srcALen length of the first input sequence.
MACRUM 6:40e873bbc5f7 3285 * @param[in] *pSrcB points to the second input sequence.
MACRUM 6:40e873bbc5f7 3286 * @param[in] srcBLen length of the second input sequence.
MACRUM 6:40e873bbc5f7 3287 * @param[out] *pDst points to the block of output data
MACRUM 6:40e873bbc5f7 3288 * @param[in] firstIndex is the first output sample to start with.
MACRUM 6:40e873bbc5f7 3289 * @param[in] numPoints is the number of output points to be computed.
MACRUM 6:40e873bbc5f7 3290 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
MACRUM 6:40e873bbc5f7 3291 */
MACRUM 6:40e873bbc5f7 3292
MACRUM 6:40e873bbc5f7 3293 arm_status arm_conv_partial_q15(
MACRUM 6:40e873bbc5f7 3294 q15_t * pSrcA,
MACRUM 6:40e873bbc5f7 3295 uint32_t srcALen,
MACRUM 6:40e873bbc5f7 3296 q15_t * pSrcB,
MACRUM 6:40e873bbc5f7 3297 uint32_t srcBLen,
MACRUM 6:40e873bbc5f7 3298 q15_t * pDst,
MACRUM 6:40e873bbc5f7 3299 uint32_t firstIndex,
MACRUM 6:40e873bbc5f7 3300 uint32_t numPoints);
MACRUM 6:40e873bbc5f7 3301
MACRUM 6:40e873bbc5f7 3302 /**
MACRUM 6:40e873bbc5f7 3303 * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
MACRUM 6:40e873bbc5f7 3304 * @param[in] *pSrcA points to the first input sequence.
MACRUM 6:40e873bbc5f7 3305 * @param[in] srcALen length of the first input sequence.
MACRUM 6:40e873bbc5f7 3306 * @param[in] *pSrcB points to the second input sequence.
MACRUM 6:40e873bbc5f7 3307 * @param[in] srcBLen length of the second input sequence.
MACRUM 6:40e873bbc5f7 3308 * @param[out] *pDst points to the block of output data
MACRUM 6:40e873bbc5f7 3309 * @param[in] firstIndex is the first output sample to start with.
MACRUM 6:40e873bbc5f7 3310 * @param[in] numPoints is the number of output points to be computed.
MACRUM 6:40e873bbc5f7 3311 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
MACRUM 6:40e873bbc5f7 3312 */
MACRUM 6:40e873bbc5f7 3313
MACRUM 6:40e873bbc5f7 3314 arm_status arm_conv_partial_fast_q15(
MACRUM 6:40e873bbc5f7 3315 q15_t * pSrcA,
MACRUM 6:40e873bbc5f7 3316 uint32_t srcALen,
MACRUM 6:40e873bbc5f7 3317 q15_t * pSrcB,
MACRUM 6:40e873bbc5f7 3318 uint32_t srcBLen,
MACRUM 6:40e873bbc5f7 3319 q15_t * pDst,
MACRUM 6:40e873bbc5f7 3320 uint32_t firstIndex,
MACRUM 6:40e873bbc5f7 3321 uint32_t numPoints);
MACRUM 6:40e873bbc5f7 3322
MACRUM 6:40e873bbc5f7 3323
MACRUM 6:40e873bbc5f7 3324 /**
MACRUM 6:40e873bbc5f7 3325 * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
MACRUM 6:40e873bbc5f7 3326 * @param[in] *pSrcA points to the first input sequence.
MACRUM 6:40e873bbc5f7 3327 * @param[in] srcALen length of the first input sequence.
MACRUM 6:40e873bbc5f7 3328 * @param[in] *pSrcB points to the second input sequence.
MACRUM 6:40e873bbc5f7 3329 * @param[in] srcBLen length of the second input sequence.
MACRUM 6:40e873bbc5f7 3330 * @param[out] *pDst points to the block of output data
MACRUM 6:40e873bbc5f7 3331 * @param[in] firstIndex is the first output sample to start with.
MACRUM 6:40e873bbc5f7 3332 * @param[in] numPoints is the number of output points to be computed.
MACRUM 6:40e873bbc5f7 3333 * @param[in] * pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
MACRUM 6:40e873bbc5f7 3334 * @param[in] * pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
MACRUM 6:40e873bbc5f7 3335 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
MACRUM 6:40e873bbc5f7 3336 */
MACRUM 6:40e873bbc5f7 3337
MACRUM 6:40e873bbc5f7 3338 arm_status arm_conv_partial_fast_opt_q15(
MACRUM 6:40e873bbc5f7 3339 q15_t * pSrcA,
MACRUM 6:40e873bbc5f7 3340 uint32_t srcALen,
MACRUM 6:40e873bbc5f7 3341 q15_t * pSrcB,
MACRUM 6:40e873bbc5f7 3342 uint32_t srcBLen,
MACRUM 6:40e873bbc5f7 3343 q15_t * pDst,
MACRUM 6:40e873bbc5f7 3344 uint32_t firstIndex,
MACRUM 6:40e873bbc5f7 3345 uint32_t numPoints,
MACRUM 6:40e873bbc5f7 3346 q15_t * pScratch1,
MACRUM 6:40e873bbc5f7 3347 q15_t * pScratch2);
MACRUM 6:40e873bbc5f7 3348
MACRUM 6:40e873bbc5f7 3349
MACRUM 6:40e873bbc5f7 3350 /**
MACRUM 6:40e873bbc5f7 3351 * @brief Partial convolution of Q31 sequences.
MACRUM 6:40e873bbc5f7 3352 * @param[in] *pSrcA points to the first input sequence.
MACRUM 6:40e873bbc5f7 3353 * @param[in] srcALen length of the first input sequence.
MACRUM 6:40e873bbc5f7 3354 * @param[in] *pSrcB points to the second input sequence.
MACRUM 6:40e873bbc5f7 3355 * @param[in] srcBLen length of the second input sequence.
MACRUM 6:40e873bbc5f7 3356 * @param[out] *pDst points to the block of output data
MACRUM 6:40e873bbc5f7 3357 * @param[in] firstIndex is the first output sample to start with.
MACRUM 6:40e873bbc5f7 3358 * @param[in] numPoints is the number of output points to be computed.
MACRUM 6:40e873bbc5f7 3359 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
MACRUM 6:40e873bbc5f7 3360 */
MACRUM 6:40e873bbc5f7 3361
MACRUM 6:40e873bbc5f7 3362 arm_status arm_conv_partial_q31(
MACRUM 6:40e873bbc5f7 3363 q31_t * pSrcA,
MACRUM 6:40e873bbc5f7 3364 uint32_t srcALen,
MACRUM 6:40e873bbc5f7 3365 q31_t * pSrcB,
MACRUM 6:40e873bbc5f7 3366 uint32_t srcBLen,
MACRUM 6:40e873bbc5f7 3367 q31_t * pDst,
MACRUM 6:40e873bbc5f7 3368 uint32_t firstIndex,
MACRUM 6:40e873bbc5f7 3369 uint32_t numPoints);
MACRUM 6:40e873bbc5f7 3370
MACRUM 6:40e873bbc5f7 3371
MACRUM 6:40e873bbc5f7 3372 /**
MACRUM 6:40e873bbc5f7 3373 * @brief Partial convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
MACRUM 6:40e873bbc5f7 3374 * @param[in] *pSrcA points to the first input sequence.
MACRUM 6:40e873bbc5f7 3375 * @param[in] srcALen length of the first input sequence.
MACRUM 6:40e873bbc5f7 3376 * @param[in] *pSrcB points to the second input sequence.
MACRUM 6:40e873bbc5f7 3377 * @param[in] srcBLen length of the second input sequence.
MACRUM 6:40e873bbc5f7 3378 * @param[out] *pDst points to the block of output data
MACRUM 6:40e873bbc5f7 3379 * @param[in] firstIndex is the first output sample to start with.
MACRUM 6:40e873bbc5f7 3380 * @param[in] numPoints is the number of output points to be computed.
MACRUM 6:40e873bbc5f7 3381 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
MACRUM 6:40e873bbc5f7 3382 */
MACRUM 6:40e873bbc5f7 3383
MACRUM 6:40e873bbc5f7 3384 arm_status arm_conv_partial_fast_q31(
MACRUM 6:40e873bbc5f7 3385 q31_t * pSrcA,
MACRUM 6:40e873bbc5f7 3386 uint32_t srcALen,
MACRUM 6:40e873bbc5f7 3387 q31_t * pSrcB,
MACRUM 6:40e873bbc5f7 3388 uint32_t srcBLen,
MACRUM 6:40e873bbc5f7 3389 q31_t * pDst,
MACRUM 6:40e873bbc5f7 3390 uint32_t firstIndex,
MACRUM 6:40e873bbc5f7 3391 uint32_t numPoints);
MACRUM 6:40e873bbc5f7 3392
MACRUM 6:40e873bbc5f7 3393
MACRUM 6:40e873bbc5f7 3394 /**
MACRUM 6:40e873bbc5f7 3395 * @brief Partial convolution of Q7 sequences
MACRUM 6:40e873bbc5f7 3396 * @param[in] *pSrcA points to the first input sequence.
MACRUM 6:40e873bbc5f7 3397 * @param[in] srcALen length of the first input sequence.
MACRUM 6:40e873bbc5f7 3398 * @param[in] *pSrcB points to the second input sequence.
MACRUM 6:40e873bbc5f7 3399 * @param[in] srcBLen length of the second input sequence.
MACRUM 6:40e873bbc5f7 3400 * @param[out] *pDst points to the block of output data
MACRUM 6:40e873bbc5f7 3401 * @param[in] firstIndex is the first output sample to start with.
MACRUM 6:40e873bbc5f7 3402 * @param[in] numPoints is the number of output points to be computed.
MACRUM 6:40e873bbc5f7 3403 * @param[in] *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
MACRUM 6:40e873bbc5f7 3404 * @param[in] *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
MACRUM 6:40e873bbc5f7 3405 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
MACRUM 6:40e873bbc5f7 3406 */
MACRUM 6:40e873bbc5f7 3407
MACRUM 6:40e873bbc5f7 3408 arm_status arm_conv_partial_opt_q7(
MACRUM 6:40e873bbc5f7 3409 q7_t * pSrcA,
MACRUM 6:40e873bbc5f7 3410 uint32_t srcALen,
MACRUM 6:40e873bbc5f7 3411 q7_t * pSrcB,
MACRUM 6:40e873bbc5f7 3412 uint32_t srcBLen,
MACRUM 6:40e873bbc5f7 3413 q7_t * pDst,
MACRUM 6:40e873bbc5f7 3414 uint32_t firstIndex,
MACRUM 6:40e873bbc5f7 3415 uint32_t numPoints,
MACRUM 6:40e873bbc5f7 3416 q15_t * pScratch1,
MACRUM 6:40e873bbc5f7 3417 q15_t * pScratch2);
MACRUM 6:40e873bbc5f7 3418
MACRUM 6:40e873bbc5f7 3419
MACRUM 6:40e873bbc5f7 3420 /**
MACRUM 6:40e873bbc5f7 3421 * @brief Partial convolution of Q7 sequences.
MACRUM 6:40e873bbc5f7 3422 * @param[in] *pSrcA points to the first input sequence.
MACRUM 6:40e873bbc5f7 3423 * @param[in] srcALen length of the first input sequence.
MACRUM 6:40e873bbc5f7 3424 * @param[in] *pSrcB points to the second input sequence.
MACRUM 6:40e873bbc5f7 3425 * @param[in] srcBLen length of the second input sequence.
MACRUM 6:40e873bbc5f7 3426 * @param[out] *pDst points to the block of output data
MACRUM 6:40e873bbc5f7 3427 * @param[in] firstIndex is the first output sample to start with.
MACRUM 6:40e873bbc5f7 3428 * @param[in] numPoints is the number of output points to be computed.
MACRUM 6:40e873bbc5f7 3429 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
MACRUM 6:40e873bbc5f7 3430 */
MACRUM 6:40e873bbc5f7 3431
MACRUM 6:40e873bbc5f7 3432 arm_status arm_conv_partial_q7(
MACRUM 6:40e873bbc5f7 3433 q7_t * pSrcA,
MACRUM 6:40e873bbc5f7 3434 uint32_t srcALen,
MACRUM 6:40e873bbc5f7 3435 q7_t * pSrcB,
MACRUM 6:40e873bbc5f7 3436 uint32_t srcBLen,
MACRUM 6:40e873bbc5f7 3437 q7_t * pDst,
MACRUM 6:40e873bbc5f7 3438 uint32_t firstIndex,
MACRUM 6:40e873bbc5f7 3439 uint32_t numPoints);
MACRUM 6:40e873bbc5f7 3440
MACRUM 6:40e873bbc5f7 3441
MACRUM 6:40e873bbc5f7 3442
MACRUM 6:40e873bbc5f7 3443 /**
MACRUM 6:40e873bbc5f7 3444 * @brief Instance structure for the Q15 FIR decimator.
MACRUM 6:40e873bbc5f7 3445 */
MACRUM 6:40e873bbc5f7 3446
MACRUM 6:40e873bbc5f7 3447 typedef struct
MACRUM 6:40e873bbc5f7 3448 {
MACRUM 6:40e873bbc5f7 3449 uint8_t M; /**< decimation factor. */
MACRUM 6:40e873bbc5f7 3450 uint16_t numTaps; /**< number of coefficients in the filter. */
MACRUM 6:40e873bbc5f7 3451 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
MACRUM 6:40e873bbc5f7 3452 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
MACRUM 6:40e873bbc5f7 3453 } arm_fir_decimate_instance_q15;
MACRUM 6:40e873bbc5f7 3454
MACRUM 6:40e873bbc5f7 3455 /**
MACRUM 6:40e873bbc5f7 3456 * @brief Instance structure for the Q31 FIR decimator.
MACRUM 6:40e873bbc5f7 3457 */
MACRUM 6:40e873bbc5f7 3458
MACRUM 6:40e873bbc5f7 3459 typedef struct
MACRUM 6:40e873bbc5f7 3460 {
MACRUM 6:40e873bbc5f7 3461 uint8_t M; /**< decimation factor. */
MACRUM 6:40e873bbc5f7 3462 uint16_t numTaps; /**< number of coefficients in the filter. */
MACRUM 6:40e873bbc5f7 3463 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
MACRUM 6:40e873bbc5f7 3464 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
MACRUM 6:40e873bbc5f7 3465
MACRUM 6:40e873bbc5f7 3466 } arm_fir_decimate_instance_q31;
MACRUM 6:40e873bbc5f7 3467
MACRUM 6:40e873bbc5f7 3468 /**
MACRUM 6:40e873bbc5f7 3469 * @brief Instance structure for the floating-point FIR decimator.
MACRUM 6:40e873bbc5f7 3470 */
MACRUM 6:40e873bbc5f7 3471
MACRUM 6:40e873bbc5f7 3472 typedef struct
MACRUM 6:40e873bbc5f7 3473 {
MACRUM 6:40e873bbc5f7 3474 uint8_t M; /**< decimation factor. */
MACRUM 6:40e873bbc5f7 3475 uint16_t numTaps; /**< number of coefficients in the filter. */
MACRUM 6:40e873bbc5f7 3476 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
MACRUM 6:40e873bbc5f7 3477 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
MACRUM 6:40e873bbc5f7 3478
MACRUM 6:40e873bbc5f7 3479 } arm_fir_decimate_instance_f32;
MACRUM 6:40e873bbc5f7 3480
MACRUM 6:40e873bbc5f7 3481
MACRUM 6:40e873bbc5f7 3482
MACRUM 6:40e873bbc5f7 3483 /**
MACRUM 6:40e873bbc5f7 3484 * @brief Processing function for the floating-point FIR decimator.
MACRUM 6:40e873bbc5f7 3485 * @param[in] *S points to an instance of the floating-point FIR decimator structure.
MACRUM 6:40e873bbc5f7 3486 * @param[in] *pSrc points to the block of input data.
MACRUM 6:40e873bbc5f7 3487 * @param[out] *pDst points to the block of output data
MACRUM 6:40e873bbc5f7 3488 * @param[in] blockSize number of input samples to process per call.
MACRUM 6:40e873bbc5f7 3489 * @return none
MACRUM 6:40e873bbc5f7 3490 */
MACRUM 6:40e873bbc5f7 3491
MACRUM 6:40e873bbc5f7 3492 void arm_fir_decimate_f32(
MACRUM 6:40e873bbc5f7 3493 const arm_fir_decimate_instance_f32 * S,
MACRUM 6:40e873bbc5f7 3494 float32_t * pSrc,
MACRUM 6:40e873bbc5f7 3495 float32_t * pDst,
MACRUM 6:40e873bbc5f7 3496 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 3497
MACRUM 6:40e873bbc5f7 3498
MACRUM 6:40e873bbc5f7 3499 /**
MACRUM 6:40e873bbc5f7 3500 * @brief Initialization function for the floating-point FIR decimator.
MACRUM 6:40e873bbc5f7 3501 * @param[in,out] *S points to an instance of the floating-point FIR decimator structure.
MACRUM 6:40e873bbc5f7 3502 * @param[in] numTaps number of coefficients in the filter.
MACRUM 6:40e873bbc5f7 3503 * @param[in] M decimation factor.
MACRUM 6:40e873bbc5f7 3504 * @param[in] *pCoeffs points to the filter coefficients.
MACRUM 6:40e873bbc5f7 3505 * @param[in] *pState points to the state buffer.
MACRUM 6:40e873bbc5f7 3506 * @param[in] blockSize number of input samples to process per call.
MACRUM 6:40e873bbc5f7 3507 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
MACRUM 6:40e873bbc5f7 3508 * <code>blockSize</code> is not a multiple of <code>M</code>.
MACRUM 6:40e873bbc5f7 3509 */
MACRUM 6:40e873bbc5f7 3510
MACRUM 6:40e873bbc5f7 3511 arm_status arm_fir_decimate_init_f32(
MACRUM 6:40e873bbc5f7 3512 arm_fir_decimate_instance_f32 * S,
MACRUM 6:40e873bbc5f7 3513 uint16_t numTaps,
MACRUM 6:40e873bbc5f7 3514 uint8_t M,
MACRUM 6:40e873bbc5f7 3515 float32_t * pCoeffs,
MACRUM 6:40e873bbc5f7 3516 float32_t * pState,
MACRUM 6:40e873bbc5f7 3517 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 3518
MACRUM 6:40e873bbc5f7 3519 /**
MACRUM 6:40e873bbc5f7 3520 * @brief Processing function for the Q15 FIR decimator.
MACRUM 6:40e873bbc5f7 3521 * @param[in] *S points to an instance of the Q15 FIR decimator structure.
MACRUM 6:40e873bbc5f7 3522 * @param[in] *pSrc points to the block of input data.
MACRUM 6:40e873bbc5f7 3523 * @param[out] *pDst points to the block of output data
MACRUM 6:40e873bbc5f7 3524 * @param[in] blockSize number of input samples to process per call.
MACRUM 6:40e873bbc5f7 3525 * @return none
MACRUM 6:40e873bbc5f7 3526 */
MACRUM 6:40e873bbc5f7 3527
MACRUM 6:40e873bbc5f7 3528 void arm_fir_decimate_q15(
MACRUM 6:40e873bbc5f7 3529 const arm_fir_decimate_instance_q15 * S,
MACRUM 6:40e873bbc5f7 3530 q15_t * pSrc,
MACRUM 6:40e873bbc5f7 3531 q15_t * pDst,
MACRUM 6:40e873bbc5f7 3532 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 3533
MACRUM 6:40e873bbc5f7 3534 /**
MACRUM 6:40e873bbc5f7 3535 * @brief Processing function for the Q15 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
MACRUM 6:40e873bbc5f7 3536 * @param[in] *S points to an instance of the Q15 FIR decimator structure.
MACRUM 6:40e873bbc5f7 3537 * @param[in] *pSrc points to the block of input data.
MACRUM 6:40e873bbc5f7 3538 * @param[out] *pDst points to the block of output data
MACRUM 6:40e873bbc5f7 3539 * @param[in] blockSize number of input samples to process per call.
MACRUM 6:40e873bbc5f7 3540 * @return none
MACRUM 6:40e873bbc5f7 3541 */
MACRUM 6:40e873bbc5f7 3542
MACRUM 6:40e873bbc5f7 3543 void arm_fir_decimate_fast_q15(
MACRUM 6:40e873bbc5f7 3544 const arm_fir_decimate_instance_q15 * S,
MACRUM 6:40e873bbc5f7 3545 q15_t * pSrc,
MACRUM 6:40e873bbc5f7 3546 q15_t * pDst,
MACRUM 6:40e873bbc5f7 3547 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 3548
MACRUM 6:40e873bbc5f7 3549
MACRUM 6:40e873bbc5f7 3550
MACRUM 6:40e873bbc5f7 3551 /**
MACRUM 6:40e873bbc5f7 3552 * @brief Initialization function for the Q15 FIR decimator.
MACRUM 6:40e873bbc5f7 3553 * @param[in,out] *S points to an instance of the Q15 FIR decimator structure.
MACRUM 6:40e873bbc5f7 3554 * @param[in] numTaps number of coefficients in the filter.
MACRUM 6:40e873bbc5f7 3555 * @param[in] M decimation factor.
MACRUM 6:40e873bbc5f7 3556 * @param[in] *pCoeffs points to the filter coefficients.
MACRUM 6:40e873bbc5f7 3557 * @param[in] *pState points to the state buffer.
MACRUM 6:40e873bbc5f7 3558 * @param[in] blockSize number of input samples to process per call.
MACRUM 6:40e873bbc5f7 3559 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
MACRUM 6:40e873bbc5f7 3560 * <code>blockSize</code> is not a multiple of <code>M</code>.
MACRUM 6:40e873bbc5f7 3561 */
MACRUM 6:40e873bbc5f7 3562
MACRUM 6:40e873bbc5f7 3563 arm_status arm_fir_decimate_init_q15(
MACRUM 6:40e873bbc5f7 3564 arm_fir_decimate_instance_q15 * S,
MACRUM 6:40e873bbc5f7 3565 uint16_t numTaps,
MACRUM 6:40e873bbc5f7 3566 uint8_t M,
MACRUM 6:40e873bbc5f7 3567 q15_t * pCoeffs,
MACRUM 6:40e873bbc5f7 3568 q15_t * pState,
MACRUM 6:40e873bbc5f7 3569 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 3570
MACRUM 6:40e873bbc5f7 3571 /**
MACRUM 6:40e873bbc5f7 3572 * @brief Processing function for the Q31 FIR decimator.
MACRUM 6:40e873bbc5f7 3573 * @param[in] *S points to an instance of the Q31 FIR decimator structure.
MACRUM 6:40e873bbc5f7 3574 * @param[in] *pSrc points to the block of input data.
MACRUM 6:40e873bbc5f7 3575 * @param[out] *pDst points to the block of output data
MACRUM 6:40e873bbc5f7 3576 * @param[in] blockSize number of input samples to process per call.
MACRUM 6:40e873bbc5f7 3577 * @return none
MACRUM 6:40e873bbc5f7 3578 */
MACRUM 6:40e873bbc5f7 3579
MACRUM 6:40e873bbc5f7 3580 void arm_fir_decimate_q31(
MACRUM 6:40e873bbc5f7 3581 const arm_fir_decimate_instance_q31 * S,
MACRUM 6:40e873bbc5f7 3582 q31_t * pSrc,
MACRUM 6:40e873bbc5f7 3583 q31_t * pDst,
MACRUM 6:40e873bbc5f7 3584 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 3585
MACRUM 6:40e873bbc5f7 3586 /**
MACRUM 6:40e873bbc5f7 3587 * @brief Processing function for the Q31 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
MACRUM 6:40e873bbc5f7 3588 * @param[in] *S points to an instance of the Q31 FIR decimator structure.
MACRUM 6:40e873bbc5f7 3589 * @param[in] *pSrc points to the block of input data.
MACRUM 6:40e873bbc5f7 3590 * @param[out] *pDst points to the block of output data
MACRUM 6:40e873bbc5f7 3591 * @param[in] blockSize number of input samples to process per call.
MACRUM 6:40e873bbc5f7 3592 * @return none
MACRUM 6:40e873bbc5f7 3593 */
MACRUM 6:40e873bbc5f7 3594
MACRUM 6:40e873bbc5f7 3595 void arm_fir_decimate_fast_q31(
MACRUM 6:40e873bbc5f7 3596 arm_fir_decimate_instance_q31 * S,
MACRUM 6:40e873bbc5f7 3597 q31_t * pSrc,
MACRUM 6:40e873bbc5f7 3598 q31_t * pDst,
MACRUM 6:40e873bbc5f7 3599 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 3600
MACRUM 6:40e873bbc5f7 3601
MACRUM 6:40e873bbc5f7 3602 /**
MACRUM 6:40e873bbc5f7 3603 * @brief Initialization function for the Q31 FIR decimator.
MACRUM 6:40e873bbc5f7 3604 * @param[in,out] *S points to an instance of the Q31 FIR decimator structure.
MACRUM 6:40e873bbc5f7 3605 * @param[in] numTaps number of coefficients in the filter.
MACRUM 6:40e873bbc5f7 3606 * @param[in] M decimation factor.
MACRUM 6:40e873bbc5f7 3607 * @param[in] *pCoeffs points to the filter coefficients.
MACRUM 6:40e873bbc5f7 3608 * @param[in] *pState points to the state buffer.
MACRUM 6:40e873bbc5f7 3609 * @param[in] blockSize number of input samples to process per call.
MACRUM 6:40e873bbc5f7 3610 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
MACRUM 6:40e873bbc5f7 3611 * <code>blockSize</code> is not a multiple of <code>M</code>.
MACRUM 6:40e873bbc5f7 3612 */
MACRUM 6:40e873bbc5f7 3613
MACRUM 6:40e873bbc5f7 3614 arm_status arm_fir_decimate_init_q31(
MACRUM 6:40e873bbc5f7 3615 arm_fir_decimate_instance_q31 * S,
MACRUM 6:40e873bbc5f7 3616 uint16_t numTaps,
MACRUM 6:40e873bbc5f7 3617 uint8_t M,
MACRUM 6:40e873bbc5f7 3618 q31_t * pCoeffs,
MACRUM 6:40e873bbc5f7 3619 q31_t * pState,
MACRUM 6:40e873bbc5f7 3620 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 3621
MACRUM 6:40e873bbc5f7 3622
MACRUM 6:40e873bbc5f7 3623
MACRUM 6:40e873bbc5f7 3624 /**
MACRUM 6:40e873bbc5f7 3625 * @brief Instance structure for the Q15 FIR interpolator.
MACRUM 6:40e873bbc5f7 3626 */
MACRUM 6:40e873bbc5f7 3627
MACRUM 6:40e873bbc5f7 3628 typedef struct
MACRUM 6:40e873bbc5f7 3629 {
MACRUM 6:40e873bbc5f7 3630 uint8_t L; /**< upsample factor. */
MACRUM 6:40e873bbc5f7 3631 uint16_t phaseLength; /**< length of each polyphase filter component. */
MACRUM 6:40e873bbc5f7 3632 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
MACRUM 6:40e873bbc5f7 3633 q15_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
MACRUM 6:40e873bbc5f7 3634 } arm_fir_interpolate_instance_q15;
MACRUM 6:40e873bbc5f7 3635
MACRUM 6:40e873bbc5f7 3636 /**
MACRUM 6:40e873bbc5f7 3637 * @brief Instance structure for the Q31 FIR interpolator.
MACRUM 6:40e873bbc5f7 3638 */
MACRUM 6:40e873bbc5f7 3639
MACRUM 6:40e873bbc5f7 3640 typedef struct
MACRUM 6:40e873bbc5f7 3641 {
MACRUM 6:40e873bbc5f7 3642 uint8_t L; /**< upsample factor. */
MACRUM 6:40e873bbc5f7 3643 uint16_t phaseLength; /**< length of each polyphase filter component. */
MACRUM 6:40e873bbc5f7 3644 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
MACRUM 6:40e873bbc5f7 3645 q31_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
MACRUM 6:40e873bbc5f7 3646 } arm_fir_interpolate_instance_q31;
MACRUM 6:40e873bbc5f7 3647
MACRUM 6:40e873bbc5f7 3648 /**
MACRUM 6:40e873bbc5f7 3649 * @brief Instance structure for the floating-point FIR interpolator.
MACRUM 6:40e873bbc5f7 3650 */
MACRUM 6:40e873bbc5f7 3651
MACRUM 6:40e873bbc5f7 3652 typedef struct
MACRUM 6:40e873bbc5f7 3653 {
MACRUM 6:40e873bbc5f7 3654 uint8_t L; /**< upsample factor. */
MACRUM 6:40e873bbc5f7 3655 uint16_t phaseLength; /**< length of each polyphase filter component. */
MACRUM 6:40e873bbc5f7 3656 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
MACRUM 6:40e873bbc5f7 3657 float32_t *pState; /**< points to the state variable array. The array is of length phaseLength+numTaps-1. */
MACRUM 6:40e873bbc5f7 3658 } arm_fir_interpolate_instance_f32;
MACRUM 6:40e873bbc5f7 3659
MACRUM 6:40e873bbc5f7 3660
MACRUM 6:40e873bbc5f7 3661 /**
MACRUM 6:40e873bbc5f7 3662 * @brief Processing function for the Q15 FIR interpolator.
MACRUM 6:40e873bbc5f7 3663 * @param[in] *S points to an instance of the Q15 FIR interpolator structure.
MACRUM 6:40e873bbc5f7 3664 * @param[in] *pSrc points to the block of input data.
MACRUM 6:40e873bbc5f7 3665 * @param[out] *pDst points to the block of output data.
MACRUM 6:40e873bbc5f7 3666 * @param[in] blockSize number of input samples to process per call.
MACRUM 6:40e873bbc5f7 3667 * @return none.
MACRUM 6:40e873bbc5f7 3668 */
MACRUM 6:40e873bbc5f7 3669
MACRUM 6:40e873bbc5f7 3670 void arm_fir_interpolate_q15(
MACRUM 6:40e873bbc5f7 3671 const arm_fir_interpolate_instance_q15 * S,
MACRUM 6:40e873bbc5f7 3672 q15_t * pSrc,
MACRUM 6:40e873bbc5f7 3673 q15_t * pDst,
MACRUM 6:40e873bbc5f7 3674 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 3675
MACRUM 6:40e873bbc5f7 3676
MACRUM 6:40e873bbc5f7 3677 /**
MACRUM 6:40e873bbc5f7 3678 * @brief Initialization function for the Q15 FIR interpolator.
MACRUM 6:40e873bbc5f7 3679 * @param[in,out] *S points to an instance of the Q15 FIR interpolator structure.
MACRUM 6:40e873bbc5f7 3680 * @param[in] L upsample factor.
MACRUM 6:40e873bbc5f7 3681 * @param[in] numTaps number of filter coefficients in the filter.
MACRUM 6:40e873bbc5f7 3682 * @param[in] *pCoeffs points to the filter coefficient buffer.
MACRUM 6:40e873bbc5f7 3683 * @param[in] *pState points to the state buffer.
MACRUM 6:40e873bbc5f7 3684 * @param[in] blockSize number of input samples to process per call.
MACRUM 6:40e873bbc5f7 3685 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
MACRUM 6:40e873bbc5f7 3686 * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
MACRUM 6:40e873bbc5f7 3687 */
MACRUM 6:40e873bbc5f7 3688
MACRUM 6:40e873bbc5f7 3689 arm_status arm_fir_interpolate_init_q15(
MACRUM 6:40e873bbc5f7 3690 arm_fir_interpolate_instance_q15 * S,
MACRUM 6:40e873bbc5f7 3691 uint8_t L,
MACRUM 6:40e873bbc5f7 3692 uint16_t numTaps,
MACRUM 6:40e873bbc5f7 3693 q15_t * pCoeffs,
MACRUM 6:40e873bbc5f7 3694 q15_t * pState,
MACRUM 6:40e873bbc5f7 3695 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 3696
MACRUM 6:40e873bbc5f7 3697 /**
MACRUM 6:40e873bbc5f7 3698 * @brief Processing function for the Q31 FIR interpolator.
MACRUM 6:40e873bbc5f7 3699 * @param[in] *S points to an instance of the Q15 FIR interpolator structure.
MACRUM 6:40e873bbc5f7 3700 * @param[in] *pSrc points to the block of input data.
MACRUM 6:40e873bbc5f7 3701 * @param[out] *pDst points to the block of output data.
MACRUM 6:40e873bbc5f7 3702 * @param[in] blockSize number of input samples to process per call.
MACRUM 6:40e873bbc5f7 3703 * @return none.
MACRUM 6:40e873bbc5f7 3704 */
MACRUM 6:40e873bbc5f7 3705
MACRUM 6:40e873bbc5f7 3706 void arm_fir_interpolate_q31(
MACRUM 6:40e873bbc5f7 3707 const arm_fir_interpolate_instance_q31 * S,
MACRUM 6:40e873bbc5f7 3708 q31_t * pSrc,
MACRUM 6:40e873bbc5f7 3709 q31_t * pDst,
MACRUM 6:40e873bbc5f7 3710 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 3711
MACRUM 6:40e873bbc5f7 3712 /**
MACRUM 6:40e873bbc5f7 3713 * @brief Initialization function for the Q31 FIR interpolator.
MACRUM 6:40e873bbc5f7 3714 * @param[in,out] *S points to an instance of the Q31 FIR interpolator structure.
MACRUM 6:40e873bbc5f7 3715 * @param[in] L upsample factor.
MACRUM 6:40e873bbc5f7 3716 * @param[in] numTaps number of filter coefficients in the filter.
MACRUM 6:40e873bbc5f7 3717 * @param[in] *pCoeffs points to the filter coefficient buffer.
MACRUM 6:40e873bbc5f7 3718 * @param[in] *pState points to the state buffer.
MACRUM 6:40e873bbc5f7 3719 * @param[in] blockSize number of input samples to process per call.
MACRUM 6:40e873bbc5f7 3720 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
MACRUM 6:40e873bbc5f7 3721 * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
MACRUM 6:40e873bbc5f7 3722 */
MACRUM 6:40e873bbc5f7 3723
MACRUM 6:40e873bbc5f7 3724 arm_status arm_fir_interpolate_init_q31(
MACRUM 6:40e873bbc5f7 3725 arm_fir_interpolate_instance_q31 * S,
MACRUM 6:40e873bbc5f7 3726 uint8_t L,
MACRUM 6:40e873bbc5f7 3727 uint16_t numTaps,
MACRUM 6:40e873bbc5f7 3728 q31_t * pCoeffs,
MACRUM 6:40e873bbc5f7 3729 q31_t * pState,
MACRUM 6:40e873bbc5f7 3730 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 3731
MACRUM 6:40e873bbc5f7 3732
MACRUM 6:40e873bbc5f7 3733 /**
MACRUM 6:40e873bbc5f7 3734 * @brief Processing function for the floating-point FIR interpolator.
MACRUM 6:40e873bbc5f7 3735 * @param[in] *S points to an instance of the floating-point FIR interpolator structure.
MACRUM 6:40e873bbc5f7 3736 * @param[in] *pSrc points to the block of input data.
MACRUM 6:40e873bbc5f7 3737 * @param[out] *pDst points to the block of output data.
MACRUM 6:40e873bbc5f7 3738 * @param[in] blockSize number of input samples to process per call.
MACRUM 6:40e873bbc5f7 3739 * @return none.
MACRUM 6:40e873bbc5f7 3740 */
MACRUM 6:40e873bbc5f7 3741
MACRUM 6:40e873bbc5f7 3742 void arm_fir_interpolate_f32(
MACRUM 6:40e873bbc5f7 3743 const arm_fir_interpolate_instance_f32 * S,
MACRUM 6:40e873bbc5f7 3744 float32_t * pSrc,
MACRUM 6:40e873bbc5f7 3745 float32_t * pDst,
MACRUM 6:40e873bbc5f7 3746 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 3747
MACRUM 6:40e873bbc5f7 3748 /**
MACRUM 6:40e873bbc5f7 3749 * @brief Initialization function for the floating-point FIR interpolator.
MACRUM 6:40e873bbc5f7 3750 * @param[in,out] *S points to an instance of the floating-point FIR interpolator structure.
MACRUM 6:40e873bbc5f7 3751 * @param[in] L upsample factor.
MACRUM 6:40e873bbc5f7 3752 * @param[in] numTaps number of filter coefficients in the filter.
MACRUM 6:40e873bbc5f7 3753 * @param[in] *pCoeffs points to the filter coefficient buffer.
MACRUM 6:40e873bbc5f7 3754 * @param[in] *pState points to the state buffer.
MACRUM 6:40e873bbc5f7 3755 * @param[in] blockSize number of input samples to process per call.
MACRUM 6:40e873bbc5f7 3756 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
MACRUM 6:40e873bbc5f7 3757 * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
MACRUM 6:40e873bbc5f7 3758 */
MACRUM 6:40e873bbc5f7 3759
MACRUM 6:40e873bbc5f7 3760 arm_status arm_fir_interpolate_init_f32(
MACRUM 6:40e873bbc5f7 3761 arm_fir_interpolate_instance_f32 * S,
MACRUM 6:40e873bbc5f7 3762 uint8_t L,
MACRUM 6:40e873bbc5f7 3763 uint16_t numTaps,
MACRUM 6:40e873bbc5f7 3764 float32_t * pCoeffs,
MACRUM 6:40e873bbc5f7 3765 float32_t * pState,
MACRUM 6:40e873bbc5f7 3766 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 3767
MACRUM 6:40e873bbc5f7 3768 /**
MACRUM 6:40e873bbc5f7 3769 * @brief Instance structure for the high precision Q31 Biquad cascade filter.
MACRUM 6:40e873bbc5f7 3770 */
MACRUM 6:40e873bbc5f7 3771
MACRUM 6:40e873bbc5f7 3772 typedef struct
MACRUM 6:40e873bbc5f7 3773 {
MACRUM 6:40e873bbc5f7 3774 uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
MACRUM 6:40e873bbc5f7 3775 q63_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */
MACRUM 6:40e873bbc5f7 3776 q31_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
MACRUM 6:40e873bbc5f7 3777 uint8_t postShift; /**< additional shift, in bits, applied to each output sample. */
MACRUM 6:40e873bbc5f7 3778
MACRUM 6:40e873bbc5f7 3779 } arm_biquad_cas_df1_32x64_ins_q31;
MACRUM 6:40e873bbc5f7 3780
MACRUM 6:40e873bbc5f7 3781
MACRUM 6:40e873bbc5f7 3782 /**
MACRUM 6:40e873bbc5f7 3783 * @param[in] *S points to an instance of the high precision Q31 Biquad cascade filter structure.
MACRUM 6:40e873bbc5f7 3784 * @param[in] *pSrc points to the block of input data.
MACRUM 6:40e873bbc5f7 3785 * @param[out] *pDst points to the block of output data
MACRUM 6:40e873bbc5f7 3786 * @param[in] blockSize number of samples to process.
MACRUM 6:40e873bbc5f7 3787 * @return none.
MACRUM 6:40e873bbc5f7 3788 */
MACRUM 6:40e873bbc5f7 3789
MACRUM 6:40e873bbc5f7 3790 void arm_biquad_cas_df1_32x64_q31(
MACRUM 6:40e873bbc5f7 3791 const arm_biquad_cas_df1_32x64_ins_q31 * S,
MACRUM 6:40e873bbc5f7 3792 q31_t * pSrc,
MACRUM 6:40e873bbc5f7 3793 q31_t * pDst,
MACRUM 6:40e873bbc5f7 3794 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 3795
MACRUM 6:40e873bbc5f7 3796
MACRUM 6:40e873bbc5f7 3797 /**
MACRUM 6:40e873bbc5f7 3798 * @param[in,out] *S points to an instance of the high precision Q31 Biquad cascade filter structure.
MACRUM 6:40e873bbc5f7 3799 * @param[in] numStages number of 2nd order stages in the filter.
MACRUM 6:40e873bbc5f7 3800 * @param[in] *pCoeffs points to the filter coefficients.
MACRUM 6:40e873bbc5f7 3801 * @param[in] *pState points to the state buffer.
MACRUM 6:40e873bbc5f7 3802 * @param[in] postShift shift to be applied to the output. Varies according to the coefficients format
MACRUM 6:40e873bbc5f7 3803 * @return none
MACRUM 6:40e873bbc5f7 3804 */
MACRUM 6:40e873bbc5f7 3805
MACRUM 6:40e873bbc5f7 3806 void arm_biquad_cas_df1_32x64_init_q31(
MACRUM 6:40e873bbc5f7 3807 arm_biquad_cas_df1_32x64_ins_q31 * S,
MACRUM 6:40e873bbc5f7 3808 uint8_t numStages,
MACRUM 6:40e873bbc5f7 3809 q31_t * pCoeffs,
MACRUM 6:40e873bbc5f7 3810 q63_t * pState,
MACRUM 6:40e873bbc5f7 3811 uint8_t postShift);
MACRUM 6:40e873bbc5f7 3812
MACRUM 6:40e873bbc5f7 3813
MACRUM 6:40e873bbc5f7 3814
MACRUM 6:40e873bbc5f7 3815 /**
MACRUM 6:40e873bbc5f7 3816 * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
MACRUM 6:40e873bbc5f7 3817 */
MACRUM 6:40e873bbc5f7 3818
MACRUM 6:40e873bbc5f7 3819 typedef struct
MACRUM 6:40e873bbc5f7 3820 {
MACRUM 6:40e873bbc5f7 3821 uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
MACRUM 6:40e873bbc5f7 3822 float32_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */
MACRUM 6:40e873bbc5f7 3823 float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
MACRUM 6:40e873bbc5f7 3824 } arm_biquad_cascade_df2T_instance_f32;
MACRUM 6:40e873bbc5f7 3825
MACRUM 6:40e873bbc5f7 3826
MACRUM 6:40e873bbc5f7 3827
MACRUM 6:40e873bbc5f7 3828 /**
MACRUM 6:40e873bbc5f7 3829 * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
MACRUM 6:40e873bbc5f7 3830 */
MACRUM 6:40e873bbc5f7 3831
MACRUM 6:40e873bbc5f7 3832 typedef struct
MACRUM 6:40e873bbc5f7 3833 {
MACRUM 6:40e873bbc5f7 3834 uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
MACRUM 6:40e873bbc5f7 3835 float32_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */
MACRUM 6:40e873bbc5f7 3836 float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
MACRUM 6:40e873bbc5f7 3837 } arm_biquad_cascade_stereo_df2T_instance_f32;
MACRUM 6:40e873bbc5f7 3838
MACRUM 6:40e873bbc5f7 3839
MACRUM 6:40e873bbc5f7 3840
MACRUM 6:40e873bbc5f7 3841 /**
MACRUM 6:40e873bbc5f7 3842 * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
MACRUM 6:40e873bbc5f7 3843 */
MACRUM 6:40e873bbc5f7 3844
MACRUM 6:40e873bbc5f7 3845 typedef struct
MACRUM 6:40e873bbc5f7 3846 {
MACRUM 6:40e873bbc5f7 3847 uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
MACRUM 6:40e873bbc5f7 3848 float64_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */
MACRUM 6:40e873bbc5f7 3849 float64_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
MACRUM 6:40e873bbc5f7 3850 } arm_biquad_cascade_df2T_instance_f64;
MACRUM 6:40e873bbc5f7 3851
MACRUM 6:40e873bbc5f7 3852
MACRUM 6:40e873bbc5f7 3853 /**
MACRUM 6:40e873bbc5f7 3854 * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
MACRUM 6:40e873bbc5f7 3855 * @param[in] *S points to an instance of the filter data structure.
MACRUM 6:40e873bbc5f7 3856 * @param[in] *pSrc points to the block of input data.
MACRUM 6:40e873bbc5f7 3857 * @param[out] *pDst points to the block of output data
MACRUM 6:40e873bbc5f7 3858 * @param[in] blockSize number of samples to process.
MACRUM 6:40e873bbc5f7 3859 * @return none.
MACRUM 6:40e873bbc5f7 3860 */
MACRUM 6:40e873bbc5f7 3861
MACRUM 6:40e873bbc5f7 3862 void arm_biquad_cascade_df2T_f32(
MACRUM 6:40e873bbc5f7 3863 const arm_biquad_cascade_df2T_instance_f32 * S,
MACRUM 6:40e873bbc5f7 3864 float32_t * pSrc,
MACRUM 6:40e873bbc5f7 3865 float32_t * pDst,
MACRUM 6:40e873bbc5f7 3866 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 3867
MACRUM 6:40e873bbc5f7 3868
MACRUM 6:40e873bbc5f7 3869 /**
MACRUM 6:40e873bbc5f7 3870 * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. 2 channels
MACRUM 6:40e873bbc5f7 3871 * @param[in] *S points to an instance of the filter data structure.
MACRUM 6:40e873bbc5f7 3872 * @param[in] *pSrc points to the block of input data.
MACRUM 6:40e873bbc5f7 3873 * @param[out] *pDst points to the block of output data
MACRUM 6:40e873bbc5f7 3874 * @param[in] blockSize number of samples to process.
MACRUM 6:40e873bbc5f7 3875 * @return none.
MACRUM 6:40e873bbc5f7 3876 */
MACRUM 6:40e873bbc5f7 3877
MACRUM 6:40e873bbc5f7 3878 void arm_biquad_cascade_stereo_df2T_f32(
MACRUM 6:40e873bbc5f7 3879 const arm_biquad_cascade_stereo_df2T_instance_f32 * S,
MACRUM 6:40e873bbc5f7 3880 float32_t * pSrc,
MACRUM 6:40e873bbc5f7 3881 float32_t * pDst,
MACRUM 6:40e873bbc5f7 3882 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 3883
MACRUM 6:40e873bbc5f7 3884 /**
MACRUM 6:40e873bbc5f7 3885 * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
MACRUM 6:40e873bbc5f7 3886 * @param[in] *S points to an instance of the filter data structure.
MACRUM 6:40e873bbc5f7 3887 * @param[in] *pSrc points to the block of input data.
MACRUM 6:40e873bbc5f7 3888 * @param[out] *pDst points to the block of output data
MACRUM 6:40e873bbc5f7 3889 * @param[in] blockSize number of samples to process.
MACRUM 6:40e873bbc5f7 3890 * @return none.
MACRUM 6:40e873bbc5f7 3891 */
MACRUM 6:40e873bbc5f7 3892
MACRUM 6:40e873bbc5f7 3893 void arm_biquad_cascade_df2T_f64(
MACRUM 6:40e873bbc5f7 3894 const arm_biquad_cascade_df2T_instance_f64 * S,
MACRUM 6:40e873bbc5f7 3895 float64_t * pSrc,
MACRUM 6:40e873bbc5f7 3896 float64_t * pDst,
MACRUM 6:40e873bbc5f7 3897 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 3898
MACRUM 6:40e873bbc5f7 3899
MACRUM 6:40e873bbc5f7 3900 /**
MACRUM 6:40e873bbc5f7 3901 * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
MACRUM 6:40e873bbc5f7 3902 * @param[in,out] *S points to an instance of the filter data structure.
MACRUM 6:40e873bbc5f7 3903 * @param[in] numStages number of 2nd order stages in the filter.
MACRUM 6:40e873bbc5f7 3904 * @param[in] *pCoeffs points to the filter coefficients.
MACRUM 6:40e873bbc5f7 3905 * @param[in] *pState points to the state buffer.
MACRUM 6:40e873bbc5f7 3906 * @return none
MACRUM 6:40e873bbc5f7 3907 */
MACRUM 6:40e873bbc5f7 3908
MACRUM 6:40e873bbc5f7 3909 void arm_biquad_cascade_df2T_init_f32(
MACRUM 6:40e873bbc5f7 3910 arm_biquad_cascade_df2T_instance_f32 * S,
MACRUM 6:40e873bbc5f7 3911 uint8_t numStages,
MACRUM 6:40e873bbc5f7 3912 float32_t * pCoeffs,
MACRUM 6:40e873bbc5f7 3913 float32_t * pState);
MACRUM 6:40e873bbc5f7 3914
MACRUM 6:40e873bbc5f7 3915
MACRUM 6:40e873bbc5f7 3916 /**
MACRUM 6:40e873bbc5f7 3917 * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
MACRUM 6:40e873bbc5f7 3918 * @param[in,out] *S points to an instance of the filter data structure.
MACRUM 6:40e873bbc5f7 3919 * @param[in] numStages number of 2nd order stages in the filter.
MACRUM 6:40e873bbc5f7 3920 * @param[in] *pCoeffs points to the filter coefficients.
MACRUM 6:40e873bbc5f7 3921 * @param[in] *pState points to the state buffer.
MACRUM 6:40e873bbc5f7 3922 * @return none
MACRUM 6:40e873bbc5f7 3923 */
MACRUM 6:40e873bbc5f7 3924
MACRUM 6:40e873bbc5f7 3925 void arm_biquad_cascade_stereo_df2T_init_f32(
MACRUM 6:40e873bbc5f7 3926 arm_biquad_cascade_stereo_df2T_instance_f32 * S,
MACRUM 6:40e873bbc5f7 3927 uint8_t numStages,
MACRUM 6:40e873bbc5f7 3928 float32_t * pCoeffs,
MACRUM 6:40e873bbc5f7 3929 float32_t * pState);
MACRUM 6:40e873bbc5f7 3930
MACRUM 6:40e873bbc5f7 3931
MACRUM 6:40e873bbc5f7 3932 /**
MACRUM 6:40e873bbc5f7 3933 * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
MACRUM 6:40e873bbc5f7 3934 * @param[in,out] *S points to an instance of the filter data structure.
MACRUM 6:40e873bbc5f7 3935 * @param[in] numStages number of 2nd order stages in the filter.
MACRUM 6:40e873bbc5f7 3936 * @param[in] *pCoeffs points to the filter coefficients.
MACRUM 6:40e873bbc5f7 3937 * @param[in] *pState points to the state buffer.
MACRUM 6:40e873bbc5f7 3938 * @return none
MACRUM 6:40e873bbc5f7 3939 */
MACRUM 6:40e873bbc5f7 3940
MACRUM 6:40e873bbc5f7 3941 void arm_biquad_cascade_df2T_init_f64(
MACRUM 6:40e873bbc5f7 3942 arm_biquad_cascade_df2T_instance_f64 * S,
MACRUM 6:40e873bbc5f7 3943 uint8_t numStages,
MACRUM 6:40e873bbc5f7 3944 float64_t * pCoeffs,
MACRUM 6:40e873bbc5f7 3945 float64_t * pState);
MACRUM 6:40e873bbc5f7 3946
MACRUM 6:40e873bbc5f7 3947
MACRUM 6:40e873bbc5f7 3948
MACRUM 6:40e873bbc5f7 3949 /**
MACRUM 6:40e873bbc5f7 3950 * @brief Instance structure for the Q15 FIR lattice filter.
MACRUM 6:40e873bbc5f7 3951 */
MACRUM 6:40e873bbc5f7 3952
MACRUM 6:40e873bbc5f7 3953 typedef struct
MACRUM 6:40e873bbc5f7 3954 {
MACRUM 6:40e873bbc5f7 3955 uint16_t numStages; /**< number of filter stages. */
MACRUM 6:40e873bbc5f7 3956 q15_t *pState; /**< points to the state variable array. The array is of length numStages. */
MACRUM 6:40e873bbc5f7 3957 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
MACRUM 6:40e873bbc5f7 3958 } arm_fir_lattice_instance_q15;
MACRUM 6:40e873bbc5f7 3959
MACRUM 6:40e873bbc5f7 3960 /**
MACRUM 6:40e873bbc5f7 3961 * @brief Instance structure for the Q31 FIR lattice filter.
MACRUM 6:40e873bbc5f7 3962 */
MACRUM 6:40e873bbc5f7 3963
MACRUM 6:40e873bbc5f7 3964 typedef struct
MACRUM 6:40e873bbc5f7 3965 {
MACRUM 6:40e873bbc5f7 3966 uint16_t numStages; /**< number of filter stages. */
MACRUM 6:40e873bbc5f7 3967 q31_t *pState; /**< points to the state variable array. The array is of length numStages. */
MACRUM 6:40e873bbc5f7 3968 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
MACRUM 6:40e873bbc5f7 3969 } arm_fir_lattice_instance_q31;
MACRUM 6:40e873bbc5f7 3970
MACRUM 6:40e873bbc5f7 3971 /**
MACRUM 6:40e873bbc5f7 3972 * @brief Instance structure for the floating-point FIR lattice filter.
MACRUM 6:40e873bbc5f7 3973 */
MACRUM 6:40e873bbc5f7 3974
MACRUM 6:40e873bbc5f7 3975 typedef struct
MACRUM 6:40e873bbc5f7 3976 {
MACRUM 6:40e873bbc5f7 3977 uint16_t numStages; /**< number of filter stages. */
MACRUM 6:40e873bbc5f7 3978 float32_t *pState; /**< points to the state variable array. The array is of length numStages. */
MACRUM 6:40e873bbc5f7 3979 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
MACRUM 6:40e873bbc5f7 3980 } arm_fir_lattice_instance_f32;
MACRUM 6:40e873bbc5f7 3981
MACRUM 6:40e873bbc5f7 3982 /**
MACRUM 6:40e873bbc5f7 3983 * @brief Initialization function for the Q15 FIR lattice filter.
MACRUM 6:40e873bbc5f7 3984 * @param[in] *S points to an instance of the Q15 FIR lattice structure.
MACRUM 6:40e873bbc5f7 3985 * @param[in] numStages number of filter stages.
MACRUM 6:40e873bbc5f7 3986 * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages.
MACRUM 6:40e873bbc5f7 3987 * @param[in] *pState points to the state buffer. The array is of length numStages.
MACRUM 6:40e873bbc5f7 3988 * @return none.
MACRUM 6:40e873bbc5f7 3989 */
MACRUM 6:40e873bbc5f7 3990
MACRUM 6:40e873bbc5f7 3991 void arm_fir_lattice_init_q15(
MACRUM 6:40e873bbc5f7 3992 arm_fir_lattice_instance_q15 * S,
MACRUM 6:40e873bbc5f7 3993 uint16_t numStages,
MACRUM 6:40e873bbc5f7 3994 q15_t * pCoeffs,
MACRUM 6:40e873bbc5f7 3995 q15_t * pState);
MACRUM 6:40e873bbc5f7 3996
MACRUM 6:40e873bbc5f7 3997
MACRUM 6:40e873bbc5f7 3998 /**
MACRUM 6:40e873bbc5f7 3999 * @brief Processing function for the Q15 FIR lattice filter.
MACRUM 6:40e873bbc5f7 4000 * @param[in] *S points to an instance of the Q15 FIR lattice structure.
MACRUM 6:40e873bbc5f7 4001 * @param[in] *pSrc points to the block of input data.
MACRUM 6:40e873bbc5f7 4002 * @param[out] *pDst points to the block of output data.
MACRUM 6:40e873bbc5f7 4003 * @param[in] blockSize number of samples to process.
MACRUM 6:40e873bbc5f7 4004 * @return none.
MACRUM 6:40e873bbc5f7 4005 */
MACRUM 6:40e873bbc5f7 4006 void arm_fir_lattice_q15(
MACRUM 6:40e873bbc5f7 4007 const arm_fir_lattice_instance_q15 * S,
MACRUM 6:40e873bbc5f7 4008 q15_t * pSrc,
MACRUM 6:40e873bbc5f7 4009 q15_t * pDst,
MACRUM 6:40e873bbc5f7 4010 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 4011
MACRUM 6:40e873bbc5f7 4012 /**
MACRUM 6:40e873bbc5f7 4013 * @brief Initialization function for the Q31 FIR lattice filter.
MACRUM 6:40e873bbc5f7 4014 * @param[in] *S points to an instance of the Q31 FIR lattice structure.
MACRUM 6:40e873bbc5f7 4015 * @param[in] numStages number of filter stages.
MACRUM 6:40e873bbc5f7 4016 * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages.
MACRUM 6:40e873bbc5f7 4017 * @param[in] *pState points to the state buffer. The array is of length numStages.
MACRUM 6:40e873bbc5f7 4018 * @return none.
MACRUM 6:40e873bbc5f7 4019 */
MACRUM 6:40e873bbc5f7 4020
MACRUM 6:40e873bbc5f7 4021 void arm_fir_lattice_init_q31(
MACRUM 6:40e873bbc5f7 4022 arm_fir_lattice_instance_q31 * S,
MACRUM 6:40e873bbc5f7 4023 uint16_t numStages,
MACRUM 6:40e873bbc5f7 4024 q31_t * pCoeffs,
MACRUM 6:40e873bbc5f7 4025 q31_t * pState);
MACRUM 6:40e873bbc5f7 4026
MACRUM 6:40e873bbc5f7 4027
MACRUM 6:40e873bbc5f7 4028 /**
MACRUM 6:40e873bbc5f7 4029 * @brief Processing function for the Q31 FIR lattice filter.
MACRUM 6:40e873bbc5f7 4030 * @param[in] *S points to an instance of the Q31 FIR lattice structure.
MACRUM 6:40e873bbc5f7 4031 * @param[in] *pSrc points to the block of input data.
MACRUM 6:40e873bbc5f7 4032 * @param[out] *pDst points to the block of output data
MACRUM 6:40e873bbc5f7 4033 * @param[in] blockSize number of samples to process.
MACRUM 6:40e873bbc5f7 4034 * @return none.
MACRUM 6:40e873bbc5f7 4035 */
MACRUM 6:40e873bbc5f7 4036
MACRUM 6:40e873bbc5f7 4037 void arm_fir_lattice_q31(
MACRUM 6:40e873bbc5f7 4038 const arm_fir_lattice_instance_q31 * S,
MACRUM 6:40e873bbc5f7 4039 q31_t * pSrc,
MACRUM 6:40e873bbc5f7 4040 q31_t * pDst,
MACRUM 6:40e873bbc5f7 4041 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 4042
MACRUM 6:40e873bbc5f7 4043 /**
MACRUM 6:40e873bbc5f7 4044 * @brief Initialization function for the floating-point FIR lattice filter.
MACRUM 6:40e873bbc5f7 4045 * @param[in] *S points to an instance of the floating-point FIR lattice structure.
MACRUM 6:40e873bbc5f7 4046 * @param[in] numStages number of filter stages.
MACRUM 6:40e873bbc5f7 4047 * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages.
MACRUM 6:40e873bbc5f7 4048 * @param[in] *pState points to the state buffer. The array is of length numStages.
MACRUM 6:40e873bbc5f7 4049 * @return none.
MACRUM 6:40e873bbc5f7 4050 */
MACRUM 6:40e873bbc5f7 4051
MACRUM 6:40e873bbc5f7 4052 void arm_fir_lattice_init_f32(
MACRUM 6:40e873bbc5f7 4053 arm_fir_lattice_instance_f32 * S,
MACRUM 6:40e873bbc5f7 4054 uint16_t numStages,
MACRUM 6:40e873bbc5f7 4055 float32_t * pCoeffs,
MACRUM 6:40e873bbc5f7 4056 float32_t * pState);
MACRUM 6:40e873bbc5f7 4057
MACRUM 6:40e873bbc5f7 4058 /**
MACRUM 6:40e873bbc5f7 4059 * @brief Processing function for the floating-point FIR lattice filter.
MACRUM 6:40e873bbc5f7 4060 * @param[in] *S points to an instance of the floating-point FIR lattice structure.
MACRUM 6:40e873bbc5f7 4061 * @param[in] *pSrc points to the block of input data.
MACRUM 6:40e873bbc5f7 4062 * @param[out] *pDst points to the block of output data
MACRUM 6:40e873bbc5f7 4063 * @param[in] blockSize number of samples to process.
MACRUM 6:40e873bbc5f7 4064 * @return none.
MACRUM 6:40e873bbc5f7 4065 */
MACRUM 6:40e873bbc5f7 4066
MACRUM 6:40e873bbc5f7 4067 void arm_fir_lattice_f32(
MACRUM 6:40e873bbc5f7 4068 const arm_fir_lattice_instance_f32 * S,
MACRUM 6:40e873bbc5f7 4069 float32_t * pSrc,
MACRUM 6:40e873bbc5f7 4070 float32_t * pDst,
MACRUM 6:40e873bbc5f7 4071 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 4072
MACRUM 6:40e873bbc5f7 4073 /**
MACRUM 6:40e873bbc5f7 4074 * @brief Instance structure for the Q15 IIR lattice filter.
MACRUM 6:40e873bbc5f7 4075 */
MACRUM 6:40e873bbc5f7 4076 typedef struct
MACRUM 6:40e873bbc5f7 4077 {
MACRUM 6:40e873bbc5f7 4078 uint16_t numStages; /**< number of stages in the filter. */
MACRUM 6:40e873bbc5f7 4079 q15_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
MACRUM 6:40e873bbc5f7 4080 q15_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
MACRUM 6:40e873bbc5f7 4081 q15_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
MACRUM 6:40e873bbc5f7 4082 } arm_iir_lattice_instance_q15;
MACRUM 6:40e873bbc5f7 4083
MACRUM 6:40e873bbc5f7 4084 /**
MACRUM 6:40e873bbc5f7 4085 * @brief Instance structure for the Q31 IIR lattice filter.
MACRUM 6:40e873bbc5f7 4086 */
MACRUM 6:40e873bbc5f7 4087 typedef struct
MACRUM 6:40e873bbc5f7 4088 {
MACRUM 6:40e873bbc5f7 4089 uint16_t numStages; /**< number of stages in the filter. */
MACRUM 6:40e873bbc5f7 4090 q31_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
MACRUM 6:40e873bbc5f7 4091 q31_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
MACRUM 6:40e873bbc5f7 4092 q31_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
MACRUM 6:40e873bbc5f7 4093 } arm_iir_lattice_instance_q31;
MACRUM 6:40e873bbc5f7 4094
MACRUM 6:40e873bbc5f7 4095 /**
MACRUM 6:40e873bbc5f7 4096 * @brief Instance structure for the floating-point IIR lattice filter.
MACRUM 6:40e873bbc5f7 4097 */
MACRUM 6:40e873bbc5f7 4098 typedef struct
MACRUM 6:40e873bbc5f7 4099 {
MACRUM 6:40e873bbc5f7 4100 uint16_t numStages; /**< number of stages in the filter. */
MACRUM 6:40e873bbc5f7 4101 float32_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
MACRUM 6:40e873bbc5f7 4102 float32_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
MACRUM 6:40e873bbc5f7 4103 float32_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
MACRUM 6:40e873bbc5f7 4104 } arm_iir_lattice_instance_f32;
MACRUM 6:40e873bbc5f7 4105
MACRUM 6:40e873bbc5f7 4106 /**
MACRUM 6:40e873bbc5f7 4107 * @brief Processing function for the floating-point IIR lattice filter.
MACRUM 6:40e873bbc5f7 4108 * @param[in] *S points to an instance of the floating-point IIR lattice structure.
MACRUM 6:40e873bbc5f7 4109 * @param[in] *pSrc points to the block of input data.
MACRUM 6:40e873bbc5f7 4110 * @param[out] *pDst points to the block of output data.
MACRUM 6:40e873bbc5f7 4111 * @param[in] blockSize number of samples to process.
MACRUM 6:40e873bbc5f7 4112 * @return none.
MACRUM 6:40e873bbc5f7 4113 */
MACRUM 6:40e873bbc5f7 4114
MACRUM 6:40e873bbc5f7 4115 void arm_iir_lattice_f32(
MACRUM 6:40e873bbc5f7 4116 const arm_iir_lattice_instance_f32 * S,
MACRUM 6:40e873bbc5f7 4117 float32_t * pSrc,
MACRUM 6:40e873bbc5f7 4118 float32_t * pDst,
MACRUM 6:40e873bbc5f7 4119 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 4120
MACRUM 6:40e873bbc5f7 4121 /**
MACRUM 6:40e873bbc5f7 4122 * @brief Initialization function for the floating-point IIR lattice filter.
MACRUM 6:40e873bbc5f7 4123 * @param[in] *S points to an instance of the floating-point IIR lattice structure.
MACRUM 6:40e873bbc5f7 4124 * @param[in] numStages number of stages in the filter.
MACRUM 6:40e873bbc5f7 4125 * @param[in] *pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.
MACRUM 6:40e873bbc5f7 4126 * @param[in] *pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.
MACRUM 6:40e873bbc5f7 4127 * @param[in] *pState points to the state buffer. The array is of length numStages+blockSize-1.
MACRUM 6:40e873bbc5f7 4128 * @param[in] blockSize number of samples to process.
MACRUM 6:40e873bbc5f7 4129 * @return none.
MACRUM 6:40e873bbc5f7 4130 */
MACRUM 6:40e873bbc5f7 4131
MACRUM 6:40e873bbc5f7 4132 void arm_iir_lattice_init_f32(
MACRUM 6:40e873bbc5f7 4133 arm_iir_lattice_instance_f32 * S,
MACRUM 6:40e873bbc5f7 4134 uint16_t numStages,
MACRUM 6:40e873bbc5f7 4135 float32_t * pkCoeffs,
MACRUM 6:40e873bbc5f7 4136 float32_t * pvCoeffs,
MACRUM 6:40e873bbc5f7 4137 float32_t * pState,
MACRUM 6:40e873bbc5f7 4138 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 4139
MACRUM 6:40e873bbc5f7 4140
MACRUM 6:40e873bbc5f7 4141 /**
MACRUM 6:40e873bbc5f7 4142 * @brief Processing function for the Q31 IIR lattice filter.
MACRUM 6:40e873bbc5f7 4143 * @param[in] *S points to an instance of the Q31 IIR lattice structure.
MACRUM 6:40e873bbc5f7 4144 * @param[in] *pSrc points to the block of input data.
MACRUM 6:40e873bbc5f7 4145 * @param[out] *pDst points to the block of output data.
MACRUM 6:40e873bbc5f7 4146 * @param[in] blockSize number of samples to process.
MACRUM 6:40e873bbc5f7 4147 * @return none.
MACRUM 6:40e873bbc5f7 4148 */
MACRUM 6:40e873bbc5f7 4149
MACRUM 6:40e873bbc5f7 4150 void arm_iir_lattice_q31(
MACRUM 6:40e873bbc5f7 4151 const arm_iir_lattice_instance_q31 * S,
MACRUM 6:40e873bbc5f7 4152 q31_t * pSrc,
MACRUM 6:40e873bbc5f7 4153 q31_t * pDst,
MACRUM 6:40e873bbc5f7 4154 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 4155
MACRUM 6:40e873bbc5f7 4156
MACRUM 6:40e873bbc5f7 4157 /**
MACRUM 6:40e873bbc5f7 4158 * @brief Initialization function for the Q31 IIR lattice filter.
MACRUM 6:40e873bbc5f7 4159 * @param[in] *S points to an instance of the Q31 IIR lattice structure.
MACRUM 6:40e873bbc5f7 4160 * @param[in] numStages number of stages in the filter.
MACRUM 6:40e873bbc5f7 4161 * @param[in] *pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.
MACRUM 6:40e873bbc5f7 4162 * @param[in] *pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.
MACRUM 6:40e873bbc5f7 4163 * @param[in] *pState points to the state buffer. The array is of length numStages+blockSize.
MACRUM 6:40e873bbc5f7 4164 * @param[in] blockSize number of samples to process.
MACRUM 6:40e873bbc5f7 4165 * @return none.
MACRUM 6:40e873bbc5f7 4166 */
MACRUM 6:40e873bbc5f7 4167
MACRUM 6:40e873bbc5f7 4168 void arm_iir_lattice_init_q31(
MACRUM 6:40e873bbc5f7 4169 arm_iir_lattice_instance_q31 * S,
MACRUM 6:40e873bbc5f7 4170 uint16_t numStages,
MACRUM 6:40e873bbc5f7 4171 q31_t * pkCoeffs,
MACRUM 6:40e873bbc5f7 4172 q31_t * pvCoeffs,
MACRUM 6:40e873bbc5f7 4173 q31_t * pState,
MACRUM 6:40e873bbc5f7 4174 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 4175
MACRUM 6:40e873bbc5f7 4176
MACRUM 6:40e873bbc5f7 4177 /**
MACRUM 6:40e873bbc5f7 4178 * @brief Processing function for the Q15 IIR lattice filter.
MACRUM 6:40e873bbc5f7 4179 * @param[in] *S points to an instance of the Q15 IIR lattice structure.
MACRUM 6:40e873bbc5f7 4180 * @param[in] *pSrc points to the block of input data.
MACRUM 6:40e873bbc5f7 4181 * @param[out] *pDst points to the block of output data.
MACRUM 6:40e873bbc5f7 4182 * @param[in] blockSize number of samples to process.
MACRUM 6:40e873bbc5f7 4183 * @return none.
MACRUM 6:40e873bbc5f7 4184 */
MACRUM 6:40e873bbc5f7 4185
MACRUM 6:40e873bbc5f7 4186 void arm_iir_lattice_q15(
MACRUM 6:40e873bbc5f7 4187 const arm_iir_lattice_instance_q15 * S,
MACRUM 6:40e873bbc5f7 4188 q15_t * pSrc,
MACRUM 6:40e873bbc5f7 4189 q15_t * pDst,
MACRUM 6:40e873bbc5f7 4190 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 4191
MACRUM 6:40e873bbc5f7 4192
MACRUM 6:40e873bbc5f7 4193 /**
MACRUM 6:40e873bbc5f7 4194 * @brief Initialization function for the Q15 IIR lattice filter.
MACRUM 6:40e873bbc5f7 4195 * @param[in] *S points to an instance of the fixed-point Q15 IIR lattice structure.
MACRUM 6:40e873bbc5f7 4196 * @param[in] numStages number of stages in the filter.
MACRUM 6:40e873bbc5f7 4197 * @param[in] *pkCoeffs points to reflection coefficient buffer. The array is of length numStages.
MACRUM 6:40e873bbc5f7 4198 * @param[in] *pvCoeffs points to ladder coefficient buffer. The array is of length numStages+1.
MACRUM 6:40e873bbc5f7 4199 * @param[in] *pState points to state buffer. The array is of length numStages+blockSize.
MACRUM 6:40e873bbc5f7 4200 * @param[in] blockSize number of samples to process per call.
MACRUM 6:40e873bbc5f7 4201 * @return none.
MACRUM 6:40e873bbc5f7 4202 */
MACRUM 6:40e873bbc5f7 4203
MACRUM 6:40e873bbc5f7 4204 void arm_iir_lattice_init_q15(
MACRUM 6:40e873bbc5f7 4205 arm_iir_lattice_instance_q15 * S,
MACRUM 6:40e873bbc5f7 4206 uint16_t numStages,
MACRUM 6:40e873bbc5f7 4207 q15_t * pkCoeffs,
MACRUM 6:40e873bbc5f7 4208 q15_t * pvCoeffs,
MACRUM 6:40e873bbc5f7 4209 q15_t * pState,
MACRUM 6:40e873bbc5f7 4210 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 4211
MACRUM 6:40e873bbc5f7 4212 /**
MACRUM 6:40e873bbc5f7 4213 * @brief Instance structure for the floating-point LMS filter.
MACRUM 6:40e873bbc5f7 4214 */
MACRUM 6:40e873bbc5f7 4215
MACRUM 6:40e873bbc5f7 4216 typedef struct
MACRUM 6:40e873bbc5f7 4217 {
MACRUM 6:40e873bbc5f7 4218 uint16_t numTaps; /**< number of coefficients in the filter. */
MACRUM 6:40e873bbc5f7 4219 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
MACRUM 6:40e873bbc5f7 4220 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
MACRUM 6:40e873bbc5f7 4221 float32_t mu; /**< step size that controls filter coefficient updates. */
MACRUM 6:40e873bbc5f7 4222 } arm_lms_instance_f32;
MACRUM 6:40e873bbc5f7 4223
MACRUM 6:40e873bbc5f7 4224 /**
MACRUM 6:40e873bbc5f7 4225 * @brief Processing function for floating-point LMS filter.
MACRUM 6:40e873bbc5f7 4226 * @param[in] *S points to an instance of the floating-point LMS filter structure.
MACRUM 6:40e873bbc5f7 4227 * @param[in] *pSrc points to the block of input data.
MACRUM 6:40e873bbc5f7 4228 * @param[in] *pRef points to the block of reference data.
MACRUM 6:40e873bbc5f7 4229 * @param[out] *pOut points to the block of output data.
MACRUM 6:40e873bbc5f7 4230 * @param[out] *pErr points to the block of error data.
MACRUM 6:40e873bbc5f7 4231 * @param[in] blockSize number of samples to process.
MACRUM 6:40e873bbc5f7 4232 * @return none.
MACRUM 6:40e873bbc5f7 4233 */
MACRUM 6:40e873bbc5f7 4234
MACRUM 6:40e873bbc5f7 4235 void arm_lms_f32(
MACRUM 6:40e873bbc5f7 4236 const arm_lms_instance_f32 * S,
MACRUM 6:40e873bbc5f7 4237 float32_t * pSrc,
MACRUM 6:40e873bbc5f7 4238 float32_t * pRef,
MACRUM 6:40e873bbc5f7 4239 float32_t * pOut,
MACRUM 6:40e873bbc5f7 4240 float32_t * pErr,
MACRUM 6:40e873bbc5f7 4241 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 4242
MACRUM 6:40e873bbc5f7 4243 /**
MACRUM 6:40e873bbc5f7 4244 * @brief Initialization function for floating-point LMS filter.
MACRUM 6:40e873bbc5f7 4245 * @param[in] *S points to an instance of the floating-point LMS filter structure.
MACRUM 6:40e873bbc5f7 4246 * @param[in] numTaps number of filter coefficients.
MACRUM 6:40e873bbc5f7 4247 * @param[in] *pCoeffs points to the coefficient buffer.
MACRUM 6:40e873bbc5f7 4248 * @param[in] *pState points to state buffer.
MACRUM 6:40e873bbc5f7 4249 * @param[in] mu step size that controls filter coefficient updates.
MACRUM 6:40e873bbc5f7 4250 * @param[in] blockSize number of samples to process.
MACRUM 6:40e873bbc5f7 4251 * @return none.
MACRUM 6:40e873bbc5f7 4252 */
MACRUM 6:40e873bbc5f7 4253
MACRUM 6:40e873bbc5f7 4254 void arm_lms_init_f32(
MACRUM 6:40e873bbc5f7 4255 arm_lms_instance_f32 * S,
MACRUM 6:40e873bbc5f7 4256 uint16_t numTaps,
MACRUM 6:40e873bbc5f7 4257 float32_t * pCoeffs,
MACRUM 6:40e873bbc5f7 4258 float32_t * pState,
MACRUM 6:40e873bbc5f7 4259 float32_t mu,
MACRUM 6:40e873bbc5f7 4260 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 4261
MACRUM 6:40e873bbc5f7 4262 /**
MACRUM 6:40e873bbc5f7 4263 * @brief Instance structure for the Q15 LMS filter.
MACRUM 6:40e873bbc5f7 4264 */
MACRUM 6:40e873bbc5f7 4265
MACRUM 6:40e873bbc5f7 4266 typedef struct
MACRUM 6:40e873bbc5f7 4267 {
MACRUM 6:40e873bbc5f7 4268 uint16_t numTaps; /**< number of coefficients in the filter. */
MACRUM 6:40e873bbc5f7 4269 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
MACRUM 6:40e873bbc5f7 4270 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
MACRUM 6:40e873bbc5f7 4271 q15_t mu; /**< step size that controls filter coefficient updates. */
MACRUM 6:40e873bbc5f7 4272 uint32_t postShift; /**< bit shift applied to coefficients. */
MACRUM 6:40e873bbc5f7 4273 } arm_lms_instance_q15;
MACRUM 6:40e873bbc5f7 4274
MACRUM 6:40e873bbc5f7 4275
MACRUM 6:40e873bbc5f7 4276 /**
MACRUM 6:40e873bbc5f7 4277 * @brief Initialization function for the Q15 LMS filter.
MACRUM 6:40e873bbc5f7 4278 * @param[in] *S points to an instance of the Q15 LMS filter structure.
MACRUM 6:40e873bbc5f7 4279 * @param[in] numTaps number of filter coefficients.
MACRUM 6:40e873bbc5f7 4280 * @param[in] *pCoeffs points to the coefficient buffer.
MACRUM 6:40e873bbc5f7 4281 * @param[in] *pState points to the state buffer.
MACRUM 6:40e873bbc5f7 4282 * @param[in] mu step size that controls filter coefficient updates.
MACRUM 6:40e873bbc5f7 4283 * @param[in] blockSize number of samples to process.
MACRUM 6:40e873bbc5f7 4284 * @param[in] postShift bit shift applied to coefficients.
MACRUM 6:40e873bbc5f7 4285 * @return none.
MACRUM 6:40e873bbc5f7 4286 */
MACRUM 6:40e873bbc5f7 4287
MACRUM 6:40e873bbc5f7 4288 void arm_lms_init_q15(
MACRUM 6:40e873bbc5f7 4289 arm_lms_instance_q15 * S,
MACRUM 6:40e873bbc5f7 4290 uint16_t numTaps,
MACRUM 6:40e873bbc5f7 4291 q15_t * pCoeffs,
MACRUM 6:40e873bbc5f7 4292 q15_t * pState,
MACRUM 6:40e873bbc5f7 4293 q15_t mu,
MACRUM 6:40e873bbc5f7 4294 uint32_t blockSize,
MACRUM 6:40e873bbc5f7 4295 uint32_t postShift);
MACRUM 6:40e873bbc5f7 4296
MACRUM 6:40e873bbc5f7 4297 /**
MACRUM 6:40e873bbc5f7 4298 * @brief Processing function for Q15 LMS filter.
MACRUM 6:40e873bbc5f7 4299 * @param[in] *S points to an instance of the Q15 LMS filter structure.
MACRUM 6:40e873bbc5f7 4300 * @param[in] *pSrc points to the block of input data.
MACRUM 6:40e873bbc5f7 4301 * @param[in] *pRef points to the block of reference data.
MACRUM 6:40e873bbc5f7 4302 * @param[out] *pOut points to the block of output data.
MACRUM 6:40e873bbc5f7 4303 * @param[out] *pErr points to the block of error data.
MACRUM 6:40e873bbc5f7 4304 * @param[in] blockSize number of samples to process.
MACRUM 6:40e873bbc5f7 4305 * @return none.
MACRUM 6:40e873bbc5f7 4306 */
MACRUM 6:40e873bbc5f7 4307
MACRUM 6:40e873bbc5f7 4308 void arm_lms_q15(
MACRUM 6:40e873bbc5f7 4309 const arm_lms_instance_q15 * S,
MACRUM 6:40e873bbc5f7 4310 q15_t * pSrc,
MACRUM 6:40e873bbc5f7 4311 q15_t * pRef,
MACRUM 6:40e873bbc5f7 4312 q15_t * pOut,
MACRUM 6:40e873bbc5f7 4313 q15_t * pErr,
MACRUM 6:40e873bbc5f7 4314 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 4315
MACRUM 6:40e873bbc5f7 4316
MACRUM 6:40e873bbc5f7 4317 /**
MACRUM 6:40e873bbc5f7 4318 * @brief Instance structure for the Q31 LMS filter.
MACRUM 6:40e873bbc5f7 4319 */
MACRUM 6:40e873bbc5f7 4320
MACRUM 6:40e873bbc5f7 4321 typedef struct
MACRUM 6:40e873bbc5f7 4322 {
MACRUM 6:40e873bbc5f7 4323 uint16_t numTaps; /**< number of coefficients in the filter. */
MACRUM 6:40e873bbc5f7 4324 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
MACRUM 6:40e873bbc5f7 4325 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
MACRUM 6:40e873bbc5f7 4326 q31_t mu; /**< step size that controls filter coefficient updates. */
MACRUM 6:40e873bbc5f7 4327 uint32_t postShift; /**< bit shift applied to coefficients. */
MACRUM 6:40e873bbc5f7 4328
MACRUM 6:40e873bbc5f7 4329 } arm_lms_instance_q31;
MACRUM 6:40e873bbc5f7 4330
MACRUM 6:40e873bbc5f7 4331 /**
MACRUM 6:40e873bbc5f7 4332 * @brief Processing function for Q31 LMS filter.
MACRUM 6:40e873bbc5f7 4333 * @param[in] *S points to an instance of the Q15 LMS filter structure.
MACRUM 6:40e873bbc5f7 4334 * @param[in] *pSrc points to the block of input data.
MACRUM 6:40e873bbc5f7 4335 * @param[in] *pRef points to the block of reference data.
MACRUM 6:40e873bbc5f7 4336 * @param[out] *pOut points to the block of output data.
MACRUM 6:40e873bbc5f7 4337 * @param[out] *pErr points to the block of error data.
MACRUM 6:40e873bbc5f7 4338 * @param[in] blockSize number of samples to process.
MACRUM 6:40e873bbc5f7 4339 * @return none.
MACRUM 6:40e873bbc5f7 4340 */
MACRUM 6:40e873bbc5f7 4341
MACRUM 6:40e873bbc5f7 4342 void arm_lms_q31(
MACRUM 6:40e873bbc5f7 4343 const arm_lms_instance_q31 * S,
MACRUM 6:40e873bbc5f7 4344 q31_t * pSrc,
MACRUM 6:40e873bbc5f7 4345 q31_t * pRef,
MACRUM 6:40e873bbc5f7 4346 q31_t * pOut,
MACRUM 6:40e873bbc5f7 4347 q31_t * pErr,
MACRUM 6:40e873bbc5f7 4348 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 4349
MACRUM 6:40e873bbc5f7 4350 /**
MACRUM 6:40e873bbc5f7 4351 * @brief Initialization function for Q31 LMS filter.
MACRUM 6:40e873bbc5f7 4352 * @param[in] *S points to an instance of the Q31 LMS filter structure.
MACRUM 6:40e873bbc5f7 4353 * @param[in] numTaps number of filter coefficients.
MACRUM 6:40e873bbc5f7 4354 * @param[in] *pCoeffs points to coefficient buffer.
MACRUM 6:40e873bbc5f7 4355 * @param[in] *pState points to state buffer.
MACRUM 6:40e873bbc5f7 4356 * @param[in] mu step size that controls filter coefficient updates.
MACRUM 6:40e873bbc5f7 4357 * @param[in] blockSize number of samples to process.
MACRUM 6:40e873bbc5f7 4358 * @param[in] postShift bit shift applied to coefficients.
MACRUM 6:40e873bbc5f7 4359 * @return none.
MACRUM 6:40e873bbc5f7 4360 */
MACRUM 6:40e873bbc5f7 4361
MACRUM 6:40e873bbc5f7 4362 void arm_lms_init_q31(
MACRUM 6:40e873bbc5f7 4363 arm_lms_instance_q31 * S,
MACRUM 6:40e873bbc5f7 4364 uint16_t numTaps,
MACRUM 6:40e873bbc5f7 4365 q31_t * pCoeffs,
MACRUM 6:40e873bbc5f7 4366 q31_t * pState,
MACRUM 6:40e873bbc5f7 4367 q31_t mu,
MACRUM 6:40e873bbc5f7 4368 uint32_t blockSize,
MACRUM 6:40e873bbc5f7 4369 uint32_t postShift);
MACRUM 6:40e873bbc5f7 4370
MACRUM 6:40e873bbc5f7 4371 /**
MACRUM 6:40e873bbc5f7 4372 * @brief Instance structure for the floating-point normalized LMS filter.
MACRUM 6:40e873bbc5f7 4373 */
MACRUM 6:40e873bbc5f7 4374
MACRUM 6:40e873bbc5f7 4375 typedef struct
MACRUM 6:40e873bbc5f7 4376 {
MACRUM 6:40e873bbc5f7 4377 uint16_t numTaps; /**< number of coefficients in the filter. */
MACRUM 6:40e873bbc5f7 4378 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
MACRUM 6:40e873bbc5f7 4379 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
MACRUM 6:40e873bbc5f7 4380 float32_t mu; /**< step size that control filter coefficient updates. */
MACRUM 6:40e873bbc5f7 4381 float32_t energy; /**< saves previous frame energy. */
MACRUM 6:40e873bbc5f7 4382 float32_t x0; /**< saves previous input sample. */
MACRUM 6:40e873bbc5f7 4383 } arm_lms_norm_instance_f32;
MACRUM 6:40e873bbc5f7 4384
MACRUM 6:40e873bbc5f7 4385 /**
MACRUM 6:40e873bbc5f7 4386 * @brief Processing function for floating-point normalized LMS filter.
MACRUM 6:40e873bbc5f7 4387 * @param[in] *S points to an instance of the floating-point normalized LMS filter structure.
MACRUM 6:40e873bbc5f7 4388 * @param[in] *pSrc points to the block of input data.
MACRUM 6:40e873bbc5f7 4389 * @param[in] *pRef points to the block of reference data.
MACRUM 6:40e873bbc5f7 4390 * @param[out] *pOut points to the block of output data.
MACRUM 6:40e873bbc5f7 4391 * @param[out] *pErr points to the block of error data.
MACRUM 6:40e873bbc5f7 4392 * @param[in] blockSize number of samples to process.
MACRUM 6:40e873bbc5f7 4393 * @return none.
MACRUM 6:40e873bbc5f7 4394 */
MACRUM 6:40e873bbc5f7 4395
MACRUM 6:40e873bbc5f7 4396 void arm_lms_norm_f32(
MACRUM 6:40e873bbc5f7 4397 arm_lms_norm_instance_f32 * S,
MACRUM 6:40e873bbc5f7 4398 float32_t * pSrc,
MACRUM 6:40e873bbc5f7 4399 float32_t * pRef,
MACRUM 6:40e873bbc5f7 4400 float32_t * pOut,
MACRUM 6:40e873bbc5f7 4401 float32_t * pErr,
MACRUM 6:40e873bbc5f7 4402 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 4403
MACRUM 6:40e873bbc5f7 4404 /**
MACRUM 6:40e873bbc5f7 4405 * @brief Initialization function for floating-point normalized LMS filter.
MACRUM 6:40e873bbc5f7 4406 * @param[in] *S points to an instance of the floating-point LMS filter structure.
MACRUM 6:40e873bbc5f7 4407 * @param[in] numTaps number of filter coefficients.
MACRUM 6:40e873bbc5f7 4408 * @param[in] *pCoeffs points to coefficient buffer.
MACRUM 6:40e873bbc5f7 4409 * @param[in] *pState points to state buffer.
MACRUM 6:40e873bbc5f7 4410 * @param[in] mu step size that controls filter coefficient updates.
MACRUM 6:40e873bbc5f7 4411 * @param[in] blockSize number of samples to process.
MACRUM 6:40e873bbc5f7 4412 * @return none.
MACRUM 6:40e873bbc5f7 4413 */
MACRUM 6:40e873bbc5f7 4414
MACRUM 6:40e873bbc5f7 4415 void arm_lms_norm_init_f32(
MACRUM 6:40e873bbc5f7 4416 arm_lms_norm_instance_f32 * S,
MACRUM 6:40e873bbc5f7 4417 uint16_t numTaps,
MACRUM 6:40e873bbc5f7 4418 float32_t * pCoeffs,
MACRUM 6:40e873bbc5f7 4419 float32_t * pState,
MACRUM 6:40e873bbc5f7 4420 float32_t mu,
MACRUM 6:40e873bbc5f7 4421 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 4422
MACRUM 6:40e873bbc5f7 4423
MACRUM 6:40e873bbc5f7 4424 /**
MACRUM 6:40e873bbc5f7 4425 * @brief Instance structure for the Q31 normalized LMS filter.
MACRUM 6:40e873bbc5f7 4426 */
MACRUM 6:40e873bbc5f7 4427 typedef struct
MACRUM 6:40e873bbc5f7 4428 {
MACRUM 6:40e873bbc5f7 4429 uint16_t numTaps; /**< number of coefficients in the filter. */
MACRUM 6:40e873bbc5f7 4430 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
MACRUM 6:40e873bbc5f7 4431 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
MACRUM 6:40e873bbc5f7 4432 q31_t mu; /**< step size that controls filter coefficient updates. */
MACRUM 6:40e873bbc5f7 4433 uint8_t postShift; /**< bit shift applied to coefficients. */
MACRUM 6:40e873bbc5f7 4434 q31_t *recipTable; /**< points to the reciprocal initial value table. */
MACRUM 6:40e873bbc5f7 4435 q31_t energy; /**< saves previous frame energy. */
MACRUM 6:40e873bbc5f7 4436 q31_t x0; /**< saves previous input sample. */
MACRUM 6:40e873bbc5f7 4437 } arm_lms_norm_instance_q31;
MACRUM 6:40e873bbc5f7 4438
MACRUM 6:40e873bbc5f7 4439 /**
MACRUM 6:40e873bbc5f7 4440 * @brief Processing function for Q31 normalized LMS filter.
MACRUM 6:40e873bbc5f7 4441 * @param[in] *S points to an instance of the Q31 normalized LMS filter structure.
MACRUM 6:40e873bbc5f7 4442 * @param[in] *pSrc points to the block of input data.
MACRUM 6:40e873bbc5f7 4443 * @param[in] *pRef points to the block of reference data.
MACRUM 6:40e873bbc5f7 4444 * @param[out] *pOut points to the block of output data.
MACRUM 6:40e873bbc5f7 4445 * @param[out] *pErr points to the block of error data.
MACRUM 6:40e873bbc5f7 4446 * @param[in] blockSize number of samples to process.
MACRUM 6:40e873bbc5f7 4447 * @return none.
MACRUM 6:40e873bbc5f7 4448 */
MACRUM 6:40e873bbc5f7 4449
MACRUM 6:40e873bbc5f7 4450 void arm_lms_norm_q31(
MACRUM 6:40e873bbc5f7 4451 arm_lms_norm_instance_q31 * S,
MACRUM 6:40e873bbc5f7 4452 q31_t * pSrc,
MACRUM 6:40e873bbc5f7 4453 q31_t * pRef,
MACRUM 6:40e873bbc5f7 4454 q31_t * pOut,
MACRUM 6:40e873bbc5f7 4455 q31_t * pErr,
MACRUM 6:40e873bbc5f7 4456 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 4457
MACRUM 6:40e873bbc5f7 4458 /**
MACRUM 6:40e873bbc5f7 4459 * @brief Initialization function for Q31 normalized LMS filter.
MACRUM 6:40e873bbc5f7 4460 * @param[in] *S points to an instance of the Q31 normalized LMS filter structure.
MACRUM 6:40e873bbc5f7 4461 * @param[in] numTaps number of filter coefficients.
MACRUM 6:40e873bbc5f7 4462 * @param[in] *pCoeffs points to coefficient buffer.
MACRUM 6:40e873bbc5f7 4463 * @param[in] *pState points to state buffer.
MACRUM 6:40e873bbc5f7 4464 * @param[in] mu step size that controls filter coefficient updates.
MACRUM 6:40e873bbc5f7 4465 * @param[in] blockSize number of samples to process.
MACRUM 6:40e873bbc5f7 4466 * @param[in] postShift bit shift applied to coefficients.
MACRUM 6:40e873bbc5f7 4467 * @return none.
MACRUM 6:40e873bbc5f7 4468 */
MACRUM 6:40e873bbc5f7 4469
MACRUM 6:40e873bbc5f7 4470 void arm_lms_norm_init_q31(
MACRUM 6:40e873bbc5f7 4471 arm_lms_norm_instance_q31 * S,
MACRUM 6:40e873bbc5f7 4472 uint16_t numTaps,
MACRUM 6:40e873bbc5f7 4473 q31_t * pCoeffs,
MACRUM 6:40e873bbc5f7 4474 q31_t * pState,
MACRUM 6:40e873bbc5f7 4475 q31_t mu,
MACRUM 6:40e873bbc5f7 4476 uint32_t blockSize,
MACRUM 6:40e873bbc5f7 4477 uint8_t postShift);
MACRUM 6:40e873bbc5f7 4478
MACRUM 6:40e873bbc5f7 4479 /**
MACRUM 6:40e873bbc5f7 4480 * @brief Instance structure for the Q15 normalized LMS filter.
MACRUM 6:40e873bbc5f7 4481 */
MACRUM 6:40e873bbc5f7 4482
MACRUM 6:40e873bbc5f7 4483 typedef struct
MACRUM 6:40e873bbc5f7 4484 {
MACRUM 6:40e873bbc5f7 4485 uint16_t numTaps; /**< Number of coefficients in the filter. */
MACRUM 6:40e873bbc5f7 4486 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
MACRUM 6:40e873bbc5f7 4487 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
MACRUM 6:40e873bbc5f7 4488 q15_t mu; /**< step size that controls filter coefficient updates. */
MACRUM 6:40e873bbc5f7 4489 uint8_t postShift; /**< bit shift applied to coefficients. */
MACRUM 6:40e873bbc5f7 4490 q15_t *recipTable; /**< Points to the reciprocal initial value table. */
MACRUM 6:40e873bbc5f7 4491 q15_t energy; /**< saves previous frame energy. */
MACRUM 6:40e873bbc5f7 4492 q15_t x0; /**< saves previous input sample. */
MACRUM 6:40e873bbc5f7 4493 } arm_lms_norm_instance_q15;
MACRUM 6:40e873bbc5f7 4494
MACRUM 6:40e873bbc5f7 4495 /**
MACRUM 6:40e873bbc5f7 4496 * @brief Processing function for Q15 normalized LMS filter.
MACRUM 6:40e873bbc5f7 4497 * @param[in] *S points to an instance of the Q15 normalized LMS filter structure.
MACRUM 6:40e873bbc5f7 4498 * @param[in] *pSrc points to the block of input data.
MACRUM 6:40e873bbc5f7 4499 * @param[in] *pRef points to the block of reference data.
MACRUM 6:40e873bbc5f7 4500 * @param[out] *pOut points to the block of output data.
MACRUM 6:40e873bbc5f7 4501 * @param[out] *pErr points to the block of error data.
MACRUM 6:40e873bbc5f7 4502 * @param[in] blockSize number of samples to process.
MACRUM 6:40e873bbc5f7 4503 * @return none.
MACRUM 6:40e873bbc5f7 4504 */
MACRUM 6:40e873bbc5f7 4505
MACRUM 6:40e873bbc5f7 4506 void arm_lms_norm_q15(
MACRUM 6:40e873bbc5f7 4507 arm_lms_norm_instance_q15 * S,
MACRUM 6:40e873bbc5f7 4508 q15_t * pSrc,
MACRUM 6:40e873bbc5f7 4509 q15_t * pRef,
MACRUM 6:40e873bbc5f7 4510 q15_t * pOut,
MACRUM 6:40e873bbc5f7 4511 q15_t * pErr,
MACRUM 6:40e873bbc5f7 4512 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 4513
MACRUM 6:40e873bbc5f7 4514
MACRUM 6:40e873bbc5f7 4515 /**
MACRUM 6:40e873bbc5f7 4516 * @brief Initialization function for Q15 normalized LMS filter.
MACRUM 6:40e873bbc5f7 4517 * @param[in] *S points to an instance of the Q15 normalized LMS filter structure.
MACRUM 6:40e873bbc5f7 4518 * @param[in] numTaps number of filter coefficients.
MACRUM 6:40e873bbc5f7 4519 * @param[in] *pCoeffs points to coefficient buffer.
MACRUM 6:40e873bbc5f7 4520 * @param[in] *pState points to state buffer.
MACRUM 6:40e873bbc5f7 4521 * @param[in] mu step size that controls filter coefficient updates.
MACRUM 6:40e873bbc5f7 4522 * @param[in] blockSize number of samples to process.
MACRUM 6:40e873bbc5f7 4523 * @param[in] postShift bit shift applied to coefficients.
MACRUM 6:40e873bbc5f7 4524 * @return none.
MACRUM 6:40e873bbc5f7 4525 */
MACRUM 6:40e873bbc5f7 4526
MACRUM 6:40e873bbc5f7 4527 void arm_lms_norm_init_q15(
MACRUM 6:40e873bbc5f7 4528 arm_lms_norm_instance_q15 * S,
MACRUM 6:40e873bbc5f7 4529 uint16_t numTaps,
MACRUM 6:40e873bbc5f7 4530 q15_t * pCoeffs,
MACRUM 6:40e873bbc5f7 4531 q15_t * pState,
MACRUM 6:40e873bbc5f7 4532 q15_t mu,
MACRUM 6:40e873bbc5f7 4533 uint32_t blockSize,
MACRUM 6:40e873bbc5f7 4534 uint8_t postShift);
MACRUM 6:40e873bbc5f7 4535
MACRUM 6:40e873bbc5f7 4536 /**
MACRUM 6:40e873bbc5f7 4537 * @brief Correlation of floating-point sequences.
MACRUM 6:40e873bbc5f7 4538 * @param[in] *pSrcA points to the first input sequence.
MACRUM 6:40e873bbc5f7 4539 * @param[in] srcALen length of the first input sequence.
MACRUM 6:40e873bbc5f7 4540 * @param[in] *pSrcB points to the second input sequence.
MACRUM 6:40e873bbc5f7 4541 * @param[in] srcBLen length of the second input sequence.
MACRUM 6:40e873bbc5f7 4542 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
MACRUM 6:40e873bbc5f7 4543 * @return none.
MACRUM 6:40e873bbc5f7 4544 */
MACRUM 6:40e873bbc5f7 4545
MACRUM 6:40e873bbc5f7 4546 void arm_correlate_f32(
MACRUM 6:40e873bbc5f7 4547 float32_t * pSrcA,
MACRUM 6:40e873bbc5f7 4548 uint32_t srcALen,
MACRUM 6:40e873bbc5f7 4549 float32_t * pSrcB,
MACRUM 6:40e873bbc5f7 4550 uint32_t srcBLen,
MACRUM 6:40e873bbc5f7 4551 float32_t * pDst);
MACRUM 6:40e873bbc5f7 4552
MACRUM 6:40e873bbc5f7 4553
MACRUM 6:40e873bbc5f7 4554 /**
MACRUM 6:40e873bbc5f7 4555 * @brief Correlation of Q15 sequences
MACRUM 6:40e873bbc5f7 4556 * @param[in] *pSrcA points to the first input sequence.
MACRUM 6:40e873bbc5f7 4557 * @param[in] srcALen length of the first input sequence.
MACRUM 6:40e873bbc5f7 4558 * @param[in] *pSrcB points to the second input sequence.
MACRUM 6:40e873bbc5f7 4559 * @param[in] srcBLen length of the second input sequence.
MACRUM 6:40e873bbc5f7 4560 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
MACRUM 6:40e873bbc5f7 4561 * @param[in] *pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
MACRUM 6:40e873bbc5f7 4562 * @return none.
MACRUM 6:40e873bbc5f7 4563 */
MACRUM 6:40e873bbc5f7 4564 void arm_correlate_opt_q15(
MACRUM 6:40e873bbc5f7 4565 q15_t * pSrcA,
MACRUM 6:40e873bbc5f7 4566 uint32_t srcALen,
MACRUM 6:40e873bbc5f7 4567 q15_t * pSrcB,
MACRUM 6:40e873bbc5f7 4568 uint32_t srcBLen,
MACRUM 6:40e873bbc5f7 4569 q15_t * pDst,
MACRUM 6:40e873bbc5f7 4570 q15_t * pScratch);
MACRUM 6:40e873bbc5f7 4571
MACRUM 6:40e873bbc5f7 4572
MACRUM 6:40e873bbc5f7 4573 /**
MACRUM 6:40e873bbc5f7 4574 * @brief Correlation of Q15 sequences.
MACRUM 6:40e873bbc5f7 4575 * @param[in] *pSrcA points to the first input sequence.
MACRUM 6:40e873bbc5f7 4576 * @param[in] srcALen length of the first input sequence.
MACRUM 6:40e873bbc5f7 4577 * @param[in] *pSrcB points to the second input sequence.
MACRUM 6:40e873bbc5f7 4578 * @param[in] srcBLen length of the second input sequence.
MACRUM 6:40e873bbc5f7 4579 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
MACRUM 6:40e873bbc5f7 4580 * @return none.
MACRUM 6:40e873bbc5f7 4581 */
MACRUM 6:40e873bbc5f7 4582
MACRUM 6:40e873bbc5f7 4583 void arm_correlate_q15(
MACRUM 6:40e873bbc5f7 4584 q15_t * pSrcA,
MACRUM 6:40e873bbc5f7 4585 uint32_t srcALen,
MACRUM 6:40e873bbc5f7 4586 q15_t * pSrcB,
MACRUM 6:40e873bbc5f7 4587 uint32_t srcBLen,
MACRUM 6:40e873bbc5f7 4588 q15_t * pDst);
MACRUM 6:40e873bbc5f7 4589
MACRUM 6:40e873bbc5f7 4590 /**
MACRUM 6:40e873bbc5f7 4591 * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
MACRUM 6:40e873bbc5f7 4592 * @param[in] *pSrcA points to the first input sequence.
MACRUM 6:40e873bbc5f7 4593 * @param[in] srcALen length of the first input sequence.
MACRUM 6:40e873bbc5f7 4594 * @param[in] *pSrcB points to the second input sequence.
MACRUM 6:40e873bbc5f7 4595 * @param[in] srcBLen length of the second input sequence.
MACRUM 6:40e873bbc5f7 4596 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
MACRUM 6:40e873bbc5f7 4597 * @return none.
MACRUM 6:40e873bbc5f7 4598 */
MACRUM 6:40e873bbc5f7 4599
MACRUM 6:40e873bbc5f7 4600 void arm_correlate_fast_q15(
MACRUM 6:40e873bbc5f7 4601 q15_t * pSrcA,
MACRUM 6:40e873bbc5f7 4602 uint32_t srcALen,
MACRUM 6:40e873bbc5f7 4603 q15_t * pSrcB,
MACRUM 6:40e873bbc5f7 4604 uint32_t srcBLen,
MACRUM 6:40e873bbc5f7 4605 q15_t * pDst);
MACRUM 6:40e873bbc5f7 4606
MACRUM 6:40e873bbc5f7 4607
MACRUM 6:40e873bbc5f7 4608
MACRUM 6:40e873bbc5f7 4609 /**
MACRUM 6:40e873bbc5f7 4610 * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
MACRUM 6:40e873bbc5f7 4611 * @param[in] *pSrcA points to the first input sequence.
MACRUM 6:40e873bbc5f7 4612 * @param[in] srcALen length of the first input sequence.
MACRUM 6:40e873bbc5f7 4613 * @param[in] *pSrcB points to the second input sequence.
MACRUM 6:40e873bbc5f7 4614 * @param[in] srcBLen length of the second input sequence.
MACRUM 6:40e873bbc5f7 4615 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
MACRUM 6:40e873bbc5f7 4616 * @param[in] *pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
MACRUM 6:40e873bbc5f7 4617 * @return none.
MACRUM 6:40e873bbc5f7 4618 */
MACRUM 6:40e873bbc5f7 4619
MACRUM 6:40e873bbc5f7 4620 void arm_correlate_fast_opt_q15(
MACRUM 6:40e873bbc5f7 4621 q15_t * pSrcA,
MACRUM 6:40e873bbc5f7 4622 uint32_t srcALen,
MACRUM 6:40e873bbc5f7 4623 q15_t * pSrcB,
MACRUM 6:40e873bbc5f7 4624 uint32_t srcBLen,
MACRUM 6:40e873bbc5f7 4625 q15_t * pDst,
MACRUM 6:40e873bbc5f7 4626 q15_t * pScratch);
MACRUM 6:40e873bbc5f7 4627
MACRUM 6:40e873bbc5f7 4628 /**
MACRUM 6:40e873bbc5f7 4629 * @brief Correlation of Q31 sequences.
MACRUM 6:40e873bbc5f7 4630 * @param[in] *pSrcA points to the first input sequence.
MACRUM 6:40e873bbc5f7 4631 * @param[in] srcALen length of the first input sequence.
MACRUM 6:40e873bbc5f7 4632 * @param[in] *pSrcB points to the second input sequence.
MACRUM 6:40e873bbc5f7 4633 * @param[in] srcBLen length of the second input sequence.
MACRUM 6:40e873bbc5f7 4634 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
MACRUM 6:40e873bbc5f7 4635 * @return none.
MACRUM 6:40e873bbc5f7 4636 */
MACRUM 6:40e873bbc5f7 4637
MACRUM 6:40e873bbc5f7 4638 void arm_correlate_q31(
MACRUM 6:40e873bbc5f7 4639 q31_t * pSrcA,
MACRUM 6:40e873bbc5f7 4640 uint32_t srcALen,
MACRUM 6:40e873bbc5f7 4641 q31_t * pSrcB,
MACRUM 6:40e873bbc5f7 4642 uint32_t srcBLen,
MACRUM 6:40e873bbc5f7 4643 q31_t * pDst);
MACRUM 6:40e873bbc5f7 4644
MACRUM 6:40e873bbc5f7 4645 /**
MACRUM 6:40e873bbc5f7 4646 * @brief Correlation of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
MACRUM 6:40e873bbc5f7 4647 * @param[in] *pSrcA points to the first input sequence.
MACRUM 6:40e873bbc5f7 4648 * @param[in] srcALen length of the first input sequence.
MACRUM 6:40e873bbc5f7 4649 * @param[in] *pSrcB points to the second input sequence.
MACRUM 6:40e873bbc5f7 4650 * @param[in] srcBLen length of the second input sequence.
MACRUM 6:40e873bbc5f7 4651 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
MACRUM 6:40e873bbc5f7 4652 * @return none.
MACRUM 6:40e873bbc5f7 4653 */
MACRUM 6:40e873bbc5f7 4654
MACRUM 6:40e873bbc5f7 4655 void arm_correlate_fast_q31(
MACRUM 6:40e873bbc5f7 4656 q31_t * pSrcA,
MACRUM 6:40e873bbc5f7 4657 uint32_t srcALen,
MACRUM 6:40e873bbc5f7 4658 q31_t * pSrcB,
MACRUM 6:40e873bbc5f7 4659 uint32_t srcBLen,
MACRUM 6:40e873bbc5f7 4660 q31_t * pDst);
MACRUM 6:40e873bbc5f7 4661
MACRUM 6:40e873bbc5f7 4662
MACRUM 6:40e873bbc5f7 4663
MACRUM 6:40e873bbc5f7 4664 /**
MACRUM 6:40e873bbc5f7 4665 * @brief Correlation of Q7 sequences.
MACRUM 6:40e873bbc5f7 4666 * @param[in] *pSrcA points to the first input sequence.
MACRUM 6:40e873bbc5f7 4667 * @param[in] srcALen length of the first input sequence.
MACRUM 6:40e873bbc5f7 4668 * @param[in] *pSrcB points to the second input sequence.
MACRUM 6:40e873bbc5f7 4669 * @param[in] srcBLen length of the second input sequence.
MACRUM 6:40e873bbc5f7 4670 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
MACRUM 6:40e873bbc5f7 4671 * @param[in] *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
MACRUM 6:40e873bbc5f7 4672 * @param[in] *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
MACRUM 6:40e873bbc5f7 4673 * @return none.
MACRUM 6:40e873bbc5f7 4674 */
MACRUM 6:40e873bbc5f7 4675
MACRUM 6:40e873bbc5f7 4676 void arm_correlate_opt_q7(
MACRUM 6:40e873bbc5f7 4677 q7_t * pSrcA,
MACRUM 6:40e873bbc5f7 4678 uint32_t srcALen,
MACRUM 6:40e873bbc5f7 4679 q7_t * pSrcB,
MACRUM 6:40e873bbc5f7 4680 uint32_t srcBLen,
MACRUM 6:40e873bbc5f7 4681 q7_t * pDst,
MACRUM 6:40e873bbc5f7 4682 q15_t * pScratch1,
MACRUM 6:40e873bbc5f7 4683 q15_t * pScratch2);
MACRUM 6:40e873bbc5f7 4684
MACRUM 6:40e873bbc5f7 4685
MACRUM 6:40e873bbc5f7 4686 /**
MACRUM 6:40e873bbc5f7 4687 * @brief Correlation of Q7 sequences.
MACRUM 6:40e873bbc5f7 4688 * @param[in] *pSrcA points to the first input sequence.
MACRUM 6:40e873bbc5f7 4689 * @param[in] srcALen length of the first input sequence.
MACRUM 6:40e873bbc5f7 4690 * @param[in] *pSrcB points to the second input sequence.
MACRUM 6:40e873bbc5f7 4691 * @param[in] srcBLen length of the second input sequence.
MACRUM 6:40e873bbc5f7 4692 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
MACRUM 6:40e873bbc5f7 4693 * @return none.
MACRUM 6:40e873bbc5f7 4694 */
MACRUM 6:40e873bbc5f7 4695
MACRUM 6:40e873bbc5f7 4696 void arm_correlate_q7(
MACRUM 6:40e873bbc5f7 4697 q7_t * pSrcA,
MACRUM 6:40e873bbc5f7 4698 uint32_t srcALen,
MACRUM 6:40e873bbc5f7 4699 q7_t * pSrcB,
MACRUM 6:40e873bbc5f7 4700 uint32_t srcBLen,
MACRUM 6:40e873bbc5f7 4701 q7_t * pDst);
MACRUM 6:40e873bbc5f7 4702
MACRUM 6:40e873bbc5f7 4703
MACRUM 6:40e873bbc5f7 4704 /**
MACRUM 6:40e873bbc5f7 4705 * @brief Instance structure for the floating-point sparse FIR filter.
MACRUM 6:40e873bbc5f7 4706 */
MACRUM 6:40e873bbc5f7 4707 typedef struct
MACRUM 6:40e873bbc5f7 4708 {
MACRUM 6:40e873bbc5f7 4709 uint16_t numTaps; /**< number of coefficients in the filter. */
MACRUM 6:40e873bbc5f7 4710 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
MACRUM 6:40e873bbc5f7 4711 float32_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
MACRUM 6:40e873bbc5f7 4712 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
MACRUM 6:40e873bbc5f7 4713 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
MACRUM 6:40e873bbc5f7 4714 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
MACRUM 6:40e873bbc5f7 4715 } arm_fir_sparse_instance_f32;
MACRUM 6:40e873bbc5f7 4716
MACRUM 6:40e873bbc5f7 4717 /**
MACRUM 6:40e873bbc5f7 4718 * @brief Instance structure for the Q31 sparse FIR filter.
MACRUM 6:40e873bbc5f7 4719 */
MACRUM 6:40e873bbc5f7 4720
MACRUM 6:40e873bbc5f7 4721 typedef struct
MACRUM 6:40e873bbc5f7 4722 {
MACRUM 6:40e873bbc5f7 4723 uint16_t numTaps; /**< number of coefficients in the filter. */
MACRUM 6:40e873bbc5f7 4724 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
MACRUM 6:40e873bbc5f7 4725 q31_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
MACRUM 6:40e873bbc5f7 4726 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
MACRUM 6:40e873bbc5f7 4727 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
MACRUM 6:40e873bbc5f7 4728 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
MACRUM 6:40e873bbc5f7 4729 } arm_fir_sparse_instance_q31;
MACRUM 6:40e873bbc5f7 4730
MACRUM 6:40e873bbc5f7 4731 /**
MACRUM 6:40e873bbc5f7 4732 * @brief Instance structure for the Q15 sparse FIR filter.
MACRUM 6:40e873bbc5f7 4733 */
MACRUM 6:40e873bbc5f7 4734
MACRUM 6:40e873bbc5f7 4735 typedef struct
MACRUM 6:40e873bbc5f7 4736 {
MACRUM 6:40e873bbc5f7 4737 uint16_t numTaps; /**< number of coefficients in the filter. */
MACRUM 6:40e873bbc5f7 4738 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
MACRUM 6:40e873bbc5f7 4739 q15_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
MACRUM 6:40e873bbc5f7 4740 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
MACRUM 6:40e873bbc5f7 4741 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
MACRUM 6:40e873bbc5f7 4742 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
MACRUM 6:40e873bbc5f7 4743 } arm_fir_sparse_instance_q15;
MACRUM 6:40e873bbc5f7 4744
MACRUM 6:40e873bbc5f7 4745 /**
MACRUM 6:40e873bbc5f7 4746 * @brief Instance structure for the Q7 sparse FIR filter.
MACRUM 6:40e873bbc5f7 4747 */
MACRUM 6:40e873bbc5f7 4748
MACRUM 6:40e873bbc5f7 4749 typedef struct
MACRUM 6:40e873bbc5f7 4750 {
MACRUM 6:40e873bbc5f7 4751 uint16_t numTaps; /**< number of coefficients in the filter. */
MACRUM 6:40e873bbc5f7 4752 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
MACRUM 6:40e873bbc5f7 4753 q7_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
MACRUM 6:40e873bbc5f7 4754 q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
MACRUM 6:40e873bbc5f7 4755 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
MACRUM 6:40e873bbc5f7 4756 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
MACRUM 6:40e873bbc5f7 4757 } arm_fir_sparse_instance_q7;
MACRUM 6:40e873bbc5f7 4758
MACRUM 6:40e873bbc5f7 4759 /**
MACRUM 6:40e873bbc5f7 4760 * @brief Processing function for the floating-point sparse FIR filter.
MACRUM 6:40e873bbc5f7 4761 * @param[in] *S points to an instance of the floating-point sparse FIR structure.
MACRUM 6:40e873bbc5f7 4762 * @param[in] *pSrc points to the block of input data.
MACRUM 6:40e873bbc5f7 4763 * @param[out] *pDst points to the block of output data
MACRUM 6:40e873bbc5f7 4764 * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
MACRUM 6:40e873bbc5f7 4765 * @param[in] blockSize number of input samples to process per call.
MACRUM 6:40e873bbc5f7 4766 * @return none.
MACRUM 6:40e873bbc5f7 4767 */
MACRUM 6:40e873bbc5f7 4768
MACRUM 6:40e873bbc5f7 4769 void arm_fir_sparse_f32(
MACRUM 6:40e873bbc5f7 4770 arm_fir_sparse_instance_f32 * S,
MACRUM 6:40e873bbc5f7 4771 float32_t * pSrc,
MACRUM 6:40e873bbc5f7 4772 float32_t * pDst,
MACRUM 6:40e873bbc5f7 4773 float32_t * pScratchIn,
MACRUM 6:40e873bbc5f7 4774 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 4775
MACRUM 6:40e873bbc5f7 4776 /**
MACRUM 6:40e873bbc5f7 4777 * @brief Initialization function for the floating-point sparse FIR filter.
MACRUM 6:40e873bbc5f7 4778 * @param[in,out] *S points to an instance of the floating-point sparse FIR structure.
MACRUM 6:40e873bbc5f7 4779 * @param[in] numTaps number of nonzero coefficients in the filter.
MACRUM 6:40e873bbc5f7 4780 * @param[in] *pCoeffs points to the array of filter coefficients.
MACRUM 6:40e873bbc5f7 4781 * @param[in] *pState points to the state buffer.
MACRUM 6:40e873bbc5f7 4782 * @param[in] *pTapDelay points to the array of offset times.
MACRUM 6:40e873bbc5f7 4783 * @param[in] maxDelay maximum offset time supported.
MACRUM 6:40e873bbc5f7 4784 * @param[in] blockSize number of samples that will be processed per block.
MACRUM 6:40e873bbc5f7 4785 * @return none
MACRUM 6:40e873bbc5f7 4786 */
MACRUM 6:40e873bbc5f7 4787
MACRUM 6:40e873bbc5f7 4788 void arm_fir_sparse_init_f32(
MACRUM 6:40e873bbc5f7 4789 arm_fir_sparse_instance_f32 * S,
MACRUM 6:40e873bbc5f7 4790 uint16_t numTaps,
MACRUM 6:40e873bbc5f7 4791 float32_t * pCoeffs,
MACRUM 6:40e873bbc5f7 4792 float32_t * pState,
MACRUM 6:40e873bbc5f7 4793 int32_t * pTapDelay,
MACRUM 6:40e873bbc5f7 4794 uint16_t maxDelay,
MACRUM 6:40e873bbc5f7 4795 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 4796
MACRUM 6:40e873bbc5f7 4797 /**
MACRUM 6:40e873bbc5f7 4798 * @brief Processing function for the Q31 sparse FIR filter.
MACRUM 6:40e873bbc5f7 4799 * @param[in] *S points to an instance of the Q31 sparse FIR structure.
MACRUM 6:40e873bbc5f7 4800 * @param[in] *pSrc points to the block of input data.
MACRUM 6:40e873bbc5f7 4801 * @param[out] *pDst points to the block of output data
MACRUM 6:40e873bbc5f7 4802 * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
MACRUM 6:40e873bbc5f7 4803 * @param[in] blockSize number of input samples to process per call.
MACRUM 6:40e873bbc5f7 4804 * @return none.
MACRUM 6:40e873bbc5f7 4805 */
MACRUM 6:40e873bbc5f7 4806
MACRUM 6:40e873bbc5f7 4807 void arm_fir_sparse_q31(
MACRUM 6:40e873bbc5f7 4808 arm_fir_sparse_instance_q31 * S,
MACRUM 6:40e873bbc5f7 4809 q31_t * pSrc,
MACRUM 6:40e873bbc5f7 4810 q31_t * pDst,
MACRUM 6:40e873bbc5f7 4811 q31_t * pScratchIn,
MACRUM 6:40e873bbc5f7 4812 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 4813
MACRUM 6:40e873bbc5f7 4814 /**
MACRUM 6:40e873bbc5f7 4815 * @brief Initialization function for the Q31 sparse FIR filter.
MACRUM 6:40e873bbc5f7 4816 * @param[in,out] *S points to an instance of the Q31 sparse FIR structure.
MACRUM 6:40e873bbc5f7 4817 * @param[in] numTaps number of nonzero coefficients in the filter.
MACRUM 6:40e873bbc5f7 4818 * @param[in] *pCoeffs points to the array of filter coefficients.
MACRUM 6:40e873bbc5f7 4819 * @param[in] *pState points to the state buffer.
MACRUM 6:40e873bbc5f7 4820 * @param[in] *pTapDelay points to the array of offset times.
MACRUM 6:40e873bbc5f7 4821 * @param[in] maxDelay maximum offset time supported.
MACRUM 6:40e873bbc5f7 4822 * @param[in] blockSize number of samples that will be processed per block.
MACRUM 6:40e873bbc5f7 4823 * @return none
MACRUM 6:40e873bbc5f7 4824 */
MACRUM 6:40e873bbc5f7 4825
MACRUM 6:40e873bbc5f7 4826 void arm_fir_sparse_init_q31(
MACRUM 6:40e873bbc5f7 4827 arm_fir_sparse_instance_q31 * S,
MACRUM 6:40e873bbc5f7 4828 uint16_t numTaps,
MACRUM 6:40e873bbc5f7 4829 q31_t * pCoeffs,
MACRUM 6:40e873bbc5f7 4830 q31_t * pState,
MACRUM 6:40e873bbc5f7 4831 int32_t * pTapDelay,
MACRUM 6:40e873bbc5f7 4832 uint16_t maxDelay,
MACRUM 6:40e873bbc5f7 4833 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 4834
MACRUM 6:40e873bbc5f7 4835 /**
MACRUM 6:40e873bbc5f7 4836 * @brief Processing function for the Q15 sparse FIR filter.
MACRUM 6:40e873bbc5f7 4837 * @param[in] *S points to an instance of the Q15 sparse FIR structure.
MACRUM 6:40e873bbc5f7 4838 * @param[in] *pSrc points to the block of input data.
MACRUM 6:40e873bbc5f7 4839 * @param[out] *pDst points to the block of output data
MACRUM 6:40e873bbc5f7 4840 * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
MACRUM 6:40e873bbc5f7 4841 * @param[in] *pScratchOut points to a temporary buffer of size blockSize.
MACRUM 6:40e873bbc5f7 4842 * @param[in] blockSize number of input samples to process per call.
MACRUM 6:40e873bbc5f7 4843 * @return none.
MACRUM 6:40e873bbc5f7 4844 */
MACRUM 6:40e873bbc5f7 4845
MACRUM 6:40e873bbc5f7 4846 void arm_fir_sparse_q15(
MACRUM 6:40e873bbc5f7 4847 arm_fir_sparse_instance_q15 * S,
MACRUM 6:40e873bbc5f7 4848 q15_t * pSrc,
MACRUM 6:40e873bbc5f7 4849 q15_t * pDst,
MACRUM 6:40e873bbc5f7 4850 q15_t * pScratchIn,
MACRUM 6:40e873bbc5f7 4851 q31_t * pScratchOut,
MACRUM 6:40e873bbc5f7 4852 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 4853
MACRUM 6:40e873bbc5f7 4854
MACRUM 6:40e873bbc5f7 4855 /**
MACRUM 6:40e873bbc5f7 4856 * @brief Initialization function for the Q15 sparse FIR filter.
MACRUM 6:40e873bbc5f7 4857 * @param[in,out] *S points to an instance of the Q15 sparse FIR structure.
MACRUM 6:40e873bbc5f7 4858 * @param[in] numTaps number of nonzero coefficients in the filter.
MACRUM 6:40e873bbc5f7 4859 * @param[in] *pCoeffs points to the array of filter coefficients.
MACRUM 6:40e873bbc5f7 4860 * @param[in] *pState points to the state buffer.
MACRUM 6:40e873bbc5f7 4861 * @param[in] *pTapDelay points to the array of offset times.
MACRUM 6:40e873bbc5f7 4862 * @param[in] maxDelay maximum offset time supported.
MACRUM 6:40e873bbc5f7 4863 * @param[in] blockSize number of samples that will be processed per block.
MACRUM 6:40e873bbc5f7 4864 * @return none
MACRUM 6:40e873bbc5f7 4865 */
MACRUM 6:40e873bbc5f7 4866
MACRUM 6:40e873bbc5f7 4867 void arm_fir_sparse_init_q15(
MACRUM 6:40e873bbc5f7 4868 arm_fir_sparse_instance_q15 * S,
MACRUM 6:40e873bbc5f7 4869 uint16_t numTaps,
MACRUM 6:40e873bbc5f7 4870 q15_t * pCoeffs,
MACRUM 6:40e873bbc5f7 4871 q15_t * pState,
MACRUM 6:40e873bbc5f7 4872 int32_t * pTapDelay,
MACRUM 6:40e873bbc5f7 4873 uint16_t maxDelay,
MACRUM 6:40e873bbc5f7 4874 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 4875
MACRUM 6:40e873bbc5f7 4876 /**
MACRUM 6:40e873bbc5f7 4877 * @brief Processing function for the Q7 sparse FIR filter.
MACRUM 6:40e873bbc5f7 4878 * @param[in] *S points to an instance of the Q7 sparse FIR structure.
MACRUM 6:40e873bbc5f7 4879 * @param[in] *pSrc points to the block of input data.
MACRUM 6:40e873bbc5f7 4880 * @param[out] *pDst points to the block of output data
MACRUM 6:40e873bbc5f7 4881 * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
MACRUM 6:40e873bbc5f7 4882 * @param[in] *pScratchOut points to a temporary buffer of size blockSize.
MACRUM 6:40e873bbc5f7 4883 * @param[in] blockSize number of input samples to process per call.
MACRUM 6:40e873bbc5f7 4884 * @return none.
MACRUM 6:40e873bbc5f7 4885 */
MACRUM 6:40e873bbc5f7 4886
MACRUM 6:40e873bbc5f7 4887 void arm_fir_sparse_q7(
MACRUM 6:40e873bbc5f7 4888 arm_fir_sparse_instance_q7 * S,
MACRUM 6:40e873bbc5f7 4889 q7_t * pSrc,
MACRUM 6:40e873bbc5f7 4890 q7_t * pDst,
MACRUM 6:40e873bbc5f7 4891 q7_t * pScratchIn,
MACRUM 6:40e873bbc5f7 4892 q31_t * pScratchOut,
MACRUM 6:40e873bbc5f7 4893 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 4894
MACRUM 6:40e873bbc5f7 4895 /**
MACRUM 6:40e873bbc5f7 4896 * @brief Initialization function for the Q7 sparse FIR filter.
MACRUM 6:40e873bbc5f7 4897 * @param[in,out] *S points to an instance of the Q7 sparse FIR structure.
MACRUM 6:40e873bbc5f7 4898 * @param[in] numTaps number of nonzero coefficients in the filter.
MACRUM 6:40e873bbc5f7 4899 * @param[in] *pCoeffs points to the array of filter coefficients.
MACRUM 6:40e873bbc5f7 4900 * @param[in] *pState points to the state buffer.
MACRUM 6:40e873bbc5f7 4901 * @param[in] *pTapDelay points to the array of offset times.
MACRUM 6:40e873bbc5f7 4902 * @param[in] maxDelay maximum offset time supported.
MACRUM 6:40e873bbc5f7 4903 * @param[in] blockSize number of samples that will be processed per block.
MACRUM 6:40e873bbc5f7 4904 * @return none
MACRUM 6:40e873bbc5f7 4905 */
MACRUM 6:40e873bbc5f7 4906
MACRUM 6:40e873bbc5f7 4907 void arm_fir_sparse_init_q7(
MACRUM 6:40e873bbc5f7 4908 arm_fir_sparse_instance_q7 * S,
MACRUM 6:40e873bbc5f7 4909 uint16_t numTaps,
MACRUM 6:40e873bbc5f7 4910 q7_t * pCoeffs,
MACRUM 6:40e873bbc5f7 4911 q7_t * pState,
MACRUM 6:40e873bbc5f7 4912 int32_t * pTapDelay,
MACRUM 6:40e873bbc5f7 4913 uint16_t maxDelay,
MACRUM 6:40e873bbc5f7 4914 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 4915
MACRUM 6:40e873bbc5f7 4916
MACRUM 6:40e873bbc5f7 4917 /*
MACRUM 6:40e873bbc5f7 4918 * @brief Floating-point sin_cos function.
MACRUM 6:40e873bbc5f7 4919 * @param[in] theta input value in degrees
MACRUM 6:40e873bbc5f7 4920 * @param[out] *pSinVal points to the processed sine output.
MACRUM 6:40e873bbc5f7 4921 * @param[out] *pCosVal points to the processed cos output.
MACRUM 6:40e873bbc5f7 4922 * @return none.
MACRUM 6:40e873bbc5f7 4923 */
MACRUM 6:40e873bbc5f7 4924
MACRUM 6:40e873bbc5f7 4925 void arm_sin_cos_f32(
MACRUM 6:40e873bbc5f7 4926 float32_t theta,
MACRUM 6:40e873bbc5f7 4927 float32_t * pSinVal,
MACRUM 6:40e873bbc5f7 4928 float32_t * pCcosVal);
MACRUM 6:40e873bbc5f7 4929
MACRUM 6:40e873bbc5f7 4930 /*
MACRUM 6:40e873bbc5f7 4931 * @brief Q31 sin_cos function.
MACRUM 6:40e873bbc5f7 4932 * @param[in] theta scaled input value in degrees
MACRUM 6:40e873bbc5f7 4933 * @param[out] *pSinVal points to the processed sine output.
MACRUM 6:40e873bbc5f7 4934 * @param[out] *pCosVal points to the processed cosine output.
MACRUM 6:40e873bbc5f7 4935 * @return none.
MACRUM 6:40e873bbc5f7 4936 */
MACRUM 6:40e873bbc5f7 4937
MACRUM 6:40e873bbc5f7 4938 void arm_sin_cos_q31(
MACRUM 6:40e873bbc5f7 4939 q31_t theta,
MACRUM 6:40e873bbc5f7 4940 q31_t * pSinVal,
MACRUM 6:40e873bbc5f7 4941 q31_t * pCosVal);
MACRUM 6:40e873bbc5f7 4942
MACRUM 6:40e873bbc5f7 4943
MACRUM 6:40e873bbc5f7 4944 /**
MACRUM 6:40e873bbc5f7 4945 * @brief Floating-point complex conjugate.
MACRUM 6:40e873bbc5f7 4946 * @param[in] *pSrc points to the input vector
MACRUM 6:40e873bbc5f7 4947 * @param[out] *pDst points to the output vector
MACRUM 6:40e873bbc5f7 4948 * @param[in] numSamples number of complex samples in each vector
MACRUM 6:40e873bbc5f7 4949 * @return none.
MACRUM 6:40e873bbc5f7 4950 */
MACRUM 6:40e873bbc5f7 4951
MACRUM 6:40e873bbc5f7 4952 void arm_cmplx_conj_f32(
MACRUM 6:40e873bbc5f7 4953 float32_t * pSrc,
MACRUM 6:40e873bbc5f7 4954 float32_t * pDst,
MACRUM 6:40e873bbc5f7 4955 uint32_t numSamples);
MACRUM 6:40e873bbc5f7 4956
MACRUM 6:40e873bbc5f7 4957 /**
MACRUM 6:40e873bbc5f7 4958 * @brief Q31 complex conjugate.
MACRUM 6:40e873bbc5f7 4959 * @param[in] *pSrc points to the input vector
MACRUM 6:40e873bbc5f7 4960 * @param[out] *pDst points to the output vector
MACRUM 6:40e873bbc5f7 4961 * @param[in] numSamples number of complex samples in each vector
MACRUM 6:40e873bbc5f7 4962 * @return none.
MACRUM 6:40e873bbc5f7 4963 */
MACRUM 6:40e873bbc5f7 4964
MACRUM 6:40e873bbc5f7 4965 void arm_cmplx_conj_q31(
MACRUM 6:40e873bbc5f7 4966 q31_t * pSrc,
MACRUM 6:40e873bbc5f7 4967 q31_t * pDst,
MACRUM 6:40e873bbc5f7 4968 uint32_t numSamples);
MACRUM 6:40e873bbc5f7 4969
MACRUM 6:40e873bbc5f7 4970 /**
MACRUM 6:40e873bbc5f7 4971 * @brief Q15 complex conjugate.
MACRUM 6:40e873bbc5f7 4972 * @param[in] *pSrc points to the input vector
MACRUM 6:40e873bbc5f7 4973 * @param[out] *pDst points to the output vector
MACRUM 6:40e873bbc5f7 4974 * @param[in] numSamples number of complex samples in each vector
MACRUM 6:40e873bbc5f7 4975 * @return none.
MACRUM 6:40e873bbc5f7 4976 */
MACRUM 6:40e873bbc5f7 4977
MACRUM 6:40e873bbc5f7 4978 void arm_cmplx_conj_q15(
MACRUM 6:40e873bbc5f7 4979 q15_t * pSrc,
MACRUM 6:40e873bbc5f7 4980 q15_t * pDst,
MACRUM 6:40e873bbc5f7 4981 uint32_t numSamples);
MACRUM 6:40e873bbc5f7 4982
MACRUM 6:40e873bbc5f7 4983
MACRUM 6:40e873bbc5f7 4984
MACRUM 6:40e873bbc5f7 4985 /**
MACRUM 6:40e873bbc5f7 4986 * @brief Floating-point complex magnitude squared
MACRUM 6:40e873bbc5f7 4987 * @param[in] *pSrc points to the complex input vector
MACRUM 6:40e873bbc5f7 4988 * @param[out] *pDst points to the real output vector
MACRUM 6:40e873bbc5f7 4989 * @param[in] numSamples number of complex samples in the input vector
MACRUM 6:40e873bbc5f7 4990 * @return none.
MACRUM 6:40e873bbc5f7 4991 */
MACRUM 6:40e873bbc5f7 4992
MACRUM 6:40e873bbc5f7 4993 void arm_cmplx_mag_squared_f32(
MACRUM 6:40e873bbc5f7 4994 float32_t * pSrc,
MACRUM 6:40e873bbc5f7 4995 float32_t * pDst,
MACRUM 6:40e873bbc5f7 4996 uint32_t numSamples);
MACRUM 6:40e873bbc5f7 4997
MACRUM 6:40e873bbc5f7 4998 /**
MACRUM 6:40e873bbc5f7 4999 * @brief Q31 complex magnitude squared
MACRUM 6:40e873bbc5f7 5000 * @param[in] *pSrc points to the complex input vector
MACRUM 6:40e873bbc5f7 5001 * @param[out] *pDst points to the real output vector
MACRUM 6:40e873bbc5f7 5002 * @param[in] numSamples number of complex samples in the input vector
MACRUM 6:40e873bbc5f7 5003 * @return none.
MACRUM 6:40e873bbc5f7 5004 */
MACRUM 6:40e873bbc5f7 5005
MACRUM 6:40e873bbc5f7 5006 void arm_cmplx_mag_squared_q31(
MACRUM 6:40e873bbc5f7 5007 q31_t * pSrc,
MACRUM 6:40e873bbc5f7 5008 q31_t * pDst,
MACRUM 6:40e873bbc5f7 5009 uint32_t numSamples);
MACRUM 6:40e873bbc5f7 5010
MACRUM 6:40e873bbc5f7 5011 /**
MACRUM 6:40e873bbc5f7 5012 * @brief Q15 complex magnitude squared
MACRUM 6:40e873bbc5f7 5013 * @param[in] *pSrc points to the complex input vector
MACRUM 6:40e873bbc5f7 5014 * @param[out] *pDst points to the real output vector
MACRUM 6:40e873bbc5f7 5015 * @param[in] numSamples number of complex samples in the input vector
MACRUM 6:40e873bbc5f7 5016 * @return none.
MACRUM 6:40e873bbc5f7 5017 */
MACRUM 6:40e873bbc5f7 5018
MACRUM 6:40e873bbc5f7 5019 void arm_cmplx_mag_squared_q15(
MACRUM 6:40e873bbc5f7 5020 q15_t * pSrc,
MACRUM 6:40e873bbc5f7 5021 q15_t * pDst,
MACRUM 6:40e873bbc5f7 5022 uint32_t numSamples);
MACRUM 6:40e873bbc5f7 5023
MACRUM 6:40e873bbc5f7 5024
MACRUM 6:40e873bbc5f7 5025 /**
MACRUM 6:40e873bbc5f7 5026 * @ingroup groupController
MACRUM 6:40e873bbc5f7 5027 */
MACRUM 6:40e873bbc5f7 5028
MACRUM 6:40e873bbc5f7 5029 /**
MACRUM 6:40e873bbc5f7 5030 * @defgroup PID PID Motor Control
MACRUM 6:40e873bbc5f7 5031 *
MACRUM 6:40e873bbc5f7 5032 * A Proportional Integral Derivative (PID) controller is a generic feedback control
MACRUM 6:40e873bbc5f7 5033 * loop mechanism widely used in industrial control systems.
MACRUM 6:40e873bbc5f7 5034 * A PID controller is the most commonly used type of feedback controller.
MACRUM 6:40e873bbc5f7 5035 *
MACRUM 6:40e873bbc5f7 5036 * This set of functions implements (PID) controllers
MACRUM 6:40e873bbc5f7 5037 * for Q15, Q31, and floating-point data types. The functions operate on a single sample
MACRUM 6:40e873bbc5f7 5038 * of data and each call to the function returns a single processed value.
MACRUM 6:40e873bbc5f7 5039 * <code>S</code> points to an instance of the PID control data structure. <code>in</code>
MACRUM 6:40e873bbc5f7 5040 * is the input sample value. The functions return the output value.
MACRUM 6:40e873bbc5f7 5041 *
MACRUM 6:40e873bbc5f7 5042 * \par Algorithm:
MACRUM 6:40e873bbc5f7 5043 * <pre>
MACRUM 6:40e873bbc5f7 5044 * y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2]
MACRUM 6:40e873bbc5f7 5045 * A0 = Kp + Ki + Kd
MACRUM 6:40e873bbc5f7 5046 * A1 = (-Kp ) - (2 * Kd )
MACRUM 6:40e873bbc5f7 5047 * A2 = Kd </pre>
MACRUM 6:40e873bbc5f7 5048 *
MACRUM 6:40e873bbc5f7 5049 * \par
MACRUM 6:40e873bbc5f7 5050 * where \c Kp is proportional constant, \c Ki is Integral constant and \c Kd is Derivative constant
MACRUM 6:40e873bbc5f7 5051 *
MACRUM 6:40e873bbc5f7 5052 * \par
MACRUM 6:40e873bbc5f7 5053 * \image html PID.gif "Proportional Integral Derivative Controller"
MACRUM 6:40e873bbc5f7 5054 *
MACRUM 6:40e873bbc5f7 5055 * \par
MACRUM 6:40e873bbc5f7 5056 * The PID controller calculates an "error" value as the difference between
MACRUM 6:40e873bbc5f7 5057 * the measured output and the reference input.
MACRUM 6:40e873bbc5f7 5058 * The controller attempts to minimize the error by adjusting the process control inputs.
MACRUM 6:40e873bbc5f7 5059 * The proportional value determines the reaction to the current error,
MACRUM 6:40e873bbc5f7 5060 * the integral value determines the reaction based on the sum of recent errors,
MACRUM 6:40e873bbc5f7 5061 * and the derivative value determines the reaction based on the rate at which the error has been changing.
MACRUM 6:40e873bbc5f7 5062 *
MACRUM 6:40e873bbc5f7 5063 * \par Instance Structure
MACRUM 6:40e873bbc5f7 5064 * The Gains A0, A1, A2 and state variables for a PID controller are stored together in an instance data structure.
MACRUM 6:40e873bbc5f7 5065 * A separate instance structure must be defined for each PID Controller.
MACRUM 6:40e873bbc5f7 5066 * There are separate instance structure declarations for each of the 3 supported data types.
MACRUM 6:40e873bbc5f7 5067 *
MACRUM 6:40e873bbc5f7 5068 * \par Reset Functions
MACRUM 6:40e873bbc5f7 5069 * There is also an associated reset function for each data type which clears the state array.
MACRUM 6:40e873bbc5f7 5070 *
MACRUM 6:40e873bbc5f7 5071 * \par Initialization Functions
MACRUM 6:40e873bbc5f7 5072 * There is also an associated initialization function for each data type.
MACRUM 6:40e873bbc5f7 5073 * The initialization function performs the following operations:
MACRUM 6:40e873bbc5f7 5074 * - Initializes the Gains A0, A1, A2 from Kp,Ki, Kd gains.
MACRUM 6:40e873bbc5f7 5075 * - Zeros out the values in the state buffer.
MACRUM 6:40e873bbc5f7 5076 *
MACRUM 6:40e873bbc5f7 5077 * \par
MACRUM 6:40e873bbc5f7 5078 * Instance structure cannot be placed into a const data section and it is recommended to use the initialization function.
MACRUM 6:40e873bbc5f7 5079 *
MACRUM 6:40e873bbc5f7 5080 * \par Fixed-Point Behavior
MACRUM 6:40e873bbc5f7 5081 * Care must be taken when using the fixed-point versions of the PID Controller functions.
MACRUM 6:40e873bbc5f7 5082 * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered.
MACRUM 6:40e873bbc5f7 5083 * Refer to the function specific documentation below for usage guidelines.
MACRUM 6:40e873bbc5f7 5084 */
MACRUM 6:40e873bbc5f7 5085
MACRUM 6:40e873bbc5f7 5086 /**
MACRUM 6:40e873bbc5f7 5087 * @addtogroup PID
MACRUM 6:40e873bbc5f7 5088 * @{
MACRUM 6:40e873bbc5f7 5089 */
MACRUM 6:40e873bbc5f7 5090
MACRUM 6:40e873bbc5f7 5091 /**
MACRUM 6:40e873bbc5f7 5092 * @brief Process function for the floating-point PID Control.
MACRUM 6:40e873bbc5f7 5093 * @param[in,out] *S is an instance of the floating-point PID Control structure
MACRUM 6:40e873bbc5f7 5094 * @param[in] in input sample to process
MACRUM 6:40e873bbc5f7 5095 * @return out processed output sample.
MACRUM 6:40e873bbc5f7 5096 */
MACRUM 6:40e873bbc5f7 5097
MACRUM 6:40e873bbc5f7 5098
MACRUM 6:40e873bbc5f7 5099 static __INLINE float32_t arm_pid_f32(
MACRUM 6:40e873bbc5f7 5100 arm_pid_instance_f32 * S,
MACRUM 6:40e873bbc5f7 5101 float32_t in)
MACRUM 6:40e873bbc5f7 5102 {
MACRUM 6:40e873bbc5f7 5103 float32_t out;
MACRUM 6:40e873bbc5f7 5104
MACRUM 6:40e873bbc5f7 5105 /* y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] */
MACRUM 6:40e873bbc5f7 5106 out = (S->A0 * in) +
MACRUM 6:40e873bbc5f7 5107 (S->A1 * S->state[0]) + (S->A2 * S->state[1]) + (S->state[2]);
MACRUM 6:40e873bbc5f7 5108
MACRUM 6:40e873bbc5f7 5109 /* Update state */
MACRUM 6:40e873bbc5f7 5110 S->state[1] = S->state[0];
MACRUM 6:40e873bbc5f7 5111 S->state[0] = in;
MACRUM 6:40e873bbc5f7 5112 S->state[2] = out;
MACRUM 6:40e873bbc5f7 5113
MACRUM 6:40e873bbc5f7 5114 /* return to application */
MACRUM 6:40e873bbc5f7 5115 return (out);
MACRUM 6:40e873bbc5f7 5116
MACRUM 6:40e873bbc5f7 5117 }
MACRUM 6:40e873bbc5f7 5118
MACRUM 6:40e873bbc5f7 5119 /**
MACRUM 6:40e873bbc5f7 5120 * @brief Process function for the Q31 PID Control.
MACRUM 6:40e873bbc5f7 5121 * @param[in,out] *S points to an instance of the Q31 PID Control structure
MACRUM 6:40e873bbc5f7 5122 * @param[in] in input sample to process
MACRUM 6:40e873bbc5f7 5123 * @return out processed output sample.
MACRUM 6:40e873bbc5f7 5124 *
MACRUM 6:40e873bbc5f7 5125 * <b>Scaling and Overflow Behavior:</b>
MACRUM 6:40e873bbc5f7 5126 * \par
MACRUM 6:40e873bbc5f7 5127 * The function is implemented using an internal 64-bit accumulator.
MACRUM 6:40e873bbc5f7 5128 * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
MACRUM 6:40e873bbc5f7 5129 * Thus, if the accumulator result overflows it wraps around rather than clip.
MACRUM 6:40e873bbc5f7 5130 * In order to avoid overflows completely the input signal must be scaled down by 2 bits as there are four additions.
MACRUM 6:40e873bbc5f7 5131 * After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format.
MACRUM 6:40e873bbc5f7 5132 */
MACRUM 6:40e873bbc5f7 5133
MACRUM 6:40e873bbc5f7 5134 static __INLINE q31_t arm_pid_q31(
MACRUM 6:40e873bbc5f7 5135 arm_pid_instance_q31 * S,
MACRUM 6:40e873bbc5f7 5136 q31_t in)
MACRUM 6:40e873bbc5f7 5137 {
MACRUM 6:40e873bbc5f7 5138 q63_t acc;
MACRUM 6:40e873bbc5f7 5139 q31_t out;
MACRUM 6:40e873bbc5f7 5140
MACRUM 6:40e873bbc5f7 5141 /* acc = A0 * x[n] */
MACRUM 6:40e873bbc5f7 5142 acc = (q63_t) S->A0 * in;
MACRUM 6:40e873bbc5f7 5143
MACRUM 6:40e873bbc5f7 5144 /* acc += A1 * x[n-1] */
MACRUM 6:40e873bbc5f7 5145 acc += (q63_t) S->A1 * S->state[0];
MACRUM 6:40e873bbc5f7 5146
MACRUM 6:40e873bbc5f7 5147 /* acc += A2 * x[n-2] */
MACRUM 6:40e873bbc5f7 5148 acc += (q63_t) S->A2 * S->state[1];
MACRUM 6:40e873bbc5f7 5149
MACRUM 6:40e873bbc5f7 5150 /* convert output to 1.31 format to add y[n-1] */
MACRUM 6:40e873bbc5f7 5151 out = (q31_t) (acc >> 31u);
MACRUM 6:40e873bbc5f7 5152
MACRUM 6:40e873bbc5f7 5153 /* out += y[n-1] */
MACRUM 6:40e873bbc5f7 5154 out += S->state[2];
MACRUM 6:40e873bbc5f7 5155
MACRUM 6:40e873bbc5f7 5156 /* Update state */
MACRUM 6:40e873bbc5f7 5157 S->state[1] = S->state[0];
MACRUM 6:40e873bbc5f7 5158 S->state[0] = in;
MACRUM 6:40e873bbc5f7 5159 S->state[2] = out;
MACRUM 6:40e873bbc5f7 5160
MACRUM 6:40e873bbc5f7 5161 /* return to application */
MACRUM 6:40e873bbc5f7 5162 return (out);
MACRUM 6:40e873bbc5f7 5163
MACRUM 6:40e873bbc5f7 5164 }
MACRUM 6:40e873bbc5f7 5165
MACRUM 6:40e873bbc5f7 5166 /**
MACRUM 6:40e873bbc5f7 5167 * @brief Process function for the Q15 PID Control.
MACRUM 6:40e873bbc5f7 5168 * @param[in,out] *S points to an instance of the Q15 PID Control structure
MACRUM 6:40e873bbc5f7 5169 * @param[in] in input sample to process
MACRUM 6:40e873bbc5f7 5170 * @return out processed output sample.
MACRUM 6:40e873bbc5f7 5171 *
MACRUM 6:40e873bbc5f7 5172 * <b>Scaling and Overflow Behavior:</b>
MACRUM 6:40e873bbc5f7 5173 * \par
MACRUM 6:40e873bbc5f7 5174 * The function is implemented using a 64-bit internal accumulator.
MACRUM 6:40e873bbc5f7 5175 * Both Gains and state variables are represented in 1.15 format and multiplications yield a 2.30 result.
MACRUM 6:40e873bbc5f7 5176 * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
MACRUM 6:40e873bbc5f7 5177 * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
MACRUM 6:40e873bbc5f7 5178 * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits.
MACRUM 6:40e873bbc5f7 5179 * Lastly, the accumulator is saturated to yield a result in 1.15 format.
MACRUM 6:40e873bbc5f7 5180 */
MACRUM 6:40e873bbc5f7 5181
MACRUM 6:40e873bbc5f7 5182 static __INLINE q15_t arm_pid_q15(
MACRUM 6:40e873bbc5f7 5183 arm_pid_instance_q15 * S,
MACRUM 6:40e873bbc5f7 5184 q15_t in)
MACRUM 6:40e873bbc5f7 5185 {
MACRUM 6:40e873bbc5f7 5186 q63_t acc;
MACRUM 6:40e873bbc5f7 5187 q15_t out;
MACRUM 6:40e873bbc5f7 5188
MACRUM 6:40e873bbc5f7 5189 #ifndef ARM_MATH_CM0_FAMILY
MACRUM 6:40e873bbc5f7 5190 __SIMD32_TYPE *vstate;
MACRUM 6:40e873bbc5f7 5191
MACRUM 6:40e873bbc5f7 5192 /* Implementation of PID controller */
MACRUM 6:40e873bbc5f7 5193
MACRUM 6:40e873bbc5f7 5194 /* acc = A0 * x[n] */
MACRUM 6:40e873bbc5f7 5195 acc = (q31_t) __SMUAD(S->A0, in);
MACRUM 6:40e873bbc5f7 5196
MACRUM 6:40e873bbc5f7 5197 /* acc += A1 * x[n-1] + A2 * x[n-2] */
MACRUM 6:40e873bbc5f7 5198 vstate = __SIMD32_CONST(S->state);
MACRUM 6:40e873bbc5f7 5199 acc = __SMLALD(S->A1, (q31_t) *vstate, acc);
MACRUM 6:40e873bbc5f7 5200
MACRUM 6:40e873bbc5f7 5201 #else
MACRUM 6:40e873bbc5f7 5202 /* acc = A0 * x[n] */
MACRUM 6:40e873bbc5f7 5203 acc = ((q31_t) S->A0) * in;
MACRUM 6:40e873bbc5f7 5204
MACRUM 6:40e873bbc5f7 5205 /* acc += A1 * x[n-1] + A2 * x[n-2] */
MACRUM 6:40e873bbc5f7 5206 acc += (q31_t) S->A1 * S->state[0];
MACRUM 6:40e873bbc5f7 5207 acc += (q31_t) S->A2 * S->state[1];
MACRUM 6:40e873bbc5f7 5208
MACRUM 6:40e873bbc5f7 5209 #endif
MACRUM 6:40e873bbc5f7 5210
MACRUM 6:40e873bbc5f7 5211 /* acc += y[n-1] */
MACRUM 6:40e873bbc5f7 5212 acc += (q31_t) S->state[2] << 15;
MACRUM 6:40e873bbc5f7 5213
MACRUM 6:40e873bbc5f7 5214 /* saturate the output */
MACRUM 6:40e873bbc5f7 5215 out = (q15_t) (__SSAT((acc >> 15), 16));
MACRUM 6:40e873bbc5f7 5216
MACRUM 6:40e873bbc5f7 5217 /* Update state */
MACRUM 6:40e873bbc5f7 5218 S->state[1] = S->state[0];
MACRUM 6:40e873bbc5f7 5219 S->state[0] = in;
MACRUM 6:40e873bbc5f7 5220 S->state[2] = out;
MACRUM 6:40e873bbc5f7 5221
MACRUM 6:40e873bbc5f7 5222 /* return to application */
MACRUM 6:40e873bbc5f7 5223 return (out);
MACRUM 6:40e873bbc5f7 5224
MACRUM 6:40e873bbc5f7 5225 }
MACRUM 6:40e873bbc5f7 5226
MACRUM 6:40e873bbc5f7 5227 /**
MACRUM 6:40e873bbc5f7 5228 * @} end of PID group
MACRUM 6:40e873bbc5f7 5229 */
MACRUM 6:40e873bbc5f7 5230
MACRUM 6:40e873bbc5f7 5231
MACRUM 6:40e873bbc5f7 5232 /**
MACRUM 6:40e873bbc5f7 5233 * @brief Floating-point matrix inverse.
MACRUM 6:40e873bbc5f7 5234 * @param[in] *src points to the instance of the input floating-point matrix structure.
MACRUM 6:40e873bbc5f7 5235 * @param[out] *dst points to the instance of the output floating-point matrix structure.
MACRUM 6:40e873bbc5f7 5236 * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
MACRUM 6:40e873bbc5f7 5237 * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR.
MACRUM 6:40e873bbc5f7 5238 */
MACRUM 6:40e873bbc5f7 5239
MACRUM 6:40e873bbc5f7 5240 arm_status arm_mat_inverse_f32(
MACRUM 6:40e873bbc5f7 5241 const arm_matrix_instance_f32 * src,
MACRUM 6:40e873bbc5f7 5242 arm_matrix_instance_f32 * dst);
MACRUM 6:40e873bbc5f7 5243
MACRUM 6:40e873bbc5f7 5244
MACRUM 6:40e873bbc5f7 5245 /**
MACRUM 6:40e873bbc5f7 5246 * @brief Floating-point matrix inverse.
MACRUM 6:40e873bbc5f7 5247 * @param[in] *src points to the instance of the input floating-point matrix structure.
MACRUM 6:40e873bbc5f7 5248 * @param[out] *dst points to the instance of the output floating-point matrix structure.
MACRUM 6:40e873bbc5f7 5249 * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
MACRUM 6:40e873bbc5f7 5250 * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR.
MACRUM 6:40e873bbc5f7 5251 */
MACRUM 6:40e873bbc5f7 5252
MACRUM 6:40e873bbc5f7 5253 arm_status arm_mat_inverse_f64(
MACRUM 6:40e873bbc5f7 5254 const arm_matrix_instance_f64 * src,
MACRUM 6:40e873bbc5f7 5255 arm_matrix_instance_f64 * dst);
MACRUM 6:40e873bbc5f7 5256
MACRUM 6:40e873bbc5f7 5257
MACRUM 6:40e873bbc5f7 5258
MACRUM 6:40e873bbc5f7 5259 /**
MACRUM 6:40e873bbc5f7 5260 * @ingroup groupController
MACRUM 6:40e873bbc5f7 5261 */
MACRUM 6:40e873bbc5f7 5262
MACRUM 6:40e873bbc5f7 5263
MACRUM 6:40e873bbc5f7 5264 /**
MACRUM 6:40e873bbc5f7 5265 * @defgroup clarke Vector Clarke Transform
MACRUM 6:40e873bbc5f7 5266 * Forward Clarke transform converts the instantaneous stator phases into a two-coordinate time invariant vector.
MACRUM 6:40e873bbc5f7 5267 * Generally the Clarke transform uses three-phase currents <code>Ia, Ib and Ic</code> to calculate currents
MACRUM 6:40e873bbc5f7 5268 * in the two-phase orthogonal stator axis <code>Ialpha</code> and <code>Ibeta</code>.
MACRUM 6:40e873bbc5f7 5269 * When <code>Ialpha</code> is superposed with <code>Ia</code> as shown in the figure below
MACRUM 6:40e873bbc5f7 5270 * \image html clarke.gif Stator current space vector and its components in (a,b).
MACRUM 6:40e873bbc5f7 5271 * and <code>Ia + Ib + Ic = 0</code>, in this condition <code>Ialpha</code> and <code>Ibeta</code>
MACRUM 6:40e873bbc5f7 5272 * can be calculated using only <code>Ia</code> and <code>Ib</code>.
MACRUM 6:40e873bbc5f7 5273 *
MACRUM 6:40e873bbc5f7 5274 * The function operates on a single sample of data and each call to the function returns the processed output.
MACRUM 6:40e873bbc5f7 5275 * The library provides separate functions for Q31 and floating-point data types.
MACRUM 6:40e873bbc5f7 5276 * \par Algorithm
MACRUM 6:40e873bbc5f7 5277 * \image html clarkeFormula.gif
MACRUM 6:40e873bbc5f7 5278 * where <code>Ia</code> and <code>Ib</code> are the instantaneous stator phases and
MACRUM 6:40e873bbc5f7 5279 * <code>pIalpha</code> and <code>pIbeta</code> are the two coordinates of time invariant vector.
MACRUM 6:40e873bbc5f7 5280 * \par Fixed-Point Behavior
MACRUM 6:40e873bbc5f7 5281 * Care must be taken when using the Q31 version of the Clarke transform.
MACRUM 6:40e873bbc5f7 5282 * In particular, the overflow and saturation behavior of the accumulator used must be considered.
MACRUM 6:40e873bbc5f7 5283 * Refer to the function specific documentation below for usage guidelines.
MACRUM 6:40e873bbc5f7 5284 */
MACRUM 6:40e873bbc5f7 5285
MACRUM 6:40e873bbc5f7 5286 /**
MACRUM 6:40e873bbc5f7 5287 * @addtogroup clarke
MACRUM 6:40e873bbc5f7 5288 * @{
MACRUM 6:40e873bbc5f7 5289 */
MACRUM 6:40e873bbc5f7 5290
MACRUM 6:40e873bbc5f7 5291 /**
MACRUM 6:40e873bbc5f7 5292 *
MACRUM 6:40e873bbc5f7 5293 * @brief Floating-point Clarke transform
MACRUM 6:40e873bbc5f7 5294 * @param[in] Ia input three-phase coordinate <code>a</code>
MACRUM 6:40e873bbc5f7 5295 * @param[in] Ib input three-phase coordinate <code>b</code>
MACRUM 6:40e873bbc5f7 5296 * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha
MACRUM 6:40e873bbc5f7 5297 * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta
MACRUM 6:40e873bbc5f7 5298 * @return none.
MACRUM 6:40e873bbc5f7 5299 */
MACRUM 6:40e873bbc5f7 5300
MACRUM 6:40e873bbc5f7 5301 static __INLINE void arm_clarke_f32(
MACRUM 6:40e873bbc5f7 5302 float32_t Ia,
MACRUM 6:40e873bbc5f7 5303 float32_t Ib,
MACRUM 6:40e873bbc5f7 5304 float32_t * pIalpha,
MACRUM 6:40e873bbc5f7 5305 float32_t * pIbeta)
MACRUM 6:40e873bbc5f7 5306 {
MACRUM 6:40e873bbc5f7 5307 /* Calculate pIalpha using the equation, pIalpha = Ia */
MACRUM 6:40e873bbc5f7 5308 *pIalpha = Ia;
MACRUM 6:40e873bbc5f7 5309
MACRUM 6:40e873bbc5f7 5310 /* Calculate pIbeta using the equation, pIbeta = (1/sqrt(3)) * Ia + (2/sqrt(3)) * Ib */
MACRUM 6:40e873bbc5f7 5311 *pIbeta =
MACRUM 6:40e873bbc5f7 5312 ((float32_t) 0.57735026919 * Ia + (float32_t) 1.15470053838 * Ib);
MACRUM 6:40e873bbc5f7 5313
MACRUM 6:40e873bbc5f7 5314 }
MACRUM 6:40e873bbc5f7 5315
MACRUM 6:40e873bbc5f7 5316 /**
MACRUM 6:40e873bbc5f7 5317 * @brief Clarke transform for Q31 version
MACRUM 6:40e873bbc5f7 5318 * @param[in] Ia input three-phase coordinate <code>a</code>
MACRUM 6:40e873bbc5f7 5319 * @param[in] Ib input three-phase coordinate <code>b</code>
MACRUM 6:40e873bbc5f7 5320 * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha
MACRUM 6:40e873bbc5f7 5321 * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta
MACRUM 6:40e873bbc5f7 5322 * @return none.
MACRUM 6:40e873bbc5f7 5323 *
MACRUM 6:40e873bbc5f7 5324 * <b>Scaling and Overflow Behavior:</b>
MACRUM 6:40e873bbc5f7 5325 * \par
MACRUM 6:40e873bbc5f7 5326 * The function is implemented using an internal 32-bit accumulator.
MACRUM 6:40e873bbc5f7 5327 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
MACRUM 6:40e873bbc5f7 5328 * There is saturation on the addition, hence there is no risk of overflow.
MACRUM 6:40e873bbc5f7 5329 */
MACRUM 6:40e873bbc5f7 5330
MACRUM 6:40e873bbc5f7 5331 static __INLINE void arm_clarke_q31(
MACRUM 6:40e873bbc5f7 5332 q31_t Ia,
MACRUM 6:40e873bbc5f7 5333 q31_t Ib,
MACRUM 6:40e873bbc5f7 5334 q31_t * pIalpha,
MACRUM 6:40e873bbc5f7 5335 q31_t * pIbeta)
MACRUM 6:40e873bbc5f7 5336 {
MACRUM 6:40e873bbc5f7 5337 q31_t product1, product2; /* Temporary variables used to store intermediate results */
MACRUM 6:40e873bbc5f7 5338
MACRUM 6:40e873bbc5f7 5339 /* Calculating pIalpha from Ia by equation pIalpha = Ia */
MACRUM 6:40e873bbc5f7 5340 *pIalpha = Ia;
MACRUM 6:40e873bbc5f7 5341
MACRUM 6:40e873bbc5f7 5342 /* Intermediate product is calculated by (1/(sqrt(3)) * Ia) */
MACRUM 6:40e873bbc5f7 5343 product1 = (q31_t) (((q63_t) Ia * 0x24F34E8B) >> 30);
MACRUM 6:40e873bbc5f7 5344
MACRUM 6:40e873bbc5f7 5345 /* Intermediate product is calculated by (2/sqrt(3) * Ib) */
MACRUM 6:40e873bbc5f7 5346 product2 = (q31_t) (((q63_t) Ib * 0x49E69D16) >> 30);
MACRUM 6:40e873bbc5f7 5347
MACRUM 6:40e873bbc5f7 5348 /* pIbeta is calculated by adding the intermediate products */
MACRUM 6:40e873bbc5f7 5349 *pIbeta = __QADD(product1, product2);
MACRUM 6:40e873bbc5f7 5350 }
MACRUM 6:40e873bbc5f7 5351
MACRUM 6:40e873bbc5f7 5352 /**
MACRUM 6:40e873bbc5f7 5353 * @} end of clarke group
MACRUM 6:40e873bbc5f7 5354 */
MACRUM 6:40e873bbc5f7 5355
MACRUM 6:40e873bbc5f7 5356 /**
MACRUM 6:40e873bbc5f7 5357 * @brief Converts the elements of the Q7 vector to Q31 vector.
MACRUM 6:40e873bbc5f7 5358 * @param[in] *pSrc input pointer
MACRUM 6:40e873bbc5f7 5359 * @param[out] *pDst output pointer
MACRUM 6:40e873bbc5f7 5360 * @param[in] blockSize number of samples to process
MACRUM 6:40e873bbc5f7 5361 * @return none.
MACRUM 6:40e873bbc5f7 5362 */
MACRUM 6:40e873bbc5f7 5363 void arm_q7_to_q31(
MACRUM 6:40e873bbc5f7 5364 q7_t * pSrc,
MACRUM 6:40e873bbc5f7 5365 q31_t * pDst,
MACRUM 6:40e873bbc5f7 5366 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 5367
MACRUM 6:40e873bbc5f7 5368
MACRUM 6:40e873bbc5f7 5369
MACRUM 6:40e873bbc5f7 5370
MACRUM 6:40e873bbc5f7 5371 /**
MACRUM 6:40e873bbc5f7 5372 * @ingroup groupController
MACRUM 6:40e873bbc5f7 5373 */
MACRUM 6:40e873bbc5f7 5374
MACRUM 6:40e873bbc5f7 5375 /**
MACRUM 6:40e873bbc5f7 5376 * @defgroup inv_clarke Vector Inverse Clarke Transform
MACRUM 6:40e873bbc5f7 5377 * Inverse Clarke transform converts the two-coordinate time invariant vector into instantaneous stator phases.
MACRUM 6:40e873bbc5f7 5378 *
MACRUM 6:40e873bbc5f7 5379 * The function operates on a single sample of data and each call to the function returns the processed output.
MACRUM 6:40e873bbc5f7 5380 * The library provides separate functions for Q31 and floating-point data types.
MACRUM 6:40e873bbc5f7 5381 * \par Algorithm
MACRUM 6:40e873bbc5f7 5382 * \image html clarkeInvFormula.gif
MACRUM 6:40e873bbc5f7 5383 * where <code>pIa</code> and <code>pIb</code> are the instantaneous stator phases and
MACRUM 6:40e873bbc5f7 5384 * <code>Ialpha</code> and <code>Ibeta</code> are the two coordinates of time invariant vector.
MACRUM 6:40e873bbc5f7 5385 * \par Fixed-Point Behavior
MACRUM 6:40e873bbc5f7 5386 * Care must be taken when using the Q31 version of the Clarke transform.
MACRUM 6:40e873bbc5f7 5387 * In particular, the overflow and saturation behavior of the accumulator used must be considered.
MACRUM 6:40e873bbc5f7 5388 * Refer to the function specific documentation below for usage guidelines.
MACRUM 6:40e873bbc5f7 5389 */
MACRUM 6:40e873bbc5f7 5390
MACRUM 6:40e873bbc5f7 5391 /**
MACRUM 6:40e873bbc5f7 5392 * @addtogroup inv_clarke
MACRUM 6:40e873bbc5f7 5393 * @{
MACRUM 6:40e873bbc5f7 5394 */
MACRUM 6:40e873bbc5f7 5395
MACRUM 6:40e873bbc5f7 5396 /**
MACRUM 6:40e873bbc5f7 5397 * @brief Floating-point Inverse Clarke transform
MACRUM 6:40e873bbc5f7 5398 * @param[in] Ialpha input two-phase orthogonal vector axis alpha
MACRUM 6:40e873bbc5f7 5399 * @param[in] Ibeta input two-phase orthogonal vector axis beta
MACRUM 6:40e873bbc5f7 5400 * @param[out] *pIa points to output three-phase coordinate <code>a</code>
MACRUM 6:40e873bbc5f7 5401 * @param[out] *pIb points to output three-phase coordinate <code>b</code>
MACRUM 6:40e873bbc5f7 5402 * @return none.
MACRUM 6:40e873bbc5f7 5403 */
MACRUM 6:40e873bbc5f7 5404
MACRUM 6:40e873bbc5f7 5405
MACRUM 6:40e873bbc5f7 5406 static __INLINE void arm_inv_clarke_f32(
MACRUM 6:40e873bbc5f7 5407 float32_t Ialpha,
MACRUM 6:40e873bbc5f7 5408 float32_t Ibeta,
MACRUM 6:40e873bbc5f7 5409 float32_t * pIa,
MACRUM 6:40e873bbc5f7 5410 float32_t * pIb)
MACRUM 6:40e873bbc5f7 5411 {
MACRUM 6:40e873bbc5f7 5412 /* Calculating pIa from Ialpha by equation pIa = Ialpha */
MACRUM 6:40e873bbc5f7 5413 *pIa = Ialpha;
MACRUM 6:40e873bbc5f7 5414
MACRUM 6:40e873bbc5f7 5415 /* Calculating pIb from Ialpha and Ibeta by equation pIb = -(1/2) * Ialpha + (sqrt(3)/2) * Ibeta */
MACRUM 6:40e873bbc5f7 5416 *pIb = -0.5 * Ialpha + (float32_t) 0.8660254039 *Ibeta;
MACRUM 6:40e873bbc5f7 5417
MACRUM 6:40e873bbc5f7 5418 }
MACRUM 6:40e873bbc5f7 5419
MACRUM 6:40e873bbc5f7 5420 /**
MACRUM 6:40e873bbc5f7 5421 * @brief Inverse Clarke transform for Q31 version
MACRUM 6:40e873bbc5f7 5422 * @param[in] Ialpha input two-phase orthogonal vector axis alpha
MACRUM 6:40e873bbc5f7 5423 * @param[in] Ibeta input two-phase orthogonal vector axis beta
MACRUM 6:40e873bbc5f7 5424 * @param[out] *pIa points to output three-phase coordinate <code>a</code>
MACRUM 6:40e873bbc5f7 5425 * @param[out] *pIb points to output three-phase coordinate <code>b</code>
MACRUM 6:40e873bbc5f7 5426 * @return none.
MACRUM 6:40e873bbc5f7 5427 *
MACRUM 6:40e873bbc5f7 5428 * <b>Scaling and Overflow Behavior:</b>
MACRUM 6:40e873bbc5f7 5429 * \par
MACRUM 6:40e873bbc5f7 5430 * The function is implemented using an internal 32-bit accumulator.
MACRUM 6:40e873bbc5f7 5431 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
MACRUM 6:40e873bbc5f7 5432 * There is saturation on the subtraction, hence there is no risk of overflow.
MACRUM 6:40e873bbc5f7 5433 */
MACRUM 6:40e873bbc5f7 5434
MACRUM 6:40e873bbc5f7 5435 static __INLINE void arm_inv_clarke_q31(
MACRUM 6:40e873bbc5f7 5436 q31_t Ialpha,
MACRUM 6:40e873bbc5f7 5437 q31_t Ibeta,
MACRUM 6:40e873bbc5f7 5438 q31_t * pIa,
MACRUM 6:40e873bbc5f7 5439 q31_t * pIb)
MACRUM 6:40e873bbc5f7 5440 {
MACRUM 6:40e873bbc5f7 5441 q31_t product1, product2; /* Temporary variables used to store intermediate results */
MACRUM 6:40e873bbc5f7 5442
MACRUM 6:40e873bbc5f7 5443 /* Calculating pIa from Ialpha by equation pIa = Ialpha */
MACRUM 6:40e873bbc5f7 5444 *pIa = Ialpha;
MACRUM 6:40e873bbc5f7 5445
MACRUM 6:40e873bbc5f7 5446 /* Intermediate product is calculated by (1/(2*sqrt(3)) * Ia) */
MACRUM 6:40e873bbc5f7 5447 product1 = (q31_t) (((q63_t) (Ialpha) * (0x40000000)) >> 31);
MACRUM 6:40e873bbc5f7 5448
MACRUM 6:40e873bbc5f7 5449 /* Intermediate product is calculated by (1/sqrt(3) * pIb) */
MACRUM 6:40e873bbc5f7 5450 product2 = (q31_t) (((q63_t) (Ibeta) * (0x6ED9EBA1)) >> 31);
MACRUM 6:40e873bbc5f7 5451
MACRUM 6:40e873bbc5f7 5452 /* pIb is calculated by subtracting the products */
MACRUM 6:40e873bbc5f7 5453 *pIb = __QSUB(product2, product1);
MACRUM 6:40e873bbc5f7 5454
MACRUM 6:40e873bbc5f7 5455 }
MACRUM 6:40e873bbc5f7 5456
MACRUM 6:40e873bbc5f7 5457 /**
MACRUM 6:40e873bbc5f7 5458 * @} end of inv_clarke group
MACRUM 6:40e873bbc5f7 5459 */
MACRUM 6:40e873bbc5f7 5460
MACRUM 6:40e873bbc5f7 5461 /**
MACRUM 6:40e873bbc5f7 5462 * @brief Converts the elements of the Q7 vector to Q15 vector.
MACRUM 6:40e873bbc5f7 5463 * @param[in] *pSrc input pointer
MACRUM 6:40e873bbc5f7 5464 * @param[out] *pDst output pointer
MACRUM 6:40e873bbc5f7 5465 * @param[in] blockSize number of samples to process
MACRUM 6:40e873bbc5f7 5466 * @return none.
MACRUM 6:40e873bbc5f7 5467 */
MACRUM 6:40e873bbc5f7 5468 void arm_q7_to_q15(
MACRUM 6:40e873bbc5f7 5469 q7_t * pSrc,
MACRUM 6:40e873bbc5f7 5470 q15_t * pDst,
MACRUM 6:40e873bbc5f7 5471 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 5472
MACRUM 6:40e873bbc5f7 5473
MACRUM 6:40e873bbc5f7 5474
MACRUM 6:40e873bbc5f7 5475 /**
MACRUM 6:40e873bbc5f7 5476 * @ingroup groupController
MACRUM 6:40e873bbc5f7 5477 */
MACRUM 6:40e873bbc5f7 5478
MACRUM 6:40e873bbc5f7 5479 /**
MACRUM 6:40e873bbc5f7 5480 * @defgroup park Vector Park Transform
MACRUM 6:40e873bbc5f7 5481 *
MACRUM 6:40e873bbc5f7 5482 * Forward Park transform converts the input two-coordinate vector to flux and torque components.
MACRUM 6:40e873bbc5f7 5483 * The Park transform can be used to realize the transformation of the <code>Ialpha</code> and the <code>Ibeta</code> currents
MACRUM 6:40e873bbc5f7 5484 * from the stationary to the moving reference frame and control the spatial relationship between
MACRUM 6:40e873bbc5f7 5485 * the stator vector current and rotor flux vector.
MACRUM 6:40e873bbc5f7 5486 * If we consider the d axis aligned with the rotor flux, the diagram below shows the
MACRUM 6:40e873bbc5f7 5487 * current vector and the relationship from the two reference frames:
MACRUM 6:40e873bbc5f7 5488 * \image html park.gif "Stator current space vector and its component in (a,b) and in the d,q rotating reference frame"
MACRUM 6:40e873bbc5f7 5489 *
MACRUM 6:40e873bbc5f7 5490 * The function operates on a single sample of data and each call to the function returns the processed output.
MACRUM 6:40e873bbc5f7 5491 * The library provides separate functions for Q31 and floating-point data types.
MACRUM 6:40e873bbc5f7 5492 * \par Algorithm
MACRUM 6:40e873bbc5f7 5493 * \image html parkFormula.gif
MACRUM 6:40e873bbc5f7 5494 * where <code>Ialpha</code> and <code>Ibeta</code> are the stator vector components,
MACRUM 6:40e873bbc5f7 5495 * <code>pId</code> and <code>pIq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the
MACRUM 6:40e873bbc5f7 5496 * cosine and sine values of theta (rotor flux position).
MACRUM 6:40e873bbc5f7 5497 * \par Fixed-Point Behavior
MACRUM 6:40e873bbc5f7 5498 * Care must be taken when using the Q31 version of the Park transform.
MACRUM 6:40e873bbc5f7 5499 * In particular, the overflow and saturation behavior of the accumulator used must be considered.
MACRUM 6:40e873bbc5f7 5500 * Refer to the function specific documentation below for usage guidelines.
MACRUM 6:40e873bbc5f7 5501 */
MACRUM 6:40e873bbc5f7 5502
MACRUM 6:40e873bbc5f7 5503 /**
MACRUM 6:40e873bbc5f7 5504 * @addtogroup park
MACRUM 6:40e873bbc5f7 5505 * @{
MACRUM 6:40e873bbc5f7 5506 */
MACRUM 6:40e873bbc5f7 5507
MACRUM 6:40e873bbc5f7 5508 /**
MACRUM 6:40e873bbc5f7 5509 * @brief Floating-point Park transform
MACRUM 6:40e873bbc5f7 5510 * @param[in] Ialpha input two-phase vector coordinate alpha
MACRUM 6:40e873bbc5f7 5511 * @param[in] Ibeta input two-phase vector coordinate beta
MACRUM 6:40e873bbc5f7 5512 * @param[out] *pId points to output rotor reference frame d
MACRUM 6:40e873bbc5f7 5513 * @param[out] *pIq points to output rotor reference frame q
MACRUM 6:40e873bbc5f7 5514 * @param[in] sinVal sine value of rotation angle theta
MACRUM 6:40e873bbc5f7 5515 * @param[in] cosVal cosine value of rotation angle theta
MACRUM 6:40e873bbc5f7 5516 * @return none.
MACRUM 6:40e873bbc5f7 5517 *
MACRUM 6:40e873bbc5f7 5518 * The function implements the forward Park transform.
MACRUM 6:40e873bbc5f7 5519 *
MACRUM 6:40e873bbc5f7 5520 */
MACRUM 6:40e873bbc5f7 5521
MACRUM 6:40e873bbc5f7 5522 static __INLINE void arm_park_f32(
MACRUM 6:40e873bbc5f7 5523 float32_t Ialpha,
MACRUM 6:40e873bbc5f7 5524 float32_t Ibeta,
MACRUM 6:40e873bbc5f7 5525 float32_t * pId,
MACRUM 6:40e873bbc5f7 5526 float32_t * pIq,
MACRUM 6:40e873bbc5f7 5527 float32_t sinVal,
MACRUM 6:40e873bbc5f7 5528 float32_t cosVal)
MACRUM 6:40e873bbc5f7 5529 {
MACRUM 6:40e873bbc5f7 5530 /* Calculate pId using the equation, pId = Ialpha * cosVal + Ibeta * sinVal */
MACRUM 6:40e873bbc5f7 5531 *pId = Ialpha * cosVal + Ibeta * sinVal;
MACRUM 6:40e873bbc5f7 5532
MACRUM 6:40e873bbc5f7 5533 /* Calculate pIq using the equation, pIq = - Ialpha * sinVal + Ibeta * cosVal */
MACRUM 6:40e873bbc5f7 5534 *pIq = -Ialpha * sinVal + Ibeta * cosVal;
MACRUM 6:40e873bbc5f7 5535
MACRUM 6:40e873bbc5f7 5536 }
MACRUM 6:40e873bbc5f7 5537
MACRUM 6:40e873bbc5f7 5538 /**
MACRUM 6:40e873bbc5f7 5539 * @brief Park transform for Q31 version
MACRUM 6:40e873bbc5f7 5540 * @param[in] Ialpha input two-phase vector coordinate alpha
MACRUM 6:40e873bbc5f7 5541 * @param[in] Ibeta input two-phase vector coordinate beta
MACRUM 6:40e873bbc5f7 5542 * @param[out] *pId points to output rotor reference frame d
MACRUM 6:40e873bbc5f7 5543 * @param[out] *pIq points to output rotor reference frame q
MACRUM 6:40e873bbc5f7 5544 * @param[in] sinVal sine value of rotation angle theta
MACRUM 6:40e873bbc5f7 5545 * @param[in] cosVal cosine value of rotation angle theta
MACRUM 6:40e873bbc5f7 5546 * @return none.
MACRUM 6:40e873bbc5f7 5547 *
MACRUM 6:40e873bbc5f7 5548 * <b>Scaling and Overflow Behavior:</b>
MACRUM 6:40e873bbc5f7 5549 * \par
MACRUM 6:40e873bbc5f7 5550 * The function is implemented using an internal 32-bit accumulator.
MACRUM 6:40e873bbc5f7 5551 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
MACRUM 6:40e873bbc5f7 5552 * There is saturation on the addition and subtraction, hence there is no risk of overflow.
MACRUM 6:40e873bbc5f7 5553 */
MACRUM 6:40e873bbc5f7 5554
MACRUM 6:40e873bbc5f7 5555
MACRUM 6:40e873bbc5f7 5556 static __INLINE void arm_park_q31(
MACRUM 6:40e873bbc5f7 5557 q31_t Ialpha,
MACRUM 6:40e873bbc5f7 5558 q31_t Ibeta,
MACRUM 6:40e873bbc5f7 5559 q31_t * pId,
MACRUM 6:40e873bbc5f7 5560 q31_t * pIq,
MACRUM 6:40e873bbc5f7 5561 q31_t sinVal,
MACRUM 6:40e873bbc5f7 5562 q31_t cosVal)
MACRUM 6:40e873bbc5f7 5563 {
MACRUM 6:40e873bbc5f7 5564 q31_t product1, product2; /* Temporary variables used to store intermediate results */
MACRUM 6:40e873bbc5f7 5565 q31_t product3, product4; /* Temporary variables used to store intermediate results */
MACRUM 6:40e873bbc5f7 5566
MACRUM 6:40e873bbc5f7 5567 /* Intermediate product is calculated by (Ialpha * cosVal) */
MACRUM 6:40e873bbc5f7 5568 product1 = (q31_t) (((q63_t) (Ialpha) * (cosVal)) >> 31);
MACRUM 6:40e873bbc5f7 5569
MACRUM 6:40e873bbc5f7 5570 /* Intermediate product is calculated by (Ibeta * sinVal) */
MACRUM 6:40e873bbc5f7 5571 product2 = (q31_t) (((q63_t) (Ibeta) * (sinVal)) >> 31);
MACRUM 6:40e873bbc5f7 5572
MACRUM 6:40e873bbc5f7 5573
MACRUM 6:40e873bbc5f7 5574 /* Intermediate product is calculated by (Ialpha * sinVal) */
MACRUM 6:40e873bbc5f7 5575 product3 = (q31_t) (((q63_t) (Ialpha) * (sinVal)) >> 31);
MACRUM 6:40e873bbc5f7 5576
MACRUM 6:40e873bbc5f7 5577 /* Intermediate product is calculated by (Ibeta * cosVal) */
MACRUM 6:40e873bbc5f7 5578 product4 = (q31_t) (((q63_t) (Ibeta) * (cosVal)) >> 31);
MACRUM 6:40e873bbc5f7 5579
MACRUM 6:40e873bbc5f7 5580 /* Calculate pId by adding the two intermediate products 1 and 2 */
MACRUM 6:40e873bbc5f7 5581 *pId = __QADD(product1, product2);
MACRUM 6:40e873bbc5f7 5582
MACRUM 6:40e873bbc5f7 5583 /* Calculate pIq by subtracting the two intermediate products 3 from 4 */
MACRUM 6:40e873bbc5f7 5584 *pIq = __QSUB(product4, product3);
MACRUM 6:40e873bbc5f7 5585 }
MACRUM 6:40e873bbc5f7 5586
MACRUM 6:40e873bbc5f7 5587 /**
MACRUM 6:40e873bbc5f7 5588 * @} end of park group
MACRUM 6:40e873bbc5f7 5589 */
MACRUM 6:40e873bbc5f7 5590
MACRUM 6:40e873bbc5f7 5591 /**
MACRUM 6:40e873bbc5f7 5592 * @brief Converts the elements of the Q7 vector to floating-point vector.
MACRUM 6:40e873bbc5f7 5593 * @param[in] *pSrc is input pointer
MACRUM 6:40e873bbc5f7 5594 * @param[out] *pDst is output pointer
MACRUM 6:40e873bbc5f7 5595 * @param[in] blockSize is the number of samples to process
MACRUM 6:40e873bbc5f7 5596 * @return none.
MACRUM 6:40e873bbc5f7 5597 */
MACRUM 6:40e873bbc5f7 5598 void arm_q7_to_float(
MACRUM 6:40e873bbc5f7 5599 q7_t * pSrc,
MACRUM 6:40e873bbc5f7 5600 float32_t * pDst,
MACRUM 6:40e873bbc5f7 5601 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 5602
MACRUM 6:40e873bbc5f7 5603
MACRUM 6:40e873bbc5f7 5604 /**
MACRUM 6:40e873bbc5f7 5605 * @ingroup groupController
MACRUM 6:40e873bbc5f7 5606 */
MACRUM 6:40e873bbc5f7 5607
MACRUM 6:40e873bbc5f7 5608 /**
MACRUM 6:40e873bbc5f7 5609 * @defgroup inv_park Vector Inverse Park transform
MACRUM 6:40e873bbc5f7 5610 * Inverse Park transform converts the input flux and torque components to two-coordinate vector.
MACRUM 6:40e873bbc5f7 5611 *
MACRUM 6:40e873bbc5f7 5612 * The function operates on a single sample of data and each call to the function returns the processed output.
MACRUM 6:40e873bbc5f7 5613 * The library provides separate functions for Q31 and floating-point data types.
MACRUM 6:40e873bbc5f7 5614 * \par Algorithm
MACRUM 6:40e873bbc5f7 5615 * \image html parkInvFormula.gif
MACRUM 6:40e873bbc5f7 5616 * where <code>pIalpha</code> and <code>pIbeta</code> are the stator vector components,
MACRUM 6:40e873bbc5f7 5617 * <code>Id</code> and <code>Iq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the
MACRUM 6:40e873bbc5f7 5618 * cosine and sine values of theta (rotor flux position).
MACRUM 6:40e873bbc5f7 5619 * \par Fixed-Point Behavior
MACRUM 6:40e873bbc5f7 5620 * Care must be taken when using the Q31 version of the Park transform.
MACRUM 6:40e873bbc5f7 5621 * In particular, the overflow and saturation behavior of the accumulator used must be considered.
MACRUM 6:40e873bbc5f7 5622 * Refer to the function specific documentation below for usage guidelines.
MACRUM 6:40e873bbc5f7 5623 */
MACRUM 6:40e873bbc5f7 5624
MACRUM 6:40e873bbc5f7 5625 /**
MACRUM 6:40e873bbc5f7 5626 * @addtogroup inv_park
MACRUM 6:40e873bbc5f7 5627 * @{
MACRUM 6:40e873bbc5f7 5628 */
MACRUM 6:40e873bbc5f7 5629
MACRUM 6:40e873bbc5f7 5630 /**
MACRUM 6:40e873bbc5f7 5631 * @brief Floating-point Inverse Park transform
MACRUM 6:40e873bbc5f7 5632 * @param[in] Id input coordinate of rotor reference frame d
MACRUM 6:40e873bbc5f7 5633 * @param[in] Iq input coordinate of rotor reference frame q
MACRUM 6:40e873bbc5f7 5634 * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha
MACRUM 6:40e873bbc5f7 5635 * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta
MACRUM 6:40e873bbc5f7 5636 * @param[in] sinVal sine value of rotation angle theta
MACRUM 6:40e873bbc5f7 5637 * @param[in] cosVal cosine value of rotation angle theta
MACRUM 6:40e873bbc5f7 5638 * @return none.
MACRUM 6:40e873bbc5f7 5639 */
MACRUM 6:40e873bbc5f7 5640
MACRUM 6:40e873bbc5f7 5641 static __INLINE void arm_inv_park_f32(
MACRUM 6:40e873bbc5f7 5642 float32_t Id,
MACRUM 6:40e873bbc5f7 5643 float32_t Iq,
MACRUM 6:40e873bbc5f7 5644 float32_t * pIalpha,
MACRUM 6:40e873bbc5f7 5645 float32_t * pIbeta,
MACRUM 6:40e873bbc5f7 5646 float32_t sinVal,
MACRUM 6:40e873bbc5f7 5647 float32_t cosVal)
MACRUM 6:40e873bbc5f7 5648 {
MACRUM 6:40e873bbc5f7 5649 /* Calculate pIalpha using the equation, pIalpha = Id * cosVal - Iq * sinVal */
MACRUM 6:40e873bbc5f7 5650 *pIalpha = Id * cosVal - Iq * sinVal;
MACRUM 6:40e873bbc5f7 5651
MACRUM 6:40e873bbc5f7 5652 /* Calculate pIbeta using the equation, pIbeta = Id * sinVal + Iq * cosVal */
MACRUM 6:40e873bbc5f7 5653 *pIbeta = Id * sinVal + Iq * cosVal;
MACRUM 6:40e873bbc5f7 5654
MACRUM 6:40e873bbc5f7 5655 }
MACRUM 6:40e873bbc5f7 5656
MACRUM 6:40e873bbc5f7 5657
MACRUM 6:40e873bbc5f7 5658 /**
MACRUM 6:40e873bbc5f7 5659 * @brief Inverse Park transform for Q31 version
MACRUM 6:40e873bbc5f7 5660 * @param[in] Id input coordinate of rotor reference frame d
MACRUM 6:40e873bbc5f7 5661 * @param[in] Iq input coordinate of rotor reference frame q
MACRUM 6:40e873bbc5f7 5662 * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha
MACRUM 6:40e873bbc5f7 5663 * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta
MACRUM 6:40e873bbc5f7 5664 * @param[in] sinVal sine value of rotation angle theta
MACRUM 6:40e873bbc5f7 5665 * @param[in] cosVal cosine value of rotation angle theta
MACRUM 6:40e873bbc5f7 5666 * @return none.
MACRUM 6:40e873bbc5f7 5667 *
MACRUM 6:40e873bbc5f7 5668 * <b>Scaling and Overflow Behavior:</b>
MACRUM 6:40e873bbc5f7 5669 * \par
MACRUM 6:40e873bbc5f7 5670 * The function is implemented using an internal 32-bit accumulator.
MACRUM 6:40e873bbc5f7 5671 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
MACRUM 6:40e873bbc5f7 5672 * There is saturation on the addition, hence there is no risk of overflow.
MACRUM 6:40e873bbc5f7 5673 */
MACRUM 6:40e873bbc5f7 5674
MACRUM 6:40e873bbc5f7 5675
MACRUM 6:40e873bbc5f7 5676 static __INLINE void arm_inv_park_q31(
MACRUM 6:40e873bbc5f7 5677 q31_t Id,
MACRUM 6:40e873bbc5f7 5678 q31_t Iq,
MACRUM 6:40e873bbc5f7 5679 q31_t * pIalpha,
MACRUM 6:40e873bbc5f7 5680 q31_t * pIbeta,
MACRUM 6:40e873bbc5f7 5681 q31_t sinVal,
MACRUM 6:40e873bbc5f7 5682 q31_t cosVal)
MACRUM 6:40e873bbc5f7 5683 {
MACRUM 6:40e873bbc5f7 5684 q31_t product1, product2; /* Temporary variables used to store intermediate results */
MACRUM 6:40e873bbc5f7 5685 q31_t product3, product4; /* Temporary variables used to store intermediate results */
MACRUM 6:40e873bbc5f7 5686
MACRUM 6:40e873bbc5f7 5687 /* Intermediate product is calculated by (Id * cosVal) */
MACRUM 6:40e873bbc5f7 5688 product1 = (q31_t) (((q63_t) (Id) * (cosVal)) >> 31);
MACRUM 6:40e873bbc5f7 5689
MACRUM 6:40e873bbc5f7 5690 /* Intermediate product is calculated by (Iq * sinVal) */
MACRUM 6:40e873bbc5f7 5691 product2 = (q31_t) (((q63_t) (Iq) * (sinVal)) >> 31);
MACRUM 6:40e873bbc5f7 5692
MACRUM 6:40e873bbc5f7 5693
MACRUM 6:40e873bbc5f7 5694 /* Intermediate product is calculated by (Id * sinVal) */
MACRUM 6:40e873bbc5f7 5695 product3 = (q31_t) (((q63_t) (Id) * (sinVal)) >> 31);
MACRUM 6:40e873bbc5f7 5696
MACRUM 6:40e873bbc5f7 5697 /* Intermediate product is calculated by (Iq * cosVal) */
MACRUM 6:40e873bbc5f7 5698 product4 = (q31_t) (((q63_t) (Iq) * (cosVal)) >> 31);
MACRUM 6:40e873bbc5f7 5699
MACRUM 6:40e873bbc5f7 5700 /* Calculate pIalpha by using the two intermediate products 1 and 2 */
MACRUM 6:40e873bbc5f7 5701 *pIalpha = __QSUB(product1, product2);
MACRUM 6:40e873bbc5f7 5702
MACRUM 6:40e873bbc5f7 5703 /* Calculate pIbeta by using the two intermediate products 3 and 4 */
MACRUM 6:40e873bbc5f7 5704 *pIbeta = __QADD(product4, product3);
MACRUM 6:40e873bbc5f7 5705
MACRUM 6:40e873bbc5f7 5706 }
MACRUM 6:40e873bbc5f7 5707
MACRUM 6:40e873bbc5f7 5708 /**
MACRUM 6:40e873bbc5f7 5709 * @} end of Inverse park group
MACRUM 6:40e873bbc5f7 5710 */
MACRUM 6:40e873bbc5f7 5711
MACRUM 6:40e873bbc5f7 5712
MACRUM 6:40e873bbc5f7 5713 /**
MACRUM 6:40e873bbc5f7 5714 * @brief Converts the elements of the Q31 vector to floating-point vector.
MACRUM 6:40e873bbc5f7 5715 * @param[in] *pSrc is input pointer
MACRUM 6:40e873bbc5f7 5716 * @param[out] *pDst is output pointer
MACRUM 6:40e873bbc5f7 5717 * @param[in] blockSize is the number of samples to process
MACRUM 6:40e873bbc5f7 5718 * @return none.
MACRUM 6:40e873bbc5f7 5719 */
MACRUM 6:40e873bbc5f7 5720 void arm_q31_to_float(
MACRUM 6:40e873bbc5f7 5721 q31_t * pSrc,
MACRUM 6:40e873bbc5f7 5722 float32_t * pDst,
MACRUM 6:40e873bbc5f7 5723 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 5724
MACRUM 6:40e873bbc5f7 5725 /**
MACRUM 6:40e873bbc5f7 5726 * @ingroup groupInterpolation
MACRUM 6:40e873bbc5f7 5727 */
MACRUM 6:40e873bbc5f7 5728
MACRUM 6:40e873bbc5f7 5729 /**
MACRUM 6:40e873bbc5f7 5730 * @defgroup LinearInterpolate Linear Interpolation
MACRUM 6:40e873bbc5f7 5731 *
MACRUM 6:40e873bbc5f7 5732 * Linear interpolation is a method of curve fitting using linear polynomials.
MACRUM 6:40e873bbc5f7 5733 * Linear interpolation works by effectively drawing a straight line between two neighboring samples and returning the appropriate point along that line
MACRUM 6:40e873bbc5f7 5734 *
MACRUM 6:40e873bbc5f7 5735 * \par
MACRUM 6:40e873bbc5f7 5736 * \image html LinearInterp.gif "Linear interpolation"
MACRUM 6:40e873bbc5f7 5737 *
MACRUM 6:40e873bbc5f7 5738 * \par
MACRUM 6:40e873bbc5f7 5739 * A Linear Interpolate function calculates an output value(y), for the input(x)
MACRUM 6:40e873bbc5f7 5740 * using linear interpolation of the input values x0, x1( nearest input values) and the output values y0 and y1(nearest output values)
MACRUM 6:40e873bbc5f7 5741 *
MACRUM 6:40e873bbc5f7 5742 * \par Algorithm:
MACRUM 6:40e873bbc5f7 5743 * <pre>
MACRUM 6:40e873bbc5f7 5744 * y = y0 + (x - x0) * ((y1 - y0)/(x1-x0))
MACRUM 6:40e873bbc5f7 5745 * where x0, x1 are nearest values of input x
MACRUM 6:40e873bbc5f7 5746 * y0, y1 are nearest values to output y
MACRUM 6:40e873bbc5f7 5747 * </pre>
MACRUM 6:40e873bbc5f7 5748 *
MACRUM 6:40e873bbc5f7 5749 * \par
MACRUM 6:40e873bbc5f7 5750 * This set of functions implements Linear interpolation process
MACRUM 6:40e873bbc5f7 5751 * for Q7, Q15, Q31, and floating-point data types. The functions operate on a single
MACRUM 6:40e873bbc5f7 5752 * sample of data and each call to the function returns a single processed value.
MACRUM 6:40e873bbc5f7 5753 * <code>S</code> points to an instance of the Linear Interpolate function data structure.
MACRUM 6:40e873bbc5f7 5754 * <code>x</code> is the input sample value. The functions returns the output value.
MACRUM 6:40e873bbc5f7 5755 *
MACRUM 6:40e873bbc5f7 5756 * \par
MACRUM 6:40e873bbc5f7 5757 * if x is outside of the table boundary, Linear interpolation returns first value of the table
MACRUM 6:40e873bbc5f7 5758 * if x is below input range and returns last value of table if x is above range.
MACRUM 6:40e873bbc5f7 5759 */
MACRUM 6:40e873bbc5f7 5760
MACRUM 6:40e873bbc5f7 5761 /**
MACRUM 6:40e873bbc5f7 5762 * @addtogroup LinearInterpolate
MACRUM 6:40e873bbc5f7 5763 * @{
MACRUM 6:40e873bbc5f7 5764 */
MACRUM 6:40e873bbc5f7 5765
MACRUM 6:40e873bbc5f7 5766 /**
MACRUM 6:40e873bbc5f7 5767 * @brief Process function for the floating-point Linear Interpolation Function.
MACRUM 6:40e873bbc5f7 5768 * @param[in,out] *S is an instance of the floating-point Linear Interpolation structure
MACRUM 6:40e873bbc5f7 5769 * @param[in] x input sample to process
MACRUM 6:40e873bbc5f7 5770 * @return y processed output sample.
MACRUM 6:40e873bbc5f7 5771 *
MACRUM 6:40e873bbc5f7 5772 */
MACRUM 6:40e873bbc5f7 5773
MACRUM 6:40e873bbc5f7 5774 static __INLINE float32_t arm_linear_interp_f32(
MACRUM 6:40e873bbc5f7 5775 arm_linear_interp_instance_f32 * S,
MACRUM 6:40e873bbc5f7 5776 float32_t x)
MACRUM 6:40e873bbc5f7 5777 {
MACRUM 6:40e873bbc5f7 5778
MACRUM 6:40e873bbc5f7 5779 float32_t y;
MACRUM 6:40e873bbc5f7 5780 float32_t x0, x1; /* Nearest input values */
MACRUM 6:40e873bbc5f7 5781 float32_t y0, y1; /* Nearest output values */
MACRUM 6:40e873bbc5f7 5782 float32_t xSpacing = S->xSpacing; /* spacing between input values */
MACRUM 6:40e873bbc5f7 5783 int32_t i; /* Index variable */
MACRUM 6:40e873bbc5f7 5784 float32_t *pYData = S->pYData; /* pointer to output table */
MACRUM 6:40e873bbc5f7 5785
MACRUM 6:40e873bbc5f7 5786 /* Calculation of index */
MACRUM 6:40e873bbc5f7 5787 i = (int32_t) ((x - S->x1) / xSpacing);
MACRUM 6:40e873bbc5f7 5788
MACRUM 6:40e873bbc5f7 5789 if(i < 0)
MACRUM 6:40e873bbc5f7 5790 {
MACRUM 6:40e873bbc5f7 5791 /* Iniatilize output for below specified range as least output value of table */
MACRUM 6:40e873bbc5f7 5792 y = pYData[0];
MACRUM 6:40e873bbc5f7 5793 }
MACRUM 6:40e873bbc5f7 5794 else if((uint32_t)i >= S->nValues)
MACRUM 6:40e873bbc5f7 5795 {
MACRUM 6:40e873bbc5f7 5796 /* Iniatilize output for above specified range as last output value of table */
MACRUM 6:40e873bbc5f7 5797 y = pYData[S->nValues - 1];
MACRUM 6:40e873bbc5f7 5798 }
MACRUM 6:40e873bbc5f7 5799 else
MACRUM 6:40e873bbc5f7 5800 {
MACRUM 6:40e873bbc5f7 5801 /* Calculation of nearest input values */
MACRUM 6:40e873bbc5f7 5802 x0 = S->x1 + i * xSpacing;
MACRUM 6:40e873bbc5f7 5803 x1 = S->x1 + (i + 1) * xSpacing;
MACRUM 6:40e873bbc5f7 5804
MACRUM 6:40e873bbc5f7 5805 /* Read of nearest output values */
MACRUM 6:40e873bbc5f7 5806 y0 = pYData[i];
MACRUM 6:40e873bbc5f7 5807 y1 = pYData[i + 1];
MACRUM 6:40e873bbc5f7 5808
MACRUM 6:40e873bbc5f7 5809 /* Calculation of output */
MACRUM 6:40e873bbc5f7 5810 y = y0 + (x - x0) * ((y1 - y0) / (x1 - x0));
MACRUM 6:40e873bbc5f7 5811
MACRUM 6:40e873bbc5f7 5812 }
MACRUM 6:40e873bbc5f7 5813
MACRUM 6:40e873bbc5f7 5814 /* returns output value */
MACRUM 6:40e873bbc5f7 5815 return (y);
MACRUM 6:40e873bbc5f7 5816 }
MACRUM 6:40e873bbc5f7 5817
MACRUM 6:40e873bbc5f7 5818 /**
MACRUM 6:40e873bbc5f7 5819 *
MACRUM 6:40e873bbc5f7 5820 * @brief Process function for the Q31 Linear Interpolation Function.
MACRUM 6:40e873bbc5f7 5821 * @param[in] *pYData pointer to Q31 Linear Interpolation table
MACRUM 6:40e873bbc5f7 5822 * @param[in] x input sample to process
MACRUM 6:40e873bbc5f7 5823 * @param[in] nValues number of table values
MACRUM 6:40e873bbc5f7 5824 * @return y processed output sample.
MACRUM 6:40e873bbc5f7 5825 *
MACRUM 6:40e873bbc5f7 5826 * \par
MACRUM 6:40e873bbc5f7 5827 * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
MACRUM 6:40e873bbc5f7 5828 * This function can support maximum of table size 2^12.
MACRUM 6:40e873bbc5f7 5829 *
MACRUM 6:40e873bbc5f7 5830 */
MACRUM 6:40e873bbc5f7 5831
MACRUM 6:40e873bbc5f7 5832
MACRUM 6:40e873bbc5f7 5833 static __INLINE q31_t arm_linear_interp_q31(
MACRUM 6:40e873bbc5f7 5834 q31_t * pYData,
MACRUM 6:40e873bbc5f7 5835 q31_t x,
MACRUM 6:40e873bbc5f7 5836 uint32_t nValues)
MACRUM 6:40e873bbc5f7 5837 {
MACRUM 6:40e873bbc5f7 5838 q31_t y; /* output */
MACRUM 6:40e873bbc5f7 5839 q31_t y0, y1; /* Nearest output values */
MACRUM 6:40e873bbc5f7 5840 q31_t fract; /* fractional part */
MACRUM 6:40e873bbc5f7 5841 int32_t index; /* Index to read nearest output values */
MACRUM 6:40e873bbc5f7 5842
MACRUM 6:40e873bbc5f7 5843 /* Input is in 12.20 format */
MACRUM 6:40e873bbc5f7 5844 /* 12 bits for the table index */
MACRUM 6:40e873bbc5f7 5845 /* Index value calculation */
MACRUM 6:40e873bbc5f7 5846 index = ((x & 0xFFF00000) >> 20);
MACRUM 6:40e873bbc5f7 5847
MACRUM 6:40e873bbc5f7 5848 if(index >= (int32_t)(nValues - 1))
MACRUM 6:40e873bbc5f7 5849 {
MACRUM 6:40e873bbc5f7 5850 return (pYData[nValues - 1]);
MACRUM 6:40e873bbc5f7 5851 }
MACRUM 6:40e873bbc5f7 5852 else if(index < 0)
MACRUM 6:40e873bbc5f7 5853 {
MACRUM 6:40e873bbc5f7 5854 return (pYData[0]);
MACRUM 6:40e873bbc5f7 5855 }
MACRUM 6:40e873bbc5f7 5856 else
MACRUM 6:40e873bbc5f7 5857 {
MACRUM 6:40e873bbc5f7 5858
MACRUM 6:40e873bbc5f7 5859 /* 20 bits for the fractional part */
MACRUM 6:40e873bbc5f7 5860 /* shift left by 11 to keep fract in 1.31 format */
MACRUM 6:40e873bbc5f7 5861 fract = (x & 0x000FFFFF) << 11;
MACRUM 6:40e873bbc5f7 5862
MACRUM 6:40e873bbc5f7 5863 /* Read two nearest output values from the index in 1.31(q31) format */
MACRUM 6:40e873bbc5f7 5864 y0 = pYData[index];
MACRUM 6:40e873bbc5f7 5865 y1 = pYData[index + 1u];
MACRUM 6:40e873bbc5f7 5866
MACRUM 6:40e873bbc5f7 5867 /* Calculation of y0 * (1-fract) and y is in 2.30 format */
MACRUM 6:40e873bbc5f7 5868 y = ((q31_t) ((q63_t) y0 * (0x7FFFFFFF - fract) >> 32));
MACRUM 6:40e873bbc5f7 5869
MACRUM 6:40e873bbc5f7 5870 /* Calculation of y0 * (1-fract) + y1 *fract and y is in 2.30 format */
MACRUM 6:40e873bbc5f7 5871 y += ((q31_t) (((q63_t) y1 * fract) >> 32));
MACRUM 6:40e873bbc5f7 5872
MACRUM 6:40e873bbc5f7 5873 /* Convert y to 1.31 format */
MACRUM 6:40e873bbc5f7 5874 return (y << 1u);
MACRUM 6:40e873bbc5f7 5875
MACRUM 6:40e873bbc5f7 5876 }
MACRUM 6:40e873bbc5f7 5877
MACRUM 6:40e873bbc5f7 5878 }
MACRUM 6:40e873bbc5f7 5879
MACRUM 6:40e873bbc5f7 5880 /**
MACRUM 6:40e873bbc5f7 5881 *
MACRUM 6:40e873bbc5f7 5882 * @brief Process function for the Q15 Linear Interpolation Function.
MACRUM 6:40e873bbc5f7 5883 * @param[in] *pYData pointer to Q15 Linear Interpolation table
MACRUM 6:40e873bbc5f7 5884 * @param[in] x input sample to process
MACRUM 6:40e873bbc5f7 5885 * @param[in] nValues number of table values
MACRUM 6:40e873bbc5f7 5886 * @return y processed output sample.
MACRUM 6:40e873bbc5f7 5887 *
MACRUM 6:40e873bbc5f7 5888 * \par
MACRUM 6:40e873bbc5f7 5889 * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
MACRUM 6:40e873bbc5f7 5890 * This function can support maximum of table size 2^12.
MACRUM 6:40e873bbc5f7 5891 *
MACRUM 6:40e873bbc5f7 5892 */
MACRUM 6:40e873bbc5f7 5893
MACRUM 6:40e873bbc5f7 5894
MACRUM 6:40e873bbc5f7 5895 static __INLINE q15_t arm_linear_interp_q15(
MACRUM 6:40e873bbc5f7 5896 q15_t * pYData,
MACRUM 6:40e873bbc5f7 5897 q31_t x,
MACRUM 6:40e873bbc5f7 5898 uint32_t nValues)
MACRUM 6:40e873bbc5f7 5899 {
MACRUM 6:40e873bbc5f7 5900 q63_t y; /* output */
MACRUM 6:40e873bbc5f7 5901 q15_t y0, y1; /* Nearest output values */
MACRUM 6:40e873bbc5f7 5902 q31_t fract; /* fractional part */
MACRUM 6:40e873bbc5f7 5903 int32_t index; /* Index to read nearest output values */
MACRUM 6:40e873bbc5f7 5904
MACRUM 6:40e873bbc5f7 5905 /* Input is in 12.20 format */
MACRUM 6:40e873bbc5f7 5906 /* 12 bits for the table index */
MACRUM 6:40e873bbc5f7 5907 /* Index value calculation */
MACRUM 6:40e873bbc5f7 5908 index = ((x & 0xFFF00000) >> 20u);
MACRUM 6:40e873bbc5f7 5909
MACRUM 6:40e873bbc5f7 5910 if(index >= (int32_t)(nValues - 1))
MACRUM 6:40e873bbc5f7 5911 {
MACRUM 6:40e873bbc5f7 5912 return (pYData[nValues - 1]);
MACRUM 6:40e873bbc5f7 5913 }
MACRUM 6:40e873bbc5f7 5914 else if(index < 0)
MACRUM 6:40e873bbc5f7 5915 {
MACRUM 6:40e873bbc5f7 5916 return (pYData[0]);
MACRUM 6:40e873bbc5f7 5917 }
MACRUM 6:40e873bbc5f7 5918 else
MACRUM 6:40e873bbc5f7 5919 {
MACRUM 6:40e873bbc5f7 5920 /* 20 bits for the fractional part */
MACRUM 6:40e873bbc5f7 5921 /* fract is in 12.20 format */
MACRUM 6:40e873bbc5f7 5922 fract = (x & 0x000FFFFF);
MACRUM 6:40e873bbc5f7 5923
MACRUM 6:40e873bbc5f7 5924 /* Read two nearest output values from the index */
MACRUM 6:40e873bbc5f7 5925 y0 = pYData[index];
MACRUM 6:40e873bbc5f7 5926 y1 = pYData[index + 1u];
MACRUM 6:40e873bbc5f7 5927
MACRUM 6:40e873bbc5f7 5928 /* Calculation of y0 * (1-fract) and y is in 13.35 format */
MACRUM 6:40e873bbc5f7 5929 y = ((q63_t) y0 * (0xFFFFF - fract));
MACRUM 6:40e873bbc5f7 5930
MACRUM 6:40e873bbc5f7 5931 /* Calculation of (y0 * (1-fract) + y1 * fract) and y is in 13.35 format */
MACRUM 6:40e873bbc5f7 5932 y += ((q63_t) y1 * (fract));
MACRUM 6:40e873bbc5f7 5933
MACRUM 6:40e873bbc5f7 5934 /* convert y to 1.15 format */
MACRUM 6:40e873bbc5f7 5935 return (y >> 20);
MACRUM 6:40e873bbc5f7 5936 }
MACRUM 6:40e873bbc5f7 5937
MACRUM 6:40e873bbc5f7 5938
MACRUM 6:40e873bbc5f7 5939 }
MACRUM 6:40e873bbc5f7 5940
MACRUM 6:40e873bbc5f7 5941 /**
MACRUM 6:40e873bbc5f7 5942 *
MACRUM 6:40e873bbc5f7 5943 * @brief Process function for the Q7 Linear Interpolation Function.
MACRUM 6:40e873bbc5f7 5944 * @param[in] *pYData pointer to Q7 Linear Interpolation table
MACRUM 6:40e873bbc5f7 5945 * @param[in] x input sample to process
MACRUM 6:40e873bbc5f7 5946 * @param[in] nValues number of table values
MACRUM 6:40e873bbc5f7 5947 * @return y processed output sample.
MACRUM 6:40e873bbc5f7 5948 *
MACRUM 6:40e873bbc5f7 5949 * \par
MACRUM 6:40e873bbc5f7 5950 * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
MACRUM 6:40e873bbc5f7 5951 * This function can support maximum of table size 2^12.
MACRUM 6:40e873bbc5f7 5952 */
MACRUM 6:40e873bbc5f7 5953
MACRUM 6:40e873bbc5f7 5954
MACRUM 6:40e873bbc5f7 5955 static __INLINE q7_t arm_linear_interp_q7(
MACRUM 6:40e873bbc5f7 5956 q7_t * pYData,
MACRUM 6:40e873bbc5f7 5957 q31_t x,
MACRUM 6:40e873bbc5f7 5958 uint32_t nValues)
MACRUM 6:40e873bbc5f7 5959 {
MACRUM 6:40e873bbc5f7 5960 q31_t y; /* output */
MACRUM 6:40e873bbc5f7 5961 q7_t y0, y1; /* Nearest output values */
MACRUM 6:40e873bbc5f7 5962 q31_t fract; /* fractional part */
MACRUM 6:40e873bbc5f7 5963 uint32_t index; /* Index to read nearest output values */
MACRUM 6:40e873bbc5f7 5964
MACRUM 6:40e873bbc5f7 5965 /* Input is in 12.20 format */
MACRUM 6:40e873bbc5f7 5966 /* 12 bits for the table index */
MACRUM 6:40e873bbc5f7 5967 /* Index value calculation */
MACRUM 6:40e873bbc5f7 5968 if (x < 0)
MACRUM 6:40e873bbc5f7 5969 {
MACRUM 6:40e873bbc5f7 5970 return (pYData[0]);
MACRUM 6:40e873bbc5f7 5971 }
MACRUM 6:40e873bbc5f7 5972 index = (x >> 20) & 0xfff;
MACRUM 6:40e873bbc5f7 5973
MACRUM 6:40e873bbc5f7 5974
MACRUM 6:40e873bbc5f7 5975 if(index >= (nValues - 1))
MACRUM 6:40e873bbc5f7 5976 {
MACRUM 6:40e873bbc5f7 5977 return (pYData[nValues - 1]);
MACRUM 6:40e873bbc5f7 5978 }
MACRUM 6:40e873bbc5f7 5979 else
MACRUM 6:40e873bbc5f7 5980 {
MACRUM 6:40e873bbc5f7 5981
MACRUM 6:40e873bbc5f7 5982 /* 20 bits for the fractional part */
MACRUM 6:40e873bbc5f7 5983 /* fract is in 12.20 format */
MACRUM 6:40e873bbc5f7 5984 fract = (x & 0x000FFFFF);
MACRUM 6:40e873bbc5f7 5985
MACRUM 6:40e873bbc5f7 5986 /* Read two nearest output values from the index and are in 1.7(q7) format */
MACRUM 6:40e873bbc5f7 5987 y0 = pYData[index];
MACRUM 6:40e873bbc5f7 5988 y1 = pYData[index + 1u];
MACRUM 6:40e873bbc5f7 5989
MACRUM 6:40e873bbc5f7 5990 /* Calculation of y0 * (1-fract ) and y is in 13.27(q27) format */
MACRUM 6:40e873bbc5f7 5991 y = ((y0 * (0xFFFFF - fract)));
MACRUM 6:40e873bbc5f7 5992
MACRUM 6:40e873bbc5f7 5993 /* Calculation of y1 * fract + y0 * (1-fract) and y is in 13.27(q27) format */
MACRUM 6:40e873bbc5f7 5994 y += (y1 * fract);
MACRUM 6:40e873bbc5f7 5995
MACRUM 6:40e873bbc5f7 5996 /* convert y to 1.7(q7) format */
MACRUM 6:40e873bbc5f7 5997 return (y >> 20u);
MACRUM 6:40e873bbc5f7 5998
MACRUM 6:40e873bbc5f7 5999 }
MACRUM 6:40e873bbc5f7 6000
MACRUM 6:40e873bbc5f7 6001 }
MACRUM 6:40e873bbc5f7 6002 /**
MACRUM 6:40e873bbc5f7 6003 * @} end of LinearInterpolate group
MACRUM 6:40e873bbc5f7 6004 */
MACRUM 6:40e873bbc5f7 6005
MACRUM 6:40e873bbc5f7 6006 /**
MACRUM 6:40e873bbc5f7 6007 * @brief Fast approximation to the trigonometric sine function for floating-point data.
MACRUM 6:40e873bbc5f7 6008 * @param[in] x input value in radians.
MACRUM 6:40e873bbc5f7 6009 * @return sin(x).
MACRUM 6:40e873bbc5f7 6010 */
MACRUM 6:40e873bbc5f7 6011
MACRUM 6:40e873bbc5f7 6012 float32_t arm_sin_f32(
MACRUM 6:40e873bbc5f7 6013 float32_t x);
MACRUM 6:40e873bbc5f7 6014
MACRUM 6:40e873bbc5f7 6015 /**
MACRUM 6:40e873bbc5f7 6016 * @brief Fast approximation to the trigonometric sine function for Q31 data.
MACRUM 6:40e873bbc5f7 6017 * @param[in] x Scaled input value in radians.
MACRUM 6:40e873bbc5f7 6018 * @return sin(x).
MACRUM 6:40e873bbc5f7 6019 */
MACRUM 6:40e873bbc5f7 6020
MACRUM 6:40e873bbc5f7 6021 q31_t arm_sin_q31(
MACRUM 6:40e873bbc5f7 6022 q31_t x);
MACRUM 6:40e873bbc5f7 6023
MACRUM 6:40e873bbc5f7 6024 /**
MACRUM 6:40e873bbc5f7 6025 * @brief Fast approximation to the trigonometric sine function for Q15 data.
MACRUM 6:40e873bbc5f7 6026 * @param[in] x Scaled input value in radians.
MACRUM 6:40e873bbc5f7 6027 * @return sin(x).
MACRUM 6:40e873bbc5f7 6028 */
MACRUM 6:40e873bbc5f7 6029
MACRUM 6:40e873bbc5f7 6030 q15_t arm_sin_q15(
MACRUM 6:40e873bbc5f7 6031 q15_t x);
MACRUM 6:40e873bbc5f7 6032
MACRUM 6:40e873bbc5f7 6033 /**
MACRUM 6:40e873bbc5f7 6034 * @brief Fast approximation to the trigonometric cosine function for floating-point data.
MACRUM 6:40e873bbc5f7 6035 * @param[in] x input value in radians.
MACRUM 6:40e873bbc5f7 6036 * @return cos(x).
MACRUM 6:40e873bbc5f7 6037 */
MACRUM 6:40e873bbc5f7 6038
MACRUM 6:40e873bbc5f7 6039 float32_t arm_cos_f32(
MACRUM 6:40e873bbc5f7 6040 float32_t x);
MACRUM 6:40e873bbc5f7 6041
MACRUM 6:40e873bbc5f7 6042 /**
MACRUM 6:40e873bbc5f7 6043 * @brief Fast approximation to the trigonometric cosine function for Q31 data.
MACRUM 6:40e873bbc5f7 6044 * @param[in] x Scaled input value in radians.
MACRUM 6:40e873bbc5f7 6045 * @return cos(x).
MACRUM 6:40e873bbc5f7 6046 */
MACRUM 6:40e873bbc5f7 6047
MACRUM 6:40e873bbc5f7 6048 q31_t arm_cos_q31(
MACRUM 6:40e873bbc5f7 6049 q31_t x);
MACRUM 6:40e873bbc5f7 6050
MACRUM 6:40e873bbc5f7 6051 /**
MACRUM 6:40e873bbc5f7 6052 * @brief Fast approximation to the trigonometric cosine function for Q15 data.
MACRUM 6:40e873bbc5f7 6053 * @param[in] x Scaled input value in radians.
MACRUM 6:40e873bbc5f7 6054 * @return cos(x).
MACRUM 6:40e873bbc5f7 6055 */
MACRUM 6:40e873bbc5f7 6056
MACRUM 6:40e873bbc5f7 6057 q15_t arm_cos_q15(
MACRUM 6:40e873bbc5f7 6058 q15_t x);
MACRUM 6:40e873bbc5f7 6059
MACRUM 6:40e873bbc5f7 6060
MACRUM 6:40e873bbc5f7 6061 /**
MACRUM 6:40e873bbc5f7 6062 * @ingroup groupFastMath
MACRUM 6:40e873bbc5f7 6063 */
MACRUM 6:40e873bbc5f7 6064
MACRUM 6:40e873bbc5f7 6065
MACRUM 6:40e873bbc5f7 6066 /**
MACRUM 6:40e873bbc5f7 6067 * @defgroup SQRT Square Root
MACRUM 6:40e873bbc5f7 6068 *
MACRUM 6:40e873bbc5f7 6069 * Computes the square root of a number.
MACRUM 6:40e873bbc5f7 6070 * There are separate functions for Q15, Q31, and floating-point data types.
MACRUM 6:40e873bbc5f7 6071 * The square root function is computed using the Newton-Raphson algorithm.
MACRUM 6:40e873bbc5f7 6072 * This is an iterative algorithm of the form:
MACRUM 6:40e873bbc5f7 6073 * <pre>
MACRUM 6:40e873bbc5f7 6074 * x1 = x0 - f(x0)/f'(x0)
MACRUM 6:40e873bbc5f7 6075 * </pre>
MACRUM 6:40e873bbc5f7 6076 * where <code>x1</code> is the current estimate,
MACRUM 6:40e873bbc5f7 6077 * <code>x0</code> is the previous estimate, and
MACRUM 6:40e873bbc5f7 6078 * <code>f'(x0)</code> is the derivative of <code>f()</code> evaluated at <code>x0</code>.
MACRUM 6:40e873bbc5f7 6079 * For the square root function, the algorithm reduces to:
MACRUM 6:40e873bbc5f7 6080 * <pre>
MACRUM 6:40e873bbc5f7 6081 * x0 = in/2 [initial guess]
MACRUM 6:40e873bbc5f7 6082 * x1 = 1/2 * ( x0 + in / x0) [each iteration]
MACRUM 6:40e873bbc5f7 6083 * </pre>
MACRUM 6:40e873bbc5f7 6084 */
MACRUM 6:40e873bbc5f7 6085
MACRUM 6:40e873bbc5f7 6086
MACRUM 6:40e873bbc5f7 6087 /**
MACRUM 6:40e873bbc5f7 6088 * @addtogroup SQRT
MACRUM 6:40e873bbc5f7 6089 * @{
MACRUM 6:40e873bbc5f7 6090 */
MACRUM 6:40e873bbc5f7 6091
MACRUM 6:40e873bbc5f7 6092 /**
MACRUM 6:40e873bbc5f7 6093 * @brief Floating-point square root function.
MACRUM 6:40e873bbc5f7 6094 * @param[in] in input value.
MACRUM 6:40e873bbc5f7 6095 * @param[out] *pOut square root of input value.
MACRUM 6:40e873bbc5f7 6096 * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
MACRUM 6:40e873bbc5f7 6097 * <code>in</code> is negative value and returns zero output for negative values.
MACRUM 6:40e873bbc5f7 6098 */
MACRUM 6:40e873bbc5f7 6099
MACRUM 6:40e873bbc5f7 6100 static __INLINE arm_status arm_sqrt_f32(
MACRUM 6:40e873bbc5f7 6101 float32_t in,
MACRUM 6:40e873bbc5f7 6102 float32_t * pOut)
MACRUM 6:40e873bbc5f7 6103 {
MACRUM 6:40e873bbc5f7 6104 if(in >= 0.0f)
MACRUM 6:40e873bbc5f7 6105 {
MACRUM 6:40e873bbc5f7 6106
MACRUM 6:40e873bbc5f7 6107 // #if __FPU_USED
MACRUM 6:40e873bbc5f7 6108 #if (__FPU_USED == 1) && defined ( __CC_ARM )
MACRUM 6:40e873bbc5f7 6109 *pOut = __sqrtf(in);
MACRUM 6:40e873bbc5f7 6110 #else
MACRUM 6:40e873bbc5f7 6111 *pOut = sqrtf(in);
MACRUM 6:40e873bbc5f7 6112 #endif
MACRUM 6:40e873bbc5f7 6113
MACRUM 6:40e873bbc5f7 6114 return (ARM_MATH_SUCCESS);
MACRUM 6:40e873bbc5f7 6115 }
MACRUM 6:40e873bbc5f7 6116 else
MACRUM 6:40e873bbc5f7 6117 {
MACRUM 6:40e873bbc5f7 6118 *pOut = 0.0f;
MACRUM 6:40e873bbc5f7 6119 return (ARM_MATH_ARGUMENT_ERROR);
MACRUM 6:40e873bbc5f7 6120 }
MACRUM 6:40e873bbc5f7 6121
MACRUM 6:40e873bbc5f7 6122 }
MACRUM 6:40e873bbc5f7 6123
MACRUM 6:40e873bbc5f7 6124
MACRUM 6:40e873bbc5f7 6125 /**
MACRUM 6:40e873bbc5f7 6126 * @brief Q31 square root function.
MACRUM 6:40e873bbc5f7 6127 * @param[in] in input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF.
MACRUM 6:40e873bbc5f7 6128 * @param[out] *pOut square root of input value.
MACRUM 6:40e873bbc5f7 6129 * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
MACRUM 6:40e873bbc5f7 6130 * <code>in</code> is negative value and returns zero output for negative values.
MACRUM 6:40e873bbc5f7 6131 */
MACRUM 6:40e873bbc5f7 6132 arm_status arm_sqrt_q31(
MACRUM 6:40e873bbc5f7 6133 q31_t in,
MACRUM 6:40e873bbc5f7 6134 q31_t * pOut);
MACRUM 6:40e873bbc5f7 6135
MACRUM 6:40e873bbc5f7 6136 /**
MACRUM 6:40e873bbc5f7 6137 * @brief Q15 square root function.
MACRUM 6:40e873bbc5f7 6138 * @param[in] in input value. The range of the input value is [0 +1) or 0x0000 to 0x7FFF.
MACRUM 6:40e873bbc5f7 6139 * @param[out] *pOut square root of input value.
MACRUM 6:40e873bbc5f7 6140 * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
MACRUM 6:40e873bbc5f7 6141 * <code>in</code> is negative value and returns zero output for negative values.
MACRUM 6:40e873bbc5f7 6142 */
MACRUM 6:40e873bbc5f7 6143 arm_status arm_sqrt_q15(
MACRUM 6:40e873bbc5f7 6144 q15_t in,
MACRUM 6:40e873bbc5f7 6145 q15_t * pOut);
MACRUM 6:40e873bbc5f7 6146
MACRUM 6:40e873bbc5f7 6147 /**
MACRUM 6:40e873bbc5f7 6148 * @} end of SQRT group
MACRUM 6:40e873bbc5f7 6149 */
MACRUM 6:40e873bbc5f7 6150
MACRUM 6:40e873bbc5f7 6151
MACRUM 6:40e873bbc5f7 6152
MACRUM 6:40e873bbc5f7 6153
MACRUM 6:40e873bbc5f7 6154
MACRUM 6:40e873bbc5f7 6155
MACRUM 6:40e873bbc5f7 6156 /**
MACRUM 6:40e873bbc5f7 6157 * @brief floating-point Circular write function.
MACRUM 6:40e873bbc5f7 6158 */
MACRUM 6:40e873bbc5f7 6159
MACRUM 6:40e873bbc5f7 6160 static __INLINE void arm_circularWrite_f32(
MACRUM 6:40e873bbc5f7 6161 int32_t * circBuffer,
MACRUM 6:40e873bbc5f7 6162 int32_t L,
MACRUM 6:40e873bbc5f7 6163 uint16_t * writeOffset,
MACRUM 6:40e873bbc5f7 6164 int32_t bufferInc,
MACRUM 6:40e873bbc5f7 6165 const int32_t * src,
MACRUM 6:40e873bbc5f7 6166 int32_t srcInc,
MACRUM 6:40e873bbc5f7 6167 uint32_t blockSize)
MACRUM 6:40e873bbc5f7 6168 {
MACRUM 6:40e873bbc5f7 6169 uint32_t i = 0u;
MACRUM 6:40e873bbc5f7 6170 int32_t wOffset;
MACRUM 6:40e873bbc5f7 6171
MACRUM 6:40e873bbc5f7 6172 /* Copy the value of Index pointer that points
MACRUM 6:40e873bbc5f7 6173 * to the current location where the input samples to be copied */
MACRUM 6:40e873bbc5f7 6174 wOffset = *writeOffset;
MACRUM 6:40e873bbc5f7 6175
MACRUM 6:40e873bbc5f7 6176 /* Loop over the blockSize */
MACRUM 6:40e873bbc5f7 6177 i = blockSize;
MACRUM 6:40e873bbc5f7 6178
MACRUM 6:40e873bbc5f7 6179 while(i > 0u)
MACRUM 6:40e873bbc5f7 6180 {
MACRUM 6:40e873bbc5f7 6181 /* copy the input sample to the circular buffer */
MACRUM 6:40e873bbc5f7 6182 circBuffer[wOffset] = *src;
MACRUM 6:40e873bbc5f7 6183
MACRUM 6:40e873bbc5f7 6184 /* Update the input pointer */
MACRUM 6:40e873bbc5f7 6185 src += srcInc;
MACRUM 6:40e873bbc5f7 6186
MACRUM 6:40e873bbc5f7 6187 /* Circularly update wOffset. Watch out for positive and negative value */
MACRUM 6:40e873bbc5f7 6188 wOffset += bufferInc;
MACRUM 6:40e873bbc5f7 6189 if(wOffset >= L)
MACRUM 6:40e873bbc5f7 6190 wOffset -= L;
MACRUM 6:40e873bbc5f7 6191
MACRUM 6:40e873bbc5f7 6192 /* Decrement the loop counter */
MACRUM 6:40e873bbc5f7 6193 i--;
MACRUM 6:40e873bbc5f7 6194 }
MACRUM 6:40e873bbc5f7 6195
MACRUM 6:40e873bbc5f7 6196 /* Update the index pointer */
MACRUM 6:40e873bbc5f7 6197 *writeOffset = wOffset;
MACRUM 6:40e873bbc5f7 6198 }
MACRUM 6:40e873bbc5f7 6199
MACRUM 6:40e873bbc5f7 6200
MACRUM 6:40e873bbc5f7 6201
MACRUM 6:40e873bbc5f7 6202 /**
MACRUM 6:40e873bbc5f7 6203 * @brief floating-point Circular Read function.
MACRUM 6:40e873bbc5f7 6204 */
MACRUM 6:40e873bbc5f7 6205 static __INLINE void arm_circularRead_f32(
MACRUM 6:40e873bbc5f7 6206 int32_t * circBuffer,
MACRUM 6:40e873bbc5f7 6207 int32_t L,
MACRUM 6:40e873bbc5f7 6208 int32_t * readOffset,
MACRUM 6:40e873bbc5f7 6209 int32_t bufferInc,
MACRUM 6:40e873bbc5f7 6210 int32_t * dst,
MACRUM 6:40e873bbc5f7 6211 int32_t * dst_base,
MACRUM 6:40e873bbc5f7 6212 int32_t dst_length,
MACRUM 6:40e873bbc5f7 6213 int32_t dstInc,
MACRUM 6:40e873bbc5f7 6214 uint32_t blockSize)
MACRUM 6:40e873bbc5f7 6215 {
MACRUM 6:40e873bbc5f7 6216 uint32_t i = 0u;
MACRUM 6:40e873bbc5f7 6217 int32_t rOffset, dst_end;
MACRUM 6:40e873bbc5f7 6218
MACRUM 6:40e873bbc5f7 6219 /* Copy the value of Index pointer that points
MACRUM 6:40e873bbc5f7 6220 * to the current location from where the input samples to be read */
MACRUM 6:40e873bbc5f7 6221 rOffset = *readOffset;
MACRUM 6:40e873bbc5f7 6222 dst_end = (int32_t) (dst_base + dst_length);
MACRUM 6:40e873bbc5f7 6223
MACRUM 6:40e873bbc5f7 6224 /* Loop over the blockSize */
MACRUM 6:40e873bbc5f7 6225 i = blockSize;
MACRUM 6:40e873bbc5f7 6226
MACRUM 6:40e873bbc5f7 6227 while(i > 0u)
MACRUM 6:40e873bbc5f7 6228 {
MACRUM 6:40e873bbc5f7 6229 /* copy the sample from the circular buffer to the destination buffer */
MACRUM 6:40e873bbc5f7 6230 *dst = circBuffer[rOffset];
MACRUM 6:40e873bbc5f7 6231
MACRUM 6:40e873bbc5f7 6232 /* Update the input pointer */
MACRUM 6:40e873bbc5f7 6233 dst += dstInc;
MACRUM 6:40e873bbc5f7 6234
MACRUM 6:40e873bbc5f7 6235 if(dst == (int32_t *) dst_end)
MACRUM 6:40e873bbc5f7 6236 {
MACRUM 6:40e873bbc5f7 6237 dst = dst_base;
MACRUM 6:40e873bbc5f7 6238 }
MACRUM 6:40e873bbc5f7 6239
MACRUM 6:40e873bbc5f7 6240 /* Circularly update rOffset. Watch out for positive and negative value */
MACRUM 6:40e873bbc5f7 6241 rOffset += bufferInc;
MACRUM 6:40e873bbc5f7 6242
MACRUM 6:40e873bbc5f7 6243 if(rOffset >= L)
MACRUM 6:40e873bbc5f7 6244 {
MACRUM 6:40e873bbc5f7 6245 rOffset -= L;
MACRUM 6:40e873bbc5f7 6246 }
MACRUM 6:40e873bbc5f7 6247
MACRUM 6:40e873bbc5f7 6248 /* Decrement the loop counter */
MACRUM 6:40e873bbc5f7 6249 i--;
MACRUM 6:40e873bbc5f7 6250 }
MACRUM 6:40e873bbc5f7 6251
MACRUM 6:40e873bbc5f7 6252 /* Update the index pointer */
MACRUM 6:40e873bbc5f7 6253 *readOffset = rOffset;
MACRUM 6:40e873bbc5f7 6254 }
MACRUM 6:40e873bbc5f7 6255
MACRUM 6:40e873bbc5f7 6256 /**
MACRUM 6:40e873bbc5f7 6257 * @brief Q15 Circular write function.
MACRUM 6:40e873bbc5f7 6258 */
MACRUM 6:40e873bbc5f7 6259
MACRUM 6:40e873bbc5f7 6260 static __INLINE void arm_circularWrite_q15(
MACRUM 6:40e873bbc5f7 6261 q15_t * circBuffer,
MACRUM 6:40e873bbc5f7 6262 int32_t L,
MACRUM 6:40e873bbc5f7 6263 uint16_t * writeOffset,
MACRUM 6:40e873bbc5f7 6264 int32_t bufferInc,
MACRUM 6:40e873bbc5f7 6265 const q15_t * src,
MACRUM 6:40e873bbc5f7 6266 int32_t srcInc,
MACRUM 6:40e873bbc5f7 6267 uint32_t blockSize)
MACRUM 6:40e873bbc5f7 6268 {
MACRUM 6:40e873bbc5f7 6269 uint32_t i = 0u;
MACRUM 6:40e873bbc5f7 6270 int32_t wOffset;
MACRUM 6:40e873bbc5f7 6271
MACRUM 6:40e873bbc5f7 6272 /* Copy the value of Index pointer that points
MACRUM 6:40e873bbc5f7 6273 * to the current location where the input samples to be copied */
MACRUM 6:40e873bbc5f7 6274 wOffset = *writeOffset;
MACRUM 6:40e873bbc5f7 6275
MACRUM 6:40e873bbc5f7 6276 /* Loop over the blockSize */
MACRUM 6:40e873bbc5f7 6277 i = blockSize;
MACRUM 6:40e873bbc5f7 6278
MACRUM 6:40e873bbc5f7 6279 while(i > 0u)
MACRUM 6:40e873bbc5f7 6280 {
MACRUM 6:40e873bbc5f7 6281 /* copy the input sample to the circular buffer */
MACRUM 6:40e873bbc5f7 6282 circBuffer[wOffset] = *src;
MACRUM 6:40e873bbc5f7 6283
MACRUM 6:40e873bbc5f7 6284 /* Update the input pointer */
MACRUM 6:40e873bbc5f7 6285 src += srcInc;
MACRUM 6:40e873bbc5f7 6286
MACRUM 6:40e873bbc5f7 6287 /* Circularly update wOffset. Watch out for positive and negative value */
MACRUM 6:40e873bbc5f7 6288 wOffset += bufferInc;
MACRUM 6:40e873bbc5f7 6289 if(wOffset >= L)
MACRUM 6:40e873bbc5f7 6290 wOffset -= L;
MACRUM 6:40e873bbc5f7 6291
MACRUM 6:40e873bbc5f7 6292 /* Decrement the loop counter */
MACRUM 6:40e873bbc5f7 6293 i--;
MACRUM 6:40e873bbc5f7 6294 }
MACRUM 6:40e873bbc5f7 6295
MACRUM 6:40e873bbc5f7 6296 /* Update the index pointer */
MACRUM 6:40e873bbc5f7 6297 *writeOffset = wOffset;
MACRUM 6:40e873bbc5f7 6298 }
MACRUM 6:40e873bbc5f7 6299
MACRUM 6:40e873bbc5f7 6300
MACRUM 6:40e873bbc5f7 6301
MACRUM 6:40e873bbc5f7 6302 /**
MACRUM 6:40e873bbc5f7 6303 * @brief Q15 Circular Read function.
MACRUM 6:40e873bbc5f7 6304 */
MACRUM 6:40e873bbc5f7 6305 static __INLINE void arm_circularRead_q15(
MACRUM 6:40e873bbc5f7 6306 q15_t * circBuffer,
MACRUM 6:40e873bbc5f7 6307 int32_t L,
MACRUM 6:40e873bbc5f7 6308 int32_t * readOffset,
MACRUM 6:40e873bbc5f7 6309 int32_t bufferInc,
MACRUM 6:40e873bbc5f7 6310 q15_t * dst,
MACRUM 6:40e873bbc5f7 6311 q15_t * dst_base,
MACRUM 6:40e873bbc5f7 6312 int32_t dst_length,
MACRUM 6:40e873bbc5f7 6313 int32_t dstInc,
MACRUM 6:40e873bbc5f7 6314 uint32_t blockSize)
MACRUM 6:40e873bbc5f7 6315 {
MACRUM 6:40e873bbc5f7 6316 uint32_t i = 0;
MACRUM 6:40e873bbc5f7 6317 int32_t rOffset, dst_end;
MACRUM 6:40e873bbc5f7 6318
MACRUM 6:40e873bbc5f7 6319 /* Copy the value of Index pointer that points
MACRUM 6:40e873bbc5f7 6320 * to the current location from where the input samples to be read */
MACRUM 6:40e873bbc5f7 6321 rOffset = *readOffset;
MACRUM 6:40e873bbc5f7 6322
MACRUM 6:40e873bbc5f7 6323 dst_end = (int32_t) (dst_base + dst_length);
MACRUM 6:40e873bbc5f7 6324
MACRUM 6:40e873bbc5f7 6325 /* Loop over the blockSize */
MACRUM 6:40e873bbc5f7 6326 i = blockSize;
MACRUM 6:40e873bbc5f7 6327
MACRUM 6:40e873bbc5f7 6328 while(i > 0u)
MACRUM 6:40e873bbc5f7 6329 {
MACRUM 6:40e873bbc5f7 6330 /* copy the sample from the circular buffer to the destination buffer */
MACRUM 6:40e873bbc5f7 6331 *dst = circBuffer[rOffset];
MACRUM 6:40e873bbc5f7 6332
MACRUM 6:40e873bbc5f7 6333 /* Update the input pointer */
MACRUM 6:40e873bbc5f7 6334 dst += dstInc;
MACRUM 6:40e873bbc5f7 6335
MACRUM 6:40e873bbc5f7 6336 if(dst == (q15_t *) dst_end)
MACRUM 6:40e873bbc5f7 6337 {
MACRUM 6:40e873bbc5f7 6338 dst = dst_base;
MACRUM 6:40e873bbc5f7 6339 }
MACRUM 6:40e873bbc5f7 6340
MACRUM 6:40e873bbc5f7 6341 /* Circularly update wOffset. Watch out for positive and negative value */
MACRUM 6:40e873bbc5f7 6342 rOffset += bufferInc;
MACRUM 6:40e873bbc5f7 6343
MACRUM 6:40e873bbc5f7 6344 if(rOffset >= L)
MACRUM 6:40e873bbc5f7 6345 {
MACRUM 6:40e873bbc5f7 6346 rOffset -= L;
MACRUM 6:40e873bbc5f7 6347 }
MACRUM 6:40e873bbc5f7 6348
MACRUM 6:40e873bbc5f7 6349 /* Decrement the loop counter */
MACRUM 6:40e873bbc5f7 6350 i--;
MACRUM 6:40e873bbc5f7 6351 }
MACRUM 6:40e873bbc5f7 6352
MACRUM 6:40e873bbc5f7 6353 /* Update the index pointer */
MACRUM 6:40e873bbc5f7 6354 *readOffset = rOffset;
MACRUM 6:40e873bbc5f7 6355 }
MACRUM 6:40e873bbc5f7 6356
MACRUM 6:40e873bbc5f7 6357
MACRUM 6:40e873bbc5f7 6358 /**
MACRUM 6:40e873bbc5f7 6359 * @brief Q7 Circular write function.
MACRUM 6:40e873bbc5f7 6360 */
MACRUM 6:40e873bbc5f7 6361
MACRUM 6:40e873bbc5f7 6362 static __INLINE void arm_circularWrite_q7(
MACRUM 6:40e873bbc5f7 6363 q7_t * circBuffer,
MACRUM 6:40e873bbc5f7 6364 int32_t L,
MACRUM 6:40e873bbc5f7 6365 uint16_t * writeOffset,
MACRUM 6:40e873bbc5f7 6366 int32_t bufferInc,
MACRUM 6:40e873bbc5f7 6367 const q7_t * src,
MACRUM 6:40e873bbc5f7 6368 int32_t srcInc,
MACRUM 6:40e873bbc5f7 6369 uint32_t blockSize)
MACRUM 6:40e873bbc5f7 6370 {
MACRUM 6:40e873bbc5f7 6371 uint32_t i = 0u;
MACRUM 6:40e873bbc5f7 6372 int32_t wOffset;
MACRUM 6:40e873bbc5f7 6373
MACRUM 6:40e873bbc5f7 6374 /* Copy the value of Index pointer that points
MACRUM 6:40e873bbc5f7 6375 * to the current location where the input samples to be copied */
MACRUM 6:40e873bbc5f7 6376 wOffset = *writeOffset;
MACRUM 6:40e873bbc5f7 6377
MACRUM 6:40e873bbc5f7 6378 /* Loop over the blockSize */
MACRUM 6:40e873bbc5f7 6379 i = blockSize;
MACRUM 6:40e873bbc5f7 6380
MACRUM 6:40e873bbc5f7 6381 while(i > 0u)
MACRUM 6:40e873bbc5f7 6382 {
MACRUM 6:40e873bbc5f7 6383 /* copy the input sample to the circular buffer */
MACRUM 6:40e873bbc5f7 6384 circBuffer[wOffset] = *src;
MACRUM 6:40e873bbc5f7 6385
MACRUM 6:40e873bbc5f7 6386 /* Update the input pointer */
MACRUM 6:40e873bbc5f7 6387 src += srcInc;
MACRUM 6:40e873bbc5f7 6388
MACRUM 6:40e873bbc5f7 6389 /* Circularly update wOffset. Watch out for positive and negative value */
MACRUM 6:40e873bbc5f7 6390 wOffset += bufferInc;
MACRUM 6:40e873bbc5f7 6391 if(wOffset >= L)
MACRUM 6:40e873bbc5f7 6392 wOffset -= L;
MACRUM 6:40e873bbc5f7 6393
MACRUM 6:40e873bbc5f7 6394 /* Decrement the loop counter */
MACRUM 6:40e873bbc5f7 6395 i--;
MACRUM 6:40e873bbc5f7 6396 }
MACRUM 6:40e873bbc5f7 6397
MACRUM 6:40e873bbc5f7 6398 /* Update the index pointer */
MACRUM 6:40e873bbc5f7 6399 *writeOffset = wOffset;
MACRUM 6:40e873bbc5f7 6400 }
MACRUM 6:40e873bbc5f7 6401
MACRUM 6:40e873bbc5f7 6402
MACRUM 6:40e873bbc5f7 6403
MACRUM 6:40e873bbc5f7 6404 /**
MACRUM 6:40e873bbc5f7 6405 * @brief Q7 Circular Read function.
MACRUM 6:40e873bbc5f7 6406 */
MACRUM 6:40e873bbc5f7 6407 static __INLINE void arm_circularRead_q7(
MACRUM 6:40e873bbc5f7 6408 q7_t * circBuffer,
MACRUM 6:40e873bbc5f7 6409 int32_t L,
MACRUM 6:40e873bbc5f7 6410 int32_t * readOffset,
MACRUM 6:40e873bbc5f7 6411 int32_t bufferInc,
MACRUM 6:40e873bbc5f7 6412 q7_t * dst,
MACRUM 6:40e873bbc5f7 6413 q7_t * dst_base,
MACRUM 6:40e873bbc5f7 6414 int32_t dst_length,
MACRUM 6:40e873bbc5f7 6415 int32_t dstInc,
MACRUM 6:40e873bbc5f7 6416 uint32_t blockSize)
MACRUM 6:40e873bbc5f7 6417 {
MACRUM 6:40e873bbc5f7 6418 uint32_t i = 0;
MACRUM 6:40e873bbc5f7 6419 int32_t rOffset, dst_end;
MACRUM 6:40e873bbc5f7 6420
MACRUM 6:40e873bbc5f7 6421 /* Copy the value of Index pointer that points
MACRUM 6:40e873bbc5f7 6422 * to the current location from where the input samples to be read */
MACRUM 6:40e873bbc5f7 6423 rOffset = *readOffset;
MACRUM 6:40e873bbc5f7 6424
MACRUM 6:40e873bbc5f7 6425 dst_end = (int32_t) (dst_base + dst_length);
MACRUM 6:40e873bbc5f7 6426
MACRUM 6:40e873bbc5f7 6427 /* Loop over the blockSize */
MACRUM 6:40e873bbc5f7 6428 i = blockSize;
MACRUM 6:40e873bbc5f7 6429
MACRUM 6:40e873bbc5f7 6430 while(i > 0u)
MACRUM 6:40e873bbc5f7 6431 {
MACRUM 6:40e873bbc5f7 6432 /* copy the sample from the circular buffer to the destination buffer */
MACRUM 6:40e873bbc5f7 6433 *dst = circBuffer[rOffset];
MACRUM 6:40e873bbc5f7 6434
MACRUM 6:40e873bbc5f7 6435 /* Update the input pointer */
MACRUM 6:40e873bbc5f7 6436 dst += dstInc;
MACRUM 6:40e873bbc5f7 6437
MACRUM 6:40e873bbc5f7 6438 if(dst == (q7_t *) dst_end)
MACRUM 6:40e873bbc5f7 6439 {
MACRUM 6:40e873bbc5f7 6440 dst = dst_base;
MACRUM 6:40e873bbc5f7 6441 }
MACRUM 6:40e873bbc5f7 6442
MACRUM 6:40e873bbc5f7 6443 /* Circularly update rOffset. Watch out for positive and negative value */
MACRUM 6:40e873bbc5f7 6444 rOffset += bufferInc;
MACRUM 6:40e873bbc5f7 6445
MACRUM 6:40e873bbc5f7 6446 if(rOffset >= L)
MACRUM 6:40e873bbc5f7 6447 {
MACRUM 6:40e873bbc5f7 6448 rOffset -= L;
MACRUM 6:40e873bbc5f7 6449 }
MACRUM 6:40e873bbc5f7 6450
MACRUM 6:40e873bbc5f7 6451 /* Decrement the loop counter */
MACRUM 6:40e873bbc5f7 6452 i--;
MACRUM 6:40e873bbc5f7 6453 }
MACRUM 6:40e873bbc5f7 6454
MACRUM 6:40e873bbc5f7 6455 /* Update the index pointer */
MACRUM 6:40e873bbc5f7 6456 *readOffset = rOffset;
MACRUM 6:40e873bbc5f7 6457 }
MACRUM 6:40e873bbc5f7 6458
MACRUM 6:40e873bbc5f7 6459
MACRUM 6:40e873bbc5f7 6460 /**
MACRUM 6:40e873bbc5f7 6461 * @brief Sum of the squares of the elements of a Q31 vector.
MACRUM 6:40e873bbc5f7 6462 * @param[in] *pSrc is input pointer
MACRUM 6:40e873bbc5f7 6463 * @param[in] blockSize is the number of samples to process
MACRUM 6:40e873bbc5f7 6464 * @param[out] *pResult is output value.
MACRUM 6:40e873bbc5f7 6465 * @return none.
MACRUM 6:40e873bbc5f7 6466 */
MACRUM 6:40e873bbc5f7 6467
MACRUM 6:40e873bbc5f7 6468 void arm_power_q31(
MACRUM 6:40e873bbc5f7 6469 q31_t * pSrc,
MACRUM 6:40e873bbc5f7 6470 uint32_t blockSize,
MACRUM 6:40e873bbc5f7 6471 q63_t * pResult);
MACRUM 6:40e873bbc5f7 6472
MACRUM 6:40e873bbc5f7 6473 /**
MACRUM 6:40e873bbc5f7 6474 * @brief Sum of the squares of the elements of a floating-point vector.
MACRUM 6:40e873bbc5f7 6475 * @param[in] *pSrc is input pointer
MACRUM 6:40e873bbc5f7 6476 * @param[in] blockSize is the number of samples to process
MACRUM 6:40e873bbc5f7 6477 * @param[out] *pResult is output value.
MACRUM 6:40e873bbc5f7 6478 * @return none.
MACRUM 6:40e873bbc5f7 6479 */
MACRUM 6:40e873bbc5f7 6480
MACRUM 6:40e873bbc5f7 6481 void arm_power_f32(
MACRUM 6:40e873bbc5f7 6482 float32_t * pSrc,
MACRUM 6:40e873bbc5f7 6483 uint32_t blockSize,
MACRUM 6:40e873bbc5f7 6484 float32_t * pResult);
MACRUM 6:40e873bbc5f7 6485
MACRUM 6:40e873bbc5f7 6486 /**
MACRUM 6:40e873bbc5f7 6487 * @brief Sum of the squares of the elements of a Q15 vector.
MACRUM 6:40e873bbc5f7 6488 * @param[in] *pSrc is input pointer
MACRUM 6:40e873bbc5f7 6489 * @param[in] blockSize is the number of samples to process
MACRUM 6:40e873bbc5f7 6490 * @param[out] *pResult is output value.
MACRUM 6:40e873bbc5f7 6491 * @return none.
MACRUM 6:40e873bbc5f7 6492 */
MACRUM 6:40e873bbc5f7 6493
MACRUM 6:40e873bbc5f7 6494 void arm_power_q15(
MACRUM 6:40e873bbc5f7 6495 q15_t * pSrc,
MACRUM 6:40e873bbc5f7 6496 uint32_t blockSize,
MACRUM 6:40e873bbc5f7 6497 q63_t * pResult);
MACRUM 6:40e873bbc5f7 6498
MACRUM 6:40e873bbc5f7 6499 /**
MACRUM 6:40e873bbc5f7 6500 * @brief Sum of the squares of the elements of a Q7 vector.
MACRUM 6:40e873bbc5f7 6501 * @param[in] *pSrc is input pointer
MACRUM 6:40e873bbc5f7 6502 * @param[in] blockSize is the number of samples to process
MACRUM 6:40e873bbc5f7 6503 * @param[out] *pResult is output value.
MACRUM 6:40e873bbc5f7 6504 * @return none.
MACRUM 6:40e873bbc5f7 6505 */
MACRUM 6:40e873bbc5f7 6506
MACRUM 6:40e873bbc5f7 6507 void arm_power_q7(
MACRUM 6:40e873bbc5f7 6508 q7_t * pSrc,
MACRUM 6:40e873bbc5f7 6509 uint32_t blockSize,
MACRUM 6:40e873bbc5f7 6510 q31_t * pResult);
MACRUM 6:40e873bbc5f7 6511
MACRUM 6:40e873bbc5f7 6512 /**
MACRUM 6:40e873bbc5f7 6513 * @brief Mean value of a Q7 vector.
MACRUM 6:40e873bbc5f7 6514 * @param[in] *pSrc is input pointer
MACRUM 6:40e873bbc5f7 6515 * @param[in] blockSize is the number of samples to process
MACRUM 6:40e873bbc5f7 6516 * @param[out] *pResult is output value.
MACRUM 6:40e873bbc5f7 6517 * @return none.
MACRUM 6:40e873bbc5f7 6518 */
MACRUM 6:40e873bbc5f7 6519
MACRUM 6:40e873bbc5f7 6520 void arm_mean_q7(
MACRUM 6:40e873bbc5f7 6521 q7_t * pSrc,
MACRUM 6:40e873bbc5f7 6522 uint32_t blockSize,
MACRUM 6:40e873bbc5f7 6523 q7_t * pResult);
MACRUM 6:40e873bbc5f7 6524
MACRUM 6:40e873bbc5f7 6525 /**
MACRUM 6:40e873bbc5f7 6526 * @brief Mean value of a Q15 vector.
MACRUM 6:40e873bbc5f7 6527 * @param[in] *pSrc is input pointer
MACRUM 6:40e873bbc5f7 6528 * @param[in] blockSize is the number of samples to process
MACRUM 6:40e873bbc5f7 6529 * @param[out] *pResult is output value.
MACRUM 6:40e873bbc5f7 6530 * @return none.
MACRUM 6:40e873bbc5f7 6531 */
MACRUM 6:40e873bbc5f7 6532 void arm_mean_q15(
MACRUM 6:40e873bbc5f7 6533 q15_t * pSrc,
MACRUM 6:40e873bbc5f7 6534 uint32_t blockSize,
MACRUM 6:40e873bbc5f7 6535 q15_t * pResult);
MACRUM 6:40e873bbc5f7 6536
MACRUM 6:40e873bbc5f7 6537 /**
MACRUM 6:40e873bbc5f7 6538 * @brief Mean value of a Q31 vector.
MACRUM 6:40e873bbc5f7 6539 * @param[in] *pSrc is input pointer
MACRUM 6:40e873bbc5f7 6540 * @param[in] blockSize is the number of samples to process
MACRUM 6:40e873bbc5f7 6541 * @param[out] *pResult is output value.
MACRUM 6:40e873bbc5f7 6542 * @return none.
MACRUM 6:40e873bbc5f7 6543 */
MACRUM 6:40e873bbc5f7 6544 void arm_mean_q31(
MACRUM 6:40e873bbc5f7 6545 q31_t * pSrc,
MACRUM 6:40e873bbc5f7 6546 uint32_t blockSize,
MACRUM 6:40e873bbc5f7 6547 q31_t * pResult);
MACRUM 6:40e873bbc5f7 6548
MACRUM 6:40e873bbc5f7 6549 /**
MACRUM 6:40e873bbc5f7 6550 * @brief Mean value of a floating-point vector.
MACRUM 6:40e873bbc5f7 6551 * @param[in] *pSrc is input pointer
MACRUM 6:40e873bbc5f7 6552 * @param[in] blockSize is the number of samples to process
MACRUM 6:40e873bbc5f7 6553 * @param[out] *pResult is output value.
MACRUM 6:40e873bbc5f7 6554 * @return none.
MACRUM 6:40e873bbc5f7 6555 */
MACRUM 6:40e873bbc5f7 6556 void arm_mean_f32(
MACRUM 6:40e873bbc5f7 6557 float32_t * pSrc,
MACRUM 6:40e873bbc5f7 6558 uint32_t blockSize,
MACRUM 6:40e873bbc5f7 6559 float32_t * pResult);
MACRUM 6:40e873bbc5f7 6560
MACRUM 6:40e873bbc5f7 6561 /**
MACRUM 6:40e873bbc5f7 6562 * @brief Variance of the elements of a floating-point vector.
MACRUM 6:40e873bbc5f7 6563 * @param[in] *pSrc is input pointer
MACRUM 6:40e873bbc5f7 6564 * @param[in] blockSize is the number of samples to process
MACRUM 6:40e873bbc5f7 6565 * @param[out] *pResult is output value.
MACRUM 6:40e873bbc5f7 6566 * @return none.
MACRUM 6:40e873bbc5f7 6567 */
MACRUM 6:40e873bbc5f7 6568
MACRUM 6:40e873bbc5f7 6569 void arm_var_f32(
MACRUM 6:40e873bbc5f7 6570 float32_t * pSrc,
MACRUM 6:40e873bbc5f7 6571 uint32_t blockSize,
MACRUM 6:40e873bbc5f7 6572 float32_t * pResult);
MACRUM 6:40e873bbc5f7 6573
MACRUM 6:40e873bbc5f7 6574 /**
MACRUM 6:40e873bbc5f7 6575 * @brief Variance of the elements of a Q31 vector.
MACRUM 6:40e873bbc5f7 6576 * @param[in] *pSrc is input pointer
MACRUM 6:40e873bbc5f7 6577 * @param[in] blockSize is the number of samples to process
MACRUM 6:40e873bbc5f7 6578 * @param[out] *pResult is output value.
MACRUM 6:40e873bbc5f7 6579 * @return none.
MACRUM 6:40e873bbc5f7 6580 */
MACRUM 6:40e873bbc5f7 6581
MACRUM 6:40e873bbc5f7 6582 void arm_var_q31(
MACRUM 6:40e873bbc5f7 6583 q31_t * pSrc,
MACRUM 6:40e873bbc5f7 6584 uint32_t blockSize,
MACRUM 6:40e873bbc5f7 6585 q31_t * pResult);
MACRUM 6:40e873bbc5f7 6586
MACRUM 6:40e873bbc5f7 6587 /**
MACRUM 6:40e873bbc5f7 6588 * @brief Variance of the elements of a Q15 vector.
MACRUM 6:40e873bbc5f7 6589 * @param[in] *pSrc is input pointer
MACRUM 6:40e873bbc5f7 6590 * @param[in] blockSize is the number of samples to process
MACRUM 6:40e873bbc5f7 6591 * @param[out] *pResult is output value.
MACRUM 6:40e873bbc5f7 6592 * @return none.
MACRUM 6:40e873bbc5f7 6593 */
MACRUM 6:40e873bbc5f7 6594
MACRUM 6:40e873bbc5f7 6595 void arm_var_q15(
MACRUM 6:40e873bbc5f7 6596 q15_t * pSrc,
MACRUM 6:40e873bbc5f7 6597 uint32_t blockSize,
MACRUM 6:40e873bbc5f7 6598 q15_t * pResult);
MACRUM 6:40e873bbc5f7 6599
MACRUM 6:40e873bbc5f7 6600 /**
MACRUM 6:40e873bbc5f7 6601 * @brief Root Mean Square of the elements of a floating-point vector.
MACRUM 6:40e873bbc5f7 6602 * @param[in] *pSrc is input pointer
MACRUM 6:40e873bbc5f7 6603 * @param[in] blockSize is the number of samples to process
MACRUM 6:40e873bbc5f7 6604 * @param[out] *pResult is output value.
MACRUM 6:40e873bbc5f7 6605 * @return none.
MACRUM 6:40e873bbc5f7 6606 */
MACRUM 6:40e873bbc5f7 6607
MACRUM 6:40e873bbc5f7 6608 void arm_rms_f32(
MACRUM 6:40e873bbc5f7 6609 float32_t * pSrc,
MACRUM 6:40e873bbc5f7 6610 uint32_t blockSize,
MACRUM 6:40e873bbc5f7 6611 float32_t * pResult);
MACRUM 6:40e873bbc5f7 6612
MACRUM 6:40e873bbc5f7 6613 /**
MACRUM 6:40e873bbc5f7 6614 * @brief Root Mean Square of the elements of a Q31 vector.
MACRUM 6:40e873bbc5f7 6615 * @param[in] *pSrc is input pointer
MACRUM 6:40e873bbc5f7 6616 * @param[in] blockSize is the number of samples to process
MACRUM 6:40e873bbc5f7 6617 * @param[out] *pResult is output value.
MACRUM 6:40e873bbc5f7 6618 * @return none.
MACRUM 6:40e873bbc5f7 6619 */
MACRUM 6:40e873bbc5f7 6620
MACRUM 6:40e873bbc5f7 6621 void arm_rms_q31(
MACRUM 6:40e873bbc5f7 6622 q31_t * pSrc,
MACRUM 6:40e873bbc5f7 6623 uint32_t blockSize,
MACRUM 6:40e873bbc5f7 6624 q31_t * pResult);
MACRUM 6:40e873bbc5f7 6625
MACRUM 6:40e873bbc5f7 6626 /**
MACRUM 6:40e873bbc5f7 6627 * @brief Root Mean Square of the elements of a Q15 vector.
MACRUM 6:40e873bbc5f7 6628 * @param[in] *pSrc is input pointer
MACRUM 6:40e873bbc5f7 6629 * @param[in] blockSize is the number of samples to process
MACRUM 6:40e873bbc5f7 6630 * @param[out] *pResult is output value.
MACRUM 6:40e873bbc5f7 6631 * @return none.
MACRUM 6:40e873bbc5f7 6632 */
MACRUM 6:40e873bbc5f7 6633
MACRUM 6:40e873bbc5f7 6634 void arm_rms_q15(
MACRUM 6:40e873bbc5f7 6635 q15_t * pSrc,
MACRUM 6:40e873bbc5f7 6636 uint32_t blockSize,
MACRUM 6:40e873bbc5f7 6637 q15_t * pResult);
MACRUM 6:40e873bbc5f7 6638
MACRUM 6:40e873bbc5f7 6639 /**
MACRUM 6:40e873bbc5f7 6640 * @brief Standard deviation of the elements of a floating-point vector.
MACRUM 6:40e873bbc5f7 6641 * @param[in] *pSrc is input pointer
MACRUM 6:40e873bbc5f7 6642 * @param[in] blockSize is the number of samples to process
MACRUM 6:40e873bbc5f7 6643 * @param[out] *pResult is output value.
MACRUM 6:40e873bbc5f7 6644 * @return none.
MACRUM 6:40e873bbc5f7 6645 */
MACRUM 6:40e873bbc5f7 6646
MACRUM 6:40e873bbc5f7 6647 void arm_std_f32(
MACRUM 6:40e873bbc5f7 6648 float32_t * pSrc,
MACRUM 6:40e873bbc5f7 6649 uint32_t blockSize,
MACRUM 6:40e873bbc5f7 6650 float32_t * pResult);
MACRUM 6:40e873bbc5f7 6651
MACRUM 6:40e873bbc5f7 6652 /**
MACRUM 6:40e873bbc5f7 6653 * @brief Standard deviation of the elements of a Q31 vector.
MACRUM 6:40e873bbc5f7 6654 * @param[in] *pSrc is input pointer
MACRUM 6:40e873bbc5f7 6655 * @param[in] blockSize is the number of samples to process
MACRUM 6:40e873bbc5f7 6656 * @param[out] *pResult is output value.
MACRUM 6:40e873bbc5f7 6657 * @return none.
MACRUM 6:40e873bbc5f7 6658 */
MACRUM 6:40e873bbc5f7 6659
MACRUM 6:40e873bbc5f7 6660 void arm_std_q31(
MACRUM 6:40e873bbc5f7 6661 q31_t * pSrc,
MACRUM 6:40e873bbc5f7 6662 uint32_t blockSize,
MACRUM 6:40e873bbc5f7 6663 q31_t * pResult);
MACRUM 6:40e873bbc5f7 6664
MACRUM 6:40e873bbc5f7 6665 /**
MACRUM 6:40e873bbc5f7 6666 * @brief Standard deviation of the elements of a Q15 vector.
MACRUM 6:40e873bbc5f7 6667 * @param[in] *pSrc is input pointer
MACRUM 6:40e873bbc5f7 6668 * @param[in] blockSize is the number of samples to process
MACRUM 6:40e873bbc5f7 6669 * @param[out] *pResult is output value.
MACRUM 6:40e873bbc5f7 6670 * @return none.
MACRUM 6:40e873bbc5f7 6671 */
MACRUM 6:40e873bbc5f7 6672
MACRUM 6:40e873bbc5f7 6673 void arm_std_q15(
MACRUM 6:40e873bbc5f7 6674 q15_t * pSrc,
MACRUM 6:40e873bbc5f7 6675 uint32_t blockSize,
MACRUM 6:40e873bbc5f7 6676 q15_t * pResult);
MACRUM 6:40e873bbc5f7 6677
MACRUM 6:40e873bbc5f7 6678 /**
MACRUM 6:40e873bbc5f7 6679 * @brief Floating-point complex magnitude
MACRUM 6:40e873bbc5f7 6680 * @param[in] *pSrc points to the complex input vector
MACRUM 6:40e873bbc5f7 6681 * @param[out] *pDst points to the real output vector
MACRUM 6:40e873bbc5f7 6682 * @param[in] numSamples number of complex samples in the input vector
MACRUM 6:40e873bbc5f7 6683 * @return none.
MACRUM 6:40e873bbc5f7 6684 */
MACRUM 6:40e873bbc5f7 6685
MACRUM 6:40e873bbc5f7 6686 void arm_cmplx_mag_f32(
MACRUM 6:40e873bbc5f7 6687 float32_t * pSrc,
MACRUM 6:40e873bbc5f7 6688 float32_t * pDst,
MACRUM 6:40e873bbc5f7 6689 uint32_t numSamples);
MACRUM 6:40e873bbc5f7 6690
MACRUM 6:40e873bbc5f7 6691 /**
MACRUM 6:40e873bbc5f7 6692 * @brief Q31 complex magnitude
MACRUM 6:40e873bbc5f7 6693 * @param[in] *pSrc points to the complex input vector
MACRUM 6:40e873bbc5f7 6694 * @param[out] *pDst points to the real output vector
MACRUM 6:40e873bbc5f7 6695 * @param[in] numSamples number of complex samples in the input vector
MACRUM 6:40e873bbc5f7 6696 * @return none.
MACRUM 6:40e873bbc5f7 6697 */
MACRUM 6:40e873bbc5f7 6698
MACRUM 6:40e873bbc5f7 6699 void arm_cmplx_mag_q31(
MACRUM 6:40e873bbc5f7 6700 q31_t * pSrc,
MACRUM 6:40e873bbc5f7 6701 q31_t * pDst,
MACRUM 6:40e873bbc5f7 6702 uint32_t numSamples);
MACRUM 6:40e873bbc5f7 6703
MACRUM 6:40e873bbc5f7 6704 /**
MACRUM 6:40e873bbc5f7 6705 * @brief Q15 complex magnitude
MACRUM 6:40e873bbc5f7 6706 * @param[in] *pSrc points to the complex input vector
MACRUM 6:40e873bbc5f7 6707 * @param[out] *pDst points to the real output vector
MACRUM 6:40e873bbc5f7 6708 * @param[in] numSamples number of complex samples in the input vector
MACRUM 6:40e873bbc5f7 6709 * @return none.
MACRUM 6:40e873bbc5f7 6710 */
MACRUM 6:40e873bbc5f7 6711
MACRUM 6:40e873bbc5f7 6712 void arm_cmplx_mag_q15(
MACRUM 6:40e873bbc5f7 6713 q15_t * pSrc,
MACRUM 6:40e873bbc5f7 6714 q15_t * pDst,
MACRUM 6:40e873bbc5f7 6715 uint32_t numSamples);
MACRUM 6:40e873bbc5f7 6716
MACRUM 6:40e873bbc5f7 6717 /**
MACRUM 6:40e873bbc5f7 6718 * @brief Q15 complex dot product
MACRUM 6:40e873bbc5f7 6719 * @param[in] *pSrcA points to the first input vector
MACRUM 6:40e873bbc5f7 6720 * @param[in] *pSrcB points to the second input vector
MACRUM 6:40e873bbc5f7 6721 * @param[in] numSamples number of complex samples in each vector
MACRUM 6:40e873bbc5f7 6722 * @param[out] *realResult real part of the result returned here
MACRUM 6:40e873bbc5f7 6723 * @param[out] *imagResult imaginary part of the result returned here
MACRUM 6:40e873bbc5f7 6724 * @return none.
MACRUM 6:40e873bbc5f7 6725 */
MACRUM 6:40e873bbc5f7 6726
MACRUM 6:40e873bbc5f7 6727 void arm_cmplx_dot_prod_q15(
MACRUM 6:40e873bbc5f7 6728 q15_t * pSrcA,
MACRUM 6:40e873bbc5f7 6729 q15_t * pSrcB,
MACRUM 6:40e873bbc5f7 6730 uint32_t numSamples,
MACRUM 6:40e873bbc5f7 6731 q31_t * realResult,
MACRUM 6:40e873bbc5f7 6732 q31_t * imagResult);
MACRUM 6:40e873bbc5f7 6733
MACRUM 6:40e873bbc5f7 6734 /**
MACRUM 6:40e873bbc5f7 6735 * @brief Q31 complex dot product
MACRUM 6:40e873bbc5f7 6736 * @param[in] *pSrcA points to the first input vector
MACRUM 6:40e873bbc5f7 6737 * @param[in] *pSrcB points to the second input vector
MACRUM 6:40e873bbc5f7 6738 * @param[in] numSamples number of complex samples in each vector
MACRUM 6:40e873bbc5f7 6739 * @param[out] *realResult real part of the result returned here
MACRUM 6:40e873bbc5f7 6740 * @param[out] *imagResult imaginary part of the result returned here
MACRUM 6:40e873bbc5f7 6741 * @return none.
MACRUM 6:40e873bbc5f7 6742 */
MACRUM 6:40e873bbc5f7 6743
MACRUM 6:40e873bbc5f7 6744 void arm_cmplx_dot_prod_q31(
MACRUM 6:40e873bbc5f7 6745 q31_t * pSrcA,
MACRUM 6:40e873bbc5f7 6746 q31_t * pSrcB,
MACRUM 6:40e873bbc5f7 6747 uint32_t numSamples,
MACRUM 6:40e873bbc5f7 6748 q63_t * realResult,
MACRUM 6:40e873bbc5f7 6749 q63_t * imagResult);
MACRUM 6:40e873bbc5f7 6750
MACRUM 6:40e873bbc5f7 6751 /**
MACRUM 6:40e873bbc5f7 6752 * @brief Floating-point complex dot product
MACRUM 6:40e873bbc5f7 6753 * @param[in] *pSrcA points to the first input vector
MACRUM 6:40e873bbc5f7 6754 * @param[in] *pSrcB points to the second input vector
MACRUM 6:40e873bbc5f7 6755 * @param[in] numSamples number of complex samples in each vector
MACRUM 6:40e873bbc5f7 6756 * @param[out] *realResult real part of the result returned here
MACRUM 6:40e873bbc5f7 6757 * @param[out] *imagResult imaginary part of the result returned here
MACRUM 6:40e873bbc5f7 6758 * @return none.
MACRUM 6:40e873bbc5f7 6759 */
MACRUM 6:40e873bbc5f7 6760
MACRUM 6:40e873bbc5f7 6761 void arm_cmplx_dot_prod_f32(
MACRUM 6:40e873bbc5f7 6762 float32_t * pSrcA,
MACRUM 6:40e873bbc5f7 6763 float32_t * pSrcB,
MACRUM 6:40e873bbc5f7 6764 uint32_t numSamples,
MACRUM 6:40e873bbc5f7 6765 float32_t * realResult,
MACRUM 6:40e873bbc5f7 6766 float32_t * imagResult);
MACRUM 6:40e873bbc5f7 6767
MACRUM 6:40e873bbc5f7 6768 /**
MACRUM 6:40e873bbc5f7 6769 * @brief Q15 complex-by-real multiplication
MACRUM 6:40e873bbc5f7 6770 * @param[in] *pSrcCmplx points to the complex input vector
MACRUM 6:40e873bbc5f7 6771 * @param[in] *pSrcReal points to the real input vector
MACRUM 6:40e873bbc5f7 6772 * @param[out] *pCmplxDst points to the complex output vector
MACRUM 6:40e873bbc5f7 6773 * @param[in] numSamples number of samples in each vector
MACRUM 6:40e873bbc5f7 6774 * @return none.
MACRUM 6:40e873bbc5f7 6775 */
MACRUM 6:40e873bbc5f7 6776
MACRUM 6:40e873bbc5f7 6777 void arm_cmplx_mult_real_q15(
MACRUM 6:40e873bbc5f7 6778 q15_t * pSrcCmplx,
MACRUM 6:40e873bbc5f7 6779 q15_t * pSrcReal,
MACRUM 6:40e873bbc5f7 6780 q15_t * pCmplxDst,
MACRUM 6:40e873bbc5f7 6781 uint32_t numSamples);
MACRUM 6:40e873bbc5f7 6782
MACRUM 6:40e873bbc5f7 6783 /**
MACRUM 6:40e873bbc5f7 6784 * @brief Q31 complex-by-real multiplication
MACRUM 6:40e873bbc5f7 6785 * @param[in] *pSrcCmplx points to the complex input vector
MACRUM 6:40e873bbc5f7 6786 * @param[in] *pSrcReal points to the real input vector
MACRUM 6:40e873bbc5f7 6787 * @param[out] *pCmplxDst points to the complex output vector
MACRUM 6:40e873bbc5f7 6788 * @param[in] numSamples number of samples in each vector
MACRUM 6:40e873bbc5f7 6789 * @return none.
MACRUM 6:40e873bbc5f7 6790 */
MACRUM 6:40e873bbc5f7 6791
MACRUM 6:40e873bbc5f7 6792 void arm_cmplx_mult_real_q31(
MACRUM 6:40e873bbc5f7 6793 q31_t * pSrcCmplx,
MACRUM 6:40e873bbc5f7 6794 q31_t * pSrcReal,
MACRUM 6:40e873bbc5f7 6795 q31_t * pCmplxDst,
MACRUM 6:40e873bbc5f7 6796 uint32_t numSamples);
MACRUM 6:40e873bbc5f7 6797
MACRUM 6:40e873bbc5f7 6798 /**
MACRUM 6:40e873bbc5f7 6799 * @brief Floating-point complex-by-real multiplication
MACRUM 6:40e873bbc5f7 6800 * @param[in] *pSrcCmplx points to the complex input vector
MACRUM 6:40e873bbc5f7 6801 * @param[in] *pSrcReal points to the real input vector
MACRUM 6:40e873bbc5f7 6802 * @param[out] *pCmplxDst points to the complex output vector
MACRUM 6:40e873bbc5f7 6803 * @param[in] numSamples number of samples in each vector
MACRUM 6:40e873bbc5f7 6804 * @return none.
MACRUM 6:40e873bbc5f7 6805 */
MACRUM 6:40e873bbc5f7 6806
MACRUM 6:40e873bbc5f7 6807 void arm_cmplx_mult_real_f32(
MACRUM 6:40e873bbc5f7 6808 float32_t * pSrcCmplx,
MACRUM 6:40e873bbc5f7 6809 float32_t * pSrcReal,
MACRUM 6:40e873bbc5f7 6810 float32_t * pCmplxDst,
MACRUM 6:40e873bbc5f7 6811 uint32_t numSamples);
MACRUM 6:40e873bbc5f7 6812
MACRUM 6:40e873bbc5f7 6813 /**
MACRUM 6:40e873bbc5f7 6814 * @brief Minimum value of a Q7 vector.
MACRUM 6:40e873bbc5f7 6815 * @param[in] *pSrc is input pointer
MACRUM 6:40e873bbc5f7 6816 * @param[in] blockSize is the number of samples to process
MACRUM 6:40e873bbc5f7 6817 * @param[out] *result is output pointer
MACRUM 6:40e873bbc5f7 6818 * @param[in] index is the array index of the minimum value in the input buffer.
MACRUM 6:40e873bbc5f7 6819 * @return none.
MACRUM 6:40e873bbc5f7 6820 */
MACRUM 6:40e873bbc5f7 6821
MACRUM 6:40e873bbc5f7 6822 void arm_min_q7(
MACRUM 6:40e873bbc5f7 6823 q7_t * pSrc,
MACRUM 6:40e873bbc5f7 6824 uint32_t blockSize,
MACRUM 6:40e873bbc5f7 6825 q7_t * result,
MACRUM 6:40e873bbc5f7 6826 uint32_t * index);
MACRUM 6:40e873bbc5f7 6827
MACRUM 6:40e873bbc5f7 6828 /**
MACRUM 6:40e873bbc5f7 6829 * @brief Minimum value of a Q15 vector.
MACRUM 6:40e873bbc5f7 6830 * @param[in] *pSrc is input pointer
MACRUM 6:40e873bbc5f7 6831 * @param[in] blockSize is the number of samples to process
MACRUM 6:40e873bbc5f7 6832 * @param[out] *pResult is output pointer
MACRUM 6:40e873bbc5f7 6833 * @param[in] *pIndex is the array index of the minimum value in the input buffer.
MACRUM 6:40e873bbc5f7 6834 * @return none.
MACRUM 6:40e873bbc5f7 6835 */
MACRUM 6:40e873bbc5f7 6836
MACRUM 6:40e873bbc5f7 6837 void arm_min_q15(
MACRUM 6:40e873bbc5f7 6838 q15_t * pSrc,
MACRUM 6:40e873bbc5f7 6839 uint32_t blockSize,
MACRUM 6:40e873bbc5f7 6840 q15_t * pResult,
MACRUM 6:40e873bbc5f7 6841 uint32_t * pIndex);
MACRUM 6:40e873bbc5f7 6842
MACRUM 6:40e873bbc5f7 6843 /**
MACRUM 6:40e873bbc5f7 6844 * @brief Minimum value of a Q31 vector.
MACRUM 6:40e873bbc5f7 6845 * @param[in] *pSrc is input pointer
MACRUM 6:40e873bbc5f7 6846 * @param[in] blockSize is the number of samples to process
MACRUM 6:40e873bbc5f7 6847 * @param[out] *pResult is output pointer
MACRUM 6:40e873bbc5f7 6848 * @param[out] *pIndex is the array index of the minimum value in the input buffer.
MACRUM 6:40e873bbc5f7 6849 * @return none.
MACRUM 6:40e873bbc5f7 6850 */
MACRUM 6:40e873bbc5f7 6851 void arm_min_q31(
MACRUM 6:40e873bbc5f7 6852 q31_t * pSrc,
MACRUM 6:40e873bbc5f7 6853 uint32_t blockSize,
MACRUM 6:40e873bbc5f7 6854 q31_t * pResult,
MACRUM 6:40e873bbc5f7 6855 uint32_t * pIndex);
MACRUM 6:40e873bbc5f7 6856
MACRUM 6:40e873bbc5f7 6857 /**
MACRUM 6:40e873bbc5f7 6858 * @brief Minimum value of a floating-point vector.
MACRUM 6:40e873bbc5f7 6859 * @param[in] *pSrc is input pointer
MACRUM 6:40e873bbc5f7 6860 * @param[in] blockSize is the number of samples to process
MACRUM 6:40e873bbc5f7 6861 * @param[out] *pResult is output pointer
MACRUM 6:40e873bbc5f7 6862 * @param[out] *pIndex is the array index of the minimum value in the input buffer.
MACRUM 6:40e873bbc5f7 6863 * @return none.
MACRUM 6:40e873bbc5f7 6864 */
MACRUM 6:40e873bbc5f7 6865
MACRUM 6:40e873bbc5f7 6866 void arm_min_f32(
MACRUM 6:40e873bbc5f7 6867 float32_t * pSrc,
MACRUM 6:40e873bbc5f7 6868 uint32_t blockSize,
MACRUM 6:40e873bbc5f7 6869 float32_t * pResult,
MACRUM 6:40e873bbc5f7 6870 uint32_t * pIndex);
MACRUM 6:40e873bbc5f7 6871
MACRUM 6:40e873bbc5f7 6872 /**
MACRUM 6:40e873bbc5f7 6873 * @brief Maximum value of a Q7 vector.
MACRUM 6:40e873bbc5f7 6874 * @param[in] *pSrc points to the input buffer
MACRUM 6:40e873bbc5f7 6875 * @param[in] blockSize length of the input vector
MACRUM 6:40e873bbc5f7 6876 * @param[out] *pResult maximum value returned here
MACRUM 6:40e873bbc5f7 6877 * @param[out] *pIndex index of maximum value returned here
MACRUM 6:40e873bbc5f7 6878 * @return none.
MACRUM 6:40e873bbc5f7 6879 */
MACRUM 6:40e873bbc5f7 6880
MACRUM 6:40e873bbc5f7 6881 void arm_max_q7(
MACRUM 6:40e873bbc5f7 6882 q7_t * pSrc,
MACRUM 6:40e873bbc5f7 6883 uint32_t blockSize,
MACRUM 6:40e873bbc5f7 6884 q7_t * pResult,
MACRUM 6:40e873bbc5f7 6885 uint32_t * pIndex);
MACRUM 6:40e873bbc5f7 6886
MACRUM 6:40e873bbc5f7 6887 /**
MACRUM 6:40e873bbc5f7 6888 * @brief Maximum value of a Q15 vector.
MACRUM 6:40e873bbc5f7 6889 * @param[in] *pSrc points to the input buffer
MACRUM 6:40e873bbc5f7 6890 * @param[in] blockSize length of the input vector
MACRUM 6:40e873bbc5f7 6891 * @param[out] *pResult maximum value returned here
MACRUM 6:40e873bbc5f7 6892 * @param[out] *pIndex index of maximum value returned here
MACRUM 6:40e873bbc5f7 6893 * @return none.
MACRUM 6:40e873bbc5f7 6894 */
MACRUM 6:40e873bbc5f7 6895
MACRUM 6:40e873bbc5f7 6896 void arm_max_q15(
MACRUM 6:40e873bbc5f7 6897 q15_t * pSrc,
MACRUM 6:40e873bbc5f7 6898 uint32_t blockSize,
MACRUM 6:40e873bbc5f7 6899 q15_t * pResult,
MACRUM 6:40e873bbc5f7 6900 uint32_t * pIndex);
MACRUM 6:40e873bbc5f7 6901
MACRUM 6:40e873bbc5f7 6902 /**
MACRUM 6:40e873bbc5f7 6903 * @brief Maximum value of a Q31 vector.
MACRUM 6:40e873bbc5f7 6904 * @param[in] *pSrc points to the input buffer
MACRUM 6:40e873bbc5f7 6905 * @param[in] blockSize length of the input vector
MACRUM 6:40e873bbc5f7 6906 * @param[out] *pResult maximum value returned here
MACRUM 6:40e873bbc5f7 6907 * @param[out] *pIndex index of maximum value returned here
MACRUM 6:40e873bbc5f7 6908 * @return none.
MACRUM 6:40e873bbc5f7 6909 */
MACRUM 6:40e873bbc5f7 6910
MACRUM 6:40e873bbc5f7 6911 void arm_max_q31(
MACRUM 6:40e873bbc5f7 6912 q31_t * pSrc,
MACRUM 6:40e873bbc5f7 6913 uint32_t blockSize,
MACRUM 6:40e873bbc5f7 6914 q31_t * pResult,
MACRUM 6:40e873bbc5f7 6915 uint32_t * pIndex);
MACRUM 6:40e873bbc5f7 6916
MACRUM 6:40e873bbc5f7 6917 /**
MACRUM 6:40e873bbc5f7 6918 * @brief Maximum value of a floating-point vector.
MACRUM 6:40e873bbc5f7 6919 * @param[in] *pSrc points to the input buffer
MACRUM 6:40e873bbc5f7 6920 * @param[in] blockSize length of the input vector
MACRUM 6:40e873bbc5f7 6921 * @param[out] *pResult maximum value returned here
MACRUM 6:40e873bbc5f7 6922 * @param[out] *pIndex index of maximum value returned here
MACRUM 6:40e873bbc5f7 6923 * @return none.
MACRUM 6:40e873bbc5f7 6924 */
MACRUM 6:40e873bbc5f7 6925
MACRUM 6:40e873bbc5f7 6926 void arm_max_f32(
MACRUM 6:40e873bbc5f7 6927 float32_t * pSrc,
MACRUM 6:40e873bbc5f7 6928 uint32_t blockSize,
MACRUM 6:40e873bbc5f7 6929 float32_t * pResult,
MACRUM 6:40e873bbc5f7 6930 uint32_t * pIndex);
MACRUM 6:40e873bbc5f7 6931
MACRUM 6:40e873bbc5f7 6932 /**
MACRUM 6:40e873bbc5f7 6933 * @brief Q15 complex-by-complex multiplication
MACRUM 6:40e873bbc5f7 6934 * @param[in] *pSrcA points to the first input vector
MACRUM 6:40e873bbc5f7 6935 * @param[in] *pSrcB points to the second input vector
MACRUM 6:40e873bbc5f7 6936 * @param[out] *pDst points to the output vector
MACRUM 6:40e873bbc5f7 6937 * @param[in] numSamples number of complex samples in each vector
MACRUM 6:40e873bbc5f7 6938 * @return none.
MACRUM 6:40e873bbc5f7 6939 */
MACRUM 6:40e873bbc5f7 6940
MACRUM 6:40e873bbc5f7 6941 void arm_cmplx_mult_cmplx_q15(
MACRUM 6:40e873bbc5f7 6942 q15_t * pSrcA,
MACRUM 6:40e873bbc5f7 6943 q15_t * pSrcB,
MACRUM 6:40e873bbc5f7 6944 q15_t * pDst,
MACRUM 6:40e873bbc5f7 6945 uint32_t numSamples);
MACRUM 6:40e873bbc5f7 6946
MACRUM 6:40e873bbc5f7 6947 /**
MACRUM 6:40e873bbc5f7 6948 * @brief Q31 complex-by-complex multiplication
MACRUM 6:40e873bbc5f7 6949 * @param[in] *pSrcA points to the first input vector
MACRUM 6:40e873bbc5f7 6950 * @param[in] *pSrcB points to the second input vector
MACRUM 6:40e873bbc5f7 6951 * @param[out] *pDst points to the output vector
MACRUM 6:40e873bbc5f7 6952 * @param[in] numSamples number of complex samples in each vector
MACRUM 6:40e873bbc5f7 6953 * @return none.
MACRUM 6:40e873bbc5f7 6954 */
MACRUM 6:40e873bbc5f7 6955
MACRUM 6:40e873bbc5f7 6956 void arm_cmplx_mult_cmplx_q31(
MACRUM 6:40e873bbc5f7 6957 q31_t * pSrcA,
MACRUM 6:40e873bbc5f7 6958 q31_t * pSrcB,
MACRUM 6:40e873bbc5f7 6959 q31_t * pDst,
MACRUM 6:40e873bbc5f7 6960 uint32_t numSamples);
MACRUM 6:40e873bbc5f7 6961
MACRUM 6:40e873bbc5f7 6962 /**
MACRUM 6:40e873bbc5f7 6963 * @brief Floating-point complex-by-complex multiplication
MACRUM 6:40e873bbc5f7 6964 * @param[in] *pSrcA points to the first input vector
MACRUM 6:40e873bbc5f7 6965 * @param[in] *pSrcB points to the second input vector
MACRUM 6:40e873bbc5f7 6966 * @param[out] *pDst points to the output vector
MACRUM 6:40e873bbc5f7 6967 * @param[in] numSamples number of complex samples in each vector
MACRUM 6:40e873bbc5f7 6968 * @return none.
MACRUM 6:40e873bbc5f7 6969 */
MACRUM 6:40e873bbc5f7 6970
MACRUM 6:40e873bbc5f7 6971 void arm_cmplx_mult_cmplx_f32(
MACRUM 6:40e873bbc5f7 6972 float32_t * pSrcA,
MACRUM 6:40e873bbc5f7 6973 float32_t * pSrcB,
MACRUM 6:40e873bbc5f7 6974 float32_t * pDst,
MACRUM 6:40e873bbc5f7 6975 uint32_t numSamples);
MACRUM 6:40e873bbc5f7 6976
MACRUM 6:40e873bbc5f7 6977 /**
MACRUM 6:40e873bbc5f7 6978 * @brief Converts the elements of the floating-point vector to Q31 vector.
MACRUM 6:40e873bbc5f7 6979 * @param[in] *pSrc points to the floating-point input vector
MACRUM 6:40e873bbc5f7 6980 * @param[out] *pDst points to the Q31 output vector
MACRUM 6:40e873bbc5f7 6981 * @param[in] blockSize length of the input vector
MACRUM 6:40e873bbc5f7 6982 * @return none.
MACRUM 6:40e873bbc5f7 6983 */
MACRUM 6:40e873bbc5f7 6984 void arm_float_to_q31(
MACRUM 6:40e873bbc5f7 6985 float32_t * pSrc,
MACRUM 6:40e873bbc5f7 6986 q31_t * pDst,
MACRUM 6:40e873bbc5f7 6987 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 6988
MACRUM 6:40e873bbc5f7 6989 /**
MACRUM 6:40e873bbc5f7 6990 * @brief Converts the elements of the floating-point vector to Q15 vector.
MACRUM 6:40e873bbc5f7 6991 * @param[in] *pSrc points to the floating-point input vector
MACRUM 6:40e873bbc5f7 6992 * @param[out] *pDst points to the Q15 output vector
MACRUM 6:40e873bbc5f7 6993 * @param[in] blockSize length of the input vector
MACRUM 6:40e873bbc5f7 6994 * @return none
MACRUM 6:40e873bbc5f7 6995 */
MACRUM 6:40e873bbc5f7 6996 void arm_float_to_q15(
MACRUM 6:40e873bbc5f7 6997 float32_t * pSrc,
MACRUM 6:40e873bbc5f7 6998 q15_t * pDst,
MACRUM 6:40e873bbc5f7 6999 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 7000
MACRUM 6:40e873bbc5f7 7001 /**
MACRUM 6:40e873bbc5f7 7002 * @brief Converts the elements of the floating-point vector to Q7 vector.
MACRUM 6:40e873bbc5f7 7003 * @param[in] *pSrc points to the floating-point input vector
MACRUM 6:40e873bbc5f7 7004 * @param[out] *pDst points to the Q7 output vector
MACRUM 6:40e873bbc5f7 7005 * @param[in] blockSize length of the input vector
MACRUM 6:40e873bbc5f7 7006 * @return none
MACRUM 6:40e873bbc5f7 7007 */
MACRUM 6:40e873bbc5f7 7008 void arm_float_to_q7(
MACRUM 6:40e873bbc5f7 7009 float32_t * pSrc,
MACRUM 6:40e873bbc5f7 7010 q7_t * pDst,
MACRUM 6:40e873bbc5f7 7011 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 7012
MACRUM 6:40e873bbc5f7 7013
MACRUM 6:40e873bbc5f7 7014 /**
MACRUM 6:40e873bbc5f7 7015 * @brief Converts the elements of the Q31 vector to Q15 vector.
MACRUM 6:40e873bbc5f7 7016 * @param[in] *pSrc is input pointer
MACRUM 6:40e873bbc5f7 7017 * @param[out] *pDst is output pointer
MACRUM 6:40e873bbc5f7 7018 * @param[in] blockSize is the number of samples to process
MACRUM 6:40e873bbc5f7 7019 * @return none.
MACRUM 6:40e873bbc5f7 7020 */
MACRUM 6:40e873bbc5f7 7021 void arm_q31_to_q15(
MACRUM 6:40e873bbc5f7 7022 q31_t * pSrc,
MACRUM 6:40e873bbc5f7 7023 q15_t * pDst,
MACRUM 6:40e873bbc5f7 7024 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 7025
MACRUM 6:40e873bbc5f7 7026 /**
MACRUM 6:40e873bbc5f7 7027 * @brief Converts the elements of the Q31 vector to Q7 vector.
MACRUM 6:40e873bbc5f7 7028 * @param[in] *pSrc is input pointer
MACRUM 6:40e873bbc5f7 7029 * @param[out] *pDst is output pointer
MACRUM 6:40e873bbc5f7 7030 * @param[in] blockSize is the number of samples to process
MACRUM 6:40e873bbc5f7 7031 * @return none.
MACRUM 6:40e873bbc5f7 7032 */
MACRUM 6:40e873bbc5f7 7033 void arm_q31_to_q7(
MACRUM 6:40e873bbc5f7 7034 q31_t * pSrc,
MACRUM 6:40e873bbc5f7 7035 q7_t * pDst,
MACRUM 6:40e873bbc5f7 7036 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 7037
MACRUM 6:40e873bbc5f7 7038 /**
MACRUM 6:40e873bbc5f7 7039 * @brief Converts the elements of the Q15 vector to floating-point vector.
MACRUM 6:40e873bbc5f7 7040 * @param[in] *pSrc is input pointer
MACRUM 6:40e873bbc5f7 7041 * @param[out] *pDst is output pointer
MACRUM 6:40e873bbc5f7 7042 * @param[in] blockSize is the number of samples to process
MACRUM 6:40e873bbc5f7 7043 * @return none.
MACRUM 6:40e873bbc5f7 7044 */
MACRUM 6:40e873bbc5f7 7045 void arm_q15_to_float(
MACRUM 6:40e873bbc5f7 7046 q15_t * pSrc,
MACRUM 6:40e873bbc5f7 7047 float32_t * pDst,
MACRUM 6:40e873bbc5f7 7048 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 7049
MACRUM 6:40e873bbc5f7 7050
MACRUM 6:40e873bbc5f7 7051 /**
MACRUM 6:40e873bbc5f7 7052 * @brief Converts the elements of the Q15 vector to Q31 vector.
MACRUM 6:40e873bbc5f7 7053 * @param[in] *pSrc is input pointer
MACRUM 6:40e873bbc5f7 7054 * @param[out] *pDst is output pointer
MACRUM 6:40e873bbc5f7 7055 * @param[in] blockSize is the number of samples to process
MACRUM 6:40e873bbc5f7 7056 * @return none.
MACRUM 6:40e873bbc5f7 7057 */
MACRUM 6:40e873bbc5f7 7058 void arm_q15_to_q31(
MACRUM 6:40e873bbc5f7 7059 q15_t * pSrc,
MACRUM 6:40e873bbc5f7 7060 q31_t * pDst,
MACRUM 6:40e873bbc5f7 7061 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 7062
MACRUM 6:40e873bbc5f7 7063
MACRUM 6:40e873bbc5f7 7064 /**
MACRUM 6:40e873bbc5f7 7065 * @brief Converts the elements of the Q15 vector to Q7 vector.
MACRUM 6:40e873bbc5f7 7066 * @param[in] *pSrc is input pointer
MACRUM 6:40e873bbc5f7 7067 * @param[out] *pDst is output pointer
MACRUM 6:40e873bbc5f7 7068 * @param[in] blockSize is the number of samples to process
MACRUM 6:40e873bbc5f7 7069 * @return none.
MACRUM 6:40e873bbc5f7 7070 */
MACRUM 6:40e873bbc5f7 7071 void arm_q15_to_q7(
MACRUM 6:40e873bbc5f7 7072 q15_t * pSrc,
MACRUM 6:40e873bbc5f7 7073 q7_t * pDst,
MACRUM 6:40e873bbc5f7 7074 uint32_t blockSize);
MACRUM 6:40e873bbc5f7 7075
MACRUM 6:40e873bbc5f7 7076
MACRUM 6:40e873bbc5f7 7077 /**
MACRUM 6:40e873bbc5f7 7078 * @ingroup groupInterpolation
MACRUM 6:40e873bbc5f7 7079 */
MACRUM 6:40e873bbc5f7 7080
MACRUM 6:40e873bbc5f7 7081 /**
MACRUM 6:40e873bbc5f7 7082 * @defgroup BilinearInterpolate Bilinear Interpolation
MACRUM 6:40e873bbc5f7 7083 *
MACRUM 6:40e873bbc5f7 7084 * Bilinear interpolation is an extension of linear interpolation applied to a two dimensional grid.
MACRUM 6:40e873bbc5f7 7085 * The underlying function <code>f(x, y)</code> is sampled on a regular grid and the interpolation process
MACRUM 6:40e873bbc5f7 7086 * determines values between the grid points.
MACRUM 6:40e873bbc5f7 7087 * Bilinear interpolation is equivalent to two step linear interpolation, first in the x-dimension and then in the y-dimension.
MACRUM 6:40e873bbc5f7 7088 * Bilinear interpolation is often used in image processing to rescale images.
MACRUM 6:40e873bbc5f7 7089 * The CMSIS DSP library provides bilinear interpolation functions for Q7, Q15, Q31, and floating-point data types.
MACRUM 6:40e873bbc5f7 7090 *
MACRUM 6:40e873bbc5f7 7091 * <b>Algorithm</b>
MACRUM 6:40e873bbc5f7 7092 * \par
MACRUM 6:40e873bbc5f7 7093 * The instance structure used by the bilinear interpolation functions describes a two dimensional data table.
MACRUM 6:40e873bbc5f7 7094 * For floating-point, the instance structure is defined as:
MACRUM 6:40e873bbc5f7 7095 * <pre>
MACRUM 6:40e873bbc5f7 7096 * typedef struct
MACRUM 6:40e873bbc5f7 7097 * {
MACRUM 6:40e873bbc5f7 7098 * uint16_t numRows;
MACRUM 6:40e873bbc5f7 7099 * uint16_t numCols;
MACRUM 6:40e873bbc5f7 7100 * float32_t *pData;
MACRUM 6:40e873bbc5f7 7101 * } arm_bilinear_interp_instance_f32;
MACRUM 6:40e873bbc5f7 7102 * </pre>
MACRUM 6:40e873bbc5f7 7103 *
MACRUM 6:40e873bbc5f7 7104 * \par
MACRUM 6:40e873bbc5f7 7105 * where <code>numRows</code> specifies the number of rows in the table;
MACRUM 6:40e873bbc5f7 7106 * <code>numCols</code> specifies the number of columns in the table;
MACRUM 6:40e873bbc5f7 7107 * and <code>pData</code> points to an array of size <code>numRows*numCols</code> values.
MACRUM 6:40e873bbc5f7 7108 * The data table <code>pTable</code> is organized in row order and the supplied data values fall on integer indexes.
MACRUM 6:40e873bbc5f7 7109 * That is, table element (x,y) is located at <code>pTable[x + y*numCols]</code> where x and y are integers.
MACRUM 6:40e873bbc5f7 7110 *
MACRUM 6:40e873bbc5f7 7111 * \par
MACRUM 6:40e873bbc5f7 7112 * Let <code>(x, y)</code> specify the desired interpolation point. Then define:
MACRUM 6:40e873bbc5f7 7113 * <pre>
MACRUM 6:40e873bbc5f7 7114 * XF = floor(x)
MACRUM 6:40e873bbc5f7 7115 * YF = floor(y)
MACRUM 6:40e873bbc5f7 7116 * </pre>
MACRUM 6:40e873bbc5f7 7117 * \par
MACRUM 6:40e873bbc5f7 7118 * The interpolated output point is computed as:
MACRUM 6:40e873bbc5f7 7119 * <pre>
MACRUM 6:40e873bbc5f7 7120 * f(x, y) = f(XF, YF) * (1-(x-XF)) * (1-(y-YF))
MACRUM 6:40e873bbc5f7 7121 * + f(XF+1, YF) * (x-XF)*(1-(y-YF))
MACRUM 6:40e873bbc5f7 7122 * + f(XF, YF+1) * (1-(x-XF))*(y-YF)
MACRUM 6:40e873bbc5f7 7123 * + f(XF+1, YF+1) * (x-XF)*(y-YF)
MACRUM 6:40e873bbc5f7 7124 * </pre>
MACRUM 6:40e873bbc5f7 7125 * Note that the coordinates (x, y) contain integer and fractional components.
MACRUM 6:40e873bbc5f7 7126 * The integer components specify which portion of the table to use while the
MACRUM 6:40e873bbc5f7 7127 * fractional components control the interpolation processor.
MACRUM 6:40e873bbc5f7 7128 *
MACRUM 6:40e873bbc5f7 7129 * \par
MACRUM 6:40e873bbc5f7 7130 * if (x,y) are outside of the table boundary, Bilinear interpolation returns zero output.
MACRUM 6:40e873bbc5f7 7131 */
MACRUM 6:40e873bbc5f7 7132
MACRUM 6:40e873bbc5f7 7133 /**
MACRUM 6:40e873bbc5f7 7134 * @addtogroup BilinearInterpolate
MACRUM 6:40e873bbc5f7 7135 * @{
MACRUM 6:40e873bbc5f7 7136 */
MACRUM 6:40e873bbc5f7 7137
MACRUM 6:40e873bbc5f7 7138 /**
MACRUM 6:40e873bbc5f7 7139 *
MACRUM 6:40e873bbc5f7 7140 * @brief Floating-point bilinear interpolation.
MACRUM 6:40e873bbc5f7 7141 * @param[in,out] *S points to an instance of the interpolation structure.
MACRUM 6:40e873bbc5f7 7142 * @param[in] X interpolation coordinate.
MACRUM 6:40e873bbc5f7 7143 * @param[in] Y interpolation coordinate.
MACRUM 6:40e873bbc5f7 7144 * @return out interpolated value.
MACRUM 6:40e873bbc5f7 7145 */
MACRUM 6:40e873bbc5f7 7146
MACRUM 6:40e873bbc5f7 7147
MACRUM 6:40e873bbc5f7 7148 static __INLINE float32_t arm_bilinear_interp_f32(
MACRUM 6:40e873bbc5f7 7149 const arm_bilinear_interp_instance_f32 * S,
MACRUM 6:40e873bbc5f7 7150 float32_t X,
MACRUM 6:40e873bbc5f7 7151 float32_t Y)
MACRUM 6:40e873bbc5f7 7152 {
MACRUM 6:40e873bbc5f7 7153 float32_t out;
MACRUM 6:40e873bbc5f7 7154 float32_t f00, f01, f10, f11;
MACRUM 6:40e873bbc5f7 7155 float32_t *pData = S->pData;
MACRUM 6:40e873bbc5f7 7156 int32_t xIndex, yIndex, index;
MACRUM 6:40e873bbc5f7 7157 float32_t xdiff, ydiff;
MACRUM 6:40e873bbc5f7 7158 float32_t b1, b2, b3, b4;
MACRUM 6:40e873bbc5f7 7159
MACRUM 6:40e873bbc5f7 7160 xIndex = (int32_t) X;
MACRUM 6:40e873bbc5f7 7161 yIndex = (int32_t) Y;
MACRUM 6:40e873bbc5f7 7162
MACRUM 6:40e873bbc5f7 7163 /* Care taken for table outside boundary */
MACRUM 6:40e873bbc5f7 7164 /* Returns zero output when values are outside table boundary */
MACRUM 6:40e873bbc5f7 7165 if(xIndex < 0 || xIndex > (S->numRows - 1) || yIndex < 0
MACRUM 6:40e873bbc5f7 7166 || yIndex > (S->numCols - 1))
MACRUM 6:40e873bbc5f7 7167 {
MACRUM 6:40e873bbc5f7 7168 return (0);
MACRUM 6:40e873bbc5f7 7169 }
MACRUM 6:40e873bbc5f7 7170
MACRUM 6:40e873bbc5f7 7171 /* Calculation of index for two nearest points in X-direction */
MACRUM 6:40e873bbc5f7 7172 index = (xIndex - 1) + (yIndex - 1) * S->numCols;
MACRUM 6:40e873bbc5f7 7173
MACRUM 6:40e873bbc5f7 7174
MACRUM 6:40e873bbc5f7 7175 /* Read two nearest points in X-direction */
MACRUM 6:40e873bbc5f7 7176 f00 = pData[index];
MACRUM 6:40e873bbc5f7 7177 f01 = pData[index + 1];
MACRUM 6:40e873bbc5f7 7178
MACRUM 6:40e873bbc5f7 7179 /* Calculation of index for two nearest points in Y-direction */
MACRUM 6:40e873bbc5f7 7180 index = (xIndex - 1) + (yIndex) * S->numCols;
MACRUM 6:40e873bbc5f7 7181
MACRUM 6:40e873bbc5f7 7182
MACRUM 6:40e873bbc5f7 7183 /* Read two nearest points in Y-direction */
MACRUM 6:40e873bbc5f7 7184 f10 = pData[index];
MACRUM 6:40e873bbc5f7 7185 f11 = pData[index + 1];
MACRUM 6:40e873bbc5f7 7186
MACRUM 6:40e873bbc5f7 7187 /* Calculation of intermediate values */
MACRUM 6:40e873bbc5f7 7188 b1 = f00;
MACRUM 6:40e873bbc5f7 7189 b2 = f01 - f00;
MACRUM 6:40e873bbc5f7 7190 b3 = f10 - f00;
MACRUM 6:40e873bbc5f7 7191 b4 = f00 - f01 - f10 + f11;
MACRUM 6:40e873bbc5f7 7192
MACRUM 6:40e873bbc5f7 7193 /* Calculation of fractional part in X */
MACRUM 6:40e873bbc5f7 7194 xdiff = X - xIndex;
MACRUM 6:40e873bbc5f7 7195
MACRUM 6:40e873bbc5f7 7196 /* Calculation of fractional part in Y */
MACRUM 6:40e873bbc5f7 7197 ydiff = Y - yIndex;
MACRUM 6:40e873bbc5f7 7198
MACRUM 6:40e873bbc5f7 7199 /* Calculation of bi-linear interpolated output */
MACRUM 6:40e873bbc5f7 7200 out = b1 + b2 * xdiff + b3 * ydiff + b4 * xdiff * ydiff;
MACRUM 6:40e873bbc5f7 7201
MACRUM 6:40e873bbc5f7 7202 /* return to application */
MACRUM 6:40e873bbc5f7 7203 return (out);
MACRUM 6:40e873bbc5f7 7204
MACRUM 6:40e873bbc5f7 7205 }
MACRUM 6:40e873bbc5f7 7206
MACRUM 6:40e873bbc5f7 7207 /**
MACRUM 6:40e873bbc5f7 7208 *
MACRUM 6:40e873bbc5f7 7209 * @brief Q31 bilinear interpolation.
MACRUM 6:40e873bbc5f7 7210 * @param[in,out] *S points to an instance of the interpolation structure.
MACRUM 6:40e873bbc5f7 7211 * @param[in] X interpolation coordinate in 12.20 format.
MACRUM 6:40e873bbc5f7 7212 * @param[in] Y interpolation coordinate in 12.20 format.
MACRUM 6:40e873bbc5f7 7213 * @return out interpolated value.
MACRUM 6:40e873bbc5f7 7214 */
MACRUM 6:40e873bbc5f7 7215
MACRUM 6:40e873bbc5f7 7216 static __INLINE q31_t arm_bilinear_interp_q31(
MACRUM 6:40e873bbc5f7 7217 arm_bilinear_interp_instance_q31 * S,
MACRUM 6:40e873bbc5f7 7218 q31_t X,
MACRUM 6:40e873bbc5f7 7219 q31_t Y)
MACRUM 6:40e873bbc5f7 7220 {
MACRUM 6:40e873bbc5f7 7221 q31_t out; /* Temporary output */
MACRUM 6:40e873bbc5f7 7222 q31_t acc = 0; /* output */
MACRUM 6:40e873bbc5f7 7223 q31_t xfract, yfract; /* X, Y fractional parts */
MACRUM 6:40e873bbc5f7 7224 q31_t x1, x2, y1, y2; /* Nearest output values */
MACRUM 6:40e873bbc5f7 7225 int32_t rI, cI; /* Row and column indices */
MACRUM 6:40e873bbc5f7 7226 q31_t *pYData = S->pData; /* pointer to output table values */
MACRUM 6:40e873bbc5f7 7227 uint32_t nCols = S->numCols; /* num of rows */
MACRUM 6:40e873bbc5f7 7228
MACRUM 6:40e873bbc5f7 7229
MACRUM 6:40e873bbc5f7 7230 /* Input is in 12.20 format */
MACRUM 6:40e873bbc5f7 7231 /* 12 bits for the table index */
MACRUM 6:40e873bbc5f7 7232 /* Index value calculation */
MACRUM 6:40e873bbc5f7 7233 rI = ((X & 0xFFF00000) >> 20u);
MACRUM 6:40e873bbc5f7 7234
MACRUM 6:40e873bbc5f7 7235 /* Input is in 12.20 format */
MACRUM 6:40e873bbc5f7 7236 /* 12 bits for the table index */
MACRUM 6:40e873bbc5f7 7237 /* Index value calculation */
MACRUM 6:40e873bbc5f7 7238 cI = ((Y & 0xFFF00000) >> 20u);
MACRUM 6:40e873bbc5f7 7239
MACRUM 6:40e873bbc5f7 7240 /* Care taken for table outside boundary */
MACRUM 6:40e873bbc5f7 7241 /* Returns zero output when values are outside table boundary */
MACRUM 6:40e873bbc5f7 7242 if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
MACRUM 6:40e873bbc5f7 7243 {
MACRUM 6:40e873bbc5f7 7244 return (0);
MACRUM 6:40e873bbc5f7 7245 }
MACRUM 6:40e873bbc5f7 7246
MACRUM 6:40e873bbc5f7 7247 /* 20 bits for the fractional part */
MACRUM 6:40e873bbc5f7 7248 /* shift left xfract by 11 to keep 1.31 format */
MACRUM 6:40e873bbc5f7 7249 xfract = (X & 0x000FFFFF) << 11u;
MACRUM 6:40e873bbc5f7 7250
MACRUM 6:40e873bbc5f7 7251 /* Read two nearest output values from the index */
MACRUM 6:40e873bbc5f7 7252 x1 = pYData[(rI) + nCols * (cI)];
MACRUM 6:40e873bbc5f7 7253 x2 = pYData[(rI) + nCols * (cI) + 1u];
MACRUM 6:40e873bbc5f7 7254
MACRUM 6:40e873bbc5f7 7255 /* 20 bits for the fractional part */
MACRUM 6:40e873bbc5f7 7256 /* shift left yfract by 11 to keep 1.31 format */
MACRUM 6:40e873bbc5f7 7257 yfract = (Y & 0x000FFFFF) << 11u;
MACRUM 6:40e873bbc5f7 7258
MACRUM 6:40e873bbc5f7 7259 /* Read two nearest output values from the index */
MACRUM 6:40e873bbc5f7 7260 y1 = pYData[(rI) + nCols * (cI + 1)];
MACRUM 6:40e873bbc5f7 7261 y2 = pYData[(rI) + nCols * (cI + 1) + 1u];
MACRUM 6:40e873bbc5f7 7262
MACRUM 6:40e873bbc5f7 7263 /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 3.29(q29) format */
MACRUM 6:40e873bbc5f7 7264 out = ((q31_t) (((q63_t) x1 * (0x7FFFFFFF - xfract)) >> 32));
MACRUM 6:40e873bbc5f7 7265 acc = ((q31_t) (((q63_t) out * (0x7FFFFFFF - yfract)) >> 32));
MACRUM 6:40e873bbc5f7 7266
MACRUM 6:40e873bbc5f7 7267 /* x2 * (xfract) * (1-yfract) in 3.29(q29) and adding to acc */
MACRUM 6:40e873bbc5f7 7268 out = ((q31_t) ((q63_t) x2 * (0x7FFFFFFF - yfract) >> 32));
MACRUM 6:40e873bbc5f7 7269 acc += ((q31_t) ((q63_t) out * (xfract) >> 32));
MACRUM 6:40e873bbc5f7 7270
MACRUM 6:40e873bbc5f7 7271 /* y1 * (1 - xfract) * (yfract) in 3.29(q29) and adding to acc */
MACRUM 6:40e873bbc5f7 7272 out = ((q31_t) ((q63_t) y1 * (0x7FFFFFFF - xfract) >> 32));
MACRUM 6:40e873bbc5f7 7273 acc += ((q31_t) ((q63_t) out * (yfract) >> 32));
MACRUM 6:40e873bbc5f7 7274
MACRUM 6:40e873bbc5f7 7275 /* y2 * (xfract) * (yfract) in 3.29(q29) and adding to acc */
MACRUM 6:40e873bbc5f7 7276 out = ((q31_t) ((q63_t) y2 * (xfract) >> 32));
MACRUM 6:40e873bbc5f7 7277 acc += ((q31_t) ((q63_t) out * (yfract) >> 32));
MACRUM 6:40e873bbc5f7 7278
MACRUM 6:40e873bbc5f7 7279 /* Convert acc to 1.31(q31) format */
MACRUM 6:40e873bbc5f7 7280 return (acc << 2u);
MACRUM 6:40e873bbc5f7 7281
MACRUM 6:40e873bbc5f7 7282 }
MACRUM 6:40e873bbc5f7 7283
MACRUM 6:40e873bbc5f7 7284 /**
MACRUM 6:40e873bbc5f7 7285 * @brief Q15 bilinear interpolation.
MACRUM 6:40e873bbc5f7 7286 * @param[in,out] *S points to an instance of the interpolation structure.
MACRUM 6:40e873bbc5f7 7287 * @param[in] X interpolation coordinate in 12.20 format.
MACRUM 6:40e873bbc5f7 7288 * @param[in] Y interpolation coordinate in 12.20 format.
MACRUM 6:40e873bbc5f7 7289 * @return out interpolated value.
MACRUM 6:40e873bbc5f7 7290 */
MACRUM 6:40e873bbc5f7 7291
MACRUM 6:40e873bbc5f7 7292 static __INLINE q15_t arm_bilinear_interp_q15(
MACRUM 6:40e873bbc5f7 7293 arm_bilinear_interp_instance_q15 * S,
MACRUM 6:40e873bbc5f7 7294 q31_t X,
MACRUM 6:40e873bbc5f7 7295 q31_t Y)
MACRUM 6:40e873bbc5f7 7296 {
MACRUM 6:40e873bbc5f7 7297 q63_t acc = 0; /* output */
MACRUM 6:40e873bbc5f7 7298 q31_t out; /* Temporary output */
MACRUM 6:40e873bbc5f7 7299 q15_t x1, x2, y1, y2; /* Nearest output values */
MACRUM 6:40e873bbc5f7 7300 q31_t xfract, yfract; /* X, Y fractional parts */
MACRUM 6:40e873bbc5f7 7301 int32_t rI, cI; /* Row and column indices */
MACRUM 6:40e873bbc5f7 7302 q15_t *pYData = S->pData; /* pointer to output table values */
MACRUM 6:40e873bbc5f7 7303 uint32_t nCols = S->numCols; /* num of rows */
MACRUM 6:40e873bbc5f7 7304
MACRUM 6:40e873bbc5f7 7305 /* Input is in 12.20 format */
MACRUM 6:40e873bbc5f7 7306 /* 12 bits for the table index */
MACRUM 6:40e873bbc5f7 7307 /* Index value calculation */
MACRUM 6:40e873bbc5f7 7308 rI = ((X & 0xFFF00000) >> 20);
MACRUM 6:40e873bbc5f7 7309
MACRUM 6:40e873bbc5f7 7310 /* Input is in 12.20 format */
MACRUM 6:40e873bbc5f7 7311 /* 12 bits for the table index */
MACRUM 6:40e873bbc5f7 7312 /* Index value calculation */
MACRUM 6:40e873bbc5f7 7313 cI = ((Y & 0xFFF00000) >> 20);
MACRUM 6:40e873bbc5f7 7314
MACRUM 6:40e873bbc5f7 7315 /* Care taken for table outside boundary */
MACRUM 6:40e873bbc5f7 7316 /* Returns zero output when values are outside table boundary */
MACRUM 6:40e873bbc5f7 7317 if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
MACRUM 6:40e873bbc5f7 7318 {
MACRUM 6:40e873bbc5f7 7319 return (0);
MACRUM 6:40e873bbc5f7 7320 }
MACRUM 6:40e873bbc5f7 7321
MACRUM 6:40e873bbc5f7 7322 /* 20 bits for the fractional part */
MACRUM 6:40e873bbc5f7 7323 /* xfract should be in 12.20 format */
MACRUM 6:40e873bbc5f7 7324 xfract = (X & 0x000FFFFF);
MACRUM 6:40e873bbc5f7 7325
MACRUM 6:40e873bbc5f7 7326 /* Read two nearest output values from the index */
MACRUM 6:40e873bbc5f7 7327 x1 = pYData[(rI) + nCols * (cI)];
MACRUM 6:40e873bbc5f7 7328 x2 = pYData[(rI) + nCols * (cI) + 1u];
MACRUM 6:40e873bbc5f7 7329
MACRUM 6:40e873bbc5f7 7330
MACRUM 6:40e873bbc5f7 7331 /* 20 bits for the fractional part */
MACRUM 6:40e873bbc5f7 7332 /* yfract should be in 12.20 format */
MACRUM 6:40e873bbc5f7 7333 yfract = (Y & 0x000FFFFF);
MACRUM 6:40e873bbc5f7 7334
MACRUM 6:40e873bbc5f7 7335 /* Read two nearest output values from the index */
MACRUM 6:40e873bbc5f7 7336 y1 = pYData[(rI) + nCols * (cI + 1)];
MACRUM 6:40e873bbc5f7 7337 y2 = pYData[(rI) + nCols * (cI + 1) + 1u];
MACRUM 6:40e873bbc5f7 7338
MACRUM 6:40e873bbc5f7 7339 /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 13.51 format */
MACRUM 6:40e873bbc5f7 7340
MACRUM 6:40e873bbc5f7 7341 /* x1 is in 1.15(q15), xfract in 12.20 format and out is in 13.35 format */
MACRUM 6:40e873bbc5f7 7342 /* convert 13.35 to 13.31 by right shifting and out is in 1.31 */
MACRUM 6:40e873bbc5f7 7343 out = (q31_t) (((q63_t) x1 * (0xFFFFF - xfract)) >> 4u);
MACRUM 6:40e873bbc5f7 7344 acc = ((q63_t) out * (0xFFFFF - yfract));
MACRUM 6:40e873bbc5f7 7345
MACRUM 6:40e873bbc5f7 7346 /* x2 * (xfract) * (1-yfract) in 1.51 and adding to acc */
MACRUM 6:40e873bbc5f7 7347 out = (q31_t) (((q63_t) x2 * (0xFFFFF - yfract)) >> 4u);
MACRUM 6:40e873bbc5f7 7348 acc += ((q63_t) out * (xfract));
MACRUM 6:40e873bbc5f7 7349
MACRUM 6:40e873bbc5f7 7350 /* y1 * (1 - xfract) * (yfract) in 1.51 and adding to acc */
MACRUM 6:40e873bbc5f7 7351 out = (q31_t) (((q63_t) y1 * (0xFFFFF - xfract)) >> 4u);
MACRUM 6:40e873bbc5f7 7352 acc += ((q63_t) out * (yfract));
MACRUM 6:40e873bbc5f7 7353
MACRUM 6:40e873bbc5f7 7354 /* y2 * (xfract) * (yfract) in 1.51 and adding to acc */
MACRUM 6:40e873bbc5f7 7355 out = (q31_t) (((q63_t) y2 * (xfract)) >> 4u);
MACRUM 6:40e873bbc5f7 7356 acc += ((q63_t) out * (yfract));
MACRUM 6:40e873bbc5f7 7357
MACRUM 6:40e873bbc5f7 7358 /* acc is in 13.51 format and down shift acc by 36 times */
MACRUM 6:40e873bbc5f7 7359 /* Convert out to 1.15 format */
MACRUM 6:40e873bbc5f7 7360 return (acc >> 36);
MACRUM 6:40e873bbc5f7 7361
MACRUM 6:40e873bbc5f7 7362 }
MACRUM 6:40e873bbc5f7 7363
MACRUM 6:40e873bbc5f7 7364 /**
MACRUM 6:40e873bbc5f7 7365 * @brief Q7 bilinear interpolation.
MACRUM 6:40e873bbc5f7 7366 * @param[in,out] *S points to an instance of the interpolation structure.
MACRUM 6:40e873bbc5f7 7367 * @param[in] X interpolation coordinate in 12.20 format.
MACRUM 6:40e873bbc5f7 7368 * @param[in] Y interpolation coordinate in 12.20 format.
MACRUM 6:40e873bbc5f7 7369 * @return out interpolated value.
MACRUM 6:40e873bbc5f7 7370 */
MACRUM 6:40e873bbc5f7 7371
MACRUM 6:40e873bbc5f7 7372 static __INLINE q7_t arm_bilinear_interp_q7(
MACRUM 6:40e873bbc5f7 7373 arm_bilinear_interp_instance_q7 * S,
MACRUM 6:40e873bbc5f7 7374 q31_t X,
MACRUM 6:40e873bbc5f7 7375 q31_t Y)
MACRUM 6:40e873bbc5f7 7376 {
MACRUM 6:40e873bbc5f7 7377 q63_t acc = 0; /* output */
MACRUM 6:40e873bbc5f7 7378 q31_t out; /* Temporary output */
MACRUM 6:40e873bbc5f7 7379 q31_t xfract, yfract; /* X, Y fractional parts */
MACRUM 6:40e873bbc5f7 7380 q7_t x1, x2, y1, y2; /* Nearest output values */
MACRUM 6:40e873bbc5f7 7381 int32_t rI, cI; /* Row and column indices */
MACRUM 6:40e873bbc5f7 7382 q7_t *pYData = S->pData; /* pointer to output table values */
MACRUM 6:40e873bbc5f7 7383 uint32_t nCols = S->numCols; /* num of rows */
MACRUM 6:40e873bbc5f7 7384
MACRUM 6:40e873bbc5f7 7385 /* Input is in 12.20 format */
MACRUM 6:40e873bbc5f7 7386 /* 12 bits for the table index */
MACRUM 6:40e873bbc5f7 7387 /* Index value calculation */
MACRUM 6:40e873bbc5f7 7388 rI = ((X & 0xFFF00000) >> 20);
MACRUM 6:40e873bbc5f7 7389
MACRUM 6:40e873bbc5f7 7390 /* Input is in 12.20 format */
MACRUM 6:40e873bbc5f7 7391 /* 12 bits for the table index */
MACRUM 6:40e873bbc5f7 7392 /* Index value calculation */
MACRUM 6:40e873bbc5f7 7393 cI = ((Y & 0xFFF00000) >> 20);
MACRUM 6:40e873bbc5f7 7394
MACRUM 6:40e873bbc5f7 7395 /* Care taken for table outside boundary */
MACRUM 6:40e873bbc5f7 7396 /* Returns zero output when values are outside table boundary */
MACRUM 6:40e873bbc5f7 7397 if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
MACRUM 6:40e873bbc5f7 7398 {
MACRUM 6:40e873bbc5f7 7399 return (0);
MACRUM 6:40e873bbc5f7 7400 }
MACRUM 6:40e873bbc5f7 7401
MACRUM 6:40e873bbc5f7 7402 /* 20 bits for the fractional part */
MACRUM 6:40e873bbc5f7 7403 /* xfract should be in 12.20 format */
MACRUM 6:40e873bbc5f7 7404 xfract = (X & 0x000FFFFF);
MACRUM 6:40e873bbc5f7 7405
MACRUM 6:40e873bbc5f7 7406 /* Read two nearest output values from the index */
MACRUM 6:40e873bbc5f7 7407 x1 = pYData[(rI) + nCols * (cI)];
MACRUM 6:40e873bbc5f7 7408 x2 = pYData[(rI) + nCols * (cI) + 1u];
MACRUM 6:40e873bbc5f7 7409
MACRUM 6:40e873bbc5f7 7410
MACRUM 6:40e873bbc5f7 7411 /* 20 bits for the fractional part */
MACRUM 6:40e873bbc5f7 7412 /* yfract should be in 12.20 format */
MACRUM 6:40e873bbc5f7 7413 yfract = (Y & 0x000FFFFF);
MACRUM 6:40e873bbc5f7 7414
MACRUM 6:40e873bbc5f7 7415 /* Read two nearest output values from the index */
MACRUM 6:40e873bbc5f7 7416 y1 = pYData[(rI) + nCols * (cI + 1)];
MACRUM 6:40e873bbc5f7 7417 y2 = pYData[(rI) + nCols * (cI + 1) + 1u];
MACRUM 6:40e873bbc5f7 7418
MACRUM 6:40e873bbc5f7 7419 /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 16.47 format */
MACRUM 6:40e873bbc5f7 7420 out = ((x1 * (0xFFFFF - xfract)));
MACRUM 6:40e873bbc5f7 7421 acc = (((q63_t) out * (0xFFFFF - yfract)));
MACRUM 6:40e873bbc5f7 7422
MACRUM 6:40e873bbc5f7 7423 /* x2 * (xfract) * (1-yfract) in 2.22 and adding to acc */
MACRUM 6:40e873bbc5f7 7424 out = ((x2 * (0xFFFFF - yfract)));
MACRUM 6:40e873bbc5f7 7425 acc += (((q63_t) out * (xfract)));
MACRUM 6:40e873bbc5f7 7426
MACRUM 6:40e873bbc5f7 7427 /* y1 * (1 - xfract) * (yfract) in 2.22 and adding to acc */
MACRUM 6:40e873bbc5f7 7428 out = ((y1 * (0xFFFFF - xfract)));
MACRUM 6:40e873bbc5f7 7429 acc += (((q63_t) out * (yfract)));
MACRUM 6:40e873bbc5f7 7430
MACRUM 6:40e873bbc5f7 7431 /* y2 * (xfract) * (yfract) in 2.22 and adding to acc */
MACRUM 6:40e873bbc5f7 7432 out = ((y2 * (yfract)));
MACRUM 6:40e873bbc5f7 7433 acc += (((q63_t) out * (xfract)));
MACRUM 6:40e873bbc5f7 7434
MACRUM 6:40e873bbc5f7 7435 /* acc in 16.47 format and down shift by 40 to convert to 1.7 format */
MACRUM 6:40e873bbc5f7 7436 return (acc >> 40);
MACRUM 6:40e873bbc5f7 7437
MACRUM 6:40e873bbc5f7 7438 }
MACRUM 6:40e873bbc5f7 7439
MACRUM 6:40e873bbc5f7 7440 /**
MACRUM 6:40e873bbc5f7 7441 * @} end of BilinearInterpolate group
MACRUM 6:40e873bbc5f7 7442 */
MACRUM 6:40e873bbc5f7 7443
MACRUM 6:40e873bbc5f7 7444
MACRUM 6:40e873bbc5f7 7445 //SMMLAR
MACRUM 6:40e873bbc5f7 7446 #define multAcc_32x32_keep32_R(a, x, y) \
MACRUM 6:40e873bbc5f7 7447 a = (q31_t) (((((q63_t) a) << 32) + ((q63_t) x * y) + 0x80000000LL ) >> 32)
MACRUM 6:40e873bbc5f7 7448
MACRUM 6:40e873bbc5f7 7449 //SMMLSR
MACRUM 6:40e873bbc5f7 7450 #define multSub_32x32_keep32_R(a, x, y) \
MACRUM 6:40e873bbc5f7 7451 a = (q31_t) (((((q63_t) a) << 32) - ((q63_t) x * y) + 0x80000000LL ) >> 32)
MACRUM 6:40e873bbc5f7 7452
MACRUM 6:40e873bbc5f7 7453 //SMMULR
MACRUM 6:40e873bbc5f7 7454 #define mult_32x32_keep32_R(a, x, y) \
MACRUM 6:40e873bbc5f7 7455 a = (q31_t) (((q63_t) x * y + 0x80000000LL ) >> 32)
MACRUM 6:40e873bbc5f7 7456
MACRUM 6:40e873bbc5f7 7457 //SMMLA
MACRUM 6:40e873bbc5f7 7458 #define multAcc_32x32_keep32(a, x, y) \
MACRUM 6:40e873bbc5f7 7459 a += (q31_t) (((q63_t) x * y) >> 32)
MACRUM 6:40e873bbc5f7 7460
MACRUM 6:40e873bbc5f7 7461 //SMMLS
MACRUM 6:40e873bbc5f7 7462 #define multSub_32x32_keep32(a, x, y) \
MACRUM 6:40e873bbc5f7 7463 a -= (q31_t) (((q63_t) x * y) >> 32)
MACRUM 6:40e873bbc5f7 7464
MACRUM 6:40e873bbc5f7 7465 //SMMUL
MACRUM 6:40e873bbc5f7 7466 #define mult_32x32_keep32(a, x, y) \
MACRUM 6:40e873bbc5f7 7467 a = (q31_t) (((q63_t) x * y ) >> 32)
MACRUM 6:40e873bbc5f7 7468
MACRUM 6:40e873bbc5f7 7469
MACRUM 6:40e873bbc5f7 7470 #if defined ( __CC_ARM ) //Keil
MACRUM 6:40e873bbc5f7 7471
MACRUM 6:40e873bbc5f7 7472 //Enter low optimization region - place directly above function definition
MACRUM 6:40e873bbc5f7 7473 #ifdef ARM_MATH_CM4
MACRUM 6:40e873bbc5f7 7474 #define LOW_OPTIMIZATION_ENTER \
MACRUM 6:40e873bbc5f7 7475 _Pragma ("push") \
MACRUM 6:40e873bbc5f7 7476 _Pragma ("O1")
MACRUM 6:40e873bbc5f7 7477 #else
MACRUM 6:40e873bbc5f7 7478 #define LOW_OPTIMIZATION_ENTER
MACRUM 6:40e873bbc5f7 7479 #endif
MACRUM 6:40e873bbc5f7 7480
MACRUM 6:40e873bbc5f7 7481 //Exit low optimization region - place directly after end of function definition
MACRUM 6:40e873bbc5f7 7482 #ifdef ARM_MATH_CM4
MACRUM 6:40e873bbc5f7 7483 #define LOW_OPTIMIZATION_EXIT \
MACRUM 6:40e873bbc5f7 7484 _Pragma ("pop")
MACRUM 6:40e873bbc5f7 7485 #else
MACRUM 6:40e873bbc5f7 7486 #define LOW_OPTIMIZATION_EXIT
MACRUM 6:40e873bbc5f7 7487 #endif
MACRUM 6:40e873bbc5f7 7488
MACRUM 6:40e873bbc5f7 7489 //Enter low optimization region - place directly above function definition
MACRUM 6:40e873bbc5f7 7490 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
MACRUM 6:40e873bbc5f7 7491
MACRUM 6:40e873bbc5f7 7492 //Exit low optimization region - place directly after end of function definition
MACRUM 6:40e873bbc5f7 7493 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
MACRUM 6:40e873bbc5f7 7494
MACRUM 6:40e873bbc5f7 7495 #elif defined(__ICCARM__) //IAR
MACRUM 6:40e873bbc5f7 7496
MACRUM 6:40e873bbc5f7 7497 //Enter low optimization region - place directly above function definition
MACRUM 6:40e873bbc5f7 7498 #ifdef ARM_MATH_CM4
MACRUM 6:40e873bbc5f7 7499 #define LOW_OPTIMIZATION_ENTER \
MACRUM 6:40e873bbc5f7 7500 _Pragma ("optimize=low")
MACRUM 6:40e873bbc5f7 7501 #else
MACRUM 6:40e873bbc5f7 7502 #define LOW_OPTIMIZATION_ENTER
MACRUM 6:40e873bbc5f7 7503 #endif
MACRUM 6:40e873bbc5f7 7504
MACRUM 6:40e873bbc5f7 7505 //Exit low optimization region - place directly after end of function definition
MACRUM 6:40e873bbc5f7 7506 #define LOW_OPTIMIZATION_EXIT
MACRUM 6:40e873bbc5f7 7507
MACRUM 6:40e873bbc5f7 7508 //Enter low optimization region - place directly above function definition
MACRUM 6:40e873bbc5f7 7509 #ifdef ARM_MATH_CM4
MACRUM 6:40e873bbc5f7 7510 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER \
MACRUM 6:40e873bbc5f7 7511 _Pragma ("optimize=low")
MACRUM 6:40e873bbc5f7 7512 #else
MACRUM 6:40e873bbc5f7 7513 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
MACRUM 6:40e873bbc5f7 7514 #endif
MACRUM 6:40e873bbc5f7 7515
MACRUM 6:40e873bbc5f7 7516 //Exit low optimization region - place directly after end of function definition
MACRUM 6:40e873bbc5f7 7517 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
MACRUM 6:40e873bbc5f7 7518
MACRUM 6:40e873bbc5f7 7519 #elif defined(__GNUC__)
MACRUM 6:40e873bbc5f7 7520
MACRUM 6:40e873bbc5f7 7521 #define LOW_OPTIMIZATION_ENTER __attribute__(( optimize("-O1") ))
MACRUM 6:40e873bbc5f7 7522
MACRUM 6:40e873bbc5f7 7523 #define LOW_OPTIMIZATION_EXIT
MACRUM 6:40e873bbc5f7 7524
MACRUM 6:40e873bbc5f7 7525 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
MACRUM 6:40e873bbc5f7 7526
MACRUM 6:40e873bbc5f7 7527 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
MACRUM 6:40e873bbc5f7 7528
MACRUM 6:40e873bbc5f7 7529 #elif defined(__CSMC__) // Cosmic
MACRUM 6:40e873bbc5f7 7530
MACRUM 6:40e873bbc5f7 7531 #define LOW_OPTIMIZATION_ENTER
MACRUM 6:40e873bbc5f7 7532 #define LOW_OPTIMIZATION_EXIT
MACRUM 6:40e873bbc5f7 7533 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
MACRUM 6:40e873bbc5f7 7534 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
MACRUM 6:40e873bbc5f7 7535
MACRUM 6:40e873bbc5f7 7536 #elif defined(__TASKING__) // TASKING
MACRUM 6:40e873bbc5f7 7537
MACRUM 6:40e873bbc5f7 7538 #define LOW_OPTIMIZATION_ENTER
MACRUM 6:40e873bbc5f7 7539 #define LOW_OPTIMIZATION_EXIT
MACRUM 6:40e873bbc5f7 7540 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
MACRUM 6:40e873bbc5f7 7541 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
MACRUM 6:40e873bbc5f7 7542
MACRUM 6:40e873bbc5f7 7543 #endif
MACRUM 6:40e873bbc5f7 7544
MACRUM 6:40e873bbc5f7 7545
MACRUM 6:40e873bbc5f7 7546 #ifdef __cplusplus
MACRUM 6:40e873bbc5f7 7547 }
MACRUM 6:40e873bbc5f7 7548 #endif
MACRUM 6:40e873bbc5f7 7549
MACRUM 6:40e873bbc5f7 7550
MACRUM 6:40e873bbc5f7 7551 #endif /* _ARM_MATH_H */
MACRUM 6:40e873bbc5f7 7552
MACRUM 6:40e873bbc5f7 7553 /**
MACRUM 6:40e873bbc5f7 7554 *
MACRUM 6:40e873bbc5f7 7555 * End of file.
MACRUM 6:40e873bbc5f7 7556 */