
1

cover page goes here

2

Title: Underwater Remotely-Operated Vehicle

Author: Scott O’Brien

Supervisor: Dr. Andrzej Tarczynski

Date: May 2012

Course: B.Eng. Electronic Engineering

3

Abstract The aim of this project is to design and construct an underwater,

remotely-operated vehicle (ROV), fitted with a 4-axis positioning

system, a video transmission system, and a 2-axis (pitch and roll)

control system to assist imaging and positional stability.

The project includes the design and development of the PVC frame and

water-proof enclosure, design and development of an ARM Cortex-M3

microcontroller-based electronic circuit for the operator interface, and

another ARM Cortex-M3 microcontroller-based electronic circuit that

controls the seven DC motors fitted with propellers.

A fully operational vehicle has been constructed, though the 2-axis

control system and video transmission system remain incomplete.

4

Contents

Acknowledgements .. 7

Glossary .. 8

1. Introduction ... 9

1.1 Why Build an ROV? ... 9

1.2 Why Include a Self-Stabilising Control System? .. 9

1.3 Report Structure.. 9

1.4 An Introduction to Underwater Vehicles .. 10

2. System Requirements and Architecture .. 13

3. Mechanical Design and Construction .. 14

3.1 Frame Design ... 14

3.2 Frame Construction .. 14

3.3 Water-Proof Enclosure Design and Construction .. 15

3.4 Propulsion by Thrusters ... 17

3.5 Tether ... 21

4. Top Controller ... 23

4.1 Top Controller Design... 23

4.2 Construction and Testing ... 23

4.3 mbed Rapid Prototyping Development System .. 24

4.4 Power Supply ... 24

4.5 LCD Display ... 25

4.6 Analog Joysticks .. 25

4.7 Temperature Sensor .. 25

4.8 Water Leak Detection Warnings ... 26

4.9 Switches and LED’s... 26

4.10 Data Communications ... 26

5. Bottom Controller ... 29

5.1 Bottom Controller Design ... 29

5.2 Construction and Testing ... 29

5.3 mbed Rapid Prototyping Development System .. 30

5.4 Inertial Measurement Unit ... 30

5.5 Leak Detector ... 30

5.6 Temperature Sensor .. 31

5.7 Power Supply ... 31

5

5.8 MOSFET’s ... 32

5.9 H-Bridges ... 32

5.10 Data Communications ... 34

5.11 Video Camera .. 34

5.12 Lights .. 34

5.13 Data Logger ... 35

5.14 Depth Sensor .. 35

5.15 Software .. 35

6. Self-Stabilising Control System .. 37

6.1 Control System Theory ... 37

6.2 Self-Stabilising System Overview ... 37

6.3 P Controllers .. 38

6.4 PID Controllers.. 39

6.5 Implementing a PID Controller ... 42

6.6 Building a Model of the Pitch Control System ... 42

6.7 Additional Aspects of the Self - Stabilising Control System as Implemented 43

7. Testing and Measurement .. 44

7.1 Testing the Electronic Circuits ... 44

7.2 Testing the Tether and the Wiring... 44

7.3 Water-Proof Testing of the Enclosure ... 45

7.4 Trim Testing .. 45

7.5 Powered Testing .. 46

7.6 Measurements of Dynamics Characteristics for Control System Development 47

8. Conclusions .. 50

8.1 Results .. 50

8.2 Analysis .. 50

8.3 Future Work .. 51

8.4 Alternative Approaches .. 52

8.5 Summary .. 52

9. References .. 53

10. Bibliography .. 55

11. Appendices ... 56

Appendix A - DES Project Specification Form .. 56

Appendix B - Top Controller Schematics ... 57

6

Appendix C - Bottom Controller Schematics ... 59

Appendix D - Top Controller Code ... 61

Appendix E - Bottom Controller Code .. 71

Appendix F - Data Logging Code .. 78

Appendix G - IMU Schematic and PCB Design ... 83

Appendix H - Definitions of Motion... 85

Appendix I - Accelerometer Noise Analysis .. 86

Appendix J - Bill of Materials .. 88

Appendix K - Permissions .. 91

Appendix L - Workplan .. 93

Appendix M - Disk Contents .. 94

7

Acknowledgements

I would like to take this opportunity to thank my partner Anne Donald, my Project

Supervisor at the University of Westminster, Dr. Andrzej Tarczynski, and Jack Bowles

and Colin Pullen from the Lodge Scuba Diving Club for all their support and help.

In addition, the following people helped considerably:

 Dr Mohammed Al-Janabi , Dr Viv Bartlett, John McNamara, Professor Izzet Kale,

Karl Kowalczy and Mukesh Popat at the University of Westminster.

 Jane Clegg, Hazel Fraser, Fion Gunn, Kay Trotter, Carol Walker and Stephen

Wiltshire from the Stanthorpe Triangle Residents Association.

 Paul Hoy, Simon Lodge, Sarah Morgan, Mitch Pluck-Wyatt, and John Porterhouse

from the Lodge Scuba Diving Club

 Martin Evans

 Chris Styles and Simon Ford at mbed.com

 Robert Forsyth, Silogini Gnanasundaram, Raji Guhanesan, and Robert Karpinski at

the University of Westminster

 Tim Marvin

And the following companies for their support:

 AbPlas

 ARM Holdings Ltd

 Elektron Technology

 Exar Corporation

 Keller UK Ltd

 Northern Connectors

 RelChron Limited

 Saab Seaeye

 SMD Ltd

 VideoRay LLC

 Woods Hole Oceanographic Institution

8

Glossary

Ballast: weights used to offset buoyancy

Buoyancy: the tendency to float

Centroid: the mid-point between the centre-of-mass and centre-of-buoyancy

DOF: degrees of freedom, the number of independent axes

Heave: to move up and down

IC: integrated circuit

IMU: inertial measurement unit

IP68-rated: an industry “standard” for rating environment-proofed components

kbps: a data rate of kilobits per second

Manipulator: a robotic claw or tool

Pitch: as in nodding your head up and down

PWM: pulse width modulation, used for proportional speed control

Roll: as in tilting your head to one side

ROV: remotely-operated vehicle

Surge: to move forwards and backwards

Sway: to move from side-to-side

Thruster: motor fitted with a propeller, used for propulsion and positioning

Trimming: positioning of ballast and buoyancy elements to level the ROV

Weight-in-air: the weight of the ROV out of the water

Yaw: as in turning your head to the side

9

1. Introduction

1.1 Why Build an ROV?

The purpose of this project is to design and

construct a remotely-operated underwater

vehicle (ROV) fitted with a 4-axis positioning

system, and a self-stabilising 2-axis control

system. The many varied aspects of this project

present quite a number of challenges and

learning opportunities:

 design and construction of an electronic

operator interface

 design and construction of an electronic

DC motor drive system

 design and construction of a water-proof

enclosure mounted on an appropriate frame

 research, design and implementation of a

level measurement system

 research, design and implementation of a

self-stabilising control system

This ROV project ultimately represents an

overlap of interests: control systems,

underwater exploration, and electronics.

1.2 Why Include a Self-Stabilising

Control System?

All objects in water, including underwater

vehicles, will find their natural disposition in

water due to gravity acting upon their mass and

relative buoyancy. This position however may

not be level, which in the case of an

underwater vehicle makes positioning and

imaging problematic. This issue is usually

minimised by careful trimming i.e. locating of

ballast and buoyancy elements on the vehicle,

but this is not an ideal solution.

There are two main problems with relying

solely on accurate trimming:

 Firstly, it cannot compensate for

unpredictable external influences such as

strong currents. It may not be obvious from

the surface but undersea currents are

typically not parallel to the water surface

and commonly have a significant vertical

component.

 Secondly, trimming at the surface prior to

commencing a voyage does not allow for

any load variation. If the ROV collects for

example a soil sample, the variation in the

mass (and the corresponding variation in

the position of the centre-of-mass) will

cause a tilt and so negate the careful

trimming previously performed.

Most simple ROV’s do not include any

automated self-stabilising ability, due to the

added cost and complexity, and simply accept

the problems that occur. For larger,

commercial ROV’s however, particularly those

that have manipulators where the mass

distribution will vary during a voyage, a self-

stabilising system would seem to be a

requirement. Somewhat surprisingly, they are

usually only found on the most expensive,

most robust vehicles available. The “Seaeye”

range from SAAB for example, currently has 9

models ranging in size from 60 kg through to

1,500 kg (weight-in-air) and it is only the

biggest, most expensive model, the Jaguar,

which is fitted with an automatic pitch / roll

stabilising function [1].

Accordingly, an investigation into the

design and application of a control system to

augment the natural positioning of underwater

vehicles, in particular the smaller vehicles,

seems to be a worthwhile and practical

undertaking.

1.3 Report Structure

The remainder of this first Chapter gives an

introduction to the world of underwater

vehicles, their classifications and their

commercial uses.

Chapter Two gives a brief overview of the

ROV system architecture that was developed.

Chapters Three, Four and Five detail the

design and construction of the hardware and

electronic elements.

Chapter Six follows with details of the self-

stabilising control system implemented and

Chapter Seven summarises the testing and

tuning processes once the ROV was actually in

the water.

The report conclusions are contained in

Chapter Eight, followed by the official Project

10

Specification, References and Bibliography

sections, and finally the Appendices.

1.4 An Introduction to Underwater

Vehicles

Underwater vehicles can be broadly

classified as either:

 Manned,

 Remotely-operated, or

 Autonomously-operated

1.4.1 Manned Underwater Vehicles

A manned underwater vehicle is one that

contains a waterproof enclosure, pressurised to

1 atmosphere, suitable for human occupation.

Examples include submarines for defence

purposes, and ALVIN, a scientific research

vehicle operated by the Woods Hole

Oceanographic Institution (WHOI) shown in

Figure 1.1.

Figure 1.1. ALVIN, a manned underwater vehicle,

operated by WHOI [2].

1.4.2 Remotely-Operated Underwater

Vehicles

A remotely-operated underwater vehicle is

controlled by an operator who remains out of

the water. The operator typically uses a

joystick to manipulate the position of the

vehicle in the water, and a video display to see

the environment it is operating in.

This project focuses solely on this

unmanned remotely-operated class of vehicle.

1.4.3 Autonomously Operated

Underwater Vehicles

An autonomously-operated underwater

vehicle is designed to work without an

operator and without a direct connection to the

surface. They are usually designed for a

specific application and are pre-programmed to

perform certain specific tasks such as sea-floor

mapping and imaging, temperature and salinity

measurement etc. Figure 1.2 shows the WHOI

SEABED vehicle designed for optical and

acoustic sea-floor imagining. Upon completion

of the assigned tasks the vehicles typically

surface, broadcast their location (and often

their captured data set) via satellite

communications, and await recovery.

Figure 1.2. SEABED, an autonomous survey vehicle,

operated by WHOI [3].

1.4.4 Typical ROV Configurations

A typical commercial ROV will have some

or all of the following attributes:

 Surface-based operation

 Video cameras and lights for observation

 Manipulators for environmental

intervention

 Cables (commonly known as tethers) for

communication to and from the operator on

the surface, and power from the surface

 Motors fitted with propellers for

propulsion and positioning (known as

thrusters)

 Sensors for depth and orientation, and

environmental monitoring

11

1.4.5 ROV Classification

The commercial sub-sea industry applies

some broad categorisation to ROV’s. These

can be summarised as:

 Micro Observational Class

 Mini Observational Class

 Light & Medium Work Class

 Heavy Work Class

 Seabed Working Class

1.4.6 Micro Observational Class

These are typically light-weight

construction, optimised for portability,

designed exclusively for observation in

shallow waters (less than 100 m). Typical uses

include ship, pier and pipe inspections. Figure

1.3 shows an example from VideoRay LLC.

Figure 1.3. The P4 CD 300 is a micro observational

class ROV developed by VideoRay LLC [4].

1.4.7 Mini Observational Class

These vehicles perform a similar role to the

micro observational class vehicles but are

designed with heavier duty construction

techniques that make them more suited to the

greater depths they operate at (typically down

to 1,000 m).

1.4.8 Light & Medium Work Class

A step up in size and durability of

construction, these light-to-medium-weight

ROV’s are typically fitted with a single small

manipulator giving them a rudimentary ability

to handle objects. Compared to the Heavy

Work Class, they have relatively low thruster

power and therefore a lower payload lift

capacity. An example is shown in Figure 1.4.

Figure 1.4. The Saab Seaeye Lynx is light-medium

work class ROV [5].

1.4.9 Heavy Work Class

Designed for extreme depths (up to 6,000 m

is not unusual), and situations where size and

weight are not considered primary

considerations, these heavy duty ROV’s

perform the most challenging underwater

tasks. They are usually fitted with at least two

manipulators, specialised tooling, multiple

cameras and lights, and as we have seen, pitch

and roll self-stabilisation systems. These

vehicles can weigh in excess of 1.5 tonnes.

Fitted with the most powerful thrusters

available, they can carry and lift the largest

payloads, sometimes in excess of 300 kg.

12

Figure 1.5 shows an example from Saab

Seaeye.

Figure 1.5. The Saab Seaeye Jaguar is a heavy work

class ROV [6].

1.4.10 Seabed Working Class

These highly specialised vehicles are

designed to lay undersea pipes and cables.

Some are capable of cutting or blasting a

channel in the seabed, laying the cable, and

then burying it, all in a single pass. An

example from the Newcastle-based company

SMD Ltd is shown in Figure 1.6.

Figure 1.6. The SMD UT-1 jet trencher [7].

1.4.11 Commercial ROV Use

As can be seen by the large variety of

ROV’s available, there are an accordingly

large number of applications they are used for.

Here is a selection:

 Port and pier inspection

 Trenching and ploughing

 Cable laying & maintenance

 Pipe laying & maintenance

 Nuclear plant inspection

 Water tank inspection

 Environmental monitoring

 Sea floor surveying

 Wreck discovery

 Archaeology

 Acoustic positioning

 Harbour and coastal defence

 Mine counter-measures

 Sub-sea construction

 Well-head maintenance

 Mining

 Search-and-rescue

 Biological research

Major events where ROV’s have been used

extensively include:

 Japanese tsunami search-and-recue

 BP Macondo well-head repair

 The search for the Titanic

 The investigation into the sinking of the

Costa Concordia cruise ship

13

2. System Requirements and

Architecture

From an analysis of commercial ROV’s

that can be found operating in the field, and

with consideration to the ROV’s applications

and operating environments, the design of this

ROV system has closely followed these

primary design guidelines:

 ease-of-use

 portability

 cost effective construction methods and

materials

Working from these guidelines, the

following requirements were specified:

 operator controller with joysticks,

switches, status display screen and LED’s,

and video screen

 4 thrusters for horizontal positioning

 3 thrusters for vertical positioning and the

self-stabilisation system

 on-board power

 30 m tether for data and video transfer

between operator controller and ROV

 lightweight frame construction

The system can be most easily visualised by

examining the major system blocks as shown

in Figure 2.1.

Top Controller Board Bottom Controller Board30m ethernet cable

Joystick 1

Joystick 2

Temperature

Sensor

LCD Display

Buzzer

LED’s

PC

Data

VideoUSB

Vertical Left

Thruster

Vertical Right

Thruster

Vertical Rear

Thruster

Horizontal

Front Right

Thruster

Horizontal

Front Left

Thruster

Horizontal

Rear Right

Thruster

Horizontal

Rear Left

Thruster

Temperature

Sensor

Leak

Detector

IMU

Power

Supply

Video

Camera

Lights

Switches

Power

Supply

USB – development use only

Data

Logging

Figure 2.1. ROV system block diagram.

14

3. Mechanical Design and

Construction

This Chapter details the many facets of

designing and physically constructing an ROV.

3.1 Frame Design

The purpose of the frame is to support the

water-proof enclosure, the thruster motors, and

any trimming weights. Ideas for the frame

design were initially considered and assessed

using pencil and paper, and simple wire

models, as shown in Figure 3.1. The principle

design goal for the frame, taking into account

thruster and enclosure positioning and support,

was to ensure there was maximum water flow

through the open frame, to therefore minimise

drag.

Figure 3.1. Designing the frame.

The chosen design consists of 3 sections

placed horizontally perpendicular to the

forward direction of travel, two along the

bottom to support the enclosure, and a single

upper section towards the rear. They are used

for cross bracing and vertical thruster support,

and join the two rectangular side sub-frames

that support the horizontal thrusters.

The hollow frame is designed to fill with

water during operation to assist with buoyancy

and ballast trimming, and has a number of

holes drilled for this purpose. In addition, there

is a mesh attached to the bottom of the frame

which serves as a surface on which to mount

the trimming weights.

3.2 Frame Construction

The frame is constructed of plastic tubing,

and the associated connecting elements, with a

nominal 32 mm outer diameter. This material

is lightweight yet rigid and strong, readily

available, easy to work, and cost effective.

Images of the construction of the frame are

shown in Figure 3.2.

Figure 3.2. Construction of the frame.

All the wiring to and from the motors, and

the tether to the surface controller, have been

routed through the inside of the plastic tubing

to minimise drag, to avoid damage to wiring,

and to avoid fouling of the propellers.

15

Figure 3.3. Routing and sealing the wiring.

After routing all the wires, they have been

concentrated inside a box and connected to an

18-core cable using screw-terminals. This box

was then flooded with a polyurethane resin to

seal the connections from the water (Figure

3.3).

3.3 Water-Proof Enclosure Design and

Construction

The water-proof enclosure is where all the

underwater electronics and the video camera

are located. Due to the high cost of these

components, (approximately £300), keeping

water out of this area is absolutely essential, so

given the limited budget available,

considerable research was done into finding

suitable low-cost off-the-shelf components that

would meet the requirements of:

 water-proof

 accessible

 readily available

 usable

 modifiable

 uncompressible

PVC drainage pipe fittings were found to fit

these requirements as:

 they are designed with seals for blocking

water

 there are a range of fittings that will allow

access, via screw-thread and push-fit end-

caps

 the components are readily available

through local suppliers

 handy mounting hardware is available

 they are easily machined for modifications

 they are purpose-designed for underground

installation so can handle external pressure,

at least to some degree

It should be noted that the components are

actually designed to keep water in, rather than

water out, so it was initially unclear whether

this system will prove to be completely water-

proof.

In order to find out, a T-section with two

screw end-caps, and a single push-fit end-cap

(as can be seen in Figure 3.2) were trialled in a

local swimming pool down to a maximum

depth of 5 metres for 30 minutes. This testing

met with success as no water was detected

inside the enclosure, so it was decided to

proceed with using these components.

3.3.2 Adding a Window to the Water-

Proof Enclosure

Following the successful first test, the next

step was to add a window for the video

camera. A number of designs were considered

for the window construction. Cross sections of

the various designs are shown in Figure 3.4

with the red circles indicating the location of

sealing o-rings.

16

Original
1 2

3 4 5

Figure 3.4. Cross-sections of designs for the camera window.

After some experimentation with the

different options, it was found that using more

than a single o-ring did not allow the cap to be

screwed down enough to ensure a tight seal. It

was also observed that if the o-ring was not

held in place, the act of compression would

cause the o-ring to move and thus give an

unreliable seal. For those reasons option 4 was

chosen. The window was then machined out

and installed as can be seen in Figure 3.5.

Further water-proofing trials were then

undertaken and they also proved to be a

success.

Figure 3.5. The camera window (with the protective

masking still in place).

3.3.3 Further Modification to the Water-

Proof Enclosure

At this point confidence was high, but the

biggest problem was yet to be faced. How to

get all the motor and signal wires through the

hull of the water-proof enclosure, and still keep

the enclosure dry? With 2 wires for each of the

7 motors and 1 light, and 8 wires inside the

Ethernet cable, this meant there are 24

individual wires. These 24 wires mean, in

theory, there could be up to 24 individual holes

in the hull, and of course 24 holes = 24

possible leak sources.

After much consideration, the obvious

solution, though certainly not the cheapest

solution, but the one that was finally opted for,

was to concentrate all the wires into one single

multi-core cable with a single multi-pole

connector. This ensured there would be only a

single hull penetration, and therefore a much

reduced chance of leakage occurring.

By judiciously connecting all the common

12 V wires in the concentrating box, and

reducing the number of usable Ethernet wires

from 8 down to 6, the number of required

connections was reduced to 18. An 18-core

cable was sourced, and a suitable IP68-rated

plug and socket acquired. Figure 3.6 shows the

construction of this cable and connectors

pairing.

17

Figure 3.6. Construction of the 18-way cable and connectors.

Initial water-proof testing of the enclosure,

now fitted with the multi-pole connecter plug

followed and was thought to be successful.

Subsequent operation showed this was not the

case, and small amounts of water

(approximately 4 tablespoons per hour were

observed) were entering the enclosure through

the hole that was created for the connector.

Upon inspection, it became obvious that the

hole had not been made sufficiently accurately

and did not meet the connector manufacturers’

specifications. An additional end-cap was

purchased and another hole was machined, this

time much more accurately using more

appropriate and accurate tools.

3.4 Propulsion by Thrusters

Propulsion of the vehicle through the water,

both vertically and horizontally, under control

of the operator, is the job of the thrusters.

3.4.1 Thruster Construction

The thrusters used for this project are sealed

DC motors, derived from bilge pumps, and

fitted with propellers. Figure 3.7 shows the

pumps before, during and after modification.

To turn the bilge pumps into ROV thrusters,

the following steps were undertaken:

 Unclip the blue protective shroud

 Machine away the white outer shell to

expose the sealed body and impeller.

 Remove the impeller

 Attach a propeller-to-shaft adapter to the

motor shaft

 Attach a propeller to the adapter

 Repeat six more times

Figure 3.7. Conversion from bilge pump to thruster.

18

3.4.2 Horizontal Thruster Configuration

An analysis of the commercial ROV market

shows two common configurations are used for

horizontal thruster placement:

 the “H” layout as shown in Figure 3.8

 the “vectored” layout as shown in Figure

3.9

Figure 3.8. “H” horizontal thruster layout.

Figure 3.9. “Vectored” horizontal thruster layout.

Both configurations are used commercially:

the P4 CD 300 from VideoRay LLC, (Figure

1.3) uses the H layout, whereas the Saab

Seaeye Lynx and Jaguar, (Figures 1.4 and 1.5),

use the vectored layout, as does the SMD UT-1

(Figure 1.6).

The H layout requires only three thrusters

instead of four which gives a small cost

advantage, but there are also a number of

disadvantages:

 All three thrusters require bi-directional

control (i.e. they must be able to be driven

forward or backward), which incurs

significant additional cost and complexity

in the control electronics

 6 wires have to be passed through the

water-proof pressure hull

 Sideways motion is relatively slow as there

is only a single thruster

 The single sideways-acting thruster should

be mounted exactly at the centroid of the

ROV otherwise it will impart a rotational

force on the ROV

The vectored layout on the other hand

requires only uni-directional thruster control,

giving simpler, cheaper electronics, and needs

only 5 connections through the hull (as one

wire is common to all thrusters and can be

connected together externally). The major

disadvantage of this layout is that the

maximum thrust for forward, reverse and

sideways operations is reduced by 30% due to

the 45 offset of each thruster from the

direction of travel.

Clearly, both layouts offer unique

advantages and disadvantages, but after careful

consideration of these, the vectored layout was

chosen. The thrust reduction due to the angled

thruster mounting was deemed to be an

acceptable trade-off for simpler electronics.

Figure 3.10 shows how, using the vectored

layout, a combination of any two thrusters

gives 6 possible directions of movement.

19

Figure 3.10. Directional control using a “vectored” horizontal thruster layout.

3.4.3 Vertical Thruster Configuration

For simple vertical positioning control, a

single bi-directional thruster, centrally located,

and mounted vertically is sufficient. However,

to support the self-stabilisation system (see

Chapter 6), additional bi-directional thrusters

are necessary to give the ability to correct

disturbances along the pitch and roll axes.

For the roll axis correction, a thruster is

mounted along the top of the left and right side

frames at the midpoint. These thrusters are set

at an angle offset from the vertical to assist in

roll correction. For normal vertical positioning

they are driven equally, but for roll correction

they are driven at different rates, and different

directions if necessary.

For the pitch axis, a single thruster is

mounted at the top rear of the frame. The offset

to the vertical is one of the factors considered

during the testing phase and discussed in

Chapter 7. It is not used for normal vertical

20

positioning of the ROV as its non-symmetric

positioning on the frame may induce pitch.

3.4.4 Propellers

A number of different propellers (Figure

3.11) have been tested to ascertain the relative

thrust measurements and the current draw by

the thruster motors, to find the most suitable

propeller:

 Unmodified bilge pump with impeller

 Robbe R1473 3-blade 35 mm propeller

 Robbe R1471 3-blade 50 mm propeller

 Robbe R1465 3-blade 60 mm propeller

 Graupner G2308.50 3-blade 50 mm

propeller

 Graupner G2298.40 5-blade 40 mm

propeller

Figure 3.11. Five different propellers were tested.

The testing apparatus is shown in Figure

3.12 and consists of a rotating cross-shaped

structure with the thruster attached to one end.

When power is applied to the thruster, the

structure pivots and applies a downward force

to the scales. That force, measured as weight

by the scales, is directly proportional to the

thruster force output. Due to the nature of the

testing apparatus, the measurements taken are

not considered highly accurate but serve to

provide relative indications of the differences

between the propellers. The results, averaged

over a number of tests, are shown in Table 3.1.

Figure 3.12. Thrust and current draw measurements.

Propeller

Current

Draw

(A)

Thrust

(g)
g / A

Bilge

pump

impeller

1.60 75 46.88

3-blade

Robbe 35

mm

2.05 125 60.98

3-blade

Robbe 50

mm

2.80 190 67.86

3-blade

Robbe 60

mm

3.50 190 54.29

3-blade

Graupner

50 mm

2.20 250 113.64

5-blade

Graupner

40 mm

2.10 170 80.95

Table 3.1. Thrust and current draw measurement

results.

On a gram per Amp basis, the Graupner 50

mm propeller seems the logical choice,

however it was noted during testing that the 5-

bladed 40 mm Graupner propeller generated

significantly less turbulence. It also had a

much higher reverse thrust compared to any of

the 3-blade propellers. Minimising turbulence

is important for good visibility during

operation of the ROV and though reverse

thrust is not important for the horizontal

thrusters, it is critical for the vertical thrusters.

For these reasons, 5-blade 40 mm Graupner

propellers were chosen for all seven thrusters.

21

3.4.5 Propeller Rotation

As a single propeller rotates, it imparts a

rotational force to the vehicle, and this has the

effect of steering the vehicle to the right or left.

To minimise this force, two thrusters are used

simultaneously, with each thruster having a

propeller that rotates in the opposite direction

to the other. Table 3.2 shows the allocation of

rotation direction to the individual thrusters.

Thruster
Rotation

Direction

Horizontal

Front Right

Counter-

Clockwise

Horizontal

Front Left
Clockwise

Horizontal

Rear Right
Clockwise

Horizontal

Rear Left

Counter-

Clockwise

Vertical

Right

Counter-

Clockwise

Vertical

Left
Clockwise

Vertical

Rear

Counter-

Clockwise

Table 3.2. Thruster propeller rotation direction.

To ensure an equivalent level of thrust from

each of the two thrusters, propellers designed

for opposite rotation are used. Figures 3.13 and

3.14 show the two different 5-bladed

propellers used, each designed for rotation in a

specific direction.

Figure 3.13. Counter-clockwise rotating propeller.

Figure 3.14. Clockwise rotating propeller.

3.5 Tether

The tether is the physical and

communications link between the top

controller, located out of the water, and the

ROV in the water. It has 3 responsibilities:

 deliver instructions down to the ROV from

the top controller

 deliver sensor data from the ROV up to the

top controller

 deliver video up to the operator

The tether in this case consists of a single

30 m Ethernet cable (Cat. 6), with two of the

four sets of twisted pairs being used. This

length will give a maximum depth of 30 metres

straight down, and 21 metres out at a 45

angle. 30 metres is the typical maximum depth

of recreational scuba divers, and therefore the

maximum depth for easily testing the ROV,

allowing for an emergency recovery.

Two wires (one set of the four twisted pairs,

wires 1 and 2) are used for serial

communications between the top controller

and bottom controller. A third wire (wire 3) is

used to carry the analogue video signal, and a

fourth wire (wire 4) is the common ground

connection between the top and bottom

controllers. A third pair (wires 5 and 6) are

unused, but available for future use. The fourth

pair (wires 7 and 8) are not connected at all

due to the lack of spare conductors in the 18-

core cable running into the water-proof

enclosure.

The primary physical requirements for the

tether are that it must be as light and small as

22

possible to minimise drag through the water,

and ideally should be neutrally buoyant. The

ethernet cable is not neutrally buoyant so a

number of floatation devices are attached to

the tether at regular intervals to ensure neutral

buoyancy. To avoid fouling of the tether with

the thrusters, the tether is made positively

buoyant for the metre closest to the ROV.

For physical protection, at the ROV end a

cable strain relief grommet is used, and the

first 5 metres of the tether are enclosed in a

black braided sheath.

3.5.1 Wireless Communications

It has been suggested that a completely

wireless system may be possible and this has

been investigated but despite being a very

interesting subject has been found unsuitable

for this specific project. Briefly, there are a

number of advantages to a wireless system

including:

 less drag

 fewer buoyancy issues

 no tangles, snags or propeller fouling

There are however, two major technical

problems with underwater wireless

communications:

 limited bandwidth

 latency

The bandwidth available with long range

acoustic modems is approximately 10 kbps [8].

This would be sufficient for control and sensor

data but is not sufficient for video transmission

and therefore makes it unsuitable for this

project. There are considerable efforts

currently underway to apply modern

communications techniques such as OFDM

and MIMO to underwater communications [9],

so this may be less of an issue going forward.

The second problem is that sound

propagates through water at approximately

1,500 metres per second [10] which is vastly

slower than an electrical signal in a cable that

travels at close to the speed of light. Therefore

a considerable level of latency occurs and this

obviously increases as the distance increases.

This may not be a significant factor for a

distance of 30 metres, but for commercial

ROV’s operating in real-time at 6,000 metres it

is an unworkable solution as round trip times

would be in the order of 8 seconds.

The examination of the propagation of

sound through water, sea water in particular, is

not a trivial exercise and well outside the scope

of this project. The reader is encouraged to

look at the US Navy publication “Physics of

Sound in the Sea” resulting from research done

during World War II for further details on the

physics of communications through sea water.

23

4. Top Controller

The primary purpose of the top controller is

to act as the operator control interface. From

the operator’s point-of-view, they need to be

able to control the position of the ROV in the

water on any one of four axes, as easily as

possible, and receive timely feedback from the

ROV of its position and the nature of the

environment it is in.

Figure 4.1. The completed top controller.

The following sections of this Chapter detail

the design, specification and construction of

the operator control interface.

4.1 Top Controller Design

From the requirements it was determined

that the 4-degree-of-freedom (DOF)

positioning and control performed by the

operator (forward/backwards, up/down, move

left/move right, and rotate left/rotate right)

would be best achieved using two joysticks

and a number of switches. Feedback to the

operator would come via a video screen, an

LCD screen for sensor data and warnings, and

a number of LED’s to indicate a particular

state or warning.

The electronic design of the top controller

centres around a microcontroller (in this case

an NXP LPC1768 on an mbed microcontroller

development board) interfaced to:

 three switches

 an LCD screen

 two joysticks

 six LED’s

 a temperature sensor

 a buzzer

 the serial connection to the bottom

controller

The circuit diagram and strip-board layout

can be found in Appendix B, and the final

operational microcontroller C programming

code in Appendix D.

4.2 Construction and Testing

For a system as complex as the top

controller, where almost every available I/O

pin is being used on the mbed microcontroller,

connecting every element simultaneously and

then attempting to test and debugging from

there, from experience, seemed likely to be

inefficient and ineffective.

Instead, an alternative and ultimately

successful approach was used, where each

element of the top controller was first tested in

isolation from the other elements of the system

to ensure they performed as required (see

Figure 4.2). Only once they were proven to

work in isolation were they integrated into the

evolving system built on a breadboard. As each

new element was added, it along with all the

existing elements already in place, were then

fully tested to ensure they worked with each

other.

Figure 4.2. Two mbed modules mounted on a

breadboard during serial communications testing.

This gradual addition, element by element,

to the working system, ensured that any

problems that did occur were easily identified.

Figure 4.3 shows the development in progress.

24

The order of implementation was:

1. mbed microcontroller development board

2. voltage regulator

3. LCD display

4. joysticks

5. temperature sensor

6. leak buzzer

7. switches

8. LED’s

9. RS232

Only once the top controller was working

entirely as required on the breadboard, was it

moved onto the strip-board, as shown in Figure

4.3.

Figure 4.3. The top controller during development, on

breadboard (top) and later on strip-board (bottom).

Two primary tools were used during the

testing and construction phase. Firstly, a digital

multi-meter was used for checking connections

and voltage levels to ensure every component

was correctly placed and wired. The second

tool was the LCD display which proved to be

very useful. It was used extensively during the

development of the top controller (and also the

bottom controller) due to the flexible nature of

the data it can display. This is primarily due to

the ease-of-use offered by the mbed rapid

prototyping development system.

4.3 mbed Rapid Prototyping

Development System

The mbed development system is the

combination of an NXP LPC1768

microcontroller mounted on a user-friendly

0.1”-spaced DIP package, an online web-based

development environment, and a collection of

official and community-developed standard

libraries. This combination is specifically

designed to facilitate quick and easy

prototyping as can be seen in Figure 4.2.

The NXP microcontroller has an ARM

Cortex-M3-based core running at 96 MHz It

contains 512 kB of flash memory, 32 kB RAM

along with I
2
C, SPI, CAN and serial I/O, 6

PWM output channels, 6 ADC input channels,

and a single DAC output channel. It also offers

USB and Ethernet connectivity and a 3.3V

regulated power output [11].

4.4 Power Supply

Operation of the top controller requires a

number of different voltage levels. The mbed

microcontroller can accept an input from 4.5 V

to 14.0 V, the LCD display operates logically

at 3.3 V, though its backlight requires 4.2 V,

and the RS232 IC requires 3.3 V for operation.

Power was supplied during development by a

standard PP3 9 V battery. A 5 V linear voltage

regulator, TS7805CZ, is used to cut the 9 V

down to 5 V for both the LCD backlight and

the mbed. The 4.2 V for the backlight is

generated from the 5 V using a voltage divider

circuit.

25

The 3.3 V required by the LCD display and

RS232 IC is generated by the mbed’s onboard

voltage regulator.

4.5 LCD Display

The LCD display chosen is a 20 x 4

character black-on-green display fitted with an

LED backlight. The display uses a 4-bit

parallel data connection to the microcontroller

(there is also the option to use an 8-bit

connection) and requires 2 additional control

lines: ‘RS’ and ‘E’ [12]. It is powered from the

3.3 V generated by the mbed’s onboard

regulator. The backlight is powered separately

by a 4.2 V source.

During ROV operation, the display is used

to indicate some or all of:

 the state of the joysticks

 the temperatures from the sensors in the

top and bottom controllers

 the pitch and roll tilt angles

 the PID control settings

 the status of the data logging function, the

lights and the control system

 leak warnings

 H-bridge over-temperature warning

4.6 Analog Joysticks

The top controller uses two analog joysticks

to allow the operator to control the position of

the ROV in the water along any of 4 different

axes. Figure 4.4 shows how the eight possible

position instructions are mapped to the eight

joystick positions.

Raise

Lower

Move

Right

Move

Left

Forward

Reverse

Turn

Left

Turn

Right

Left Joystick Right Joystick

Figure 4.4. Joystick control direction assignment.

Each joystick is essentially a structure

holding two linear potentiometers aligned

along two perpendicular axes. The output from

each axis of each joystick is connected to an

ADC input on the mbed microcontroller where

the value of the resistance in the

potentiometers, and therefore the position of

the joystick, is directly proportional to the

voltage appearing at the ADC input, referenced

to 3.3 V.

Though the joysticks are analog devices,

they are effectively used as digital inputs with

one of six possible states:

 up

 down

 left

 right

 horizontally centred

 vertically centred

The software determines the current state of

each joystick based on the value returned from

the ADC input, and maps that to the

appropriate instruction for the ROV.

The sampling of the joysticks occurs 20

times per second. Subjective testing indicated

an update rate any slower induced a

perceptible lag between the operator input and

the ROV response.

4.7 Temperature Sensor

The top controller is fitted with a

temperature sensor to measure the temperature

inside the enclosure. This information is

sampled every few seconds and displayed on

the LCD display.

The sensor is an LM335 from National

Semiconductor, supplied in an easy-to-use

plastic TO-92 package. It was chosen as it

offers a good balance between price and

accuracy. It has an operating range from -40

to +100 C and is typically accurate to ±2 C

which was considered acceptable for this

application, however accuracy can be

increased by calibration if necessary.

The sensor works like a Zener diode with a

breakdown voltage output directly proportional

to the temperature at 10 mV / K [13]. Due to

the linearity of its output, by connecting to an

ADC input on the microcontroller, the ambient

temperature in degrees Celsius can be

26

calculated using the following formula, where

the sampled value is in the range of [0, 1]:

(1)

4.8 Water Leak Detection Warnings

If the bottom controller detects a water leak

into the water-proof enclosure, it will

communicate this to the top controller. The top

controller will respond to this by sounding a

small buzzer, displaying a warning on the LCD

screen, and illuminating a red LED.

4.9 Switches and LED’s

The top controller has 3 switches and 6

status LED’s. The three switches are used for:

 lights on / off

 control system on / off

 data logging on / off

The LED’s are used for:

 power (green)

 leak detected (red)

 data link to bottom controller (green)

 state of light switch (green)

 state of control system switch (green)

 state of data logging switch (green)

4.10 Data Communications

The top controller has two separate data

communications channels.

4.10.1 Communication with the Bottom

Controller

Communications between the top controller

and bottom controller, via the tether, are by

RS232 serial. An EXAR SP3232ECP-L driver

chip is used in both controllers for this as the

inbuilt serial UART’s in the mbed

microcontroller are not designed for

transmitting over 30 m cable lengths.

A relatively simple communications

protocol was established for the exchange of

control and sensor data between the top and

bottom controllers.

Tables 4.1, 4.2 and 4.3 detail the 14 bytes

sent from the top controller to the bottom

controller:

Byte Name Purpose

1 controlData[0]
8 bits for

control data

2 controlData[1]
8 bits for

control data

3 kP8[0]
first byte of 4

for kP float

4 kP8[1]
second “

“

5 kP8[2]
third “

“

6 kP8[3]
fourth “

“

7 kI8[0]
first byte of 4

for kI float

8 kI8[1]
second “

“

9 kI8[2]
third “

“

10 kI8[3]
fourth “

“

11 kD8[0]
first byte of 4

for kD float

12 kD8[1]
second “

“

13 kD8[2]
third “

“

14 kD8[3]
fourth “

“

Table 4.1. Data sent from the top controller to the

bottom controller.

Bit Number Purpose

7 ‘1’ = first control data byte

6 ‘1’ = data logging on

5 ‘1’ = control system on

4 ‘1’ = lights on

3 ‘1’ = rear left thruster on

2 ‘1’ = rear right thruster on

1 ‘1’ = front left thruster on

0 ‘1’ = front right thruster on

Table 4.2. controlData[0] byte.

27

Bit Number Purpose

7 ‘0’ = second control data byte

6 unused

5 unused

4 unused

3 unused

2 unused

1 ‘1’ = drive down

0 ‘1’ = drive up

Table 4.3. controlData[1] byte.

Transmission of floating point values for

the P, I, and D constants for the control system

is achieved by breaking the 32-bit floating

point value into four 8-bit values and sending

those, as shown in Table 4.1. Each set of four

bytes is then reconstructed back into a 32-bit

floating point value at the receiving end by the

bottom controller.

There are also 4 bytes sent back from the

bottom controller to the top controller:

Byte Name Purpose

1 txData[0] 8 bits for warning flags

2 txData[1] bottom temperature

3 txData[2] pitch tilt angle

4 txData[3] roll tilt angle

Table 4.4. Data sent from the bottom controller to the

top controller.

Bit Number Purpose

7 ‘1’ = first data byte

6 unused

5 ‘1’ = thermal overload

detected

4 ‘1’ = thermal overload

detected

3 ‘1’ = thermal overload

detected

2 ‘1’ = leak detected

1 ‘1’ = leak detected

0 ‘1’ = leak detected

Table 4.5. txData[0] byte.

4.10.2 Communications with the

Development PC

The mbed development board includes a

USB connection to the development PC. This

connection was used, in addition to

downloading program code, to give a serial

terminal interface to the top controller and to

the bottom controller, via the top controller.

This serial terminal interface was used for

debugging purposes, and for PID control

tuning on-the-fly.

Figure 4.5 shows a terminal session in

operation during development, between the

development PC and the top controller.

Figure 4.5. Serial terminal interface, via USB, from

the development PC to the top controller.

4.11 Enclosure Design

The front panel design, to fit the chosen

enclosure, is shown in Figure 4.6.

Leak

Link

LightsPower

Control

System

Data

Logging

Figure 4.6. Front panel design.

28

The rear of the enclosure is where the tether

input and video output connections are made.

This is shown in Figure 4.7.

VIDEO

OUT

TETHER

Figure 4.7. Rear panel design.

4.12 Software

The design of the top controller software

running on the ARM microcontroller follows

an “interrupt-driven” model. Periodic tasks

were set up to run at regular intervals using a

timer function that generates interrupts. These

tasks include:

 read the temperature sensor once every 3

seconds

 read the joystick positions 20 times per

second i.e. every 0.05 seconds

 update the LCD display 20 times per

second

 send and receive data to and from the

bottom controller 20 times per second

In addition, asynchronous changes by the

operator of any of the three switches on the

control panel are also handled by the interrupt

mechanism.

Figure 4.8 shows a representation of the

system.

Initialisation

Wait for interrupt or timer

event

Interrupt on switch state

change

3 second timer:

- read temperature sensor

0.05 second timer:

- read joysticks

- update LCD

- RX/TX with bottom

Figure 4.8. Top controller system block diagram.

29

5. Bottom Controller

The primary purpose of the bottom

controller is operation of the thrusters and

lights, as instructed by the operator using the

top controller. There are 7 thrusters: 4

requiring uni-directional control, and 3

requiring bi-directional control. There is also

an integrated inertial measurement unit (IMU)

for the self-stabilising control system.

Figure 5.1. The completed bottom controller.

The following sections of this Chapter

detail the design, specification and

construction of the bottom controller.

5.1 Bottom Controller Design

Given the requirements of supporting four

uni-directional, and three bi-directional

thrusters, and one light switch, it was

determined that five MOSFET’s, acting as

switches, and three H-bridge motor drive IC’s

would be required. In addition a range of

sensors would be required:

 a 2-axis tilt sensor for the control system

 a leak detector

 a video camera to allow the operator to see

where the ROV was heading

 a temperature sensor

The electronic design of the bottom

controller centres around a microcontroller

(once again an NXP LPC1768 on an mbed

microcontroller development board) interfaced

to:

 five MOSFET’s

 three H-bridge IC’s

 an IMU daughterboard

 a temperature sensor

 a leak detector

 the serial connection to the top controller

The circuit diagram and strip-board layout

can be found in Appendix C, and the

microcontroller C programming code in

Appendix E.

5.2 Construction and Testing

As occurred for the top controller, the

bottom controller system uses almost every

available I/O pin on the mbed microcontroller,

so testing by connecting every element

simultaneously and debugging from there,

once again seemed likely to be an inefficient

and ineffective approach.

The alternative and ultimately successful

approach was used again, where each element

of the bottom controller was first tested in

isolation from the other elements of the system

to ensure they performed as required. Only

once they were proven to work in isolation

were they integrated into the evolving system

built on a breadboard. As each new element

was added, it along with all the existing

elements already in place, were then fully

tested to ensure they worked with each other.

This gradual addition, element by element,

to the working system, ensured that any

problems that did occur were easily identified.

Figure 5.2 shows the development in progress.

The order of implementation for the bottom

controller was:

1. mbed microcontroller development board

2. IMU

3. Leak detector

4. temperature sensor

5. voltage regulator

6. MOSFET’s

7. H-Bridges

8. RS232

9. Data logging

10. Lights

11. Camera

30

Figure 5.2. The bottom controller during

development, on breadboard, wired to the seven

thrusters.

Again, only once the entire bottom

controller was working reliably on the

breadboard, was it moved onto the strip-board

(see figure 5.1).

5.3 mbed Rapid Prototyping

Development System

The same mbed development system as

used in the top controller is once again the

central core of the bottom controller system.

Three of the six available PWM output

channels are used to drive, at variable speed

and direction, the H-bridges for the vertical

thrusters that require bidirectional control.

5.4 Inertial Measurement Unit

A 2-axis accelerometer is used to perform

the tilt measurements for the roll and pitch

axes used with the self-stabilising control

system. The accelerometer used in this project,

an LIS331DLH from ST Microelectronics, is

part of a complete inertial measurement unit

(IMU) that was designed by Tim Marvin

specifically to work with the mbed

development board. As can be seen in Figure

5.1, it has been cleverly designed so that the

mbed board plugs in to the top.

Originally designed for a model aircraft

autopilot system, it contains, in addition to the

2 accelerometer axes used, a third

accelerometer axis, a 3-axis gyroscope, and a

3-axis magnetometer.

Each axis of the accelerometer outputs a

floating point value in the range of -1 to +1

corresponding to -90 to +90 [14]. The

conversion from floating point value to degrees

is found by:

 (2)

During development of the control system,

certain spurious values were noticed to be

coming from the accelerometer. An analysis

and resolution of this issue can be found in

Appendix I.

The IMU board also conveniently contains

a micro SD slot connected through to the

mbed. This was used for the data-logging and

is described in section 5.13. The schematic

and PCB layout of the IMU board as designed

by Tim Marvin can also be found in Appendix

G.

5.5 Leak Detector

To warn of any leaks that may have

occurred inside the water-proof enclosure, a

leak detector system has been developed. As

can be seen in Figure 5.3, it consists of a small

section of copper-coated strip-board with the

connecting wires attached to adjoining tracks.

Figure 5.3. The leak detectors.

If any water is present and causes a bridge

across the copper tracks, a positive voltage

appears on pin 11 of the mbed. The software is

configured to react to this pin going high and

transmits a warning signal to the top controller,

where an LED is lit, a buzzer sounds and a

message appears on the LCD display.

31

5.6 Temperature Sensor

Like the top controller, the bottom

controller is also fitted with an LM335

temperature sensor to measure the temperature

inside the water-proof enclosure. This

information is sampled every few seconds and

communicated to the top controller for display

on the LCD display.

5.7 Power Supply

Two methods of supplying power to the

bottom controller were considered:

 Power from the surface, via the tether

 Power from batteries on board the ROV

5.7.1 Power from the Surface

Powering the ROV from the surface was

initially investigated, but a major problem

using the surface power option became evident

quickly: the voltage drop along the wire caused

by the inherent resistance of the wire. It can be

overcome to some degree by using a larger

gauge wire but this adds weight to the tether

and therefore increases drag and buoyancy

requirements. Furthermore, as the current

drawn through the wire will vary depending

upon which motors are being used, so does the

voltage drop vary, giving an unpredictable

voltage at the ROV end of the tether. A simple

example is illustrated in Table 5.1:

Surface

Voltage

Current

Draw

Voltage

Drop

Available

Voltage

12 V 1 Amp 0.425 V 11.575 V

12 V 3 Amps 1.276 V 10.724 V

12 V 6 Amps 2.552 V 9.448 V

Table 5.1. Voltage drop example.

These calculations are based on a 30 m

length of 2.5 mm
2
copper conductor.

As the H-bridges used (see section 5.9)

have a low voltage cut-out somewhere in the

range of 9 V to 11 V, just the possibility of the

voltage dropping down into this range

suggested this was not the optimal solution, so

the alternative of an on-board power source

was investigated.

5.7.2 On-Board Power

A number of factors were considered when

looking at the different onboard power source

options:

 cost

 recharge ability

 size and weight

 voltage

 power capacity and energy density

Given those factors, a number are different

battery technologies were investigated:

 Lead acid

 Nickel Cadmium

 Nickel Metal Hydride

 Lithium Polymer

Lead acid batteries, as used in automotives,

were deemed too heavy, too big, and prone to

leakage. Nickel Cadmium and Nickel Metal

Hydride batteries were also looked at closely

but the decision was made to use the Lithium

Polymer (LIPO) batteries as they offered:

 greatest power-to-weight ratio and energy

density

 ready availability in large capacity

configurations

 suitable cell voltage

 suitable form-factor

 lowest self-discharge rate when not used

 reasonable cost

 no memory effect

The specific LIPO battery used during

development is the Turnigy 2.2 Ah 3S 30C

battery (see Figure 5.4) that offers a nominal

11.1 V (3 cells @ 3.7 V, each in series). In

practice it can be charged up to 12.6 V and is

generally considered to have only 10%

capacity remaining at 11.1 V.

Figure 5.4. Turnigy 2.2 Ah 3S 30C LIPO battery.

32

The “30C” rating of the battery indicates

the maximum continuous discharge current the

battery can deliver without overheating and

damaging the battery:

(3)

From this it can be seen that the 30C rating

for this 2.2 Ah battery is more than suitable for

the ROV bottom controller system which does

not draw much more than 5 - 6 Amps at any

time.

It is estimated that this single LIPO battery

will give a typical run-time of around 15

minutes. This can easily be extended by simply

adding more batteries in parallel.

LIPO batteries are not without their

limitations though and need to be carefully

handled. The first battery used was destroyed

by accidently shorting the positive and

negative terminals when attaching a connector,

and a second destroyed by inadvertently not

disconnecting it after use and letting it

discharge too low: if the cells are discharged

below 9 V they cannot be recharged. They are

also prone to exploding if punctured or

charged incorrectly, and a special LIPO

“balancing” charger must be used to ensure

each of the three internal cells is charged at

and to the same voltage, without over-

charging.

The motors and lights are driven directly

off the LIPO’s nominal 11.1 V supply. A 5 V

linear voltage regulator, TS7805CZ, is used to

reduce the 12 V down to 5V for the mbed. The

3.3 V required by the other logic devices and

the RS232 IC is generated by the mbed’s

onboard voltage regulator.

5.8 MOSFET’s

The lights, and the four uni-directional

horizontal thrusters, operating at 12 V, are

simply switched on or off as required by the

microcontroller. Unfortunately the

microcontroller cannot handle the 12 V

switching task and so a MOSFET is employed

as a switch.

The major factors considered when

selecting the MOSFET were:

 cost

 availability

 usability

 suitability

Based on these factors, the RFP30N06LE

was chosen as it was readily available from a

trusted supplier, costs only £0.89, was suitable

for through-hole construction, had a voltage

and current capacity of 60 V and 30A and was

compatible with the 3.3 V operation of the

microcontroller [15].

To use these devices as simple logical

switches, it was found necessary to add a 10

K resistor from the gate to ground, as

without the resistor the MOSFET would not

turn off due to the device capacitance. With the

resistor fitted, the capacitance now has a path

to dissipate and the device turns off.

5.9 H-Bridges

The three vertical thrusters, operating at or

around 12 V, require bi-directional variable

speed control to enable the ROV to ascend and

descend. For this reason, a simple MOSFET

acting as an on / off switch will not work. A

configuration of switching relays could be used

to change direction, but they do not switch fast

enough to be used with a pulse-width-

modulated variable-speed system (see section

5.9.1).

The solution is to use a circuit arrangement

known as an H-bridge as they allow for high-

speed-switching bidirectional motor control.

An H-bridge can be built from discrete

components but many IC versions are readily

available so it was decided to use one of these,

if a suitable one could be found.

Once again, the major factors considered

when selecting an H-bridge IC were:

 cost

 availability

 usability

 suitability

33

Unfortunately the choice is not as easy as

when choosing a MOSFET: most modern H-

bridge motor drive IC’s are only supplied in

surface mount format which is not compatible

with the through-hole construction techniques

used in this project. This greatly limits the

choice of components available but there is

one component found that meets some of the

criteria: the LMD18200 from National

Semiconductor (now a part of Texas

Instruments).

The chip is readily available, and is suitable

for the application, being able to deliver up to

3 A continuously [16]. It is supplied in a

cumbersome 11 pin dual inline TO-220

package with an awkward pin spacing of 0.67”

but fortunately a break-out board to convert to

the more common 0.1” pin spacing is

available. The major issue with this IC is the

cost: £18.40 each (plus £1.28 for the breakout

board). Figure 5.5 shows the three

LMD18200’s mounted on their breakout

boards, and installed on the strip-board. The

chip has a number of connections:

Pin

Number

Connected

To
Use

1 no connection -

2 motor +
motor connection

+

3 mbed pin 18 motor direction

4 brake
not used, tied to

ground

5 mbed pin 21 motor PWM

6 12 V power supply

7 ground circuit ground

8 current sense not used

9 mbed pin
thermal overload

detection

10 motor -
motor connection

-

11 no connection -

Table 5.2. LMD18200 pin assignment.

As per the recommendation of National

Semiconductor, 300 F bypass capacitance

was used to absorb any back EMF caused by

switching the inductive load, and a heatsink

was attached.

Figure 5.5. Three LMD18200 H-bridge IC’s mounted

on their break-out boards.

5.9.1 Pulse Width Modulation

Pulse Width Modulation (PWM) is a

method commonly used for digital control of

certain analogue devices such as DC motors

and LED lights. It involves sending a pulse

train of high and low levels, at varying ratios

(the duty cycle), to effectively mimic a varying

voltage level. A digital PWM system offers a

very flexible and fine-grained control of the

speed of a motor by being able to control

programmatically the time of the high level

output compared to the low level output.

Clock

20%

40%

60%

80%

Figure 5.6. PWM duty cycle operation.

As can be seen in Figure 5.6, when there is

a high level 20% of the time, and a low level

80% of the time (i.e. a 20% duty cycle), the

effective average voltage over the total period

is 20% of the maximum output voltage. If that

maximum output voltage is 12 V, then: 20% of

12 V = 2.40 V. Accordingly, when there is a

high level 80% of the time, and a low level

20% of the time, the effective average voltage

over the total period is 80% of 12 V = 9.60 V.

Therefore by varying the ratio of high-level

time to low-level time, many different average

voltage values can be obtained between 0 V

and 12 V.

34

The total time period for each PWM cycle,

and therefore the switching frequency, can be

varied according to the components used. It is

common for DC motor PWM operation to

have an operating frequency at a level outside

the range of human hearing, though that is not

of concern when the motors are submerged. A

period of 100 microseconds, giving an

operating frequency of 10 kHz was found to be

perfectly acceptable.

5.10 Data Communications

The bottom controller has two separate data

communications channels.

5.10.1 Communication with the Top

Controller

Communications between the top controller

and bottom controller, via the tether, are by

RS232 serial. An EXAR SP3232ECP-L driver

chip is used in both controllers for this.

5.10.2 Communications with the

Development PC

The mbed development board includes a

USB connection to the development PC. This

connection was used, in addition to

downloading program code, to give a serial

terminal interface direct to the bottom

controller for debugging purposes.

5.11 Video Camera

A number of considerations were made

when examining the options for generating the

video image sent up the tether to the operator:

 cost

 ease of application

 image type and quality

Very expensive diving cameras, in very

expensive water-proof housings, are readily

available but the aim was to keep the cost of

the video camera to a minimum. The solution

was to find a small camera that would operate

from within the existing water-proof enclosure

(with the obvious addition of a window). This

would allow the use of the existing power

supply, remove the need for an additional

water-proof housing, and minimise external

wiring junctions.

The camera chosen, as can be seen mounted

on the front of the bottom controller in Figure

5.1, is the colour CM-26N/P CMOS board

video camera. It is powered from the 5 V

supply of the bottom controller. The video

signal output is analogue TV quality (PAL or

NTSC) via a 2-wire composite format (signal

and ground) [17].

The video signal is transmitted to the

operator via one of the wires inside the

Ethernet cable. It is then available as output

from the top controller for connection to a tv,

monitor or PC fitted with suitable analog video

capture capabilities.

Despite operating perfectly well for a few

months during testing, in February the camera

module developed a fault and has been

returned to the supplier for replacement.

Unfortunately the replacement has not yet been

received as they are currently out of stock.

5.12 Lights

As the development and testing of the ROV

has been conducted in relatively shallow

(maximum depth 5 metres) suburban

swimming pools, the development of the lights

has not been absolutely necessary, and has

currently not progressed beyond some basic

investigations into driving and mounting

LED’s.

Figure 5.7. LED light experiment.

Figure 5.7 shows an example of three white

LED’s connected in series and “mounted” to a

35

heatsink that was at hand at the time.

Considerable further work is necessary here on

mounting, driving, and ultimately sealing the

lights, and it may end up simply easier to

purchase pre-made submersible lights. For the

short term, a diving torch is available if

required.

Full support for the addition of lights has

been made in the bottom controller circuitry,

control software, top controller switch, and

ROV wiring, and the lights simply need to be

connected to the in-place wiring and physically

mounted to the ROV frame.

5.13 Data Logger

The IMU daughterboard used for this

project conveniently includes a micro SD card

slot and this is used for logging data as

required.

A typical sample of the data obtained

during one of the data logging exercises is

shown in Table 5.3.

Time

stamp

Pitch

angle
PitchAdj

VB motor

power

1.034826 0.031372 -0.015686 0.007500

1.176539 0.015686 -0.007843 0.015417

1.234058 0.015686 -0.007843 0.007500

1.291520 0.015686 -0.007843 0.007500

1.349056 0.015686 -0.007843 0.007500

1.480808 0.015686 -0.007843 0.007500

Table 5.3. Example of logged data.

Any data logged is loaded into Microsoft

Excel and MATLAB for further analysis.

5.14 Depth Sensor

A depth sensor was initially included in the

ROV design specifications, but has not been

implemented as yet, as the search for a suitable

sensor, at a “reasonable” price has so far been

unsuccessful.

Within the last few days, a “slightly out-of-

spec” PAA-6L pressure transducer from Keller

(Figure 5.8) was donated to the project, but it

has not yet been fitted to the ROV. It operates

on the principle of an increased output voltage

proportional to the pressure on the outer

diaphragm [18].

Figure 5.8. Keller PAA-6L pressure transducer.

5.15 Software

The design of the bottom controller

software running on the ARM microcontroller

follows a modified “interrupt-driven” model.

Periodic tasks have been set up to run at

regular intervals using a timer function that

generates interrupts. These tasks include:

 read the temperature sensor once every 3

seconds

 read the tilt sensors 4 times per second ie

every 0.25 seconds

The reception and subsequent transmission

of serial data to and from the top controller is

handled as an asynchronous interrupt-

generating event. In addition, other

asynchronous events such as the detection of a

leak, or a thermal overload on an H-bridge are

also handled by the interrupt mechanism.

Figure 5.9 shows a representation of the

system.

36

Initialisation

Process RX data

Interrupt on:

- leak detected

- H-bridge thermal overload

- RX/TX with top

3 second timer:

- read temperature sensor

0.25 second timer:

- read tilt sensors

Figure 5.9. Bottom controller system block diagram.

37

6. Self-Stabilising Control System

As was discussed in Chapter 1, there are

certain operational problems associated with

underwater vehicles, primarily to do with

imaging and manipulators, when they are not

sitting level in the water. To counter this, in

this ROV project a control system has been

developed to attempt to correct any major

variations in the pitch and roll axes (see

Appendix H for an explanation of motion

around these axes). Before examining this

system further however, an overview of

control system theory is necessary.

6.1 Control System Theory

In general, any system that can adjust itself,

based on measuring itself, is thought of as a

control system [19]. These control systems are

commonly known as closed-loop controllers.

As can be seen in Figure 6.1, the closed-

loop controller adjusts its output based on a

comparison of the desired output with a

measurement of the actual output. The

outcome of this comparison (a subtraction) is

known as the “system error”, and this process

is known as “negative feedback”.

An open-loop controller, on the other hand,

is one whose desired output is set to a certain

value. It simply does not have the ability to

adjust itself based on any variation in the

output as there is no feedback process. This is

shown in Figure 6.2. Open-loop controllers are

subject to, and cannot react to, external

influences and are unsuitable for use in this

project, therefore a closed-loop system has

been implemented.

6.2 Self-Stabilising System Overview

The self-stabilising control system,

configured as a closed-loop controller, is

designed to react to measured tilts on the pitch

and roll axes by applying power to the vertical

thrusters, to induce an inverse rotation around

the relevant axis, to correct the measured tilt.

Accordingly, any tilt that is measured is

considered the “system error” and it is fed back

into the correction mechanism.

Figure 6.3 shows a block level overview of

the control system where the desired tilt is set

to zero and the current tilt level is fed back as

the error.

To examine this control system in further

detail, only the pitch axis (with only a single

thruster for control) will be considered. The

thruster is controlled by a PWM system (see

section 5.9.1) where an input value to the

PWM system gives a certain output level. For

example, an input value of 0% equals no

power applied to the motor, and an input value

of 100% equals maximum power applied to the

motor.

Desired Output Σ Output

Controller

Output

Measurement

Actual Output

+
error

-

Figure 6.1. Closed-loop control system.

Desired Output
Output

Controller
Actual Output

Figure 6.2. Open-loop control system.

38

Desired tilt Σ Control System

Tilt measurement

Current tilt

+
error

-

Figure 6.3. Control system overview.

6.3 P Controllers

There are many different ways to

implement a closed loop control system.

Perhaps the simplest method of correcting any

tilt error is to use what is known as a ‘P

controller’, where ‘P’ refers to a proportional

multiplier constant [20]. The calculation is

relatively simple: take the measured tilt value,

multiply it by some constant (Pk) and apply

that to the motor as a PWM percentage.

For example, say the tilt measurement value

obtained from the accelerometer is 0.34202

(≈20 degrees), and the Pk constant is 40:

(4)

Mathematically, the P controller can be

stated as:

 (5)

Where:

 yP(t) is the P controller output

 e(t) is the error input (tilt)

 Pk is the proportional constant

Unfortunately a P controller it is not ideal:

if the Pk constant is set too low it may never

actually reach the desired level (Figure 6.4),

and if it does, it may simply take too long.

Conversely, if the Pk constant is set too high,

the response of the system will overshoot and

possibly oscillate and never reach a steady

state at the desired level (Figure 6.5).

Figure 6.4. P controller output where Pk is too low.

Figure 6.5. P controller output where Pk is too high.

Even with careful adjustment, error,

overshoot, and oscillation are inherent

problems with P controllers, and clearly

something that achieves a result closer to the

ideal is required.

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

Step Response

Time (seconds)

A
m

p
lit

u
d
e

step

P

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Step Response

Time (seconds)

A
m

p
lit

u
d
e

step

P

39

6.4 PID Controllers

As Bennett (1993) has said:

“... it has been shown repeatedly that in the

absence of any knowledge (in terms of a

dynamical model) of the process to be

controlled, the PID controller is the best form

of controller.” [21]

This statement has led directly to the

investigation and implementation of a PID-

type controller for this project as a dynamical

model is not readily available for the pitch tilt

correction system.

6.4.1 An Overview of PID Controllers

A PID controller is one that incorporates

the P controller previously examined, along

with a differential element and an integral

element, hence the P, I and D’s in the title.

Mathematically it can be stated as:

 (6)

Where:

 yPID(t) is the PID controller output

 e(t) is the error input (tilt)

 Pk is the proportional constant

 Ik is the integral constant

 Dk is the derivative constant

The block diagram shown in Figure 6.6

may help visualise the concept.

The addition of the integral and derivative

terms have significant effect on the output of

the controller and, with careful tuning, can

often overcome all the problems associated

with the P controller on its own. These extra

integral and derivative terms come at a cost

however, in complexity and performance, and

some systems do not require or justify those

costly additions. Fortunately simpler variations

can work just as well, depending upon the

system requirements.

Desired tilt = 0 Σ I

+
e(t)

-

PWM Motor Drive

D

P

Σ
+

+

+

y(t)

Current tilt

Figure 6.6. PID block diagram.

40

6.4.2 The PI Controller

The PI controller is one of the variations of

the PID controller in that it omits the derivative

element. It is stated mathematically as:

 (7)

The integral term, by accumulating error

over time helps to reduce the steady state error.

Figure 6.7 shows the result when an integral

constant Ik is added to the P controller. If this

constant is set too high overshoot will result.

Figure 6.7. PI controller output.

6.4.3 The PD Controller

The PD controller is another of the

variations of the PID controller in that it omits

the integral element. Mathematically it is

stated as:

 (8)

The derivative term, by reducing the rate of

change of the output over time, helps to reduce

any overshoot and can therefore improve

stability. Figure 6.8 shows the result when a

derivative constant Dk is added to the P

controller. Compare this with the output from

the P controller only in Figure 6.4 and you can

see the effect it has. If the derivative constant

is set too high, increased sensitivity to noise

results which can lead to instability.

Figure 6.8. PD controller output.

6.4.4 The PID Controller

The PID controller is the variant that

includes both the integral element and the

derivative element. Using all three elements

can result in a response that:

 has a steady state at the desired level

 quickly reaches a steady state

 does not over- or under- shoot excessively

 is stable in operation

Figure 6.9 shows the example with all three

PID terms in operation and a comparison with

the previous examples. It can be seen there is

less overshoot than the PI controller gives and

the desired steady-state level is achieved,

unlike the P controller and PD controller.

Figure 6.9. PID controller variant outputs.

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

Step Response

Time (seconds)

A
m

p
lit

u
d
e

step

PI

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

Step Response

Time (seconds)

A
m

p
lit

u
d
e

step

PD

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

Step Response

Time (seconds)

A
m

p
lit

u
d
e

step

P

PI

PD

PID

41

6.4.5 Tuning a PID-type Controller

The process of finding the optimal

constants Pk, Ik and Dk, for a control system is

known as ‘tuning’. The tuning process is often

done using mathematical modelling tools. An

example is the MATLAB PID Tuner shown in

Figure 6.10 which will automatically adjust the

Pk, Ik and Dk constants to give the optimum

response based on a number of adjustable

parameters such as the response time (via the

slider at the bottom) and the type of controller

to be used.

In addition to the Pk, Ik and Dk constants,

the user is also presented with information on

the rise and settling times, the overshoot

percentage and peak value, and if the system is

considered to be closed-loop stable.

Of course, all the auto-tuning tools require

that you have a model of the dynamic

behaviour of the system (i.e. a transfer function

representing your system), and, as will be

shown in Chapter 7, without a model the

tuning process is simply guess work or tedious

experimentation.

Figure 6.10. MATLAB’s PID Tuner.

42

6.5 Implementing a PID Controller

Having thus determined that a PID

controller, or variant thereof, may be

appropriate for this project, implementation

and testing was the next step.

An incredibly useful element of the mbed

development platform is the large range of

official ARM-developed, and community-

developed library functions available, and the

PID controller library is an excellent example.

Following significant research and evaluation,

and then successful testing, it was decided to

utilise this excellent free-to-use library on the

simple principles of open-source software and

community code reuse.

Actual use of the controller library is trivial:

once the controller object has been instantiated

and initialised, actual operation is simply two

lines of C code:

// send current pitch tilt to PID

controller as current error
pitchCon.setProcessValue(pitchTilt);

// let PID controller do its thing

pitchAdj = pitchCon.compute();

The output of the controller is set to be a

value in the range [-1.0 , 1.0] which is

equivalent to the PWM output level in the

range [-100% , 100%] that is applied to the

thruster.

This controller was shown to work well out

of the water: the greater the ROV is tilted, the

faster the thruster motors rotate, and varying

the Pk, Ik and Dk constants showed obvious

variation in the response.

The obvious next step was to determine the

Pk, Ik and Dk constants by in-water

experimentation. This is detailed in Chapter 7.

6.6 Building a Model of the Pitch

Control System

After the initial testing to determine the Pk,

Ik and Dk constants was performed, an effort

was made to try to build a mathematical model

of the pitch tilt correction system. The block

diagram of the control system is shown in

Figure 6.11.

The system has three cascading ‘gain’

blacks, each with their own transfer function:

 PID Controller block

 PWM Motor block

 Physical Response block

These three transfer functions, in the

Laplace domain, together give an overall

transfer function for the pitch tilt correction

system of:

 (9)

 (10)

Where the transfer function for the PID

Controller block is:

 (11)

The transfer function for the PWM

Motor block is effectively unity as no

modification to the magnitude of the signal

occurs, except for removing the sign for

direction control:

 (12)

Despite the efforts detailed in Chapter 7,

the transfer function for the Physical Response

block has not yet been determined:

Therefore:

 (13)

43

Only once the transfer function of the pitch

tilt correction system has been determined, can

the stability and frequency response of the

system be examined and determined. Tuning

of the Pk, Ik and Dk constants can then also

occur so as to ensure an appropriate response

time and behaviour.

6.7 Additional Aspects of the Self -

Stabilising Control System as

Implemented

The pitch tilt correction system as actually

implemented includes a directional element of

pitch control to allow for positive and negative

pitch angles. The magnitude of the response of

the control system is identical regardless of tilt

direction, but the rotation direction of the

thruster propeller varies depending upon the

sign of the tilt measurement.

The roll tilt correction system operates in a

very similar manner to the pitch tilt correction

system but with three important differences:

 includes support for two thrusters

operating at half the required power each

 allows for the opposite rotation of each

thruster required for the necessary

opposing action

 allows for simultaneous vertical ROV

positioning by the operator, and tilt

correction by the control system

Currently these simultaneous vertical

positioning operations have 50% of the power

allocated to each thruster, with the other 50%

assigned to the control system. It may be

possible to reduce the weighting applied to the

control system and therefore increase the

power available to the operator for vertical

positioning if desired.

PID Controller

Σ I

+
e(t) [-1,1]

-

PWM Motor
PWM [0,1] + DIR

D

P

Σ
+

+

+

y(t) [-1,1]

Current tilt [-1,1]

Physical

Response
Desired tilt = 0

Figure 6.11. Block diagram of the Pitch Tilt Correction Control System.

44

7. Testing and Measurement

Testing of the many unique elements of this

project was an essential and ever-present

requirement, as inadequate testing could easily

result in catastrophic (i.e. expensive) results.

The general approach was to systematically

test each and every change as thoroughly as

possible before making another change, and to

minimise the times where multiple changes

were made simultaneously. Experience has

shown that with multiple simultaneous

changes, trouble-shooting becomes

exponentially more difficult.

Though testing effectively never ceases,

once the ROV was shown to be effectively

operational the measurement phase

commenced.

The following sections detail the specific

aspects of the testing and measurements

undertaken.

7.1 Testing the Electronic Circuits

Following this principle of making and

testing individual changes one at a time, the

circuits were built-up element-by-element. The

approach was to first test each element, both

electrically and programmatically, in isolation

from the other elements of the system to ensure

they performed as required. Only once they

were proven to work in isolation were they

integrated into the evolving system software

and circuit built on a breadboard, and tested

with the other elements already put in place.

This gradual addition, element by element,

to the working system, with complete testing

of the software and circuit as each new element

was added, meant that any problems that did

occur were relatively easily identified, and

only once the entire circuit and its software

were working entirely as required on the

breadboard was it moved onto the more

permanent strip-board.

The other related factor that ensured the

development proceeded relatively smoothly

was the careful consideration taken to order the

implementation of the elements. Again, this

systematic approach ensured that when any

problems did occur they were relatively easily

identified. For example, during the

development of the top controller, the required

voltage regulator elements were determined

and put in place and ascertained to work as

required before the LCD display (and its

associated backlight with its different power

requirements) was added. In this case, trying to

add an additional power source for the

backlight to the circuit at a later stage could

easily have caused issues.

7.2 Testing the Tether and the Wiring

The communication between the top and

bottom controllers via the tether is performed

using the RS-232 standard. This

communication system was initially developed

and tested using short (less than 10 cm) lengths

of wire, before any attempt was made to use 30

m of Ethernet cable. This systematic approach

ensured that when the Ethernet cable was

finally used, it worked as planned immediately.

The concentration of the motor and light

wires, and the Ethernet cable into a sealed,

single 18-core cable and plug and socket

combination, is a significant possible point-of-

failure, so considerable thought and attention

went into it before any work commenced.

Firstly the many individual wires were

concentrated inside a plastic box and attached

to two sections of screw-terminals. Each

connection was individually tested and a full

test of the operation of the positioning and

communications systems was performed to

ensure there were no problems.

Construction of the multi-core cable and

plug and socket then occurred, with each and

every solder joint fully tested with a digital

multi-meter (DMM). Again, a full test of the

operation of the positioning and

communications systems was performed to

ensure there were no problems.

Only once these tests were completed

successfully was the concentrator box filled

with a water-proof resin to seal the screw

terminal connections. These steps can be seen

in Figure 3.3.

This systematic approach to construction

and testing has ensured that, at least so far,

there have been no problems associated with

the tether or the motor wiring.

45

Due to the failure of the camera module in

February, it has not been possible to fully test

the video sub-system in the finished hardware,

but during the time it was working, the camera

was tested and performed perfectly well.

7.3 Water-Proof Testing of the

Enclosure

Again, following the principle of making

and testing individual changes one at a time,

the construction and validation of the water-

proof enclosure proceeded step-by-step:

1. Test empty enclosure with three

unmodified end-caps

2. Test enclosure with prototype camera

window

3. Test enclosure with second prototype

camera window

4. Test enclosure with multi-core connector

installed

5. Test enclosure fitted to the ROV for

trimming

6. Test enclosure fitted to the ROV for

powered testing

7. Test enclosure fitted to the ROV for PID

measurements

8. Test enclosure fitted to the ROV for leak

location determination

9. Test enclosure to ensure leak has been

prevented

All these tests were performed in local

suburban swimming pools, at varying depths

up to 5 m, in conjunction with the Lodge

Scuba Diving Club.

An early design for a camera window was

one of the first tests performed. Unfortunately,

even before making it into the water, it was

found that the window which had been secured

onto the face of an end-cap using epoxy glue

was not sufficiently well attached. It is

understood now that that particular glue does

not work well with the type of plastic the end-

cap is formed from. An improved window

construction method was designed (detailed in

Chapter 3) and subsequently successfully

tested.

Following the window tests, all tests up to

and including the trimming stage were

successful with no leaks detected, however

during the following powered tests a small leak

developed at the multi-core cable entry-point.

It was determined that this was due to poor

machining of the end-cap (a consequence of

using inappropriate tools in this case) and it

was replaced, this time with a more accurately

machined hole. Further testing has shown this

particular issue has now been resolved.

7.4 Trim Testing

The effects of positioning ballast elements

(lead weights, and closed-cell foam) follow the

Archimedes Principle that objects that displace

more water than they weigh (e.g. foam) create

a positive buoyancy, and objects that displace

less water than they weigh (e.g. lead) create a

negative buoyancy. The ideal buoyancy for the

ROV is to be as close to neutrally buoyant as

possible, and as level as possible. In addition,

for stability, it is optimal to have the positively

buoyant elements physically higher than the

negatively buoyant elements to ensure the

centre-of-buoyancy is above the centre-of-

mass.

To that end, two pieces of closed-cell foam

were attached to the top of the frame and four

lead weights of varying sizes were attached to

mesh on the bottom of the frame.

Figure 7.1. A friendly SCUBA diver is useful when

fine-tuning buoyancy.

46

The weights were distributed as listed in

Table 7.1. The differential required between

the front and back, and also between the left

and right, is primarily caused by the weight of

the off-centre-mounted multi-core cable.

Location Weight

Front left 520 g

Front right 450 g

Rear left 430 g

Rear right 420 g

Total 1,820 g

Table 7.1. Lead weight distribution.

The positions of each of the four lead

weights were adjusted in each corner to ensure

the ROV was sitting level in the water. Two

large pieces of the closed-cell foam were

initially used to achieve positive buoyancy and

they were then slowly reduced in size until

neutral buoyancy was achieved.

The two remaining pieces of foam each

measure approximately 310 mm × 25 mm × 25

mm. With a volume of approximately 0.2

litres each, they therefore each give

approximately 200 g of buoyancy (based on

the assumption that 1 litre of water weighs

1000 grams).

The total ballast offered by these six

elements can be calculated as:

(14)

For operation in sea-water, which has a

greater density, some additional trim weights

will be necessary.

A short video taken during the trimming

process is available to watch at:

www.youtube.com/watch?v=-OokiggFwLU

7.5 Powered Testing

Following the successful trim testing, the

next phase of testing the ROV was to ensure it

would actually move through the water

satisfactorily.

The first test of the operational capabilities

found that the horizontal positioning worked

exactly as expected, however the vertical

positioning would not work: a software bug

resulted in an incorrect rotation direction of

one of the vertical thrusters. This meant that

one thruster was pulling up and the other was

simultaneously pulling down. This was

corrected and testing the following week

showed both vertical and horizontal

positioning worked as required (see Figure

7.2).

Figure 7.2. Powered testing in the pool.

A short video of this is available at

www.youtube.com/watch?v=x2vWEfYG3sE

At this point the ROV was deemed to be

effectively operational and the focus of the

testing and measurement then moved to the

control system.

47

7.6 Measurements of Dynamics

Characteristics for Control System

Development

As detailed in Chapter 6, successful

operation of the PID-based tilt correction

control system of the ROV requires the

determination of the appropriate Pk, Ik, and Dk

constants, and a number of attempts were made

to measure the dynamics characteristics of the

system in various configurations.

7.6.1 Varying the PID Constants

The initial attempts at determining the

optimum Pk, Ik, and Dk constants involved

operating the ROV in the water, with a

deliberate tilt applied, and cycling through

varying values of the constants and measuring

the dynamics characteristics, i.e. the effective

response of the control system, by looking at

the resulting tilt level. It was thought the data

recorded may give at least an indication of

suitable values for the PID constants, but this

proved in practice to be too difficult to achieve

and was ultimately an ineffective method.

Figure 7.3, for example, shows a plot of the

data obtained when the Pk constant was slowly

increased from 1 to 50. Before every increase,

Pk is reset to 1 and the system, at least in

theory, is allowed to settle.

What actually happened was that the ROV

was simply driven down to the bottom of the

pool by the single operating thruster, and

stayed there, and rather disappointingly, no

effective tilt correction was observed or

recorded for any value of Pk. Another

approach was clearly needed.

7.6.2 Varying the PWM Level

Having been unsuccessful in the numerous

attempts to manually and exhaustively

determine the Pk, Ik, and Dk constants, another

approach was tried, where an effort was made

to determine the response of the system to the

operation of the single vertical rear thruster.

Again, it was thought that any data recorded

may give at least an indication of the system

response, which may then lead to building a

model of the system (and from there to

determining the Pk, Ik, and Dk constants), but

once again this proved in practice to be too

difficult to achieve in the available time frame

and so far has been ultimately ineffective.

The tests undertaken involved applying a

varying level of power, from 0% to 100%, to

the thruster, in both rotational directions, and

recording the resulting tilt levels. Any tilt

recorded should represent a response by the

system to the application of thrust from the

thruster by a rotation around the pitch axis.

Figure 7.4 shows the results of the

measured data, and they confirm the physical

observations made at the time that, rather than

sitting “mid-water” and rotating as desired, the

ROV was repeatedly driven straight down to

and up from the bottom of the pool by the

single operating thruster. Rather

disappointingly again, no effective change in

tilt was observed or recorded for any PWM

level.

It can be observed at approximately 300

and 700 seconds into the test, when the motor

is at 100% full power, that there is a change in

the tilt level which could indicate a desirable

response, however it was observed that the

ROV was sitting on the pool bottom at the time

and it is therefore not considered a reliable

observation of the system response by pitch

rotation.

It can also be observed that at

approximately 780 seconds into the test a

change has occurred: the rear vertical thruster

was manually rotated around the pitch axis so

that instead of being oriented vertically, it was

set at a 45 tilt. This rotation of the thruster

was done as it was observed from the poolside

that there was no rotation of the ROV about

the pitch axis occurring, and it was thought at

the time that changing the angle may make a

difference. In fact it imparted a not

insignificant horizontal force and the ROV

moved forwards and backwards in the water in

addition to vertically up and down. No

additional rotation about the pitch axis was

observed at the pool side, and this particular

experiment was deemed a failure.

Finally, a cursory glance at the data post-

780 seconds seems to show a positive and then

negative tilt correction occurring, but that was

48

in fact due to the ROV sliding down a steep

slope in the pool floor.

A video of the pool session can be seen at:

www.youtube.com/watch?v=ZuQB57rVeSg

After an examination of this data, and a

careful re-assessment of the physical design, a

likely cause of the lack of rotation about the

pitch axis has been discovered. It was always

assumed that due to the near-symmetrical

frame design the centroid, the mid-point

between the centre-of-mass and centre-of-

buoyancy and the point about which rotation of

the ROV would occur, was essentially in the

middle of the frame. It now appears that

assumption was incorrect as the single rear

vertical thruster plus the multi-core cable and

connectors do actually significantly change the

relative position of the centre-of-mass, but

were never considered in this light. This has

the effect of moving the centroid closer to the

rear vertical thruster, and therefore much lower

(effectively zero) angular momentum is

imparted by the thruster.

A number of possible solutions to this

problem present themselves:

 redesign the frame so that the thrusters are

further away from the centre

 add additional weights (and

correspondingly offsetting foam) to move

the centre-of-mass closer to the centre

Unfortunately, due to time constraints neither

have been investigated further and the problem

is now listed as work for further consideration.

Figure 7.3. Results from varying the Pk constant.

0 100 200 300 400 500 600 700 800 900
-20

0

20

40

60

80

100

Time (s)

T
ilt

 (
d
e
g
re

e
s
)

Pitch Tilt

angle (degrees)

0 100 200 300 400 500 600 700 800 900
0

10

20

30

40

50

Time (s)

P
 c

o
n
s
ta

n
t

PID Level

P constant

49

Figure 7.4. Results from varying the PWM level.

0 200 400 600 800 1000 1200
-40

-20

0

20

40

Time (s)

T
ilt

 (
d
e
g
re

e
s
)

Pitch Tilt

angle (degrees)

0 200 400 600 800 1000 1200
-100

-50

0

50

100

Time (s)

P
W

M
 (

%
)

PWM Level

PWM (%)

50

8. Conclusions

This project started with the overall goal of

combining personal interests and newly

developed skills, to produce a potentially

useful and interesting device, whilst presenting

as many realistic challenges as possible.

The project has now ended with that goal

completely satisfied: an extremely interesting,

fully working underwater vehicle has been

designed and constructed, from scratch,

utilising and learning many new skills, and

overcoming many, many challenges along the

way.

8.1 Results

It would be fair to say that the defined goals

of the project, as set many months ago, may

not be fully met as yet, however this is really

more a function of the time available, and to a

lesser degree the finances available, rather than

any inability to overcome the challenges

presented.

Looking closer at the specific primary and

secondary goals:

 Primary Goal 1: Build an

underwater vehicle fitted with

thrusters for horizontal and vertical

positioning

This has been successfully completed.

 Primary Goal 2: Build

microcontroller-based electronic

circuitry for operating the thrusters

This has been successfully completed.

 Primary Goal 3: Build remote

operator providing basic interface to

the vehicle

This has been successfully completed.

 Primary Goal 4: Test the vehicle and

identify its dynamics characteristics

This has been partially achieved. In-

and out-of-water testing of the vehicle

has been an ongoing process

throughout the entire development

process. In-water measurements to

identify the vehicles’ dynamic

characteristics are still currently

underway and have not been

completed.

 Primary Goal 5: Design and

implement an automatic control

system for pitch and roll of the

vehicle

This has been partially achieved. A

working PID controller system has

been implemented for both the pitch

and roll axes for tilt correction,

however, tuning of the control system

parameters is still underway.

 Secondary Goal 1: Test robustness

of the control system

This has been partially completed

through the process of measuring the

dynamics characteristics, but until the

control system parameters have been

tuned (Primary Goal 5), this cannot be

completed.

 Secondary Goal 2: Consider (if

needed) any improvements to the

control system

This has been completed. Section 8.3

contains this information.

 Secondary Goal 3: Install a video

camera and lights on the vehicle

This has been partially completed. A

video camera system was implemented

and was working successfully, but it

has since failed, and is currently

awaiting replacement. The addition of

lights to the vehicle has been fully

supported but only partially achieved

physically.

8.2 Analysis

A great deal of thought has gone into every

aspect of this project in an attempt to minimise

the number of problems that might occur, and

given the success of the project so far, it has to

be said that this considered approach has

51

worked to a large degree, but it was always

known that there would be some major

challenges to be faced, particularly in the

physical construction aspect.

The design and construction of the water-

proof enclosure, was always expected to

present many difficulties, and so it has proven,

but it is fair to say that the difficulty level was

grossly underestimated. A limited budget, and

the inability to accurately machine certain

components, using inappropriate tools, caused

many unnecessary headaches, and wasted a

considerable amount of time. It can be simply

summarised as: on a limited budget, water-

proofing is difficult.

Convenient access to a suitable in-water

testing environment also proved to be greatly

overestimated. Though excellent support was

received from the SCUBA diving club, the

practical logistics of taking the ROV to the

pool via public transport (in some cases a one

hour trip requiring 2 busses and a train), just to

run a single 10 minute test, was inefficient to

say the least. In addition, local swimming

pools are not actually ideal test and

development environments as they are

inconveniently placed, not readily accessible

outside SCUBA club sessions, have no pool-

side power supplies to run laptops, do not

allow cameras (except under very special

circumstances), and offer limited testing space.

In addition there are considerable health and

safety issues to deal with as well. A number of

alternatives were considered, and some even

tried, including a number of home bath tubs,

neighbour’s fish ponds, and a duck pond at a

local common. All were unsuitable for one

reason or another (size and water quality being

the main issues faced).

When looking at the attempts made to try to

measure the system’s dynamics characteristics,

it is now obvious that measuring and

characterising a real world (ie non-linear)

device, operating in the real world (a non-

linear environment) is actually a difficult and

complex task and the difficulty level of this

task was also greatly underestimated.

Other real-world issues that were faced

include the fact that everything costs more than

is expected, everything takes longer to arrive

than it should, everything takes longer to build

than it appears it should, and everything fails at

some time. Having reliable and trustworthy

suppliers was key to minimising the problems

these issue cause.

Despite all these difficulties, there were

many positives that came out of this project:

 Many satisfying challenges were faced and

overcome that presented excellent learning

opportunities

 The subject matter was very varied and

very interesting, and this made it actually

enjoyable, and gave the opportunity to

converse with many interested and

interesting people from many fields

 The valuable confirmation, from the

successful outcome of the project, of the

design and testing methodologies

employed, that reaffirms the problem

solving skills refined over the last 3 years

 Many valuable skills were developed or

refined including:

o embedded C programming

o circuit design and board layout

o assembly and fabrication

 Many new and unfamiliar components and

techniques were used such as:

o LIPO batteries

o ARM-based micro-controllers on the

mbed development boards

o H-bridges, voltage regulators and

accelerometers

o LCD displays

o RS232 communications

o PID controllers and PWM systems

8.3 Future Work

Throughout the entire project, many

possible improvements and additions were

envisioned, and suggested by others. Many

were taken on board, however many more

were considered to be simply beyond the scope

of this project. Following the completion of

this phase of the project, it is hoped that many

of the following ideas will be examined for

implementation:

 Depth sensor

 Environmental sensors eg water salinity

and water temperature sensors

 Digital compass

 Pan-and-tilt for camera

52

 On-screen data display

 Manipulator

 On-board battery monitoring

 Longer tether

 Additional cameras and lights

 Fibre optic data link

 Wireless data link

 PC control

 PCB construction and design-for-

manufacture

 Open-sourcing the design, plans, and

software

 Analog control of horizontal thrusters for

finer control

 Obstacle detection

 Autonomous operation

 Investigations into alternative control

systems

8.4 Alternative Approaches

Throughout the project there have been

many decisions made that are, with hindsight,

to be regretted. Most of those have been

relatively minor and the consequences not

severe: routing a motor wire through a certain

channel for example. Some modifications and

improvements that would be seriously

considered, given the opportunity, however are

noteworthy:

 Re-route the 18-core cable to minimise

weight distribution offset

 Use multiple 6-conductor connectors

instead of a single 18-conductor version

 Add a USB-to-wireless data link to the

development PC to allow programming

and debugging without having to remove

the bottom controller from the enclosure

 Conduct more research and testing to

determine the optimum angle for operation

of the vertical thrusters

Given an unlimited budget, and unlimited

time and space, the following would’ve greatly

assisted in producing a better outcome:

 Design and construct a purpose-built

pressure enclosure. This is a relatively

expensive exercise (≈£200) but will allow

greater depths, greater reliability, and

greater confidence

 Construct a home-based testing tank to

allow for much more convenient in-water

testing. The average home bath tub is

simply not large enough. Research into this

is ongoing.

 Invest in better tools, or find conveniently

local ones: personal access to a laser cutter

or CNC mill would be incredibly useful

8.5 Summary

In summary, this underwater vehicle

project, though somewhat daunting at the start,

was extremely enjoyable, and yet incredibly

challenging at the same time. It was interesting

and varied, included many opportunities to

research and apply new and exciting

techniques and technologies, and allowed for

the development and refinement of new and

existing skills. It gave the opportunity for

interesting discussions with interesting people,

and finally, it gave a real insight into actually

developing a product.

53

9. References

1. Saab Seaeye Ltd, (2009). Seaeye ROV Comparison Chart. [online]

Available from: < http://www.seaeye.com/comparerovs.html>

[Accessed: 18 February 2012]

2. Woods Hole Oceanographic Institution, (2007). Human Occupied Vehicle Alvin. [online

image] Available from: < http://www.whoi.edu/cms/images/v44n1-alvin-

intro1en_12472_36562_82629.jpg > [Accessed 9 February 2012] Used with permission

3. Woods Hole Oceanographic Institution, (2007). Seabed. [online image]

Available from: < http://www.whoi.edu/cms/images/hanu2-en_28930_42353.jpg >

[Accessed 9 February 2012] Used with permission

4. VideoRay LLC, (2011). P4 Product Packaging. [online image]

Available from: < http://www.videoray.com/images/picture/P4PACKAGING_web.jpg >

[Accessed 9 February 2012] Used with permission

5. Saab Seaeye Ltd, (2009). Saab Seaeye Lynx [online image]

Available from: < http://www.seaeye.com/pop.html?image=images/compare-rovs/lynx.jpg >

[Accessed 20 February 2012] Used with permission

6. Saab Seaeye Ltd, (2009). Saab Seaeye Jaguar [online image]

Available from: <http://www.seaeye.com/pop.html?image=images/compare-rovs/jaguar.jpg>

[Accessed: 20 February 2012] Used with permission

7. SMD Ltd, (2011). SMD UT-1 trencher. [online image]

Available from: < http://www.smd.co.uk/resources/page/123_118_128_47_image1_l.jpg >

[Accessed: 18 February 2012] Used with permission

8. Sayers, C. , (1999). Remote Control Robots. New York: Springer.

9. Pelekanakis, K. and Baggeroer, A., (2011). Exploiting Space-Time-Frequency Diversity With

MIMO-OFDM for Underwater Acoustic Communications. IEEE Journal of Oceanic

Engineering. October 2011 36 (4), 502-513.

10. National Defence Research Committee, (1969). Physics of Sound in the Sea. Washington: US

Dept of the Navy.

11. NXP B.V., (2009). mbed NXP LPC 1768 prototyping board. [online]

 Available from: < http://www.nxp.com/documents/leaflet/LPC1768.pdf >

 [Accessed: 18 February 2012]

12. Powertip Tech. Corp., (2006). PC1602ARU-HWB-G-Q. [online]

 Available from: < http://www.farnell.com/datasheets/40247.pdf >

 [Accessed: 18 February 2012]

13. National Semiconductor, (2000). LM135/LM235/LM335, LM135A/LM235A/LM335A

Precision Temperature Sensors. [online]

 Available from: < http://www.farnell.com/datasheets/36878.pdf >

 [Accessed: 18 February 2012]

http://www.seaeye.com/pop.html?image=images/compare-rovs/lynx.jpg

54

14. STMicroelectronics, (2009).LIS331DLH. [online]

 Available from: < http://www.st.com/internet/com/TECHNICAL_RESOURCES/

TECHNICAL_LITERATURE/DATASHEET/CD00213470.pdf >

 [Accessed: 18 February 2012]

15. Fairchild Semiconductor, (2004). RFP30N06LE, RF1S30N06LESM Data Sheet. [online]

 Available from: < http://www.farnell.com/datasheets/65413.pdf >

 [Accessed: 18 February 2012]

16. National Semiconductor, (2011). LMD18200. [online]

 Available from: < http://www.farnell.com/datasheets/78246.pdf >

 [Accessed: 18 February 2012]

17. Sparkfun Electronics, (2011). CM-26N/P C-MOS Color Camera Module. [online]

 Available from: < http://www.sparkfun.com/datasheets/Sensors/Imaging/CM-26N.pdf >

 [Accessed: 18 February 2012]

18. Keller Ag., (2009). Keller Piezoresistive OEM Pressure Transducers. [online]

 Available from: < http://www.keller-druck.com/picts/pdf/engl/3L_10L_e.pdf >

 [Accessed: 18 February 2012]

19. Dickinson, M., (2011). Introduction to Control Engineering. UK: Elektor International Media.

20. Lewis, P. and Yang, C., (1997). Basic Control Systems Engineering. Upper Saddle River:

Prentice-Hall Inc.

21. Bennett, S., (1993). A history of control engineering 1930 - 1955. London: Peter Perigrinus

Ltd.

22. STMicroelectronics, (2010). AN3182 Application note, Tilt measurement using a low-g 3-axis

accelerometer. [online]

 Available from: < http://www.st.com/internet/com/TECHNICAL_RESOURCES/

TECHNICAL_LITERATURE/APPLICATION_NOTE/CD00268887.pdf>

 [Accessed: 18 February 2012]

55

10. Bibliography

 Bohm, H. and Jensen, V., (2010). Build your own underwater robot and other wet projects.

Vancouver: Westcoast Words.

 van Dam, B., (2010). ARM Microcontrollers, Part 1: 35 projects for beginners. Susteren:

Elektor International Media.

 Roberts, G. and Sutton, R., (2006). Advances in Unmanned Marine Vehicles. Stevenage: The

Institution of Electrical Engineers.

 Antonelli, G., (2003). Underwater Robots, Motion and Force Control of Vehicle-Manipulator

Systems. Berlin: Springer-Verlag.

 N-Nagy, F. and Siegler, A., (1987). Engineering Foundations of Robotics. Englewood Cliffs:

Prentice-Hall Inc.

 Horowitz, P. and Hill, W., (2008). The Art of Electronics. Cambridge: Cambridge University

Press.

 Ly, U., (1997). Stability and Control of Flight Vehicle. [online] Seattle: University of

Washington. Available from: <

http://metalab.uniten.edu.my/~farrukh/mywork/FLIGHT~1.PDF > [Accessed 25 February

2012]

56

11. Appendices

Appendix A - DES Project Specification Form

Title: Underwater remotely operated vehicle

Student Name: Scott O’Brien

Year: 2011/12

Supervisor: Dr. Andrzej Tarczynski

Assessor:

Moderator:

Aims and Description:

To design and build an underwater vehicle with pitch and roll control system

Primary Goals:

1. To build an underwater vehicle fitted with thrusters for horizontal and vertical positioning

2. To build microcontroller-based electronic circuitry for operating the thrusters

3. To build remote operator providing basic interface to the vehicle

4. To test the vehicle and identify its dynamics characteristics

5. To design and implement automatic control system for pitch and roll of the vehicle

Secondary Goals:

1. To test robustness of the control system

2. To consider (if needed) any improvements to the control system

3. To install a video camera and lights on the vehicle

Resources Needed:

 The student will fund the project

 Access to the ECS workshop

 Eagle-CAD (freeware)

 Matlab

Health and Safety Assessment and Arrangements:

 Follow the normal health and safety precautions appropriate to the work performed on the

project.

Supervisor signature:

Date: 10 October 2011

Student signature:

Date: 10 October 2011

57

Appendix B - Top Controller Schematics

Figure B.1. Top controller schematic.

58

Figure B.2. Top controller strip-board layout.

59

Appendix C - Bottom Controller Schematics

Figure C.1. Bottom controller schematic.

60

Figure C.2. Top controller strip-board layout.

61

Appendix D - Top Controller Code

// TOP controller for ROV

// v0.70 24 April 2012

// by Scott O'Brien

// LIBRARIES

 #include "mbed.h"

 #include "TextLCD.h"

// PIN DEFINITIONS

 Serial pc(USBTX, USBRX); // diagnostic connction to PC via USB

 Serial topSerial(p13,p14);// tx, rx to bottom cont. via MAX3232

 DigitalOut mbedLED1(LED1); // onboard led's

 DigitalOut mbedLED2(LED2);

 DigitalOut mbedLED3(LED3);

 DigitalOut mbedLED4(LED4);

 DigitalOut leakLED(p22); // red

 DigitalOut linkLED(p23); // green

 DigitalOut lightsLED(p24); // green

 DigitalOut controlSystemLED(p25); // green

 DigitalOut switch3LED(p26); // green

 TextLCD lcd(p5,p6,p7,p8,p9,p10,TextLCD::LCD20x4); // 20x4 LCD

 AnalogIn leftJoystickUpDownAnalog(p17);

 AnalogIn leftJoystickLeftRightAnalog(p18);

 AnalogIn rightJoystickUpDownAnalog(p19);

 AnalogIn rightJoystickLeftRightAnalog(p20);

 AnalogIn tempTop(p16); // temperature sensor

 InterruptIn lightsSwitch(p30);

 InterruptIn controlSystemSwitch(p29);

 InterruptIn switch3(p28);

 PwmOut buzzer(p21); // leak alarm buzzer

// TICKERS AND TIMERS

 Ticker majorEvent; // major event ticker

 Ticker tempSensor; // read temp sensor ticker

// VARIABLES AND CONSTANTS

 char raise = 0;

 char lower = 0;

 char moveLeft = 0;

 char moveRight = 0;

 char forward = 0;

 char reverse = 0;

 char turnLeft = 0;

 char turnRight = 0;

 float topTemp = 0;

 char lightsOn = 0;

 char controlSystemOn = 0;

 char switch3On = 0;

 char controlData[3] = {0,0,0}; // data to tx to bottom

 char rxData[5] = {0,0,0,0,0}; // data rx from bottom

 char rxPCData = 0;

 char dataLoggingOn = 0;

62

 float kP = 1.0; // PID "constants"

 uint8_t *kP8 = (uint8_t*)&kP;

 float kI = 0.0;

 uint8_t *kI8 = (uint8_t*)&kI;

 float kD = 0.0;

 uint8_t *kD8 = (uint8_t*)&kD;

// FUNCTIONS

// send and recieve data from PC via USB

void SendAndReceiveDataFromPC() {

 if(pc.readable()) {

 rxPCData = pc.getc();

 pc.printf("%c",rxPCData);

 if (rxPCData == '?') {

 pc.printf("\r\n\n\nScottROV\r\nTop Controller v0.70

 Bottom Controller v0.70");

 pc.printf("\r\nkP = %.4f, kI = %.4f, kD =

 %.4f",kP,kI,kD);

 pc.printf("\r\nrx[0] = %i, temp = %i, pitch = %i, roll

 = %i", rxData[0], rxData[1], rxData[2] - 90,

 rxData[3] - 90);

 pc.printf("\r\ncontrolData[0] = %i, controlData[1] =

 %i",controlData[0],controlData[1]);

 if (dataLoggingOn) {

 pc.printf("\r\nData logging is ON");

 }

 else {

 pc.printf("\r\nData logging is OFF");

 }

 if (controlSystemOn) {

 pc.printf("\r\nControl system is ON");

 }

 else {

 pc.printf("\r\nControl system is OFF");

 }

 pc.printf("\r\n\n? = this list\r\nl = toggle data

 logger\r\no = toggle control system\r\nt = transfer

 data (not enabled)\r\np = change P term\r\ni =

 change I term\r\nd = change D term\r\n\n");

 }

 else if (rxPCData == 'l') {

 dataLoggingOn = !dataLoggingOn;

 if (dataLoggingOn) {

 pc.printf("\r\n\ndata logger turned on\r\n\n");

 }

 else {

 pc.printf("\r\n\ndata logger turned off\r\n\n");

 }

 }

 else if (rxPCData == 'o') {

 controlSystemOn = !controlSystemOn;

 if (controlSystemOn) {

 pc.printf("\r\n\ncontrol system turned on\r\n\n");

 }

 else {

 pc.printf("\r\n\ncontrol system turned off\r\n\n");

63

 }

 }

 else if (rxPCData == 't') {

 pc.printf("\r\nThis feature is not yet enabled, but

 data logger has been turned off\r\n\n");

 dataLoggingOn = 0;

 }

 else if (rxPCData == 'p') {

 pc.printf("\r\nEnter kP value: ");

 pc.scanf ("%f",&kP);

 pc.printf("You entered: %.4f\r\n",kP);

 }

 else if (rxPCData == 'i') {

 pc.printf("\r\nEnter kI value: ");

 pc.scanf ("%f",&kI);

 pc.printf("You entered: %.4f\r\n",kI);

 }

 else if (rxPCData == 'd') {

 pc.printf("\r\nEnter kD value: ");

 pc.scanf ("%f",&kD);

 pc.printf("You entered: %.4f\r\n",kD);

 }

 else {

 pc.printf("\r\n\ncommand not understood - try

 ?\r\n\n");

 }

 }

 return;

}

// respond to light switch flipped on

void turnLightsOn() {

 wait_ms(25);

 if (lightsSwitch == 1) {

 lightsLED = 1;

 lightsOn = 1;

 }

 return;

}

// respond to light switch flipped off

void turnLightsOff() {

 wait_ms(25);

 if (lightsSwitch == 0) {

 lightsLED = 0;

 lightsOn = 0;

 }

 return;

}

64

// respond to control system switch flipped on

void turnControlSystemOn() {

 wait_ms(25);

 if (controlSystemSwitch == 1) {

 controlSystemLED = 1;

 controlSystemOn = 1;

 }

 return;

}

// respond to control system switch flipped off

void turnControlSystemOff() {

 wait_ms(25);

 if (controlSystemSwitch == 0) {

 controlSystemLED = 0;

 controlSystemOn = 0;

 }

 return;

}

// respond to switch 3 flipped on

void turnSwitch3On() {

 wait_ms(25);

 if (switch3 == 1) {

 switch3LED = 1;

 switch3On = 1;

 dataLoggingOn = 1;

 }

 return;

}

// respond to switch 3 flipped off

void turnSwitch3Off() {

 wait_ms(25);

 if(switch3 == 0) {

 switch3LED = 0;

 switch3On = 0;

 dataLoggingOn = 0;

 }

 return;

}

// read joysticks

void read_joysticks(){

 // each joystick axis is averaged over 3 samples to eliminate

 // any ADC glitches.

 if ((leftJoystickUpDownAnalog +

 leftJoystickUpDownAnalog +

 leftJoystickUpDownAnalog) / 3 > 0.75) {

 lower = 32; // 32 = space char, represents not on

 raise = 94; // 94 = ^ char, represents on

 }

 else if ((leftJoystickUpDownAnalog +

 leftJoystickUpDownAnalog +

 leftJoystickUpDownAnalog) / 3 < 0.25) {

 raise = 32;

 lower = 118; // 118 = v char, represents on

 }

 else {

 raise = 32;

 lower = 32;

65

 }

 if ((leftJoystickLeftRightAnalog +

 leftJoystickLeftRightAnalog +

 leftJoystickLeftRightAnalog)/ 3 < 0.25) {

 moveLeft = 32;

 moveRight = 126;// 126 = right arrow char represents on

 }

 else if ((leftJoystickLeftRightAnalog +

 leftJoystickLeftRightAnalog +

 leftJoystickLeftRightAnalog) / 3 > 0.75) {

 moveRight= 32;

 moveLeft = 127; // 127 = left arrow char represents on

 }

 else {

 moveLeft = 32;

 moveRight = 32;

 }

 if ((rightJoystickUpDownAnalog +

 rightJoystickUpDownAnalog +

 rightJoystickUpDownAnalog) / 3 > 0.75) {

 reverse = 32; // 32 = space char, represents not on

 forward = 94; // 94 = ^ char, represents on

 }

 else if ((rightJoystickUpDownAnalog +

 rightJoystickUpDownAnalog +

 rightJoystickUpDownAnalog) / 3 < 0.25) {

 forward = 32;

 reverse = 118; // 118 = v char, represents on

 }

 else {

 forward = 32;

 reverse = 32;

 }

 if ((rightJoystickLeftRightAnalog +

 rightJoystickLeftRightAnalog +

 rightJoystickLeftRightAnalog) / 3 < 0.25) {

 turnLeft = 32;

 turnRight = 126;// 126 = right arrow char represents on

 }

 else if ((rightJoystickLeftRightAnalog +

 rightJoystickLeftRightAnalog +

 rightJoystickLeftRightAnalog) / 3 > 0.75) {

 turnRight= 32;

 turnLeft = 127; // 127 = left arrow char, represents on

 }

 else {

 turnLeft = 32;

 turnRight = 32;

 }

 return;

}

// output data to lcd screen

void display_data() {

 lcd.locate(1,1); lcd.printf("L"); // left joystick

 lcd.locate(0,1); lcd.putc(moveLeft);

 lcd.locate(2,1); lcd.putc(moveRight);

66

 lcd.locate(1,0); lcd.putc(raise);

 lcd.locate(1,2); lcd.putc(lower);

 lcd.locate(4,1); lcd.printf("R"); // right joystick

 lcd.locate(3,1); lcd.putc(turnLeft);

 lcd.locate(5,1); lcd.putc(turnRight);

 lcd.locate(4,0); lcd.putc(forward);

 lcd.locate(4,2); lcd.putc(reverse);

 lcd.locate(6,1); lcd.printf("P"); // PID settings

 lcd.locate(7,1); lcd.printf("%2.1f",kP);

 lcd.locate(6,2); lcd.printf("I");

 lcd.locate(7,2); lcd.printf("%2.1f",kI);

 lcd.locate(6,3); lcd.printf("D");

 lcd.locate(7,3); lcd.printf("%2.1f",kD);

 lcd.locate(11,2); lcd.printf("P"); // pitch tilt level

 lcd.locate(12,2); lcd.printf("%3i",rxData[2] - 90);

 lcd.locate(11,3); lcd.printf("R"); // roll tilt level

 lcd.locate(12,3); lcd.printf("%3i",rxData[3] - 90);

 lcd.locate(16,2); lcd.printf("T"); // top temp

 lcd.locate(17,2); lcd.printf("%2.0f",topTemp);

 lcd.locate(19,2); lcd.putc(223); // degree symbol

 lcd.locate(16,3); lcd.printf("B"); // bottom temp

 lcd.locate(17,3); lcd.printf("%2.0i",rxData[1]);

 lcd.locate(19,3); lcd.putc(223);

 lcd.locate(6,0); if ((rxData[0] & 135) == 135) {

 lcd.printf("LEAK");

 buzzer.pulsewidth_us(250);

 leakLED = 1;

 }

 else {

 lcd.printf(" ");

 buzzer.pulsewidth_us(0);

 leakLED = 0;

 }

 lcd.locate(11,0); if ((rxData[0] & 184) == 184) {

 lcd.printf(”TEMP”);

 }

 else {

 lcd.printf(" ");

 }

 lcd.locate(0,3); if(lightsOn) {

 lcd.putc('L');

 }

 else {

 lcd.putc(32);

 }

 lcd.locate(1,3); if(controlSystemOn) {

 lcd.putc('C');

 }

 else {

 lcd.putc(32);

67

 }

 lcd.locate(2,3); if(dataLoggingOn) {

 lcd.putc('D');

 }

 else {

 lcd.putc(32);

 }

 return;

}

void send_and_receive_data(){

 linkLED = !linkLED;

 // build tx data byte controlData[0]

 // bit 0: front right thruster, on = 1

 // 1: front left thruster, on = 1

 // 2: rear right thruster, on = 1

 // 3: rear left thruster, on = 1

 // 4: lights, on = 1

 // 5: control system, on = 1

 // 6: data logging, on = 1

 // 7: reserved, set to 1, signifies byte controlData[0]

 controlData[0] = 128; // set bit 7

 if (forward == 94) {

 controlData[0] = controlData[0] + 3; // set bits 0 & 1

 }

 if (reverse == 118) {

 controlData[0] = controlData[0] + 12;// set bits 2 & 3

 }

 if (turnRight == 126) {

 controlData[0] = controlData[0] + 6; // set bits 1 & 2

 }

 if (turnLeft == 127) {

 controlData[0] = controlData[0] + 9; // set bits 0 & 3

 }

 if (moveRight == 126) {

 controlData[0] = controlData[0] + 10;// set bits 1 & 3

 }

 if (moveLeft == 127) {

 controlData[0] = controlData[0] + 5; // set bits 0 & 2

 }

 if (lightsOn == 1) {

 controlData[0] = controlData[0] + 16;// set bit 4

 }

 if (controlSystemOn == 1) {

 controlData[0] = controlData[0] + 32;// set bit 5

 }

 if (dataLoggingOn ==1) {

 controlData[0] = controlData[0] + 64;// set bit 6

 }

68

 // build tx data byte controlData[1]

 // bit 0: go up = 1

 // 1: go down = 1

 // 2: unused, set to 0

 // 3: unused, set to 0

 // 4: unused, set to 0

 // 5: unused, set to 0

 // 6: unused, set to 0

 // 7: reserved, set to 0, signifies byte controlData[1]

 controlData[1] = 0;

 if (raise == 94) {

 controlData[1] = 1; // this sets bit 0 only

 }

 if (lower == 118) {

 controlData[1] = 2; // this sets bit 1 only

 }

 // send data via serial connection

 if(topSerial.writeable()) {

 mbedLED1=!mbedLED1;

 topSerial.putc(controlData[0]);

 topSerial.putc(controlData[1]);

 // send PID constant float values as 4 x 8 bit chars

 topSerial.putc(kP8[0]);

 topSerial.putc(kP8[1]);

 topSerial.putc(kP8[2]);

 topSerial.putc(kP8[3]);

 topSerial.putc(kI8[0]);

 topSerial.putc(kI8[1]);

 topSerial.putc(kI8[2]);

 topSerial.putc(kI8[3]);

 topSerial.putc(kD8[0]);

 topSerial.putc(kD8[1]);

 topSerial.putc(kD8[2]);

 topSerial.putc(kD8[3]);

 }

 // receive data via serial connection

 if(topSerial.readable()) {

 rxData[0] = topSerial.getc();

 rxData[1] = topSerial.getc();

 rxData[2] = topSerial.getc();

 rxData[3] = topSerial.getc();

 }

 return;

}

// read temp sensor called by ticker

void read_temp_sensor(){

 // average of 3 readings: single reading * 3.3V * 100

 topTemp = ((tempTop + tempTop + tempTop) * 110) - 273;

 return;

}

69

// major events called by ticker

void majorEventFunctions () {

 read_joysticks();

 display_data();

 send_and_receive_data();

 return;

}

// MAIN

int main() {

 // startup display

 leakLED = 1;

 lcd.cls();

 lcd.printf(" SCOTTROV \n\n");

 lcd.printf("Top: v0.70 24.4.12\n");

 lcd.printf("Bot: v0.70");

 wait(3);

 lcd.cls();

 leakLED = 0;

 // set up serial comms to bottom

 topSerial.baud(38400);

 // set up comms with pc to trigger by interrupt on data arrival

 pc.attach(&SendAndReceiveDataFromPC, Serial::RxIrq);

 // set up buzzer PWM

 buzzer.period_us(500); // 500uS for 2kHz tone

 // set up ticker events

 tempSensor.attach(&read_temp_sensor, 3.0); // read every 3s

 majorEvent.attach(&majorEventFunctions, 0.05); // 20 times / s

 // set up interrupts for control panel switches

 lightsSwitch.rise(&turnLightsOn);

 lightsSwitch.fall(&turnLightsOff);

 controlSystemSwitch.rise(&turnControlSystemOn);

 controlSystemSwitch.fall(&turnControlSystemOff);

 switch3.rise(&turnSwitch3On);

 switch3.fall(&turnSwitch3Off);

 // determine initial switch state

 if (lightsSwitch == 1) {

 lightsLED = 1;

 lightsOn = 1;

 }

 else {

 lightsLED = 0;

 lightsOn = 0;

 }

 if (controlSystemSwitch == 1) {

 controlSystemLED = 1;

 controlSystemOn = 1;

 }

 else {

 controlSystemLED = 0;

 controlSystemOn = 0;

 }

70

 if (switch3 == 1) {

 switch3LED = 1;

 switch3On = 1;

 }

 else {

 switch3LED = 0;

 switch3On = 0;

 }

 while(1) {

 }// end while

}// end of MAIN

71

Appendix E - Bottom Controller Code

// BOTTOM controller for ROV

// v0.70 26 April 2012

// by Scott O'Brien

// LIBRARIES

 #include "mbed.h"

 #include "LIS331.h" // accelerometer library

 #include "SDFileSystem.h" // SD card library for data logging

 #include "PID.h" // PID controller library

// COMPILER DEFINITIONS

 #define PI 3.14159265

// PIN DEFINITIONS

 Serial pc(USBTX, USBRX); // diagnostic conn. to PC via USB

 Serial bottomSerial(p13,p14);// tx, rx to top cont. via MAX3232

 DigitalOut mbedLED1(LED1); // onboard led's

 DigitalOut mbedLED2(LED2);

 DigitalOut mbedLED3(LED3);

 DigitalOut mbedLED4(LED4);

 DigitalOut lights(p12); // external lights

 SDFileSystem sd(p5, p6, p7, p8, "sd"); // data logging

 LIS331 accel(p9, p10); // I2C conn. to accelerometer

 DigitalOut motorHFL(p27); // front left horizontal thruster

 DigitalOut motorHFR(p26); // front right horizontal thruster

 DigitalOut motorHRL(p25); // rear left horizontal thruster

 DigitalOut motorHRR(p24); // rear right horizontal thruster

 PwmOut motorVL(p23); // left vertical thruster

 DigitalOut motorVLdir(p20); // 0 = down, 1 = up

 PwmOut motorVR(p22); // right vertical thruster

 DigitalOut motorVRdir(p19); // 0 = down, 1 = up

 PwmOut motorVB(p21); // back vertical thruster

 DigitalOut motorVBdir(p18); // 0 = down, 1 = up

 InterruptIn thermalOverload(p17); // thermal overload flag

 InterruptIn leakDetector(p11); // leak detectors

 AnalogIn tempBottom(p15); // temperature sensor

 PID pitchCon(1.0, 0.0, 0.0, 0.1); // Kp, Ti, Td, interval

 PID rollCon(1.0, 0.0, 0.0, 0.1); // Kp, Ti, Td, interval

// TICKERS AND TIMERS

 Ticker readSensors; // enable sensor timer

 Ticker readTiltSensors; // enable tilt sensor timer

 Timer loggingTimer; // timer for data logging

// VARIABLES AND CONSTANTS

 char controlData[3] = {0,0,0};// control data rx from top

 char txData[5] = {0,0,0,0}; // data tx to top

 char controlSystemOn = 0;

 char thermalOverloadFlag = 0;

 float bottomTemp = 0;

 float pitchTilt = 0;

 float rollTilt = 0;

 char dataLoggingOn = 0;

 float kP = 1.0; // PID "constants"

72

 uint8_t kP8[5] = {0,0,0,0,0};

 float kI = 0.0;

 uint8_t kI8[5] = {0,0,0,0,0};

 float kD = 0.0;

 uint8_t kD8[5] = {0,0,0,0,0};

 float kPID = 0; // change in PID settings?

 // level of VB thruster to control pitch, from PID controller

 float pitchAdj = 0;

 // level of VL/R thrusters to control roll, from PID controller

 float rollAdj = 0;

// FUNCTIONS

// interrupt function for serial comms

void sendAndReceiveData() {

 mbedLED2 = !mbedLED2;

 if(bottomSerial.readable()) {

 controlData[0] = bottomSerial.getc();

 controlData[1] = bottomSerial.getc();

 kP8[0] = bottomSerial.getc(); // PID constants (float) as

 kP8[1] = bottomSerial.getc(); // 4 x 8 bit chars

 kP8[2] = bottomSerial.getc();

 kP8[3] = bottomSerial.getc();

 kI8[0] = bottomSerial.getc();

 kI8[1] = bottomSerial.getc();

 kI8[2] = bottomSerial.getc();

 kI8[3] = bottomSerial.getc();

 kD8[0] = bottomSerial.getc();

 kD8[1] = bottomSerial.getc();

 kD8[2] = bottomSerial.getc();

 kD8[3] = bottomSerial.getc();

 kP = *((float *)kP8); // 4 x 8 chars back to single floats

 kI = *((float *)kI8);

 kD = *((float *)kD8);

 if ((kP + kD + kI) != kPID) { // check for any changes

 pitchCon.setTunings(kP,kI,kD);

 rollCon.setTunings(kP,kI,kD);

 kPID = kP + kD + kI;

 }

 }

 if(bottomSerial.writeable()) {

 bottomSerial.putc(txData[0]);

 bottomSerial.putc(txData[1]);

 bottomSerial.putc(txData[2]);

 bottomSerial.putc(txData[3]);

 }

 return;

}

73

// interrupt function to respond to leak detector

void leakDetected() {

 txData[0] = (txData[0] | 135); // set bits 0-2, 7

 return;

}

// interrupt function to respond to thermal overload on h-bridges

void thermalOverloaded() {

 txData[0] = (txData[0] | 184); // set bits 3-5, 7

 thermalOverloadFlag = 1;

 return;

}

// read temp & voltage sensors

void read_sensors(){

 bottomTemp = ((tempBottom + tempBottom + tempBottom) * 110.0) -

 273; // take average of 3 readings

 txData[1] = ((char)bottomTemp) & 127;

 return;

}

// read tilt sensors

void read_tilt_sensors(){

 pitchTilt = (accel.getAccelX() + accel.getAccelX() +

 accel.getAccelX() + accel.getAccelX() + accel.getAccelX()) / 5;

 rollTilt = (accel.getAccelY() + accel.getAccelY() +

 accel.getAccelY() + accel.getAccelY() + accel.getAccelY()) / 5;

 if (controlSystemOn == 1) {

 // send current pitch tilt to PID controller as current error

 pitchCon.setProcessValue(pitchTilt);

 // let PID controller do its thing

 pitchAdj = pitchCon.compute();

 // send current roll tilt to PID controller as current error

 rollCon.setProcessValue(rollTilt);

 // let PID controller do its thing

 rollAdj = rollCon.compute();

 }

 else {

 pitchAdj = 0;

 rollAdj = 0;

 }

 // conv to degs, +90 to ensure +ve number to enable TX as char

 txData[2] = (asin(pitchTilt) * 180 / PI) + 90;

 txData[3] = (asin(rollTilt) * 180 / PI) + 90;

 return;

}

74

// log data

void log_data(){

 FILE *fp = fopen("/sd/data.txt", "a");

 mbedLED3 = !mbedLED3;

 fprintf(fp, "\n\r%f,%i,%f,%f,%f,%f,%f,%f,%f,%f,%i,%f,%i,%f,%i",

 loggingTimer.read(), controlSystemOn, kP, kI, kD, pitchTilt,

 pitchAdj, rollTilt, rollAdj, motorVL.read(), motorVLdir.read(),

 motorVR.read(), motorVRdir.read(), motorVB.read(),

 motorVBdir.read());

 fclose(fp);

 return;

}

// MAIN

int main() {

 // initialise timer for data logging

 loggingTimer.start();

 // initialise all motors

 motorHFL = 0;

 motorHFR = 0;

 motorHRL = 0;

 motorHRR = 0;

 motorVL = 0.0;

 motorVLdir = 0;

 motorVR = 0.0;

 motorVRdir = 0;

 motorVB = 0.0;

 motorVBdir = 0;

 // init comms to top cont. to trigger by interrupt on data arrival

 bottomSerial.baud(38400);

 bottomSerial.attach(&sendAndReceiveData, Serial::RxIrq);

 // init interrupt for leak detector & thermal overload on h-bridges

 // attach address of the leakDetected function to the rising edge

 leakDetector.rise(&leakDetected);

 // attach address of thermalOverloaded function to the falling edge

 thermalOverload.fall(&thermalOverloaded);

 // set up ticker event for temp and voltage sensors

 readSensors.attach(&read_sensors, 3.0); // read every 3 seconds

 // set up accelerometer

 accel.setFullScaleRange2g(); // 2g range on accel

 accel.setPowerMode(47); // 100 Hz ODR

 readTiltSensors.attach(&read_tilt_sensors, 0.250); // every 0.25s

 // set up PWM for vertical thrusters

 int pwmPeriod = 100; // 100 microseconds = 10 kHz

 motorVL.period_us(pwmPeriod);

 motorVR.period_us(pwmPeriod);

 motorVB.period_us(pwmPeriod);

 // set up PID controller for pitch

 pitchCon.setInputLimits(-1.0, 1.0); // Input from accelerometer

 pitchCon.setOutputLimits(-1.0, 1.0); // PWM output limits

 pitchCon.setBias(0.0); // Only if there needs to be a bias.

75

 pitchCon.setMode(AUTO_MODE);

 pitchCon.setSetPoint(0.0); // Target is to be zero degrees

 // set up PID controller for roll

 rollCon.setInputLimits(-1.0, 1.0); // Input from accelerometer

 rollCon.setOutputLimits(-0.5, 0.5); // PWM output limits

 rollCon.setBias(0.0); // Only if there needs to be a bias.

 rollCon.setMode(AUTO_MODE);

 rollCon.setSetPoint(0.0); // Target is to be zero degrees

 while(1) {

 // rx data byte controlData[0]

 // bit 0: front right thruster, on = 1

 // 1: front left thruster, on = 1

 // 2: rear right thruster, on = 1

 // 3: rear left thruster, on = 1

 // 4: lights, on = 1

 // 5: control system, on = 1

 // 6: data logging, on = 1

 // 7: reserved, set to 1, signifies byte controlData[0]

 // rx data byte controlData[1]

 // bit 0: go up = 1

 // 1: go down = 1

 // 2: unused, set to 0

 // 3: unused, set to 0

 // 4: unused, set to 0

 // 5: unused, set to 0

 // 6: unused, set to 0

 // 7: reserved, set to 0, signifies byte controlData[1]

 if ((controlData[0] & 131) == 131) { // go forward

 motorHFL = 1; motorHFR = 1;

 motorHRL = 0; motorHRR = 0;

 }

 else if ((controlData[0] & 140) == 140) { // go backwards

 motorHFL = 0; motorHFR = 0;

 motorHRL = 1; motorHRR = 1;

 }

 else if ((controlData[0] & 134) == 134) { // turn right

 motorHFL = 1; motorHFR = 0;

 motorHRL = 0; motorHRR = 1;

 }

 else if ((controlData[0] & 137) == 137) { // turn left

 motorHFL = 0; motorHFR = 1;

 motorHRL = 1; motorHRR = 0;

 }

 else if ((controlData[0] & 138) == 138) { // move right

 motorHFL = 1; motorHFR = 0;

 motorHRL = 1; motorHRR = 0;

 }

 else if ((controlData[0] & 133) == 133) { // move left

 motorHFL = 0; motorHFR = 1;

 motorHRL = 0; motorHRR = 1;

 }

76

 else { // do nothing

 motorHFL = 0; motorHFR = 0;

 motorHRL = 0; motorHRR = 0;

 }

 if ((controlData[0] & 144) == 144) { // lights on

 lights = 1;

 }

 else { // lights off

 lights = 0;

 }

 if ((controlData[0] & 160) == 160) { // control system on

 controlSystemOn = 1;

 }

 else {

 controlSystemOn = 0; // control system off

 pitchAdj = 0;

 rollAdj=0;

 }

 if((controlData[0] & 64) == 64) { // data logging on

 dataLoggingOn = 1;

 log_data();

 }

 else {

 dataLoggingOn = 0; // data logging off

 }

 if (((controlData[1] & 1) == 1) &&

 (thermalOverloadFlag == 0)) { // go up

 // turn on 50%, dir: 0 = down, 1 = up

 motorVL = 0.5 + (rollAdj/2); motorVLdir = 1;

 // turn on 50%, dir: 1 = down, 0 = up

motorVR = 0.5 - (rollAdj/2); motorVRdir = 0;

 }

 else if (((controlData[1] & 2) == 2) &&

 (thermalOverloadFlag == 0)) { // go down

 // turn on 50%, dir: 0 = down, 1 = up

 motorVL = 0.5 + (rollAdj/2); motorVLdir = 0;

 // turn on 50%, dir: 1 = down, 0 = up

 motorVR = 0.5 - (rollAdj/2); motorVRdir = 1;

 }

 else { // don't drive up or down, turn off all vertical

 // thrusters except for control system adjustments

 if (rollAdj < 0) {

 motorVL = abs(rollAdj)/2; motorVLdir = 0;

 motorVR = abs(rollAdj)/2; motorVRdir = 0;

 }

 else {

 motorVL = rollAdj/2; motorVLdir = 1;

 motorVR = rollAdj/2; motorVRdir = 1;

 }

 motorVB = abs(pitchAdj); // control system adjustment

 if (pitchAdj < 0) { // determine rotation

 motorVBdir = 1;

 }

77

 else {

 motorVBdir = 0;

 }

 }

 }// end of while

} // end of main

78

Appendix F - Data Logging Code

Bottom Pitch Data Logger

// BOTTOM controller PITCH DATA LOGGER for ROV

// v0.30

// 18 April 2012

// by Scott O'Brien

// LIBRARIES

 #include "mbed.h"

 #include "LIS331.h" // accelerometer library

 #include "SDFileSystem.h" // SD card library for data logging

// COMPILER DEFINITIONS

 #define PI 3.14159265

// PIN DEFINITIONS

 DigitalOut mbedLED1(LED1); // onboard led's

 DigitalOut mbedLED2(LED2);

 DigitalOut mbedLED3(LED3);

 DigitalOut mbedLED4(LED4);

 SDFileSystem sd(p5, p6, p7, p8, "sd"); // for data logging

 LIS331 accel(p9, p10); // I2C connection to accelerometer

 DigitalOut motorHFL(p27); // front left horizontal thruster

 DigitalOut motorHFR(p26); // front right horizontal thruster

 DigitalOut motorHRL(p25); // rear left horizontal thruster

 DigitalOut motorHRR(p24); // rear right horizontal thruster

 PwmOut motorVL(p23); // left vertical thruster

 DigitalOut motorVLdir(p20); // 0 = down, 1 = up

 PwmOut motorVR(p22); // right vertical thruster

 DigitalOut motorVRdir(p19); // 0 = down, 1 = up

 PwmOut motorVB(p21); // back vertical thruster

 DigitalOut motorVBdir(p18); // 0 = down, 1 = up

// TICKERS AND TIMERS

 Timer loggingTimer; // timer for data logging

 Ticker change_VB_PWM_ticker;// change PID settings every 15s

// VARIABLES AND CONSTANTS

 float pitchTilt = 0;

 float VBLevel = 0;// amount to apply to VB thruster

 char VB_incrementer_dir = 0;// increment (0) or decrement (1)

 char passes = 0;// number of logging cycles

 FILE *fp = fopen("/sd/data.txt", "a");

// FUNCTIONS

// read tilt sensors

void read_tilt_sensors(){

 // get samples and take the MODE

 int n = 7;

 float sample[7] = {0,0,0,0,0,0,0};

 for (int i = 0 ; i < n ; i++) { // get samples

 sample[i] = accel.getAccelX();

 }

79

 for(int i = 0 ; i < n; i++) { // sort the samples

 for(int j = 0 ; j < n - 1 ; j++) {

 if(sample[j] > sample[j + 1]) {

 float temp = sample[j + 1];

 sample[j + 1] = sample[j];

 sample[j] = temp;

 }

 }

 }

 pitchTilt = sample[3];// use value from the middle of the array

 return;

}

// log data

void log_data(){

 if (fp != NULL) {

 FILE *fp = fopen("/sd/data.txt", "a");

 }

 mbedLED3 = !mbedLED3;

 fprintf(fp, "\n\r%f,%f,%f,%i", loggingTimer.read(), pitchTilt,

motorVB.read(), motorVBdir.read());

 fclose(fp);

 return;

}

// change VB PWM levels every 5 seconds

void change_VB_PWM(){

 if (VBLevel >= 1.0) { // time to head down

 VB_incrementer_dir = 1;

 }

 if (VBLevel <= -1.0) { // time to head up

 VB_incrementer_dir = 0;

 passes = passes + 1;

 }

 if (VB_incrementer_dir == 0) {

 VBLevel = VBLevel + 0.05; // increment PWM by 5% every step

 }

 else {

 VBLevel = VBLevel - 0.05; // decrement PWM by 5% every step

 }

 mbedLED2 = !mbedLED2;

 return;

}

80

// MAIN

int main() {

 wait(30); // time to get in the water

 // initialise timer for data logging

 loggingTimer.start();

 // set up ticker event to change PWM settings every 5 seconds

 change_VB_PWM_ticker.attach(&change_VB_PWM, 5.0);

 // initialise all motors

 motorHFL = 0;

 motorHFR = 0;

 motorHRL = 0;

 motorHRR = 0;

 motorVL = 0.0;

 motorVLdir = 0;

 motorVR = 0.0;

 motorVRdir = 0;

 motorVB = 0.0;

 motorVBdir = 0;

 // set up accelerometer

 accel.setFullScaleRange2g(); // 2g range on accel

 accel.setPowerMode(47); // 100 Hz ODR : 0d47 = 0x2f

 // set up PWM for vertical thrusters

 int pwmPeriod = 100; // 1 millisecond = 1000 Hz

 motorVL.period_us(pwmPeriod); // 1 microsecond = 1 MHz

 motorVR.period_us(pwmPeriod); // 100 microseconds = 10 kHz

 motorVB.period_us(pwmPeriod);

 mbedLED4 = 0; // LED4 turns on when finished data logging

 while(1) {

 read_tilt_sensors();

 if (passes == 5) { // logged enough data yet?

 change_VB_PWM_ticker.detach();// disable PWM

 mbedLED4 = 1; // turn on "Done” LED4

 VBLevel = 0; // turn off VB thruster

 }

 else {

 log_data();

 }

 motorVB = abs(VBLevel); // apply variable

 if (VBLevel < 0) { // determine rotation

 motorVBdir = 1;

 }

 else {

 motorVBdir = 0;

 }

 }// end of while

} // end of main

81

MATLAB

%% PWM pitch data analysis
%
% By Scott O'Brien
% #12747212
%

%% Initialise
clear all; close all; clc;

%% Import data
rawData = importdata('data_pwm_pitch_logger_pool_22_april.txt');

%% Prep data
timeData = rawData(:,1);
pitchTiltData = rawData(:,2);
VBMotorLevelData = rawData(:,3);
VBMotorDirData = rawData(:,4);

% convert accelerometer readings to degrees
pitchTiltAngle = (asin(pitchTiltData) * 180 / pi);

% adjust for direction of rotation
for n = 1:length(VBMotorLevelData);
 if VBMotorDirData(n) == 0
 VBMotorLevelData(n) = VBMotorLevelData(n) * -1;
 end
end

%% Plot tilt and PWM level
figure(1);
hold on;

subplot(2,1,1), plot(timeData,pitchTiltAngle,'r');
legend('angle (degrees)'); title('Pitch Tilt');
xlabel('Time (s)'); ylabel('Tilt (degrees)');
grid on;

subplot(2,1,2),plot(timeData,VBMotorLevelData*100,'b');
legend('PWM (%)'); title('PWM Level');
xlabel('Time (s)'); ylabel('PWM (%)');
grid on;

%% PID pitch data analysis
%
% By Scott O'Brien
% #12747212
%

%% Initialise
clear all; close all; clc;

%% Import data
rawData = importdata('data_pid_pool_12_April_2012.txt');

%% Prep data
timeData = rawData(:,1);

82

p_constant = rawData(:,2);
i_constant = rawData(:,3);
d_constant = rawData(:,4);
pitchTiltData = rawData(:,5);

% convert accelerometer readings to degrees
pitchTiltAngle = (asin(pitchTiltData) * 180 / pi);

%% Plot tilt and PID constants
figure(1);
hold on;

subplot(2,1,1), plot(timeData,pitchTiltAngle,'r');
legend('angle (degrees)'); title('Pitch Tilt');
xlabel('Time (s)'); ylabel('Tilt (degrees)');
grid on;

subplot(2,1,2),plot(timeData,p_constant,'b');
legend('P constant'); title('PID Level');
xlabel('Time (s)'); ylabel('P constant');
grid on;

83

Appendix G - IMU Schematic and PCB Design

Figure G.1. Circuit schematic for Tim Marvin’s IMU board.

84

Figure G.2. PCB design for Tim Marvin’s IMU board.

85

Appendix H - Definitions of Motion

There are six different motions a vessel in

or on water can experience:

 Yaw

 Pitch

 Roll

 Sway

 Surge

 Heave

These are shown in Figure H.1. Sway,

surge and heave are positional movements

along the three axes, whereas yaw, pitch and

roll are rotational movements around those

three axes.

Side View
Surge

Front View

Heave

Top View

Sway

YawTop View

Sway

Yaw

Figure H.1. Water-based vehicular motions.

86

Appendix I - Accelerometer Noise

Analysis

During initial testing of the LIS331DLH

accelerometer, some unexpected glitches were

observed in the raw output data.

15 seconds of data readings were logged

whilst the accelerometer was sitting motionless

on a relatively level table. As can be seen in

Figure I.1, most of the time the reading is -

0.000061 which is near enough to level, but

every now and then a value of -0.015747

occurs. It was determined that it was not

anything mechanical on or around the table

causing this, as the number never varies from

these two exact figures – external mechanical

disturbances show up as varying values.

Figure I.1. Logged data generated at an output data

rate (ODR) of 1000 Hz.

These glitches were some sort of noise,

representing 0.9 degrees of tilt [22]:

 0.9

Further investigation seemed warranted. The

power supply and the USB communications

were considered and eliminated as possible

sources of this noise, and a low pass filter,

using an averaging over 10 samples, was used

to try to eliminate it, but this did not eliminate

the problem.

A frequency analysis of the data in Matlab

was performed to look for clues (Figure I.2). It

was observed that the unwanted noise bears a

strong visual resemblance to the MATLAB

uniform noise function. Figure I.3 shows the

plot of data generated by the rand() function

and the similarity is obvious.

Figure I.2. Signal and noise generated at an output

data rate (ODR) of 1000 Hz.

Figure I.3. Uniform noise generated by the rand()

function.

-0.0180

-0.0160

-0.0140

-0.0120

-0.0100

-0.0080

-0.0060

-0.0040

-0.0020

0.0000

0
.0

1

.2

2
.5

3

.7

5
.0

6

.2

7
.5

8

.7

1
0

.0

1
1

.3

1
2

.6

1
3

.9

x-axis reading

87

After further research, it was found that

noise is common and inherent in these forms of

incredibly sensitive MEM’s based devices.

The manufacturers recommended solution is to

lower the default output data rate (ODR) from

1000 Hz to 100 Hz.

Further testing, including logging more data

and performing frequency analyses shows that

reducing the ODR does in fact lower the noise

floor and reduces the number of spurious

samples received. This is shown in Figures I.4

and I.5. By comparing the vertical axes of

Figures I.2 and I.5 it can be seen there is a

reduction in the average noise levels from

approximately 0.1 down to approximately

0.03.

Figure I.4. Logged data generated at an output data

rate (ODR) of 100 Hz.

Figure I.5. Signal and noise generated at an output

data rate (ODR) of 100 Hz.

As the spurious samples are now received

very infrequently, simply using the mode of 5

or 7 samples should be enough, in practice, to

remove any problem they cause.

The raw data, Excel and MATLAB files

can be found on the accompanying CD.

-0.0180

-0.0160

-0.0140

-0.0120

-0.0100

-0.0080

-0.0060

-0.0040

-0.0020

0.0000

0
.0

2

1
.3

7

2
.7

3

4
.0

8

5
.4

4

6
.7

9

8
.1

4

9
.5

0

1
0

.8
9

1

2
.3

2

1
3

.7
4

x-axis reading

88

Appendix J - Bill of Materials

Bill of Materials: Top Controller All prices include VAT

Item Quantity Price each Total Supplier

mbed 1 £ 48.88 £ 48.88 Donated by ARM

joystick 2 £ 2.45 £ 4.90 Proto-Pic

joystick breakout board 2 £ 1.50 £ 3.00 Proto-Pic

LCD screen 1 £ 15.60 £ 15.60 Farnell

large stand-offs 8 £ 0.36 £ 2.88 Proto-Pic

small standoffs 8 £ 0.15 £ 1.20 Proto-Pic

bolts 32 £ 0.03 £ 0.96 Proto-Pic

washers 32 £ 0.02 £ 0.64 Proto-Pic

3 junction screw terminal 2 £ 0.25 £ 0.50 Farnell

MAX3232 IC 1 £ 1.84 £ 1.84 Donated by Exar

2x5 way IDC plug 1 £ 1.09 £ 1.09 Maplin

2x5 way IDC socket 1 £ 1.14 £ 1.14 Maplin

2x8 way IDC plug 1 £ 1.19 £ 1.19 Maplin

2x8 way IDC socket 1 £ 1.29 £ 1.29 Maplin

20 pin header strip 2 £ 0.59 £ 1.18 Farnell

16 pin DIL socket 1 £ 0.15 £ 0.15 Farnell

switch 4 £ 1.20 £ 4.80 Farnell

green LED 5 £ 0.20 £ 1.00 Farnell

red LED 1 £ 0.19 £ 0.19 Farnell

enclosure 1 £ 3.79 £ 3.79 Maplin

DB9 female connector 1 £ 1.49 £ 1.49 Maplin

piezo buzzer 1 £ 0.95 £ 0.95 Proto-Pic

7805 voltage regulator 1 £ 0.99 £ 0.99 Maplin

strip-board 1 £ 3.40 £ 3.40 Farnell

9 V battery connector 1 £ 1.09 £ 1.09 Maplin

9 V battery 1 £ 3.00 £ 3.00 Morrisons

1N4001 diode 1 £ 0.15 £ 0.15 Proto-Pic

100 F capacitor 1 £ 0.24 £ 0.24 Farnell

10 F capacitor 1 £ 0.20 £ 0.20 Farnell

0.1 F capacitor 5 £ 0.15 £ 0.75 Farnell

150 resistor 7 £ 0.10 £ 0.70 Farnell

27 resistor 1 £ 0.10 £ 0.10 Farnell

6 resistor 1 £ 0.10 £ 0.10 Farnell

LM335 temperature sensor 1 £ 0.85 £ 0.85 Farnell

small heatsink 1 £ 0.48 £ 0.48 Farnell

heatsink mounting kit 1 £ 0.15 £ 0.15 Farnell

rca jack 1 £ 0.59 £ 0.59 Proto-Pic

acrylic 1 piece £ - £ - Donated by AbPlas

wire various £ - £ - Maplin

ribbon cable 150 mm £ - £ - Maplin

 Total £ 111.45

89

Bill of Materials: Bottom Controller All prices include VAT

Item Quantity Price each Total Supplier

mbed 1 £ 48.88 £ 48.88 Donated by ARM

IMU board 1 £ 90.00 £ 90.00 Tim Marvin

bolts 4 £ 0.07 £ 0.28 Proto-Pic

nuts 12 £ 0.03 £ 0.36 Proto-Pic

washers 4 £ 0.02 £ 0.08 Proto-Pic

3 junction screw terminal 5 £ 0.25 £ 1.25 Farnell

2 junction screw terminal 4 £ 0.19 £ 0.76 Farnell

2.2 Ah Turnigy LIPO battery 1 £ 10.00 £ 10.00 HobbyKing

MAX3232 IC 1 £ 1.84 £ 1.84 Donated by Exar

20 pin header strip 4 £ 0.59 £ 2.36 Farnell

7805 voltage regulator 1 £ 0.99 £ 0.99 Maplin

strip-board 1 £ 3.40 £ 3.40 Farnell

fuse 1 £ 0.19 £ 0.19 Farnell

fuse holder 1 £ 0.13 £ 0.13 Farnell

200 F capacitor 3 £ 0.26 £ 0.78 Farnell

100 F capacitor 4 £ 0.24 £ 0.96 Farnell

10 F capacitor 1 £ 0.20 £ 0.20 Farnell

0.1 F capacitor 5 £ 0.15 £ 0.75 Farnell

10 nF capacitor 1 £ 0.09 £ 0.09 Farnell

10 K resistor 8 £ 0.10 £ 0.80 Farnell

680 resistor 1 £ 0.10 £ 0.10 Farnell

150 resistor 1 £ 0.10 £ 0.10 Farnell

LM335 temperature sensor 1 £ 0.85 £ 0.85 Farnell

1N4001 diode 6 £ 0.15 £ 0.90 Proto-Pic

RFP30N06LE MOSFET 5 £ 1.12 £ 5.60 Proto-Pic

LMD18200 H-bridge IC 3 £ 17.95 £ 53.85 Farnell

LMD18200 breakout board 3 £ 1.20 £ 3.60 Proto-Pic

small heatsink 6 £ 0.48 £ 2.88 Farnell

large heatsink 3 £ 0.60 £ 1.80 Farnell

heatsink mounting kits 9 £ 0.15 £ 1.35 Farnell

heatsink compound 1 £ 3.69 £ 3.69 Maplin

switch 1 £ 1.79 £ 1.79 Maplin

battery connector 1 £ 0.40 £ 0.40 HobbyKing

terminal block 1 £ 1.28 £ 1.28 B & Q

video camera 1 £ 30.06 £ 30.06 Proto-Pic

microSD card 1 £ 15.99 £ 15.99 Amazon

cable ties numerous £ - £ - B & Q

heatshrink various £ - £ - Farnell

wire various £ - £ - Maplin

Total £ 288.34

90

Bill of Materials: Hardware All prices include VAT

Item Quantity Price each Total Supplier

piping 4 £ 1.14 £ 4.56 B & Q

corner junction pipe 8 £ 1.09 £ 8.72 B & Q

small T-junction pipe 6 £ 1.30 £ 7.80 B & Q

small c-clamp 7 £ 0.34 £ 2.38 B & Q

large c-clamp 2 £ 0.51 £ 1.02 B & Q

large T-junction 1 £ 12.00 £ 12.00 B & Q

screw end-cap 2 £ 8.99 £ 17.98 B & Q

push-fit end-cap 1 £ 3.99 £ 3.99 B & Q

junction box 1 £ 4.56 £ 4.56 B & Q

screw terminal block 2 £ 1.28 £ 2.56 B & Q

Rule 500 bilge pump 7 £ 12.50 £ 87.50 Borough Bridge Marina

Graupner 5-blade propeller 7 £ 4.77 £ 33.39 gliders.uk.com

screws 14 £ 0.03 £ 0.42 B & Q

nuts 4 £ 0.03 £ 0.12 B & Q

bolts 4 £ 0.07 £ 0.28 B & Q

30 m Ethernet cable 1 £ 10.68 £ 10.68 scan.co.uk

DB9 male connector 1 £ 4.10 £ 4.10 Maplin

cable braid 2 £ 1.91 £ 3.82 Farnell

18-core cable 0.5 m £ 1.62 £ 1.62 Farnell

18 conductor plug and socket 1 £ 36.77 £ 36.77 Northern Connectors

cable grommet 1 £ 3.49 £ 3.49 Maplin

cable holder 1 £ 3.98 £ 3.98 B & Q

polyurethane resin 1 £ 3.15 £ 3.15 Farnell

silicone grease 1 £ 4.49 £ 4.49 Maplin

propeller shaft adapter 7 £ - £ - Donated by U.o.W

acrylic 1 piece £ - £ - Donated by AbPlas

plastic coated wire mesh 400 mm x 300 mm £ - £ - Donated by Jack Bowles

wood-based flotation device various £ - £ - Donated by Jack Bowles

lead weights 4 £ - £ - Donated by Colin Pullen

closed-cell foam various £ - £ - Donated by Colin Pullen

wire various £ - £ - Maplin

electrical tape various £ - £ - B & Q

cable ties numerous £ - £ - B & Q

 Total £ 259.38

91

Appendix K - Permissions

Images from Woods Hole Oceanographic Institution:

Email received 9 February 2012:

Hi Scott,

Thank you for your email. You are welcome to use some images from our site in your project report.

Please credit them to Woods Hole Oceanographic Institution.

Best regards,

Erin

Media Relations Office

93 Water Street, MS #16

Woods Hole Oceanographic Institution

 (508) 289-3340

media@whoi.edu

Images from VideoRay LLC:

Email received 9 February 2012:

Hi Scott,

You may. Please credit VideoRay LLC in any of the images you use.

Regards,

Brian Luzzi

Marketing Manager

VideoRay LLC

(P) +1 610 458 3015

(C) +1 610 937 6151

(F) +1 610 458 3010

VideoRay LLC

580 Wall Street, Phoenixville, Pennsylvania 19460

www.videoray.com

Schematic and PCB layout from Tim Marvin:

email received 10 April 2012

Scott,

Amazing work man! Of course you can use whatever you need in any way

you need to. Attached are the original .sch and .brd files for Eagle.

If you need PDFs they should be on my project page on the mbed site.

If you need anything else just let me know. I'm happy to help in

whatever way I can. Keep up for great work...I'm always interested in

seeing how it's going.

mailto:media@whoi.edu
tel:%2B1%20610%20458%203015
tel:%2B1%20610%20937%206151
tel:%2B1%20610%20458%203010
http://www.videoray.com/

92

Images from Saab Seaeye:

email received 20 February 2012

Hi Scott,

No problem at all. Please go ahead and use the images.

Best regards

James Douglas

Sales Manager

Mob.Tl: +44 (0) 7766 207 384

Saab Seaeye Ltd

20 Brunel Way

Segensworth East

Fareham

Hampshire

PO15 5SD

United Kingdom

Tel: +44 (0) 1489 898 000

Fax: +44(0) 1489 898 001

Web: www.seaeye.com

Images from SMD Ltd:

email received 20 February 2012

Scott

Thank you for your request.

Please feel free to use our images, however I would appreciate SMD being credited.

Many thanks

Graeme Walker

Sales Manager Trenching & Special Projects

SMD Ltd

Mobile +44(0)7891 260324

www.smd.co.uk

tel:%2B44%20%280%29%207766%20207%20384
tel:%2B44%20%280%29%201489%20898%20000
tel:%2B44%280%29%201489%20898%20001
http://www.seaeye.com/
tel:%2B44%280%297891%20260324
http://www.smd.co.uk/

93

Appendix L - Workplan

94

Appendix M - Disk Contents

Report - pdf format

- docx format

Code - top controller

- bottom controller

- data logger code

- MATLAB PID controllers plot file

Pitch and Roll data logging - MATLAB plot files

 - logged data files

Schematics and diagrams - top controller schematic

 - top controller strip-board

 - bottom controller schematic

 - bottom controller strip-board

 - Tim Marvins IMU schematic

 - Tim Marvins IMU PCB layout

Photos

Videos

Noise Analysis - raw data text files

 - MATLAB analysis file

 - Excel spreadsheets

Bill of materials - Excel spreadsheet

Workplan - Excel spreadsheet

end of report

