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Abstract The aim of this project is to design and construct an underwater, 

remotely-operated vehicle (ROV), fitted with a 4-axis positioning 

system, a video transmission system, and a 2-axis (pitch and roll) 

control system to assist imaging and positional stability.  

 

The project includes the design and development of the PVC frame and 

water-proof enclosure, design and development of an ARM Cortex-M3 

microcontroller-based electronic circuit for the operator interface, and 

another ARM Cortex-M3 microcontroller-based electronic circuit that 

controls the seven DC motors fitted with propellers. 

 

A fully operational vehicle has been constructed, though the 2-axis 

control system and video transmission system remain incomplete.  
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Glossary 
 

 

Ballast:   weights used to offset buoyancy 

Buoyancy: the tendency to float 

Centroid:  the mid-point between the centre-of-mass and centre-of-buoyancy 

DOF:  degrees of freedom, the number of independent axes 

Heave:  to move up and down 

IC: integrated circuit 

IMU:   inertial measurement unit 

IP68-rated: an industry “standard” for rating environment-proofed components 

kbps:  a data rate of kilobits per second 

Manipulator: a robotic claw or tool 

Pitch:   as in nodding your head up and down 

PWM:  pulse width modulation, used for proportional speed control 

Roll:   as in tilting your head to one side 

ROV:   remotely-operated vehicle 

Surge:  to move forwards and backwards 

Sway:  to move from side-to-side 

Thruster:   motor fitted with a propeller, used for propulsion and positioning 

Trimming:   positioning of ballast and buoyancy elements to level the ROV 

Weight-in-air:   the weight of the ROV out of the water 

Yaw:   as in turning your head to the side 
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1. Introduction 
 

1.1 Why Build an ROV? 
 

The purpose of this project is to design and 

construct a remotely-operated underwater 

vehicle (ROV) fitted with a 4-axis positioning 

system, and a self-stabilising 2-axis control 

system. The many varied aspects of this project 

present quite a number of challenges and 

learning opportunities: 

 

 design and construction of an electronic 

operator interface 

 design and construction of an electronic 

DC motor drive system 

 design and construction of a water-proof 

enclosure mounted on an appropriate frame 

 research, design and implementation of a 

level measurement system 

 research, design and implementation of a 

self-stabilising control system 

 

This ROV project ultimately represents an 

overlap of interests: control systems, 

underwater exploration, and electronics. 

 

1.2 Why Include a Self-Stabilising 

Control System? 
 

All objects in water, including underwater 

vehicles, will find their natural disposition in 

water due to gravity acting upon their mass and 

relative buoyancy. This position however may 

not be level, which in the case of an 

underwater vehicle makes positioning and 

imaging problematic. This issue is usually 

minimised by careful trimming i.e. locating of 

ballast and buoyancy elements on the vehicle, 

but this is not an ideal solution. 

 

There are two main problems with relying 

solely on accurate trimming: 

 

 Firstly, it cannot compensate for 

unpredictable external influences such as 

strong currents. It may not be obvious from 

the surface but undersea currents are 

typically not parallel to the water surface 

and commonly have a significant vertical 

component.  

 

 Secondly, trimming at the surface prior to 

commencing a voyage does not allow for 

any load variation.  If the ROV collects for 

example a soil sample, the variation in the 

mass (and the corresponding variation in 

the position of the centre-of-mass) will 

cause a tilt and so negate the careful 

trimming previously performed. 

 

Most simple ROV’s do not include any 

automated self-stabilising ability, due to the 

added cost and complexity, and simply accept 

the problems that occur. For larger, 

commercial ROV’s however, particularly those 

that have manipulators where the mass 

distribution will vary during a voyage, a self-

stabilising system would seem to be a 

requirement. Somewhat surprisingly, they are 

usually only found on the most expensive, 

most robust vehicles available. The “Seaeye” 

range from SAAB for example, currently has 9 

models ranging in size from 60 kg through to 

1,500 kg (weight-in-air) and it is only the 

biggest, most expensive model, the Jaguar, 

which is fitted with an automatic pitch / roll 

stabilising function [1]. 

 

Accordingly, an investigation into the 

design and application of a control system to 

augment the natural positioning of underwater 

vehicles, in particular the smaller vehicles, 

seems to be a worthwhile and practical 

undertaking. 

 

1.3 Report Structure 
 

The remainder of this first Chapter gives an 

introduction to the world of underwater 

vehicles, their classifications and their 

commercial uses.  

 

Chapter Two gives a brief overview of the 

ROV system architecture that was developed.  

 

Chapters Three, Four and Five detail the 

design and construction of the hardware and 

electronic elements.  

 

Chapter Six follows with details of the self-

stabilising control system implemented and 

Chapter Seven summarises the testing and 

tuning processes once the ROV was actually in 

the water.  

 

The report conclusions are contained in 

Chapter Eight, followed by the official Project 
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Specification, References and Bibliography 

sections, and finally the Appendices. 

 

1.4 An Introduction to Underwater 

Vehicles  
 

Underwater vehicles can be broadly 

classified as either: 

 

 Manned, 

 Remotely-operated, or 

 Autonomously-operated 

 

1.4.1 Manned Underwater Vehicles 
 

A manned underwater vehicle is one that 

contains a waterproof enclosure, pressurised to 

1 atmosphere, suitable for human occupation. 

Examples include submarines for defence 

purposes, and ALVIN, a scientific research 

vehicle operated by the Woods Hole 

Oceanographic Institution (WHOI) shown in 

Figure 1.1. 

 

 
 

Figure 1.1. ALVIN, a manned underwater vehicle, 

operated by WHOI [2]. 

 

1.4.2 Remotely-Operated Underwater 

Vehicles 
 

A remotely-operated underwater vehicle is 

controlled by an operator who remains out of 

the water. The operator typically uses a 

joystick to manipulate the position of the 

vehicle in the water, and a video display to see 

the environment it is operating in. 

 

This project focuses solely on this 

unmanned remotely-operated class of vehicle. 

 

1.4.3 Autonomously Operated 

Underwater Vehicles 
 

An autonomously-operated underwater 

vehicle is designed to work without an 

operator and without a direct connection to the 

surface. They are usually designed for a 

specific application and are pre-programmed to 

perform certain specific tasks such as sea-floor 

mapping and imaging, temperature and salinity 

measurement etc. Figure 1.2 shows the WHOI 

SEABED vehicle designed for optical and 

acoustic sea-floor imagining. Upon completion 

of the assigned tasks the vehicles typically 

surface, broadcast their location (and often 

their captured data set) via satellite 

communications, and await recovery. 

 

 
 

Figure 1.2. SEABED, an autonomous survey vehicle, 

operated by WHOI [3]. 

 

1.4.4 Typical ROV Configurations 
 

A typical commercial ROV will have some 

or all of the following attributes: 

 

 Surface-based operation 

 Video cameras and lights for observation 

 Manipulators for environmental 

intervention 

 Cables (commonly known as tethers) for 

communication to and from the operator on 

the surface, and power from the surface 

 Motors fitted with propellers for 

propulsion and positioning (known as 

thrusters) 

 Sensors for depth and orientation, and 

environmental monitoring 
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1.4.5 ROV Classification 
 

The commercial sub-sea industry applies 

some broad categorisation to ROV’s. These 

can be summarised as: 

 

 Micro Observational Class 

 Mini Observational Class 

 Light & Medium Work Class  

 Heavy Work Class  

 Seabed Working Class  

 

1.4.6 Micro Observational Class 
 

These are typically light-weight 

construction, optimised for portability, 

designed exclusively for observation in 

shallow waters (less than 100 m). Typical uses 

include ship, pier and pipe inspections. Figure 

1.3 shows an example from VideoRay LLC. 

 

 
 

Figure 1.3. The P4 CD 300 is a micro observational 

class ROV developed by VideoRay LLC [4]. 

 

1.4.7 Mini Observational Class 
 

These vehicles perform a similar role to the 

micro observational class vehicles but are 

designed with heavier duty construction 

techniques that make them more suited to the 

greater depths they operate at (typically down 

to 1,000 m). 

 

1.4.8 Light & Medium Work Class 
 

A step up in size and durability of 

construction, these light-to-medium-weight 

ROV’s are typically fitted with a single small 

manipulator giving them a rudimentary ability 

to handle objects. Compared to the Heavy 

Work Class, they have relatively low thruster 

power and therefore a lower payload lift 

capacity. An example is shown in Figure 1.4. 

 

 
 

Figure 1.4. The Saab Seaeye Lynx is light-medium 

work class ROV [5]. 

 

1.4.9 Heavy Work Class 
 

Designed for extreme depths (up to 6,000 m 

is not unusual), and situations where size and 

weight are not considered primary 

considerations, these heavy duty ROV’s 

perform the most challenging underwater 

tasks. They are usually fitted with at least two 

manipulators, specialised tooling, multiple 

cameras and lights, and as we have seen, pitch 

and roll self-stabilisation systems. These 

vehicles can weigh in excess of 1.5 tonnes. 

Fitted with the most powerful thrusters 

available, they can carry and lift the largest 

payloads, sometimes in excess of 300 kg. 
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Figure 1.5 shows an example from Saab 

Seaeye. 

 

 
 

Figure 1.5. The Saab Seaeye Jaguar is a heavy work 

class ROV [6]. 

 

1.4.10 Seabed Working Class 
 

These highly specialised vehicles are 

designed to lay undersea pipes and cables. 

Some are capable of cutting or blasting a 

channel in the seabed, laying the cable, and 

then burying it, all in a single pass. An 

example from the Newcastle-based company 

SMD Ltd is shown in Figure 1.6. 

 

 
 

Figure 1.6. The SMD UT-1 jet trencher [7]. 

 

 

1.4.11 Commercial ROV Use 
 

As can be seen by the large variety of 

ROV’s available, there are an accordingly 

large number of applications they are used for. 

Here is a selection: 

 

 Port and pier inspection 

 Trenching and ploughing 

 Cable laying & maintenance 

 Pipe laying & maintenance 

 Nuclear plant inspection 

 Water tank inspection 

 Environmental monitoring 

 Sea floor surveying 

 Wreck discovery 

 Archaeology 

 Acoustic positioning 

 Harbour and coastal defence 

 Mine counter-measures  

 Sub-sea construction 

 Well-head maintenance 

 Mining 

 Search-and-rescue 

 Biological research 

 

Major events where ROV’s have been used 

extensively include: 

 

 Japanese tsunami search-and-recue 

 BP Macondo well-head repair 

 The search for the Titanic 

 The investigation into the sinking of the 

Costa Concordia cruise ship  
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2. System Requirements and 

Architecture 
 

From an analysis of commercial ROV’s 

that can be found operating in the field, and 

with consideration to the ROV’s applications 

and operating environments, the design of this 

ROV system has closely followed these 

primary design guidelines: 

 

 ease-of-use 

 portability 

 cost effective construction methods and 

materials 

 

Working from these guidelines, the 

following requirements were specified: 

 

 operator controller with joysticks, 

switches, status display screen and LED’s, 

and video screen 

 4 thrusters for horizontal positioning 

 3 thrusters for vertical positioning and the 

self-stabilisation system 

 on-board power 

 30 m tether for data and video transfer 

between operator controller and ROV 

 lightweight frame construction 

 

The system can be most easily visualised by 

examining the major system blocks as shown 

in Figure 2.1. 

 

 

 

 

Top Controller Board Bottom Controller Board30m ethernet cable

Joystick 1

Joystick 2

Temperature 

Sensor

LCD Display

Buzzer

LED’s

PC

Data

VideoUSB

Vertical Left 

Thruster

Vertical Right 

Thruster

Vertical Rear 

Thruster

Horizontal 

Front Right 

Thruster

Horizontal 

Front Left 

Thruster

Horizontal 

Rear Right 

Thruster

Horizontal 

Rear Left 

Thruster

Temperature 

Sensor

Leak 

Detector

IMU

Power 

Supply

Video 

Camera

Lights

Switches

Power 

Supply

USB – development use only

Data  

Logging

 
 

Figure 2.1. ROV system block diagram. 
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3. Mechanical Design and 

Construction 
 

This Chapter details the many facets of 

designing and physically constructing an ROV.  

 

3.1 Frame Design 
 

The purpose of the frame is to support the 

water-proof enclosure, the thruster motors, and 

any trimming weights. Ideas for the frame 

design were initially considered and assessed 

using pencil and paper, and simple wire 

models, as shown in Figure 3.1.  The principle 

design goal for the frame, taking into account 

thruster and enclosure positioning and support, 

was to ensure there was maximum water flow 

through the open frame, to therefore minimise 

drag. 

 

 
 

Figure 3.1. Designing the frame. 

 

The chosen design consists of 3 sections 

placed horizontally perpendicular to the 

forward direction of travel, two along the 

bottom to support the enclosure, and a single 

upper section towards the rear. They are used 

for cross bracing and vertical thruster support, 

and join the two rectangular side sub-frames 

that support the horizontal thrusters. 

 

The hollow frame is designed to fill with 

water during operation to assist with buoyancy 

and ballast trimming, and has a number of 

holes drilled for this purpose. In addition, there 

is a mesh attached to the bottom of the frame 

which serves as a surface on which to mount 

the trimming weights. 

 

3.2 Frame Construction 
 

The frame is constructed of plastic tubing, 

and the associated connecting elements, with a 

nominal 32 mm outer diameter. This material 

is lightweight yet rigid and strong, readily 

available, easy to work, and cost effective. 

 

Images of the construction of the frame are 

shown in Figure 3.2. 

 

 
 

 
 

Figure 3.2. Construction of the frame. 

 

All the wiring to and from the motors, and 

the tether to the surface controller, have been 

routed through the inside of the plastic tubing 

to minimise drag, to avoid damage to wiring, 

and to avoid fouling of the propellers. 
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Figure 3.3. Routing and sealing the wiring. 

 

After routing all the wires, they have been 

concentrated inside a box and connected to an 

18-core cable using screw-terminals. This box 

was then flooded with a polyurethane resin to 

seal the connections from the water (Figure 

3.3). 

 

3.3 Water-Proof Enclosure Design and 

Construction 
 

The water-proof enclosure is where all the 

underwater electronics and the video camera 

are located. Due to the high cost of these 

components, (approximately £300), keeping 

water out of this area is absolutely essential, so 

given the limited budget available, 

considerable research was done into finding 

suitable low-cost off-the-shelf components that 

would meet the requirements of: 

 

 water-proof 

 accessible 

 readily available 

 usable 

 modifiable 

 uncompressible 

 

PVC drainage pipe fittings were found to fit 

these requirements as: 

 

 they are designed with seals for blocking 

water 

 there are a range of fittings that will allow 

access, via screw-thread and push-fit end-

caps 

 the components are readily available 

through local suppliers 

 handy mounting hardware is available 

 they are easily machined for modifications 

 they are purpose-designed for underground 

installation so can handle external pressure, 

at least to some degree 

 

It should be noted that the components are 

actually designed to keep water in, rather than 

water out, so it was initially unclear whether 

this system will prove to be completely water-

proof.  

 

In order to find out, a T-section with two 

screw end-caps, and a single push-fit end-cap 

(as can be seen in Figure 3.2) were trialled in a 

local swimming pool down to a maximum 

depth of 5 metres for 30 minutes. This testing 

met with success as no water was detected 

inside the enclosure, so it was decided to 

proceed with using these components. 

 

3.3.2 Adding a Window to the Water-

Proof Enclosure 
 

Following the successful first test, the next 

step was to add a window for the video 

camera. A number of designs were considered 

for the window construction. Cross sections of 

the various designs are shown in Figure 3.4 

with the red circles indicating the location of 

sealing o-rings. 
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Original
1 2

3 4 5  
 

Figure 3.4. Cross-sections of designs for the camera window. 

 

After some experimentation with the 

different options, it was found that using more 

than a single o-ring did not allow the cap to be 

screwed down enough to ensure a tight seal.  It 

was also observed that if the o-ring was not 

held in place, the act of compression would 

cause the o-ring to move and thus give an 

unreliable seal.  For those reasons option 4 was 

chosen. The window was then machined out 

and installed as can be seen in Figure 3.5.   

 

Further water-proofing trials were then 

undertaken and they also proved to be a 

success. 

 

 
 

Figure 3.5. The camera window (with the protective 

masking still in place). 

 

 

3.3.3 Further Modification to the Water-

Proof Enclosure 
 

At this point confidence was high, but the 

biggest problem was yet to be faced. How to 

get all the motor and signal wires through the 

hull of the water-proof enclosure, and still keep 

the enclosure dry? With 2 wires for each of the 

7 motors and 1 light, and 8 wires inside the 

Ethernet cable, this meant there are 24 

individual wires. These 24 wires mean, in 

theory, there could be up to 24 individual holes 

in the hull, and of course 24 holes = 24 

possible leak sources. 

  

After much consideration, the obvious 

solution, though certainly not the cheapest 

solution, but the one that was finally opted for, 

was to concentrate all the wires into one single 

multi-core cable with a single multi-pole 

connector. This ensured there would be only a 

single hull penetration, and therefore a much 

reduced chance of leakage occurring.  

 

By judiciously connecting all the common 

12 V wires in the concentrating box, and 

reducing the number of usable Ethernet wires 

from 8 down to 6, the number of required 

connections was reduced to 18.  An 18-core 

cable was sourced, and a suitable IP68-rated 

plug and socket acquired. Figure 3.6 shows the 

construction of this cable and connectors 

pairing. 
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Figure 3.6. Construction of the 18-way cable and connectors. 

 

Initial water-proof testing of the enclosure, 

now fitted with the multi-pole connecter plug 

followed and was thought to be successful.  

Subsequent operation showed this was not the 

case, and small amounts of water 

(approximately 4 tablespoons per hour were 

observed) were entering the enclosure through 

the hole that was created for the connector. 

 

Upon inspection, it became obvious that the 

hole had not been made sufficiently accurately 

and did not meet the connector manufacturers’ 

specifications. An additional end-cap was 

purchased and another hole was machined, this 

time much more accurately using more 

appropriate and accurate tools.  

 

3.4 Propulsion by Thrusters 
 

Propulsion of the vehicle through the water, 

both vertically and horizontally, under control 

of the operator, is the job of the thrusters. 

 

3.4.1 Thruster Construction 
 

The thrusters used for this project are sealed 

DC motors, derived from bilge pumps, and 

fitted with propellers. Figure 3.7 shows the 

pumps before, during and after modification. 

To turn the bilge pumps into ROV thrusters, 

the following steps were undertaken: 

 

 Unclip the blue protective shroud  

 Machine away the white outer shell to 

expose the sealed body and impeller.  

 Remove the impeller  

 Attach a propeller-to-shaft adapter to the 

motor shaft  

 Attach a propeller to the adapter 

 Repeat six more times 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.7. Conversion from bilge pump to thruster. 
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3.4.2 Horizontal Thruster Configuration 
 

An analysis of the commercial ROV market 

shows two common configurations are used for 

horizontal thruster placement: 

 

 the “H” layout as shown in Figure 3.8 

 the “vectored” layout as shown in Figure 

3.9 

 

 

 
 

Figure 3.8. “H” horizontal thruster layout. 

 

 

 
 

Figure 3.9. “Vectored” horizontal thruster layout. 

 

Both configurations are used commercially: 

the P4 CD 300 from VideoRay LLC, (Figure 

1.3) uses the H layout, whereas the Saab 

Seaeye Lynx and Jaguar, (Figures 1.4 and 1.5), 

use the vectored layout, as does the SMD UT-1 

(Figure 1.6). 

 

The H layout requires only three thrusters 

instead of four which gives a small cost 

advantage, but there are also a number of 

disadvantages: 

 

 All three thrusters require bi-directional 

control (i.e. they must be able to be driven 

forward or backward), which incurs 

significant additional cost and complexity 

in the control electronics 

 6 wires have to be passed through the 

water-proof pressure hull 

 Sideways motion is relatively slow as there 

is only a single thruster 

 The single sideways-acting thruster should 

be mounted exactly at the centroid of the 

ROV otherwise it will impart a rotational 

force on the ROV 

 

The vectored layout on the other hand 

requires only uni-directional thruster control, 

giving simpler, cheaper electronics, and needs 

only 5 connections through the hull (as one 

wire is common to all thrusters and can be 

connected together externally).  The major 

disadvantage of this layout is that the 

maximum thrust for forward, reverse and 

sideways operations is reduced by 30% due to 

the 45 offset of each thruster from the 

direction of travel. 

 

Clearly, both layouts offer unique 

advantages and disadvantages, but after careful 

consideration of these, the vectored layout was 

chosen. The thrust reduction due to the angled 

thruster mounting was deemed to be an 

acceptable trade-off for simpler electronics. 

 

Figure 3.10 shows how, using the vectored 

layout, a combination of any two thrusters 

gives 6 possible directions of movement. 
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Figure 3.10. Directional control using a “vectored” horizontal thruster layout. 

 

3.4.3 Vertical Thruster Configuration 
 

For simple vertical positioning control, a 

single bi-directional thruster, centrally located, 

and mounted vertically is sufficient. However, 

to support the self-stabilisation system (see 

Chapter 6), additional bi-directional thrusters 

are necessary to give the ability to correct 

disturbances along the pitch and roll axes. 

 

For the roll axis correction, a thruster is 

mounted along the top of the left and right side 

frames at the midpoint. These thrusters are set 

at an angle offset from the vertical to assist in 

roll correction. For normal vertical positioning 

they are driven equally, but for roll correction 

they are driven at different rates, and different 

directions if necessary. 

 

For the pitch axis, a single thruster is 

mounted at the top rear of the frame. The offset 

to the vertical is one of the factors considered 

during the testing phase and discussed in 

Chapter 7. It is not used for normal vertical 
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positioning of the ROV as its non-symmetric 

positioning on the frame may induce pitch. 

 

3.4.4 Propellers 
 

A number of different propellers (Figure 

3.11) have been tested to ascertain the relative 

thrust measurements and the current draw by 

the thruster motors, to find the most suitable 

propeller: 

 

 Unmodified bilge pump with impeller 

 Robbe R1473 3-blade 35 mm propeller 

 Robbe R1471 3-blade 50 mm propeller 

 Robbe R1465 3-blade 60 mm propeller 

 Graupner G2308.50 3-blade 50 mm 

propeller 

 Graupner G2298.40 5-blade 40 mm 

propeller 

 

 

 
 

Figure 3.11. Five different propellers were tested. 

 

 

The testing apparatus is shown in Figure 

3.12 and consists of a rotating cross-shaped 

structure with the thruster attached to one end. 

When power is applied to the thruster, the 

structure pivots and applies a downward force 

to the scales. That force, measured as weight 

by the scales, is directly proportional to the 

thruster force output.  Due to the nature of the 

testing apparatus, the measurements taken are 

not considered highly accurate but serve to 

provide relative indications of the differences 

between the propellers. The results, averaged 

over a number of tests, are shown in Table 3.1.  

 

 
 
Figure 3.12. Thrust and current draw measurements. 

 

 

Propeller 

Current 

Draw 

(A) 

Thrust 

(g) 
g / A 

Bilge 

pump 

impeller 

1.60 75 46.88 

3-blade 

Robbe 35 

mm 

2.05 125 60.98 

3-blade 

Robbe 50 

mm 

2.80 190 67.86 

3-blade 

Robbe 60 

mm 

3.50 190 54.29 

3-blade 

Graupner 

50 mm 

2.20 250 113.64 

5-blade 

Graupner 

40 mm 

2.10 170 80.95 

 

Table 3.1. Thrust and current draw measurement 

results. 

 

On a gram per Amp basis, the Graupner 50 

mm propeller seems the logical choice, 

however it was noted during testing that the 5-

bladed 40 mm Graupner propeller generated 

significantly less turbulence. It also had a 

much higher reverse thrust compared to any of 

the 3-blade propellers. Minimising turbulence 

is important for good visibility during 

operation of the ROV and though reverse 

thrust is not important for the horizontal 

thrusters, it is critical for the vertical thrusters. 

For these reasons, 5-blade 40 mm Graupner 

propellers were chosen for all seven thrusters. 
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3.4.5 Propeller Rotation 
 

As a single propeller rotates, it imparts a 

rotational force to the vehicle, and this has the 

effect of steering the vehicle to the right or left. 

To minimise this force, two thrusters are used 

simultaneously, with each thruster having a 

propeller that rotates in the opposite direction 

to the other. Table 3.2 shows the allocation of 

rotation direction to the individual thrusters. 

 

 

Thruster 
Rotation 

Direction 

Horizontal 

Front Right 

Counter-

Clockwise 

Horizontal 

Front Left 
Clockwise 

Horizontal 

Rear Right 
Clockwise 

Horizontal 

Rear Left 

Counter-

Clockwise 

Vertical 

Right 

Counter-

Clockwise 

Vertical 

Left 
Clockwise 

Vertical 

Rear 

Counter-

Clockwise 

 
Table 3.2. Thruster propeller rotation direction. 

 

To ensure an equivalent level of thrust from 

each of the two thrusters, propellers designed 

for opposite rotation are used. Figures 3.13 and 

3.14 show the two different 5-bladed 

propellers used, each designed for rotation in a 

specific direction. 

 

 
 

Figure 3.13. Counter-clockwise rotating propeller. 

 

 
 

Figure 3.14. Clockwise rotating propeller. 

 

3.5 Tether 
 

The tether is the physical and 

communications link between the top 

controller, located out of the water, and the 

ROV in the water. It has 3 responsibilities: 

 

 deliver instructions down to the ROV from 

the top controller 

 deliver sensor data from the ROV up to the 

top controller 

 deliver video up to the operator 

 

The tether in this case consists of a single 

30 m Ethernet cable (Cat. 6), with two of the 

four sets of twisted pairs being used. This 

length will give a maximum depth of 30 metres 

straight down, and 21 metres out at a 45 

angle. 30 metres is the typical maximum depth 

of recreational scuba divers, and therefore the 

maximum depth for easily testing the ROV, 

allowing for an emergency recovery. 

 

Two wires (one set of the four twisted pairs, 

wires 1 and 2) are used for serial 

communications between the top controller 

and bottom controller. A third wire (wire 3) is 

used to carry the analogue video signal, and a 

fourth wire (wire 4) is the common ground 

connection between the top and bottom 

controllers. A third pair (wires 5 and 6) are 

unused, but available for future use. The fourth 

pair (wires 7 and 8) are not connected at all 

due to the lack of spare conductors in the 18-

core cable running into the water-proof 

enclosure.  

 

The primary physical requirements for the 

tether are that it must be as light and small as 
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possible to minimise drag through the water, 

and ideally should be neutrally buoyant. The 

ethernet cable is not neutrally buoyant so a 

number of floatation devices are attached to 

the tether at regular intervals to ensure neutral 

buoyancy. To avoid fouling of the tether with 

the thrusters, the tether is made positively 

buoyant for the metre closest to the ROV. 

 

For physical protection, at the ROV end a 

cable strain relief grommet is used, and the 

first 5 metres of the tether are enclosed in a 

black braided sheath. 

 

3.5.1 Wireless Communications 
 

It has been suggested that a completely 

wireless system may be possible and this has 

been investigated but despite being a very 

interesting subject has been found unsuitable 

for this specific project. Briefly, there are a 

number of advantages to a wireless system 

including: 

 

 less drag  

 fewer buoyancy issues 

 no tangles, snags or propeller fouling 

 

There are however, two major technical 

problems with underwater wireless 

communications: 

 

 limited bandwidth 

 latency 

 

The bandwidth available with long range 

acoustic modems is approximately 10 kbps [8]. 

This would be sufficient for control and sensor 

data but is not sufficient for video transmission 

and therefore makes it unsuitable for this 

project. There are considerable efforts 

currently underway to apply modern 

communications techniques such as OFDM 

and MIMO to underwater communications [9], 

so this may be less of an issue going forward. 

 

The second problem is that sound 

propagates through water at approximately 

1,500 metres per second [10] which is vastly 

slower than an electrical signal in a cable that 

travels at close to the speed of light. Therefore 

a considerable level of latency occurs and this 

obviously increases as the distance increases. 

This may not be a significant factor for a 

distance of 30 metres, but for commercial 

ROV’s operating in real-time at 6,000 metres it 

is an unworkable solution as round trip times 

would be in the order of 8 seconds. 

 

The examination of the propagation of 

sound through water, sea water in particular, is 

not a trivial exercise and well outside the scope 

of this project.  The reader is encouraged to 

look at the US Navy publication “Physics of 

Sound in the Sea” resulting from research done 

during World War II for further details on the 

physics of communications through sea water. 
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4. Top Controller 
 

The primary purpose of the top controller is 

to act as the operator control interface. From 

the operator’s point-of-view, they need to be 

able to control the position of the ROV in the 

water on any one of four axes, as easily as 

possible, and receive timely feedback from the 

ROV of its position and the nature of the 

environment it is in. 

 

 

 
 

Figure 4.1. The completed top controller. 

 

The following sections of this Chapter detail 

the design, specification and construction of 

the operator control interface.  

 

4.1 Top Controller Design 
 

From the requirements it was determined 

that the 4-degree-of-freedom (DOF) 

positioning and control performed by the 

operator (forward/backwards, up/down, move 

left/move right, and rotate left/rotate right) 

would be best achieved using two joysticks 

and a number of switches. Feedback to the 

operator would come via a video screen, an 

LCD screen for sensor data and warnings, and 

a number of LED’s to indicate a particular 

state or warning. 

 

The electronic design of the top controller 

centres around a microcontroller (in this case 

an NXP LPC1768 on an mbed microcontroller 

development board) interfaced to: 

 

 three switches 

 an LCD screen 

 two joysticks 

 six LED’s 

 a temperature sensor 

 a buzzer 

 the serial connection to the bottom 

controller 

 

The circuit diagram and strip-board layout 

can be found in Appendix B, and the final 

operational microcontroller C programming 

code in Appendix D. 

 

4.2 Construction and Testing 
 

For a system as complex as the top 

controller, where almost every available I/O 

pin is being used on the mbed microcontroller, 

connecting every element simultaneously and 

then attempting to test and debugging from 

there, from experience, seemed likely to be 

inefficient and ineffective.  

 

Instead, an alternative and ultimately 

successful approach was used, where each 

element of the top controller was first tested in 

isolation from the other elements of the system 

to ensure they performed as required (see 

Figure 4.2). Only once they were proven to 

work in isolation were they integrated into the 

evolving system built on a breadboard. As each 

new element was added, it along with all the 

existing elements already in place, were then 

fully tested to ensure they worked with each 

other. 

 

 
 

Figure 4.2. Two mbed modules mounted on a 

breadboard during serial communications testing. 

 

This gradual addition, element by element, 

to the working system, ensured that any 

problems that did occur were easily identified. 

Figure 4.3 shows the development in progress. 



24 
 

 

The order of implementation was: 

 

1. mbed microcontroller development board 

2. voltage regulator 

3. LCD display 

4. joysticks 

5. temperature sensor 

6. leak buzzer 

7. switches 

8. LED’s 

9. RS232 

 

Only once the top controller was working 

entirely as required on the breadboard, was it 

moved onto the strip-board, as shown in Figure 

4.3.  

 

 
 

 
 

Figure 4.3. The top controller during development, on 

breadboard (top) and later on strip-board (bottom). 

 

Two primary tools were used during the 

testing and construction phase. Firstly, a digital 

multi-meter was used for checking connections 

and voltage levels to ensure every component 

was correctly placed and wired. The second 

tool was the LCD display which proved to be 

very useful. It was used extensively during the 

development of the top controller (and also the 

bottom controller) due to the flexible nature of 

the data it can display. This is primarily due to 

the ease-of-use offered by the mbed rapid 

prototyping development system. 

 

4.3 mbed Rapid Prototyping 

Development System 
 

The mbed development system is the 

combination of an NXP LPC1768 

microcontroller mounted on a user-friendly 

0.1”-spaced DIP package, an online web-based 

development environment, and a collection of 

official and community-developed standard 

libraries.  This combination is specifically 

designed to facilitate quick and easy 

prototyping as can be seen in Figure 4.2.  

 

The NXP microcontroller has an ARM 

Cortex-M3-based core running at 96 MHz It 

contains 512 kB of flash memory, 32 kB RAM 

along with I
2
C, SPI, CAN and serial I/O, 6 

PWM output channels, 6 ADC input channels, 

and a single DAC output channel. It also offers 

USB and Ethernet connectivity and a 3.3V 

regulated power output [11]. 

 

4.4 Power Supply 
 

Operation of the top controller requires a 

number of different voltage levels. The mbed 

microcontroller can accept an input from 4.5 V 

to 14.0 V, the LCD display operates logically 

at 3.3 V, though its backlight requires 4.2 V, 

and the RS232 IC requires 3.3 V for operation.  

 

Power was supplied during development by a 

standard PP3 9 V battery. A 5 V linear voltage 

regulator, TS7805CZ, is used to cut the 9 V 

down to 5 V for both the LCD backlight and 

the mbed. The 4.2 V for the backlight is 

generated from the 5 V using a voltage divider 

circuit. 
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The 3.3 V required by the LCD display and 

RS232 IC is generated by the mbed’s onboard 

voltage regulator. 

 

4.5 LCD Display  
 

The LCD display chosen is a 20 x 4 

character black-on-green display fitted with an 

LED backlight. The display uses a 4-bit 

parallel data connection to the microcontroller 

(there is also the option to use an 8-bit 

connection) and requires 2 additional control 

lines: ‘RS’ and ‘E’ [12]. It is powered from the 

3.3 V generated by the mbed’s onboard 

regulator. The backlight is powered separately 

by a 4.2 V source. 

 

During ROV operation, the display is used 

to indicate some or all of: 

 

 the state of the joysticks 

 the temperatures from the sensors in the 

top and bottom controllers 

 the pitch and roll tilt angles 

 the PID control settings 

 the status of the data logging function, the 

lights and the control system 

 leak warnings 

 H-bridge over-temperature warning 

 

4.6 Analog Joysticks 
 

The top controller uses two analog joysticks 

to allow the operator to control the position of 

the ROV in the water along any of 4 different 

axes. Figure 4.4 shows how the eight possible 

position instructions are mapped to the eight 

joystick positions. 

 

 
Raise

Lower

Move

Right

Move

Left

Forward

Reverse

Turn

Left

Turn

Right

Left Joystick Right Joystick

 
Figure 4.4. Joystick control direction assignment. 

 

Each joystick is essentially a structure 

holding two linear potentiometers aligned 

along two perpendicular axes. The output from 

each axis of each joystick is connected to an 

ADC input on the mbed microcontroller where 

the value of the resistance in the 

potentiometers, and therefore the position of 

the joystick, is directly proportional to the 

voltage appearing at the ADC input, referenced 

to 3.3 V. 

 

Though the joysticks are analog devices, 

they are effectively used as digital inputs with 

one of six possible states: 

 

 up 

 down 

 left 

 right 

 horizontally centred 

 vertically centred 

 

The software determines the current state of 

each joystick based on the value returned from 

the ADC input, and maps that to the 

appropriate instruction for the ROV.  

 

The sampling of the joysticks occurs 20 

times per second. Subjective testing indicated 

an update rate any slower induced a 

perceptible lag between the operator input and 

the ROV response. 

 

4.7 Temperature Sensor 
 

The top controller is fitted with a 

temperature sensor to measure the temperature 

inside the enclosure. This information is 

sampled every few seconds and displayed on 

the LCD display. 

 

The sensor is an LM335 from National 

Semiconductor, supplied in an easy-to-use 

plastic TO-92 package. It was chosen as it 

offers a good balance between price and 

accuracy. It has an operating range from -40 

to +100 C and is typically accurate to ±2 C 

which was considered acceptable for this 

application, however accuracy can be 

increased by calibration if necessary.  

 

The sensor works like a Zener diode with a 

breakdown voltage output directly proportional 

to the temperature at 10 mV / K [13]. Due to 

the linearity of its output, by connecting to an 

ADC input on the microcontroller, the ambient 

temperature in degrees Celsius can be 
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calculated using the following formula, where 

the sampled value is in the range of [0, 1]: 

 
                   

                                     
      

(1) 

 

4.8 Water Leak Detection Warnings 
 

If the bottom controller detects a water leak 

into the water-proof enclosure, it will 

communicate this to the top controller. The top 

controller will respond to this by sounding a 

small buzzer, displaying a warning on the LCD 

screen, and illuminating a red LED. 

 

4.9 Switches and LED’s 
 

The top controller has 3 switches and 6 

status LED’s. The three switches are used for: 

 

 lights on / off 

 control system on / off 

 data logging on / off 

 

The LED’s are used for: 

 

 power (green) 

 leak detected (red) 

 data link to bottom controller (green) 

 state of light switch (green) 

 state of control system switch (green) 

 state of data logging switch (green) 

 

4.10 Data Communications 
 

The top controller has two separate data 

communications channels. 

 

4.10.1 Communication with the Bottom 

Controller 
 

Communications between the top controller 

and bottom controller, via the tether, are by 

RS232 serial. An EXAR SP3232ECP-L driver 

chip is used in both controllers for this as the 

inbuilt serial UART’s in the mbed 

microcontroller are not designed for 

transmitting over 30 m cable lengths. 

 

A relatively simple communications 

protocol was established for the exchange of 

control and sensor data between the top and 

bottom controllers.  

 

Tables 4.1, 4.2 and 4.3 detail the 14 bytes 

sent from the top controller to the bottom 

controller: 

 

Byte Name Purpose 

1 controlData[0] 
8 bits for 

control data 

2 controlData[1] 
8 bits for 

control data 

3 kP8[0] 
first byte of 4 

for kP float 

4 kP8[1] 
second      “    

“ 

5 kP8[2] 
third            “        

“ 

6 kP8[3] 
fourth          “        

“ 

7 kI8[0] 
first byte of 4 

for kI float 

8 kI8[1] 
second         “        

“ 

9 kI8[2] 
third            “        

“ 

10 kI8[3] 
fourth          “        

“ 

11 kD8[0] 
first byte of 4 

for kD float 

12 kD8[1] 
second         “        

“ 

13 kD8[2] 
third            “        

“ 

14 kD8[3] 
fourth          “        

“ 
 

Table 4.1. Data sent from the top controller to the 

bottom controller. 

 

 

Bit Number Purpose 

7 ‘1’ = first control data byte 

6 ‘1’ = data logging on 

5 ‘1’ = control system on 

4 ‘1’ = lights on 

3 ‘1’ = rear left thruster on  

2 ‘1’ = rear right thruster on 

1 ‘1’ = front left thruster on 

0 ‘1’ = front right thruster on 

 
Table 4.2. controlData[0] byte. 
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Bit Number Purpose 

7 ‘0’ = second control data byte 

6 unused 

5 unused 

4 unused 

3 unused 

2 unused 

1 ‘1’ = drive down 

0 ‘1’ = drive up 

 
Table 4.3. controlData[1] byte. 

 

 

Transmission of floating point values for 

the P, I, and D constants for the control system 

is achieved by breaking the 32-bit floating 

point value into four 8-bit values and sending 

those, as shown in Table 4.1. Each set of four 

bytes is then reconstructed back into a 32-bit 

floating point value at the receiving end by the 

bottom controller. 

 

There are also 4 bytes sent back from the 

bottom controller to the top controller: 

 

Byte Name Purpose 

1 txData[0] 8 bits for warning flags 

2 txData[1] bottom temperature 

3 txData[2] pitch tilt angle 

4 txData[3] roll tilt angle 

 
Table 4.4. Data sent from the bottom controller to the 

top controller. 

 

 

Bit Number Purpose 

7 ‘1’ = first data byte 

6 unused 

5 ‘1’ = thermal overload 

detected 

4 ‘1’ = thermal overload 

detected 

3 ‘1’ = thermal overload 

detected 

2 ‘1’ = leak detected 

1 ‘1’ = leak detected 

0 ‘1’ = leak detected 

 
Table 4.5. txData[0] byte. 

 

 

 

 

4.10.2 Communications with the 

Development PC 
 

The mbed development board includes a 

USB connection to the development PC. This 

connection was used, in addition to 

downloading program code, to give a serial 

terminal interface to the top controller and to 

the bottom controller, via the top controller. 

This serial terminal interface was used for 

debugging purposes, and for PID control 

tuning on-the-fly. 

 

Figure 4.5 shows a terminal session in 

operation during development, between the 

development PC and the top controller. 

 

 
 

Figure 4.5. Serial terminal interface, via USB, from 

the development PC to the top controller. 

 

 

4.11 Enclosure Design 
 

The front panel design, to fit the chosen 

enclosure, is shown in Figure 4.6. 

 

Leak

Link

LightsPower

Control

System

Data

Logging

 

Figure 4.6. Front panel design. 
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The rear of the enclosure is where the tether 

input and video output connections are made. 

This is shown in Figure 4.7. 

 

VIDEO

OUT

TETHER

 

Figure 4.7. Rear panel design. 

 

 

4.12 Software 
 

The design of the top controller software 

running on the ARM microcontroller follows 

an “interrupt-driven” model. Periodic tasks 

were set up to run at regular intervals using a 

timer function that generates interrupts. These 

tasks include: 

 

 read the temperature sensor once every 3 

seconds 

 read the joystick positions 20 times per 

second i.e. every 0.05 seconds 

 update the LCD display 20 times per 

second 

 send and receive data to and from the 

bottom controller 20 times per second 

 

In addition, asynchronous changes by the 

operator of any of the three switches on the 

control panel are also handled by the interrupt 

mechanism. 

 

Figure 4.8 shows a representation of the 

system.

 

 

 

 

 

 

 

 

 

 

Initialisation

Wait for interrupt or timer 

event

Interrupt on switch state 

change

3 second timer: 

- read temperature sensor

0.05 second timer: 

- read joysticks

- update LCD

- RX/TX with bottom

 
 

Figure 4.8. Top controller system block diagram. 
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5. Bottom Controller 
 

The primary purpose of the bottom 

controller is operation of the thrusters and 

lights, as instructed by the operator using the 

top controller. There are 7 thrusters: 4 

requiring uni-directional control, and 3 

requiring bi-directional control. There is also 

an integrated inertial measurement unit (IMU) 

for the self-stabilising control system. 

 

 

 
 

Figure 5.1. The completed bottom controller. 

 

The following sections of this Chapter 

detail the design, specification and 

construction of the bottom controller. 

 

5.1 Bottom Controller Design 
 

Given the requirements of supporting four 

uni-directional, and three bi-directional 

thrusters, and one light switch, it was 

determined that five MOSFET’s, acting as 

switches, and three H-bridge motor drive IC’s 

would be required. In addition a range of 

sensors would be required: 

 

 a 2-axis tilt sensor for the control system 

 a leak detector 

 a video camera to allow the operator to see 

where the ROV was heading 

 a temperature sensor 

 

The electronic design of the bottom 

controller centres around a microcontroller 

(once again an NXP LPC1768 on an mbed 

microcontroller development board) interfaced 

to: 

 

 five MOSFET’s 

 three H-bridge IC’s 

 an IMU daughterboard 

 a temperature sensor 

 a leak detector 

 the serial connection to the top controller 

 

The circuit diagram and strip-board layout 

can be found in Appendix C, and the 

microcontroller C programming code in 

Appendix E. 

 

5.2 Construction and Testing 
 

As occurred for the top controller, the 

bottom controller system uses almost every 

available I/O pin on the mbed microcontroller, 

so testing by connecting every element 

simultaneously and debugging from there, 

once again seemed likely to be an inefficient 

and ineffective approach.  

 

The alternative and ultimately successful 

approach was used again, where each element 

of the bottom controller was first tested in 

isolation from the other elements of the system 

to ensure they performed as required. Only 

once they were proven to work in isolation 

were they integrated into the evolving system 

built on a breadboard. As each new element 

was added, it along with all the existing 

elements already in place, were then fully 

tested to ensure they worked with each other. 

 

This gradual addition, element by element, 

to the working system, ensured that any 

problems that did occur were easily identified. 

Figure 5.2 shows the development in progress. 

The order of implementation for the bottom 

controller was: 

 

1. mbed microcontroller development board 

2. IMU 

3. Leak detector 

4. temperature sensor 

5. voltage regulator 

6. MOSFET’s 

7. H-Bridges 

8. RS232 

9. Data logging 

10. Lights 

11. Camera 
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Figure 5.2. The bottom controller during 

development, on breadboard, wired to the seven 

thrusters. 

 

Again, only once the entire bottom 

controller was working reliably on the 

breadboard, was it moved onto the strip-board 

(see figure 5.1).  

 

5.3 mbed Rapid Prototyping 

Development System 
 

The same mbed development system as 

used in the top controller is once again the 

central core of the bottom controller system. 

Three of the six available PWM output 

channels are used to drive, at variable speed 

and direction, the H-bridges for the vertical 

thrusters that require bidirectional control. 

 

5.4 Inertial Measurement Unit 
 

A 2-axis accelerometer is used to perform 

the tilt measurements for the roll and pitch 

axes used with the self-stabilising control 

system. The accelerometer used in this project, 

an LIS331DLH from ST Microelectronics, is 

part of a complete inertial measurement unit 

(IMU) that was designed by Tim Marvin 

specifically to work with the mbed 

development board. As can be seen in Figure 

5.1, it has been cleverly designed so that the 

mbed board plugs in to the top. 

 

Originally designed for a model aircraft 

autopilot system, it contains, in addition to the 

2 accelerometer axes used, a third 

accelerometer axis, a 3-axis gyroscope, and a 

3-axis magnetometer. 

 

Each axis of the accelerometer outputs a 

floating point value in the range of -1 to +1 

corresponding to -90 to +90 [14].  The 

conversion from floating point value to degrees 

is found by: 

 

                
                          

 
 (2) 

 

 

During development of the control system, 

certain spurious values were noticed to be 

coming from the accelerometer. An analysis 

and resolution of this issue can be found in 

Appendix I.  

 

The IMU board also conveniently contains 

a micro SD slot connected through to the 

mbed. This was used for the data-logging and 

is described in section 5.13.  The schematic 

and PCB layout of the IMU board as designed 

by Tim Marvin can also be found in Appendix 

G. 

 

5.5 Leak Detector 
 

To warn of any leaks that may have 

occurred inside the water-proof enclosure, a 

leak detector system has been developed. As 

can be seen in Figure 5.3, it consists of a small 

section of copper-coated strip-board with the 

connecting wires attached to adjoining tracks.  

 

 

 
 

Figure 5.3. The leak detectors. 

 

 

If any water is present and causes a bridge 

across the copper tracks, a positive voltage 

appears on pin 11 of the mbed. The software is 

configured to react to this pin going high and 

transmits a warning signal to the top controller, 

where an LED is lit, a buzzer sounds and a 

message appears on the LCD display. 
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5.6 Temperature Sensor 
 

Like the top controller, the bottom 

controller is also fitted with an LM335 

temperature sensor to measure the temperature 

inside the water-proof enclosure. This 

information is sampled every few seconds and 

communicated to the top controller for display 

on the LCD display. 

 

5.7 Power Supply 
 

Two methods of supplying power to the 

bottom controller were considered: 

 

 Power from the surface, via the tether 

 Power from batteries on board the ROV 

 

5.7.1 Power from the Surface 
 

Powering the ROV from the surface was 

initially investigated, but a major problem 

using the surface power option became evident 

quickly: the voltage drop along the wire caused 

by the inherent resistance of the wire. It can be 

overcome to some degree by using a larger 

gauge wire but this adds weight to the tether 

and therefore increases drag and buoyancy 

requirements. Furthermore, as the current 

drawn through the wire will vary depending 

upon which motors are being used, so does the 

voltage drop vary, giving an unpredictable 

voltage at the ROV end of the tether. A simple 

example is illustrated in Table 5.1: 

 

Surface 

Voltage 

Current 

Draw 

Voltage 

Drop 

Available 

Voltage 

12 V 1 Amp 0.425 V 11.575 V 

12 V 3 Amps 1.276 V 10.724 V 

12 V 6 Amps 2.552 V 9.448 V 
 

Table 5.1. Voltage drop example. 

 

These calculations are based on a 30 m 

length of 2.5 mm
2 
copper conductor. 

 

As the H-bridges used (see section 5.9) 

have a low voltage cut-out somewhere in the 

range of 9 V to 11 V, just the possibility of the 

voltage dropping down into this range 

suggested this was not the optimal solution, so 

the alternative of an on-board power source 

was investigated. 

 

 

5.7.2 On-Board Power 
 

A number of factors were considered when 

looking at the different onboard power source 

options: 

 

 cost 

 recharge ability 

 size and weight 

 voltage 

 power capacity and energy density 

 

Given those factors, a number are different 

battery technologies were investigated: 

 

 Lead acid 

 Nickel Cadmium 

 Nickel Metal Hydride 

 Lithium Polymer 

 

Lead acid batteries, as used in automotives, 

were deemed too heavy, too big, and prone to 

leakage. Nickel Cadmium and Nickel Metal 

Hydride batteries were also looked at closely 

but the decision was made to use the Lithium 

Polymer (LIPO) batteries as they offered: 

 

 greatest power-to-weight ratio and energy 

density 

 ready availability in large capacity 

configurations 

 suitable cell voltage 

 suitable form-factor 

 lowest self-discharge rate when not used 

 reasonable cost 

 no memory effect 

 

The specific LIPO battery used during 

development is the Turnigy 2.2 Ah 3S 30C 

battery (see Figure 5.4) that offers a nominal 

11.1 V (3 cells @ 3.7 V, each in series). In 

practice it can be charged up to 12.6 V and is 

generally considered to have only 10% 

capacity remaining at 11.1 V.  

 

 
 

Figure 5.4. Turnigy 2.2 Ah 3S 30C LIPO battery. 
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The “30C” rating of the battery indicates 

the maximum continuous discharge current the 

battery can deliver without overheating and 

damaging the battery: 

 
                                     

                                
(3) 

 
                 

 

From this it can be seen that the 30C rating 

for this 2.2 Ah battery is more than suitable for 

the ROV bottom controller system which does 

not draw much more than 5 - 6 Amps at any 

time. 

 

It is estimated that this single LIPO battery 

will give a typical run-time of around 15 

minutes. This can easily be extended by simply 

adding more batteries in parallel. 

 

LIPO batteries are not without their 

limitations though and need to be carefully 

handled. The first battery used was destroyed 

by accidently shorting the positive and 

negative terminals when attaching a connector, 

and a second destroyed by inadvertently not 

disconnecting it after use and letting it 

discharge too low: if the cells are discharged 

below 9 V they cannot be recharged. They are 

also prone to exploding if punctured or 

charged incorrectly, and a special LIPO 

“balancing” charger must be used to ensure 

each of the three internal cells is charged at 

and to the same voltage, without over-

charging. 

 

The motors and lights are driven directly 

off the LIPO’s nominal 11.1 V supply. A 5 V 

linear voltage regulator, TS7805CZ, is used to 

reduce the 12 V down to 5V for the mbed. The 

3.3 V required by the other logic devices and 

the RS232 IC is generated by the mbed’s 

onboard voltage regulator. 

 

5.8 MOSFET’s 
 

The lights, and the four uni-directional 

horizontal thrusters, operating at 12 V, are 

simply switched on or off as required by the 

microcontroller. Unfortunately the 

microcontroller cannot handle the 12 V 

switching task and so a MOSFET is employed 

as a switch. 

 

The major factors considered when 

selecting the MOSFET were: 

 

 cost 

 availability 

 usability 

 suitability 

 

Based on these factors, the RFP30N06LE 

was chosen as it was readily available from a 

trusted supplier, costs only £0.89, was suitable 

for through-hole construction, had a voltage 

and current capacity of 60 V and 30A and was 

compatible with the 3.3 V operation of the 

microcontroller [15]. 

 

To use these devices as simple logical 

switches, it was found necessary to add a 10 

K resistor from the gate to ground, as 

without the resistor the MOSFET would not 

turn off due to the device capacitance. With the 

resistor fitted, the capacitance now has a path 

to dissipate and the device turns off. 

 

5.9 H-Bridges 
 

The three vertical thrusters, operating at or 

around 12 V, require bi-directional variable 

speed control to enable the ROV to ascend and 

descend. For this reason, a simple MOSFET 

acting as an on / off switch will not work. A 

configuration of switching relays could be used 

to change direction, but they do not switch fast 

enough to be used with a pulse-width-

modulated variable-speed system (see section 

5.9.1).  

 

The solution is to use a circuit arrangement 

known as an H-bridge as they allow for high-

speed-switching bidirectional motor control. 

An H-bridge can be built from discrete 

components but many IC versions are readily 

available so it was decided to use one of these, 

if a suitable one could be found. 

 

Once again, the major factors considered 

when selecting an H-bridge IC were: 

 

 cost 

 availability 

 usability 

 suitability 
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Unfortunately the choice is not as easy as 

when choosing a MOSFET: most modern H-

bridge motor drive IC’s are only supplied in 

surface mount format which is not compatible 

with the through-hole construction techniques 

used in this project. This greatly limits the 

choice of components available but there is 

one component found that meets some of the 

criteria: the LMD18200 from National 

Semiconductor (now a part of Texas 

Instruments).  

 

The chip is readily available, and is suitable 

for the application, being able to deliver up to 

3 A continuously [16]. It is supplied in a 

cumbersome 11 pin dual inline TO-220 

package with an awkward pin spacing of 0.67” 

but fortunately a break-out board to convert to 

the more common 0.1” pin spacing is 

available. The major issue with this IC is the 

cost: £18.40 each (plus £1.28 for the breakout 

board). Figure 5.5 shows the three 

LMD18200’s mounted on their breakout 

boards, and installed on the strip-board. The 

chip has a number of connections: 

 

Pin 

Number 

Connected 

To 
Use 

1 no connection - 

2 motor + 
motor connection 

+ 

3 mbed pin 18 motor direction 

4 brake 
not used, tied to 

ground 

5 mbed pin 21 motor PWM 

6 12 V power supply 

7 ground circuit ground 

8 current sense not used 

9 mbed pin 
thermal overload 

detection 

10 motor - 
motor connection 

- 

11 no connection - 

 
Table 5.2. LMD18200 pin assignment. 

 

As per the recommendation of National 

Semiconductor, 300 F bypass capacitance 

was used to absorb any back EMF caused by 

switching the inductive load, and a heatsink 

was attached. 

 

 
 
Figure 5.5. Three LMD18200 H-bridge IC’s mounted 

on their break-out boards. 

 

5.9.1 Pulse Width Modulation 
 

Pulse Width Modulation (PWM) is a 

method commonly used for digital control of 

certain analogue devices such as DC motors 

and LED lights. It involves sending a pulse 

train of high and low levels, at varying ratios 

(the duty cycle), to effectively mimic a varying 

voltage level. A digital PWM system offers a 

very flexible and fine-grained control of the 

speed of a motor by being able to control 

programmatically the time of the high level 

output compared to the low level output.  

 

Clock

20%

40%

60%

80%

 
Figure 5.6. PWM duty cycle operation. 

 

As can be seen in Figure 5.6, when there is 

a high level 20% of the time, and a low level 

80% of the time (i.e. a 20% duty cycle), the 

effective average voltage over the total period 

is 20% of the maximum output voltage. If that 

maximum output voltage is 12 V, then: 20% of 

12 V = 2.40 V. Accordingly, when there is a 

high level 80% of the time, and a low level 

20% of the time, the effective average voltage 

over the total period is 80% of 12 V = 9.60 V. 

Therefore by varying the ratio of high-level 

time to low-level time, many different average 

voltage values can be obtained between 0 V 

and 12 V. 
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The total time period for each PWM cycle, 

and therefore the switching frequency, can be 

varied according to the components used. It is 

common for DC motor PWM operation to 

have an operating frequency at a level outside 

the range of human hearing, though that is not 

of concern when the motors are submerged. A 

period of 100 microseconds, giving an 

operating frequency of 10 kHz was found to be 

perfectly acceptable. 

 

5.10 Data Communications 
 

The bottom controller has two separate data 

communications channels. 

 

5.10.1 Communication with the Top 

Controller 
 

Communications between the top controller 

and bottom controller, via the tether, are by 

RS232 serial. An EXAR SP3232ECP-L driver 

chip is used in both controllers for this. 

 

5.10.2 Communications with the 

Development PC 
 

The mbed development board includes a 

USB connection to the development PC. This 

connection was used, in addition to 

downloading program code, to give a serial 

terminal interface direct to the bottom 

controller for debugging purposes. 

 

5.11 Video Camera 
 

A number of considerations were made 

when examining the options for generating the 

video image sent up the tether to the operator: 

 

 cost 

 ease of application 

 image type and quality 

 

Very expensive diving cameras, in very 

expensive water-proof housings, are readily 

available but the aim was to keep the cost of 

the video camera to a minimum. The solution 

was to find a small camera that would operate 

from within the existing water-proof enclosure 

(with the obvious addition of a window). This 

would allow the use of the existing power 

supply, remove the need for an additional 

water-proof housing, and minimise external 

wiring junctions. 

 

The camera chosen, as can be seen mounted 

on the front of the bottom controller in Figure 

5.1, is the colour CM-26N/P CMOS board 

video camera. It is powered from the 5 V 

supply of the bottom controller. The video 

signal output is analogue TV quality (PAL or 

NTSC) via a 2-wire composite format (signal 

and ground) [17]. 

 

The video signal is transmitted to the 

operator via one of the wires inside the 

Ethernet cable. It is then available as output 

from the top controller for connection to a tv, 

monitor or PC fitted with suitable analog video 

capture capabilities. 

 

Despite operating perfectly well for a few 

months during testing, in February the camera 

module developed a fault and has been 

returned to the supplier for replacement. 

Unfortunately the replacement has not yet been 

received as they are currently out of stock. 

 

5.12 Lights 
 

As the development and testing of the ROV 

has been conducted in relatively shallow 

(maximum depth 5 metres) suburban 

swimming pools, the development of the lights 

has not been absolutely necessary, and has 

currently not progressed beyond some basic 

investigations into driving and mounting 

LED’s.  

 

 

 
 

Figure 5.7. LED light experiment. 

 

Figure 5.7 shows an example of three white 

LED’s connected in series and “mounted” to a 
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heatsink that was at hand at the time. 

Considerable further work is necessary here on 

mounting, driving, and ultimately sealing the 

lights, and it may end up simply easier to 

purchase pre-made submersible lights. For the 

short term, a diving torch is available if 

required. 

 

Full support for the addition of lights has 

been made in the bottom controller circuitry, 

control software, top controller switch, and 

ROV wiring, and the lights simply need to be 

connected to the in-place wiring and physically 

mounted to the ROV frame. 

 

5.13 Data Logger 
 

The IMU daughterboard used for this 

project conveniently includes a micro SD card 

slot and this is used for logging data as 

required. 

 

A typical sample of the data obtained 

during one of the data logging exercises is 

shown in Table 5.3. 

 
Time  

stamp 

Pitch  

angle 
PitchAdj 

VB motor 

power 

1.034826 0.031372 -0.015686 0.007500 

1.176539 0.015686 -0.007843 0.015417 

1.234058 0.015686 -0.007843 0.007500 

1.291520 0.015686 -0.007843 0.007500 

1.349056 0.015686 -0.007843 0.007500 

1.480808 0.015686 -0.007843 0.007500 

 
Table 5.3. Example of logged data. 

 

Any data logged is loaded into Microsoft 

Excel and MATLAB for further analysis. 

 

5.14 Depth Sensor 
 

A depth sensor was initially included in the 

ROV design specifications, but has not been 

implemented as yet, as the search for a suitable 

sensor, at a “reasonable” price has so far been 

unsuccessful.  

 

Within the last few days, a “slightly out-of-

spec” PAA-6L pressure transducer from Keller 

(Figure 5.8) was donated to the project, but it 

has not yet been fitted to the ROV. It operates 

on the principle of an increased output voltage 

proportional to the pressure on the outer 

diaphragm [18]. 

 

 

 
 

Figure 5.8. Keller PAA-6L pressure transducer. 

 

 

5.15 Software 
 

The design of the bottom controller 

software running on the ARM microcontroller 

follows a modified “interrupt-driven” model. 

Periodic tasks have been set up to run at 

regular intervals using a timer function that 

generates interrupts. These tasks include: 

 

 read the temperature sensor once every 3 

seconds 

 read the tilt sensors 4 times per second ie 

every 0.25 seconds 

 

The reception and subsequent transmission 

of serial data to and from the top controller is 

handled as an asynchronous interrupt-

generating event. In addition, other 

asynchronous events such as the detection of a 

leak, or a thermal overload on an H-bridge are 

also handled by the interrupt mechanism. 

 

Figure 5.9 shows a representation of the 

system. 
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Initialisation

Process RX data

Interrupt on:

- leak detected

- H-bridge thermal overload

- RX/TX with top

3 second timer: 

- read temperature sensor

0.25 second timer: 

- read tilt sensors

 

 
Figure 5.9. Bottom controller system block diagram. 
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6. Self-Stabilising Control System 
 

As was discussed in Chapter 1, there are 

certain operational problems associated with 

underwater vehicles, primarily to do with 

imaging and manipulators, when they are not 

sitting level in the water. To counter this, in 

this ROV project a control system has been 

developed to attempt to correct any major 

variations in the pitch and roll axes (see 

Appendix H for an explanation of motion 

around these axes). Before examining this 

system further however, an overview of 

control system theory is necessary. 

 

6.1 Control System Theory 
 

In general, any system that can adjust itself, 

based on measuring itself, is thought of as a 

control system [19]. These control systems are 

commonly known as closed-loop controllers. 

 

As can be seen in Figure 6.1, the closed-

loop controller adjusts its output based on a 

comparison of the desired output with a 

measurement of the actual output. The 

outcome of this comparison (a subtraction) is 

known as the “system error”, and this process 

is known as “negative feedback”. 

 

An open-loop controller, on the other hand, 

is one whose desired output is set to a certain 

value. It simply does not have the ability to 

adjust itself based on any variation in the 

output as there is no feedback process. This is 

shown in Figure 6.2. Open-loop controllers are 

subject to, and cannot react to, external 

influences and are unsuitable for use in this 

project, therefore a closed-loop system has 

been implemented. 

 

6.2 Self-Stabilising System Overview 
 

The self-stabilising control system, 

configured as a closed-loop controller, is 

designed to react to measured tilts on the pitch 

and roll axes by applying power to the vertical 

thrusters, to induce an inverse rotation around 

the relevant axis, to correct the measured tilt. 

Accordingly, any tilt that is measured is 

considered the “system error” and it is fed back 

into the correction mechanism. 

 

Figure 6.3 shows a block level overview of 

the control system where the desired tilt is set 

to zero and the current tilt level is fed back as 

the error. 

 

To examine this control system in further 

detail, only the pitch axis (with only a single 

thruster for control) will be considered. The 

thruster is controlled by a PWM system (see 

section 5.9.1) where an input value to the 

PWM system gives a certain output level. For 

example, an input value of 0% equals no 

power applied to the motor, and an input value 

of 100% equals maximum power applied to the 

motor. 

 

 

Desired Output Σ Output

Controller

Output 

Measurement

Actual Output

+
error

-

 
 

Figure 6.1. Closed-loop control system. 
 

 

 

Desired Output
Output

Controller
Actual Output

 
 

Figure 6.2. Open-loop control system. 
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Desired tilt Σ Control System

Tilt measurement

Current tilt

+
error

-

 
 

Figure 6.3. Control system overview. 

 

 

 

6.3 P Controllers 
 

There are many different ways to 

implement a closed loop control system. 

Perhaps the simplest method of correcting any 

tilt error is to use what is known as a ‘P 

controller’, where ‘P’ refers to a proportional 

multiplier constant [20].  The calculation is 

relatively simple: take the measured tilt value, 

multiply it by some constant (Pk) and apply 

that to the motor as a PWM percentage.  

 

For example, say the tilt measurement value 

obtained from the accelerometer is 0.34202 

(≈20 degrees), and the Pk constant is 40: 

 

                           
 

                    

(4) 

 

Mathematically, the P controller can be 

stated as: 

 

 

              (5) 

 

Where:  

 

 yP(t) is the P controller output 

 e(t) is the error input (tilt) 

 Pk is the proportional constant 

 

Unfortunately a P controller it is not ideal: 

if the Pk constant is set too low it may never 

actually reach the desired level (Figure 6.4), 

and if it does, it may simply take too long. 

Conversely, if the Pk constant is set too high, 

the response of the system will overshoot and 

possibly oscillate and never reach a steady 

state at the desired level (Figure 6.5). 

 

 
Figure 6.4. P controller output where Pk is too low. 

 

 
Figure 6.5. P controller output where Pk is too high. 

 

 

Even with careful adjustment, error, 

overshoot, and oscillation are inherent 

problems with P controllers, and clearly 

something that achieves a result closer to the 

ideal is required.  
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6.4 PID Controllers 
 

 

As Bennett (1993) has said: 

 

“... it has been shown repeatedly that in the 

absence of any knowledge (in terms of a 

dynamical model) of the process to be 

controlled, the PID controller is the best form 

of controller.” [21] 

 

 

This statement has led directly to the 

investigation and implementation of a PID-

type controller for this project as a dynamical 

model is not readily available for the pitch tilt 

correction system. 

 

 

6.4.1 An Overview of PID Controllers 
 

A PID controller is one that incorporates 

the P controller previously examined, along 

with a differential element and an integral 

element, hence the P, I and D’s in the title.  

 

Mathematically it can be stated as: 

 

                              

 

  
    

 

 

 (6) 

 

Where: 

 

 yPID(t) is the PID controller output 

 e(t) is the error input (tilt) 

 Pk is the proportional constant 

 Ik is the integral constant 

 Dk is the derivative constant 

 

The block diagram shown in Figure 6.6 

may help visualise the concept. 

 

The addition of the integral and derivative 

terms have significant effect on the output of 

the controller and, with careful tuning, can 

often overcome all the problems associated 

with the P controller on its own. These extra 

integral and derivative terms come at a cost 

however, in complexity and performance, and 

some systems do not require or justify those 

costly additions. Fortunately simpler variations 

can work just as well, depending upon the 

system requirements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Desired tilt = 0 Σ I

+
e(t)

-

PWM Motor Drive

D

P

Σ
+

+

+

y(t)

Current tilt
 

 
Figure 6.6. PID block diagram. 
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6.4.2 The PI Controller 
 

The PI controller is one of the variations of 

the PID controller in that it omits the derivative 

element. It is stated mathematically as: 

 

                         
 

 

 (7) 

 

The integral term, by accumulating error 

over time helps to reduce the steady state error. 

Figure 6.7 shows the result when an integral 

constant Ik is added to the P controller. If this 

constant is set too high overshoot will result. 

 

 
 

Figure 6.7. PI controller output. 

 

 

6.4.3 The PD Controller 
 

The PD controller is another of the 

variations of the PID controller in that it omits 

the integral element. Mathematically it is 

stated as: 

 

                  

 

  
     (8) 

 

 

The derivative term, by reducing the rate of 

change of the output over time, helps to reduce 

any overshoot and can therefore improve 

stability. Figure 6.8 shows the result when a 

derivative constant Dk is added to the P 

controller. Compare this with the output from 

the P controller only in Figure 6.4 and you can 

see the effect it has.  If the derivative constant 

is set too high, increased sensitivity to noise 

results which can lead to instability. 

 

 
 

Figure 6.8. PD controller output. 

 

 

6.4.4 The PID Controller 
 

The PID controller is the variant that 

includes both the integral element and the 

derivative element. Using all three elements 

can result in a response that: 

 

 has a steady state at the desired level 

 quickly reaches a steady state 

 does not over- or under- shoot excessively 

 is stable in operation 

 

Figure 6.9 shows the example with all three 

PID terms in operation and a comparison with 

the previous examples. It can be seen there is 

less overshoot than the PI controller gives and 

the desired steady-state level is achieved, 

unlike the P controller and PD controller. 

 

 
 

Figure 6.9. PID controller variant outputs. 
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6.4.5 Tuning a PID-type Controller 
 

The process of finding the optimal 

constants Pk, Ik and Dk, for a control system is 

known as ‘tuning’. The tuning process is often 

done using mathematical modelling tools. An 

example is the MATLAB PID Tuner shown in 

Figure 6.10 which will automatically adjust the 

Pk, Ik and Dk constants to give the optimum 

response based on a number of adjustable 

parameters such as the response time (via the 

slider at the bottom) and the type of controller 

to be used.  

 

In addition to the Pk, Ik and Dk constants, 

the user is also presented with information on 

the rise and settling times, the overshoot 

percentage and peak value, and if the system is 

considered to be closed-loop stable. 

 

Of course, all the auto-tuning tools require 

that you have a model of the dynamic 

behaviour of the system (i.e. a transfer function 

representing your system), and, as will be 

shown in Chapter 7, without a model the 

tuning process is simply guess work or tedious 

experimentation.  

 

 

 

 

 

 
 

 

Figure 6.10. MATLAB’s PID Tuner. 
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6.5 Implementing a PID Controller 
 

Having thus determined that a PID 

controller, or variant thereof, may be 

appropriate for this project, implementation 

and testing was the next step.  

 

An incredibly useful element of the mbed 

development platform is the large range of 

official ARM-developed, and community-

developed library functions available, and the 

PID controller library is an excellent example. 

Following significant research and evaluation, 

and then successful testing, it was decided to 

utilise this excellent free-to-use library on the 

simple principles of open-source software and 

community code reuse. 

 

Actual use of the controller library is trivial: 

once the controller object has been instantiated 

and initialised, actual operation is simply two 

lines of C code: 

 
// send current pitch tilt to PID 

controller as current error 
pitchCon.setProcessValue(pitchTilt);  

 

// let PID controller do its thing    

pitchAdj = pitchCon.compute();           

 

The output of the controller is set to be a 

value in the range [ -1.0 , 1.0 ] which is 

equivalent to the PWM output level in the 

range [ -100% , 100% ] that is applied to the 

thruster. 

 

This controller was shown to work well out 

of the water: the greater the ROV is tilted, the 

faster the thruster motors rotate, and varying 

the Pk, Ik and Dk constants showed obvious 

variation in the response. 

 

The obvious next step was to determine the 

Pk, Ik and Dk constants by in-water 

experimentation. This is detailed in Chapter 7. 

 

6.6 Building a Model of the Pitch 

Control System 
 

After the initial testing to determine the Pk, 

Ik and Dk constants was performed, an effort 

was made to try to build a mathematical model 

of the pitch tilt correction system. The block 

diagram of the control system is shown in 

Figure 6.11. 

 

The system has three cascading ‘gain’ 

blacks, each with their own transfer function: 

 

 PID Controller block 

 PWM  Motor block 

 Physical Response block 

 

These three transfer functions, in the 

Laplace domain, together give an overall 

transfer function for the pitch tilt correction 

system of: 

 

 

      
           

          
 (9) 

 

 

  
                       

                         
 (10) 

 

 

Where the transfer function for the PID 

Controller block is: 

 

 

           
  
 

     (11) 

 

 

The transfer function for the PWM  

Motor block is effectively unity as no 

modification to the magnitude of the signal 

occurs, except for removing the sign for 

direction control: 

 

 

          (12) 

 

 

Despite the efforts detailed in Chapter 7, 

the transfer function for the Physical Response 

block has not yet been determined: 

 

 

         
 

Therefore: 

 

      
    

  
              

       
  
 

             
 (13) 
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Only once the transfer function of the pitch 

tilt correction system has been determined, can 

the stability and frequency response of the 

system be examined and determined. Tuning 

of the Pk, Ik and Dk constants can then also 

occur so as to ensure an appropriate response 

time and behaviour. 

 

6.7 Additional Aspects of the Self - 

Stabilising Control System as 

Implemented 
 

The pitch tilt correction system as actually 

implemented includes a directional element of 

pitch control to allow for positive and negative 

pitch angles. The magnitude of the response of 

the control system is identical regardless of tilt 

direction, but the rotation direction of the 

thruster propeller varies depending upon the 

sign of the tilt measurement. 

 

The roll tilt correction system operates in a 

very similar manner to the pitch tilt correction 

system but with three important differences: 

 

 includes support for two thrusters 

operating at half the required power each 

 allows for the opposite rotation of each 

thruster required for the necessary 

opposing action  

 allows for simultaneous vertical ROV 

positioning by the operator, and tilt 

correction by the control system 

 

Currently these simultaneous vertical 

positioning operations have 50% of the power 

allocated to each thruster, with the other 50% 

assigned to the control system. It may be 

possible to reduce the weighting applied to the 

control system and therefore increase the 

power available to the operator for vertical 

positioning if desired. 

 

 

 

 

 

 

 

 

 

 
PID Controller

Σ I

+
e(t) [-1,1]

-

PWM  Motor
PWM [0,1] + DIR

D

P

Σ
+

+

+

y(t) [-1,1]

Current tilt [-1,1]

Physical 

Response
Desired tilt = 0

 
 

Figure 6.11. Block diagram of the Pitch Tilt Correction Control System. 
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7. Testing and Measurement 
 

Testing of the many unique elements of this 

project was an essential and ever-present 

requirement, as inadequate testing could easily 

result in catastrophic (i.e. expensive) results. 

The general approach was to systematically 

test each and every change as thoroughly as 

possible before making another change, and to 

minimise the times where multiple changes 

were made simultaneously. Experience has 

shown that with multiple simultaneous 

changes, trouble-shooting becomes 

exponentially more difficult. 

 

Though testing effectively never ceases, 

once the ROV was shown to be effectively 

operational the measurement phase 

commenced.  

 

The following sections detail the specific 

aspects of the testing and measurements 

undertaken. 

 

7.1 Testing the Electronic Circuits 
 

Following this principle of making and 

testing individual changes one at a time, the 

circuits were built-up element-by-element. The 

approach was to first test each element, both 

electrically and programmatically, in isolation 

from the other elements of the system to ensure 

they performed as required. Only once they 

were proven to work in isolation were they 

integrated into the evolving system software 

and circuit built on a breadboard, and tested 

with the other elements already put in place. 

 

This gradual addition, element by element, 

to the working system, with complete testing 

of the software and circuit as each new element 

was added, meant that any problems that did 

occur were relatively easily identified, and 

only once the entire circuit and its software 

were working entirely as required on the 

breadboard was it moved onto the more 

permanent strip-board.  

 

The other related factor that ensured the 

development proceeded relatively smoothly 

was the careful consideration taken to order the 

implementation of the elements. Again, this 

systematic approach ensured that when any 

problems did occur they were relatively easily 

identified. For example, during the 

development of the top controller, the required 

voltage regulator elements were determined 

and put in place and ascertained to work as 

required before the LCD display (and its 

associated backlight with its different power 

requirements) was added. In this case, trying to 

add an additional power source for the 

backlight to the circuit at a later stage could 

easily have caused issues. 

 

7.2 Testing the Tether and the Wiring 
 

The communication between the top and 

bottom controllers via the tether is performed 

using the RS-232 standard. This 

communication system was initially developed 

and tested using short (less than 10 cm) lengths 

of wire, before any attempt was made to use 30 

m of Ethernet cable. This systematic approach 

ensured that when the Ethernet cable was 

finally used, it worked as planned immediately. 

 

The concentration of the motor and light 

wires, and the Ethernet cable into a sealed, 

single 18-core cable and plug and socket 

combination, is a significant possible point-of-

failure, so considerable thought and attention 

went into it before any work commenced. 

Firstly the many individual wires were 

concentrated inside a plastic box and attached 

to two sections of screw-terminals. Each 

connection was individually tested and a full 

test of the operation of the positioning and 

communications systems was performed to 

ensure there were no problems. 

 

Construction of the multi-core cable and 

plug and socket then occurred, with each and 

every solder joint fully tested with a digital 

multi-meter (DMM). Again, a full test of the 

operation of the positioning and 

communications systems was performed to 

ensure there were no problems. 

 

Only once these tests were completed 

successfully was the concentrator box filled 

with a water-proof resin to seal the screw 

terminal connections. These steps can be seen 

in Figure 3.3. 

 

This systematic approach to construction 

and testing has ensured that, at least so far, 

there have been no problems associated with 

the tether or the motor wiring. 
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Due to the failure of the camera module in 

February, it has not been possible to fully test 

the video sub-system in the finished hardware, 

but during the time it was working, the camera 

was tested and performed perfectly well. 

 

7.3 Water-Proof Testing of the 

Enclosure 
 

Again, following the principle of making 

and testing individual changes one at a time, 

the construction and validation of the water-

proof enclosure proceeded step-by-step: 

 

1. Test empty enclosure with three 

unmodified end-caps 

2. Test enclosure with prototype camera 

window 

3. Test enclosure with second prototype 

camera window 

4. Test enclosure with multi-core connector 

installed  

5. Test enclosure fitted to the ROV for 

trimming 

6. Test enclosure fitted to the ROV for 

powered testing 

7. Test enclosure fitted to the ROV for PID 

measurements 

8. Test enclosure fitted to the ROV for leak 

location determination 

9. Test enclosure to ensure leak has been 

prevented 

 

All these tests were performed in local 

suburban swimming pools, at varying depths 

up to 5 m, in conjunction with the Lodge 

Scuba Diving Club.  

 

An early design for a camera window was 

one of the first tests performed. Unfortunately, 

even before making it into the water, it was 

found that the window which had been secured 

onto the face of an end-cap using epoxy glue 

was not sufficiently well attached. It is 

understood now that that particular glue does 

not work well with the type of plastic the end-

cap is formed from. An improved window 

construction method was designed (detailed in 

Chapter 3) and subsequently successfully 

tested. 

 

Following the window tests, all tests up to 

and including the trimming stage were 

successful with no leaks detected, however 

during the following powered tests a small leak 

developed at the multi-core cable entry-point. 

It was determined that this was due to poor 

machining of the end-cap (a consequence of 

using inappropriate tools in this case) and it 

was replaced, this time with a more accurately 

machined hole. Further testing has shown this 

particular issue has now been resolved. 

 

7.4 Trim Testing 
 

The effects of positioning ballast elements 

(lead weights, and closed-cell foam) follow the 

Archimedes Principle that objects that displace 

more water than they weigh (e.g. foam) create 

a positive buoyancy, and objects that displace 

less water than they weigh (e.g. lead) create a 

negative buoyancy. The ideal buoyancy for the 

ROV is to be as close to neutrally buoyant as 

possible, and as level as possible. In addition, 

for stability, it is optimal to have the positively 

buoyant elements physically higher than the 

negatively buoyant elements to ensure the 

centre-of-buoyancy is above the centre-of-

mass. 

 

To that end, two pieces of closed-cell foam 

were attached to the top of the frame and four 

lead weights of varying sizes were attached to 

mesh on the bottom of the frame.  

 

 
 

Figure 7.1. A friendly SCUBA diver is useful when 

fine-tuning buoyancy. 
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The weights were distributed as listed in 

Table 7.1. The differential required between 

the front and back, and also between the left 

and right, is primarily caused by the weight of 

the off-centre-mounted multi-core cable. 

 

Location Weight 

Front left 520 g 

Front right 450 g 

Rear left 430 g 

Rear right 420 g 

Total 1,820 g 

 
Table 7.1. Lead weight distribution. 

 

The positions of each of the four lead 

weights were adjusted in each corner to ensure 

the ROV was sitting level in the water. Two 

large pieces of the closed-cell foam were 

initially used to achieve positive buoyancy and 

they were then slowly reduced in size until 

neutral buoyancy was achieved. 

 

The two remaining pieces of foam each 

measure approximately 310 mm × 25 mm × 25 

mm.  With a volume of approximately 0.2 

litres each, they therefore each give 

approximately 200 g of buoyancy (based on 

the assumption that 1 litre of water weighs 

1000 grams).  

 

The total ballast offered by these six 

elements can be calculated as: 

 

             
               
                           

 

                     
 

(14) 

For operation in sea-water, which has a 

greater density, some additional trim weights 

will be necessary. 

 

A short video taken during the trimming 

process is available to watch at:  

www.youtube.com/watch?v=-OokiggFwLU 

 

7.5 Powered Testing 
 

Following the successful trim testing, the 

next phase of testing the ROV was to ensure it 

would actually move through the water 

satisfactorily. 

The first test of the operational capabilities 

found that the horizontal positioning worked 

exactly as expected, however the vertical 

positioning would not work: a software bug 

resulted in an incorrect rotation direction of 

one of the vertical thrusters. This meant that 

one thruster was pulling up and the other was 

simultaneously pulling down. This was 

corrected and testing the following week 

showed both vertical and horizontal 

positioning worked as required (see Figure 

7.2).  

 

 
 

Figure 7.2. Powered testing in the pool. 

 

A short video of this is available at  

www.youtube.com/watch?v=x2vWEfYG3sE 

 

At this point the ROV was deemed to be 

effectively operational and the focus of the 

testing and measurement then moved to the 

control system. 
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7.6 Measurements of Dynamics 

Characteristics for Control System 

Development 
 

As detailed in Chapter 6, successful 

operation of the PID-based tilt correction 

control system of the ROV requires the 

determination of the appropriate Pk, Ik, and Dk 

constants, and a number of attempts were made 

to measure the dynamics characteristics of the 

system in various configurations. 

 

7.6.1 Varying the PID Constants 
 

The initial attempts at determining the 

optimum Pk, Ik, and Dk constants involved 

operating the ROV in the water, with a 

deliberate tilt applied, and cycling through 

varying values of the constants and measuring 

the dynamics characteristics, i.e. the effective 

response of the control system, by looking at 

the resulting tilt level. It was thought the data 

recorded may give at least an indication of 

suitable values for the PID constants, but this 

proved in practice to be too difficult to achieve 

and was ultimately an ineffective method. 

 

Figure 7.3, for example, shows a plot of the 

data obtained when the Pk constant was slowly 

increased from 1 to 50. Before every increase, 

Pk is reset to 1 and the system, at least in 

theory, is allowed to settle.  

 

What actually happened was that the ROV 

was simply driven down to the bottom of the 

pool by the single operating thruster, and 

stayed there, and rather disappointingly, no 

effective tilt correction was observed or 

recorded for any value of Pk. Another 

approach was clearly needed. 

 

7.6.2 Varying the PWM Level 
 

Having been unsuccessful in the numerous 

attempts to manually and exhaustively 

determine the Pk, Ik, and Dk constants, another 

approach was tried, where an effort was made 

to determine the response of the system to the 

operation of the single vertical rear thruster. 

Again, it was thought that any data recorded 

may give at least an indication of the system 

response, which may then lead to building a 

model of the system (and from there to 

determining the Pk, Ik, and Dk constants), but 

once again this proved in practice to be too 

difficult to achieve in the available time frame 

and so far has been ultimately ineffective. 

 

The tests undertaken involved applying a 

varying level of power, from 0% to 100%, to 

the thruster, in both rotational directions, and 

recording the resulting tilt levels. Any tilt 

recorded should represent a response by the 

system to the application of thrust from the 

thruster by a rotation around the pitch axis. 

 

Figure 7.4 shows the results of the 

measured data, and they confirm the physical 

observations made at the time that, rather than 

sitting “mid-water” and rotating as desired, the 

ROV was repeatedly driven straight down to 

and up from the bottom of the pool by the 

single operating thruster.  Rather 

disappointingly again, no effective change in 

tilt was observed or recorded for any PWM 

level.  

 

It can be observed at approximately 300 

and 700 seconds into the test, when the motor 

is at 100% full power, that there is a change in 

the tilt level which could indicate a desirable 

response, however it was observed that the 

ROV was sitting on the pool bottom at the time 

and it is therefore not considered a reliable 

observation of the system response by pitch 

rotation. 

 

It can also be observed that at 

approximately 780 seconds into the test a 

change has occurred: the rear vertical thruster 

was manually rotated around the pitch axis so 

that instead of being oriented vertically, it was 

set at a 45 tilt. This rotation of the thruster 

was done as it was observed from the poolside 

that there was no rotation of the ROV about 

the pitch axis occurring, and it was thought at 

the time that changing the angle may make a 

difference. In fact it imparted a not 

insignificant horizontal force and the ROV 

moved forwards and backwards in the water in 

addition to vertically up and down.  No 

additional rotation about the pitch axis was 

observed at the pool side, and this particular 

experiment was deemed a failure.  

 

Finally, a cursory glance at the data post-

780 seconds seems to show a positive and then 

negative tilt correction occurring, but that was 
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in fact due to the ROV sliding down a steep 

slope in the pool floor.  

 

A video of the pool session can be seen at: 

www.youtube.com/watch?v=ZuQB57rVeSg 

 

After an examination of this data, and a 

careful re-assessment of the physical design, a 

likely cause of the lack of rotation about the 

pitch axis has been discovered. It was always 

assumed that due to the near-symmetrical 

frame design the centroid, the mid-point 

between the centre-of-mass and centre-of-

buoyancy and the point about which rotation of 

the ROV would occur, was essentially in the 

middle of the frame. It now appears that 

assumption was incorrect as the single rear 

vertical thruster plus the multi-core cable and 

connectors do actually significantly change the 

relative position of the centre-of-mass, but 

were never considered in this light. This has 

the effect of moving the centroid closer to the 

rear vertical thruster, and therefore much lower 

(effectively zero) angular momentum is 

imparted by the thruster. 

 

A number of possible solutions to this 

problem present themselves: 

 

 redesign the frame so that the thrusters are 

further away from the centre 

 add additional weights (and 

correspondingly offsetting foam) to move 

the centre-of-mass closer to the centre 

 

Unfortunately, due to time constraints neither 

have been investigated further and the problem 

is now listed as work for further consideration. 

 

 

 

 
 

Figure 7.3. Results from varying the Pk constant. 
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Figure 7.4. Results from varying the PWM level. 
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8. Conclusions 
 

This project started with the overall goal of 

combining personal interests and newly 

developed skills, to produce a potentially 

useful and interesting device, whilst presenting 

as many realistic challenges as possible. 

 

The project has now ended with that goal 

completely satisfied: an extremely interesting, 

fully working underwater vehicle has been 

designed and constructed, from scratch, 

utilising and learning many new skills, and 

overcoming many, many challenges along the 

way. 

 

8.1 Results 
 

It would be fair to say that the defined goals 

of the project, as set many months ago, may 

not be fully met as yet, however this is really 

more a function of the time available, and to a 

lesser degree the finances available, rather than 

any inability to overcome the challenges 

presented. 

 

Looking closer at the specific primary and 

secondary goals: 

 

 Primary Goal 1: Build an 

underwater vehicle fitted with 

thrusters for horizontal and vertical 

positioning 

 

This has been successfully completed. 

 

 Primary Goal 2: Build 

microcontroller-based electronic 

circuitry for operating the thrusters 

 

This has been successfully completed. 

 

 Primary Goal 3: Build remote 

operator providing basic interface to 

the vehicle 

 

This has been successfully completed. 

 

 Primary Goal 4: Test the vehicle and 

identify its dynamics characteristics 

 

This has been partially achieved. In- 

and out-of-water testing of the vehicle 

has been an ongoing process 

throughout the entire development 

process. In-water measurements to 

identify the vehicles’ dynamic 

characteristics are still currently 

underway and have not been 

completed. 

 

 Primary Goal 5: Design and 

implement an automatic control 

system for pitch and roll of the 

vehicle 

 

This has been partially achieved. A 

working PID controller system has 

been implemented for both the pitch 

and roll axes for tilt correction, 

however, tuning of the control system 

parameters is still underway. 

 

 Secondary Goal 1: Test robustness 

of the control system 

 

This has been partially completed 

through the process of measuring the 

dynamics characteristics, but until the 

control system parameters have been 

tuned (Primary Goal 5), this cannot be 

completed. 

 

 Secondary Goal 2: Consider (if 

needed) any improvements to the 

control system 

 

This has been completed. Section 8.3 

contains this information. 

 

 Secondary Goal 3: Install a video 

camera and lights on the vehicle 

 

This has been partially completed. A 

video camera system was implemented 

and was working successfully, but it 

has since failed, and is currently 

awaiting replacement. The addition of 

lights to the vehicle has been fully 

supported but only partially achieved 

physically. 

 

8.2 Analysis 
 

A great deal of thought has gone into every 

aspect of this project in an attempt to minimise 

the number of problems that might occur, and 

given the success of the project so far, it has to 

be said that this considered approach has 
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worked to a large degree, but it was always 

known that there would be some major 

challenges to be faced, particularly in the 

physical construction aspect. 

 

The design and construction of the water-

proof enclosure, was always expected to 

present many difficulties, and so it has proven, 

but it is fair to say that the difficulty level was 

grossly underestimated. A limited budget, and 

the inability to accurately machine certain 

components, using inappropriate tools, caused 

many unnecessary headaches, and wasted a 

considerable amount of time. It can be simply 

summarised as: on a limited budget, water-

proofing is difficult. 

 

Convenient access to a suitable in-water 

testing environment also proved to be greatly 

overestimated. Though excellent support was 

received from the SCUBA diving club, the 

practical logistics of taking the ROV to the 

pool via public transport (in some cases a one 

hour trip requiring 2 busses and a train), just to 

run a single 10 minute test, was inefficient to 

say the least. In addition, local swimming 

pools are not actually ideal test and 

development environments as they are 

inconveniently placed, not readily accessible 

outside SCUBA club sessions, have no pool-

side power supplies to run laptops, do not 

allow cameras (except under very special 

circumstances), and offer limited testing space. 

In addition there are considerable health and 

safety issues to deal with as well. A number of 

alternatives were considered, and some even 

tried, including a number of home bath tubs, 

neighbour’s fish ponds, and a duck pond at a 

local common. All were unsuitable for one 

reason or another (size and water quality being 

the main issues faced). 

 

When looking at the attempts made to try to 

measure the system’s dynamics characteristics, 

it is now obvious that measuring and 

characterising a real world (ie non-linear) 

device, operating in the real world (a non-

linear environment) is actually a difficult and 

complex task and the difficulty level of this 

task was also greatly underestimated. 

 

Other real-world issues that were faced 

include the fact that everything costs more than 

is expected, everything takes longer to arrive 

than it should, everything takes longer to build 

than it appears it should, and everything fails at 

some time. Having reliable and trustworthy 

suppliers was key to minimising the problems 

these issue cause. 

 

Despite all these difficulties, there were 

many positives that came out of this project: 

 

 Many satisfying challenges were faced and 

overcome that presented excellent learning 

opportunities 

 The subject matter was very varied and 

very interesting, and this made it actually 

enjoyable, and gave the opportunity to 

converse with many interested and 

interesting people from many fields 

 The valuable confirmation, from the 

successful outcome of the project, of the 

design and testing methodologies 

employed, that reaffirms the problem 

solving skills refined over the last 3 years 

 Many valuable skills were developed or 

refined including: 

o embedded C programming 

o circuit design and board layout 

o assembly and fabrication 

 Many new and unfamiliar components and 

techniques were used such as: 

o LIPO batteries 

o ARM-based micro-controllers on the 

mbed development boards 

o H-bridges, voltage regulators and 

accelerometers  

o LCD displays 

o RS232 communications 

o PID controllers and PWM systems 

 

8.3 Future Work 
 

Throughout the entire project, many 

possible improvements and additions were 

envisioned, and suggested by others. Many 

were taken on board, however many more 

were considered to be simply beyond the scope 

of this project. Following the completion of 

this phase of the project, it is hoped that many 

of the following ideas will be examined for 

implementation: 

 

 Depth sensor 

 Environmental sensors eg water salinity 

and water temperature sensors 

 Digital compass 

 Pan-and-tilt for camera 
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 On-screen data display 

 Manipulator 

 On-board battery monitoring 

 Longer tether 

 Additional cameras and lights 

 Fibre optic data link 

 Wireless data link 

 PC control 

 PCB construction and design-for-

manufacture 

 Open-sourcing the design, plans, and 

software 

 Analog control of horizontal thrusters for 

finer control 

 Obstacle detection 

 Autonomous operation 

 Investigations into alternative control 

systems 

 

8.4 Alternative Approaches 
 

Throughout the project there have been 

many decisions made that are, with hindsight, 

to be regretted. Most of those have been 

relatively minor and the consequences not 

severe: routing a motor wire through a certain 

channel for example. Some modifications and 

improvements that would be seriously 

considered, given the opportunity, however are 

noteworthy: 

 

 Re-route the 18-core cable to minimise 

weight distribution offset 

 Use multiple 6-conductor connectors 

instead of a single 18-conductor version 

 Add a USB-to-wireless data link to the 

development PC to allow programming 

and debugging without having to remove 

the bottom controller from the enclosure 

 Conduct more research and testing to 

determine the optimum angle for operation 

of the vertical thrusters 

 

Given an unlimited budget, and unlimited 

time and space, the following would’ve greatly 

assisted in producing a better outcome: 

 

 Design and construct a purpose-built 

pressure enclosure. This is a relatively 

expensive exercise (≈£200) but will allow 

greater depths, greater reliability, and 

greater confidence 

 Construct a home-based testing tank to 

allow for much more convenient in-water 

testing. The average home bath tub is 

simply not large enough. Research into this 

is ongoing. 

 Invest in better tools, or find conveniently 

local ones: personal access to a laser cutter 

or CNC mill would be incredibly useful 

 

8.5 Summary 
 

In summary, this underwater vehicle 

project, though somewhat daunting at the start, 

was extremely enjoyable, and yet incredibly 

challenging at the same time. It was interesting 

and varied, included many opportunities to 

research and apply new and exciting 

techniques and technologies, and allowed for 

the development and refinement of new and 

existing skills. It gave the opportunity for 

interesting discussions with interesting people, 

and finally, it gave a real insight into actually 

developing a product. 
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11. Appendices 
 

Appendix A - DES Project Specification Form 
 

Title:    Underwater remotely operated vehicle 

Student Name:   Scott O’Brien 

Year:    2011/12 

Supervisor:   Dr. Andrzej Tarczynski 

Assessor:     

Moderator:    

 

Aims and Description: 

To design and build an underwater vehicle with pitch and roll control system 

 

Primary Goals: 

1. To build an underwater vehicle fitted with thrusters for horizontal and vertical positioning 

2. To build microcontroller-based electronic circuitry for operating the thrusters 

3. To build remote operator providing basic interface to the vehicle 

4. To test the vehicle and identify its dynamics characteristics 
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Appendix B - Top Controller Schematics 

 
 

Figure B.1. Top controller schematic. 
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Figure B.2. Top controller strip-board layout. 
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Appendix C - Bottom Controller Schematics 
 

 
Figure C.1. Bottom controller schematic. 
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Figure C.2. Top controller strip-board layout. 
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Appendix D - Top Controller Code 
 

// TOP controller for ROV 

//  v0.70  24 April 2012 

//  by Scott O'Brien 

 

// LIBRARIES 

            #include "mbed.h" 

            #include "TextLCD.h" 

 

// PIN DEFINITIONS 

            Serial pc(USBTX, USBRX);  // diagnostic connction to PC via USB 

            Serial topSerial(p13,p14);// tx, rx to bottom cont. via MAX3232 

             

            DigitalOut mbedLED1(LED1);          // onboard led's 

            DigitalOut mbedLED2(LED2); 

            DigitalOut mbedLED3(LED3); 

            DigitalOut mbedLED4(LED4); 

             

            DigitalOut leakLED(p22);            // red 

            DigitalOut linkLED(p23);            // green  

            DigitalOut lightsLED(p24);          // green 

            DigitalOut controlSystemLED(p25);   // green 

            DigitalOut switch3LED(p26);         // green 

 

            TextLCD lcd(p5,p6,p7,p8,p9,p10,TextLCD::LCD20x4); // 20x4 LCD 

 

            AnalogIn leftJoystickUpDownAnalog(p17); 

            AnalogIn leftJoystickLeftRightAnalog(p18); 

            AnalogIn rightJoystickUpDownAnalog(p19); 

            AnalogIn rightJoystickLeftRightAnalog(p20); 

 

            AnalogIn tempTop(p16);              // temperature sensor 

 

            InterruptIn lightsSwitch(p30); 

            InterruptIn controlSystemSwitch(p29); 

            InterruptIn switch3(p28); 

 

            PwmOut buzzer(p21);                 // leak alarm buzzer 

 

// TICKERS AND TIMERS 

            Ticker majorEvent;                  // major event ticker 

            Ticker tempSensor;                  // read temp sensor ticker 

 

// VARIABLES AND CONSTANTS 

            char  raise           = 0; 

            char  lower           = 0; 

            char  moveLeft        = 0; 

            char  moveRight       = 0; 

            char  forward         = 0; 

            char  reverse         = 0; 

            char  turnLeft        = 0; 

            char  turnRight       = 0; 

            float topTemp         = 0; 

            char  lightsOn        = 0; 

            char  controlSystemOn = 0; 

            char  switch3On       = 0; 

            char  controlData[3]  = {0,0,0};        // data to tx to bottom 

            char  rxData[5]       = {0,0,0,0,0};    // data rx from bottom 

            char  rxPCData        = 0; 

            char  dataLoggingOn   = 0; 
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            float kP              = 1.0;            // PID "constants" 

            uint8_t *kP8          = (uint8_t*)&kP;   

            float kI              = 0.0; 

            uint8_t *kI8          = (uint8_t*)&kI; 

            float kD              = 0.0; 

            uint8_t *kD8          = (uint8_t*)&kD; 

 

// FUNCTIONS 

 

// send and recieve data from PC via USB 

void SendAndReceiveDataFromPC() { 

            if(pc.readable()) { 

                rxPCData = pc.getc(); 

                pc.printf("%c",rxPCData); 

                 

                if (rxPCData == '?') { 

                    pc.printf("\r\n\n\nScottROV\r\nTop Controller v0.70 

    Bottom Controller v0.70"); 

                    pc.printf("\r\nkP = %.4f, kI = %.4f, kD =   

    %.4f",kP,kI,kD); 

                    pc.printf("\r\nrx[0] = %i, temp = %i, pitch = %i, roll 

    = %i", rxData[0],  rxData[1], rxData[2] - 90,  

    rxData[3] - 90); 

                    pc.printf("\r\ncontrolData[0] = %i, controlData[1] = 

    %i",controlData[0],controlData[1]); 

                    if (dataLoggingOn) { 

                        pc.printf("\r\nData logging is ON"); 

                    } 

                    else { 

                        pc.printf("\r\nData logging is OFF"); 

                    } 

                    if (controlSystemOn) { 

                        pc.printf("\r\nControl system is ON"); 

                    } 

                    else { 

                        pc.printf("\r\nControl system is OFF"); 

                    } 

                    pc.printf("\r\n\n? = this list\r\nl = toggle data  

    logger\r\no = toggle control system\r\nt = transfer 

    data (not enabled)\r\np = change P term\r\ni =  

    change I term\r\nd = change D term\r\n\n"); 

                } 

                 

                else if (rxPCData == 'l') { 

                     

                    dataLoggingOn = !dataLoggingOn; 

                    if (dataLoggingOn) { 

                        pc.printf("\r\n\ndata logger turned on\r\n\n"); 

                    } 

                    else { 

                        pc.printf("\r\n\ndata logger turned off\r\n\n"); 

                    } 

                } 

                 

                else if (rxPCData == 'o') { 

                    controlSystemOn = !controlSystemOn; 

                    if (controlSystemOn) { 

                        pc.printf("\r\n\ncontrol system turned on\r\n\n"); 

                    } 

                    else { 

                        pc.printf("\r\n\ncontrol system turned off\r\n\n"); 
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                    } 

                } 

                 

                else if (rxPCData == 't') { 

                    pc.printf("\r\nThis feature is not yet enabled, but 

    data logger has been turned off\r\n\n"); 

                    dataLoggingOn = 0; 

                } 

                 

                else if (rxPCData == 'p') { 

                    pc.printf("\r\nEnter kP value: "); 

                    pc.scanf ("%f",&kP); 

                    pc.printf("You entered: %.4f\r\n",kP); 

                } 

                 

                else if (rxPCData == 'i') { 

                    pc.printf("\r\nEnter kI value: "); 

                    pc.scanf ("%f",&kI); 

                    pc.printf("You entered: %.4f\r\n",kI); 

                } 

                 

                else if (rxPCData == 'd') { 

                    pc.printf("\r\nEnter kD value: "); 

                    pc.scanf ("%f",&kD); 

                    pc.printf("You entered: %.4f\r\n",kD); 

                } 

                               

                else { 

                    pc.printf("\r\n\ncommand not understood - try  

    ?\r\n\n"); 

                } 

            }     

            return; 

} 

 

// respond to light switch flipped on 

void turnLightsOn() { 

            wait_ms(25); 

            if (lightsSwitch == 1) { 

                lightsLED = 1; 

                lightsOn = 1; 

            } 

            return; 

}  

 

// respond to light switch flipped off 

void turnLightsOff() { 

            wait_ms(25); 

            if (lightsSwitch == 0) { 

                lightsLED = 0; 

                lightsOn = 0; 

            } 

            return; 

} 
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// respond to control system switch flipped on 

void turnControlSystemOn() { 

            wait_ms(25); 

            if (controlSystemSwitch == 1) { 

                controlSystemLED = 1; 

                controlSystemOn = 1; 

            } 

            return; 

} 

 

// respond to control system switch flipped off 

void turnControlSystemOff() { 

            wait_ms(25); 

            if (controlSystemSwitch == 0) { 

                controlSystemLED = 0; 

                controlSystemOn = 0; 

            } 

            return; 

} 

 

// respond to switch 3 flipped on 

void turnSwitch3On() { 

            wait_ms(25); 

            if (switch3 == 1) { 

                switch3LED = 1; 

                switch3On = 1; 

                dataLoggingOn = 1; 

            } 

            return; 

}  

 

// respond to switch 3 flipped off 

void turnSwitch3Off() { 

            wait_ms(25); 

            if(switch3 == 0) { 

                switch3LED = 0; 

                switch3On = 0; 

                dataLoggingOn = 0; 

            } 

            return; 

}  

 

// read joysticks 

void read_joysticks(){       

  // each joystick axis is averaged over 3 samples to eliminate 

  // any ADC glitches. 

            if ((leftJoystickUpDownAnalog + 

   leftJoystickUpDownAnalog +      

   leftJoystickUpDownAnalog) / 3 > 0.75) {  

                    lower = 32;      // 32 = space char, represents not on 

                    raise = 94;      // 94 = ^ char, represents on                     

            } 

            else if ((leftJoystickUpDownAnalog + 

    leftJoystickUpDownAnalog +     

    leftJoystickUpDownAnalog) / 3 < 0.25) { 

                      raise = 32; 

                      lower = 118;   // 118 = v char, represents on 

            } 

            else { 

                    raise = 32; 

                    lower = 32; 
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            } 

                         

            if ((leftJoystickLeftRightAnalog + 

   leftJoystickLeftRightAnalog + 

   leftJoystickLeftRightAnalog )/ 3 < 0.25) { 

                    moveLeft = 32; 

                    moveRight = 126;// 126 = right arrow char represents on 

            } 

            else if ((leftJoystickLeftRightAnalog +     

   leftJoystickLeftRightAnalog +  

   leftJoystickLeftRightAnalog ) / 3 > 0.75) { 

                    moveRight= 32; 

                    moveLeft = 127;  // 127 = left arrow char represents on 

            } 

            else { 

                    moveLeft = 32; 

                    moveRight = 32; 

            } 

 

            if ((rightJoystickUpDownAnalog + 

   rightJoystickUpDownAnalog +      

   rightJoystickUpDownAnalog) / 3 > 0.75) { 

                    reverse = 32;   // 32 = space char, represents not on 

                    forward = 94;   // 94 = ^ char, represents on             

            } 

            else if ((rightJoystickUpDownAnalog + 

    rightJoystickUpDownAnalog +     

    rightJoystickUpDownAnalog) / 3  < 0.25) { 

                      forward = 32; 

                      reverse = 118; // 118 = v char, represents on 

            } 

            else { 

                    forward = 32; 

                    reverse = 32; 

            } 

             

            if ((rightJoystickLeftRightAnalog +     

   rightJoystickLeftRightAnalog +     

   rightJoystickLeftRightAnalog) / 3 < 0.25) { 

                    turnLeft = 32; 

                    turnRight = 126;// 126 = right arrow char represents on 

            } 

            else if ((rightJoystickLeftRightAnalog +     

   rightJoystickLeftRightAnalog +     

   rightJoystickLeftRightAnalog) / 3  > 0.75) { 

                    turnRight= 32; 

                    turnLeft = 127; // 127 = left arrow char, represents on 

            } 

            else { 

                    turnLeft = 32; 

                    turnRight = 32; 

            }             

            return; 

}  

 

// output data to lcd screen 

void display_data() { 

     

            lcd.locate(1,1); lcd.printf("L");       // left joystick 

            lcd.locate(0,1); lcd.putc(moveLeft); 

            lcd.locate(2,1); lcd.putc(moveRight); 
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            lcd.locate(1,0); lcd.putc(raise); 

            lcd.locate(1,2); lcd.putc(lower);         

             

            lcd.locate(4,1); lcd.printf("R");       // right joystick 

            lcd.locate(3,1); lcd.putc(turnLeft); 

            lcd.locate(5,1); lcd.putc(turnRight); 

            lcd.locate(4,0); lcd.putc(forward); 

            lcd.locate(4,2); lcd.putc(reverse); 

             

            lcd.locate(6,1); lcd.printf("P");       // PID settings 

            lcd.locate(7,1); lcd.printf("%2.1f",kP); 

            lcd.locate(6,2); lcd.printf("I"); 

            lcd.locate(7,2); lcd.printf("%2.1f",kI); 

            lcd.locate(6,3); lcd.printf("D"); 

            lcd.locate(7,3); lcd.printf("%2.1f",kD); 

                         

            lcd.locate(11,2); lcd.printf("P");     // pitch tilt level 

            lcd.locate(12,2); lcd.printf("%3i",rxData[2] - 90); 

            lcd.locate(11,3); lcd.printf("R");     // roll tilt level 

            lcd.locate(12,3); lcd.printf("%3i",rxData[3] - 90); 

             

            lcd.locate(16,2); lcd.printf("T");     // top temp 

            lcd.locate(17,2); lcd.printf("%2.0f",topTemp); 

            lcd.locate(19,2); lcd.putc(223);       // degree symbol 

             

            lcd.locate(16,3); lcd.printf("B");     // bottom temp 

            lcd.locate(17,3); lcd.printf("%2.0i",rxData[1]); 

            lcd.locate(19,3); lcd.putc(223);  

            

            lcd.locate(6,0); if ((rxData[0] & 135) == 135) { 

                                  lcd.printf("LEAK"); 

                                  buzzer.pulsewidth_us(250); 

                                  leakLED = 1; 

                             } 

             

                             else { 

                                  lcd.printf("    "); 

                                  buzzer.pulsewidth_us(0); 

                                  leakLED = 0; 

                             } 

             

            lcd.locate(11,0); if ((rxData[0] & 184) == 184) { 

                                  lcd.printf(”TEMP”); 

                              } 

                                                               

                              else { 

                                  lcd.printf("    "); 

                              } 

                               

            lcd.locate(0,3); if(lightsOn) { 

                                  lcd.putc('L'); 

                             } 

                             else { 

                                  lcd.putc(32); 

                             }  

                              

            lcd.locate(1,3); if(controlSystemOn) { 

                                  lcd.putc('C'); 

                             } 

                             else { 

                                  lcd.putc(32); 
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                             }  

            lcd.locate(2,3); if(dataLoggingOn) { 

                                  lcd.putc('D'); 

                             } 

                             else { 

                                  lcd.putc(32); 

                             }         

            return;            

}  

 

void send_and_receive_data(){ 

            linkLED = !linkLED; 

 

            // build tx data byte controlData[0] 

            // bit 0: front right thruster, on = 1 

            //     1: front left thruster, on = 1 

            //     2: rear right thruster, on = 1 

            //     3: rear left thruster, on = 1 

            //     4: lights, on = 1 

            //     5: control system, on = 1 

            //     6: data logging, on = 1 

            //     7: reserved, set to 1, signifies byte controlData[0] 

             

            controlData[0] = 128;                        // set bit 7 

             

            if (forward == 94) { 

                    controlData[0] = controlData[0] + 3; // set bits 0 & 1 

            } 

             

            if (reverse == 118) { 

                    controlData[0] = controlData[0] + 12;// set bits 2 & 3 

            } 

             

            if (turnRight == 126) { 

                    controlData[0] = controlData[0] + 6; // set bits 1 & 2  

            } 

             

            if (turnLeft == 127) { 

                    controlData[0] = controlData[0] + 9; // set bits 0 & 3 

            } 

             

            if (moveRight == 126) { 

                    controlData[0] = controlData[0] + 10;// set bits 1 & 3 

            } 

                         

            if (moveLeft == 127) { 

                    controlData[0] = controlData[0] + 5; // set bits 0 & 2 

            } 

 

            if (lightsOn == 1) { 

                    controlData[0] = controlData[0] + 16;// set bit 4 

            } 

             

            if (controlSystemOn == 1) { 

                    controlData[0] = controlData[0] + 32;// set bit 5  

            } 

             

            if (dataLoggingOn ==1) { 

                    controlData[0] = controlData[0] + 64;// set bit 6 

            } 
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            // build tx data byte controlData[1] 

            // bit 0: go up = 1 

            //     1: go down = 1 

            //     2: unused, set to 0 

            //     3: unused, set to 0 

            //     4: unused, set to 0 

            //     5: unused, set to 0 

            //     6: unused, set to 0 

            //     7: reserved, set to 0, signifies byte controlData[1] 

             

            controlData[1] = 0; 

             

            if (raise == 94) { 

                    controlData[1] = 1;      // this sets bit 0 only  

            } 

             

            if (lower == 118) { 

                    controlData[1] = 2;      // this sets bit 1 only  

            } 

             

             

            // send data via serial connection 

            if(topSerial.writeable()) { 

                mbedLED1=!mbedLED1; 

                topSerial.putc(controlData[0]); 

                topSerial.putc(controlData[1]); 

 

                // send PID constant float values as 4 x 8 bit chars 

                topSerial.putc(kP8[0]);      

                topSerial.putc(kP8[1]); 

                topSerial.putc(kP8[2]); 

                topSerial.putc(kP8[3]); 

                 

                topSerial.putc(kI8[0]); 

                topSerial.putc(kI8[1]); 

                topSerial.putc(kI8[2]); 

                topSerial.putc(kI8[3]); 

                 

                topSerial.putc(kD8[0]); 

                topSerial.putc(kD8[1]); 

                topSerial.putc(kD8[2]); 

                topSerial.putc(kD8[3]); 

            } 

 

            // receive data via serial connection 

            if(topSerial.readable()) { 

                rxData[0] = topSerial.getc(); 

                rxData[1] = topSerial.getc(); 

                rxData[2] = topSerial.getc(); 

                rxData[3] = topSerial.getc(); 

 

            }    

            return; 

} 

 

// read temp sensor called by ticker 

void read_temp_sensor(){ 

  // average of 3 readings: single reading * 3.3V * 100 

            topTemp = ((tempTop + tempTop + tempTop) * 110) - 273;  

            return; 

} 
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// major events called by ticker 

void majorEventFunctions () { 

            read_joysticks(); 

            display_data(); 

            send_and_receive_data(); 

            return; 

}  

 

// MAIN 

int main() { 

            // startup display 

            leakLED = 1; 

            lcd.cls(); 

            lcd.printf("     SCOTTROV \n\n"); 

            lcd.printf("Top: v0.70  24.4.12\n"); 

            lcd.printf("Bot: v0.70"); 

            wait(3); 

            lcd.cls(); 

            leakLED = 0; 

             

            // set up serial comms to bottom 

            topSerial.baud(38400); 

         

            // set up comms with pc to trigger by interrupt on data arrival 

            pc.attach(&SendAndReceiveDataFromPC, Serial::RxIrq); 

                     

            // set up buzzer PWM 

            buzzer.period_us(500);                 // 500uS for 2kHz tone 

             

            // set up ticker events 

            tempSensor.attach(&read_temp_sensor, 3.0); // read every 3s 

            majorEvent.attach(&majorEventFunctions, 0.05); // 20 times / s 

             

            // set up interrupts for control panel switches 

            lightsSwitch.rise(&turnLightsOn);    

            lightsSwitch.fall(&turnLightsOff);   

 

            controlSystemSwitch.rise(&turnControlSystemOn);      

            controlSystemSwitch.fall(&turnControlSystemOff);   

   

            switch3.rise(&turnSwitch3On);    

            switch3.fall(&turnSwitch3Off);   

                   

            // determine initial switch state 

            if (lightsSwitch == 1) { 

                lightsLED = 1; 

                lightsOn = 1; 

            } 

            else { 

                lightsLED = 0; 

                lightsOn = 0; 

            } 

             

            if (controlSystemSwitch == 1) { 

                controlSystemLED = 1; 

                controlSystemOn = 1; 

            } 

            else { 

                controlSystemLED = 0; 

                controlSystemOn = 0; 

            } 
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            if (switch3 == 1) { 

                switch3LED = 1; 

                switch3On = 1; 

            } 

            else { 

                switch3LED = 0; 

                switch3On = 0; 

            } 

   

            while(1) {          

            

            }// end while 

 

}// end of MAIN 
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Appendix E - Bottom Controller Code 
 

// BOTTOM controller for ROV 

//  v0.70  26 April 2012 

//  by Scott O'Brien 

 

// LIBRARIES 

            #include "mbed.h" 

            #include "LIS331.h"         // accelerometer library 

            #include "SDFileSystem.h"   // SD card library for data logging 

            #include "PID.h"            // PID controller library 

                         

// COMPILER DEFINITIONS             

            #define PI 3.14159265 

 

// PIN DEFINITIONS 

            Serial pc(USBTX, USBRX);     // diagnostic conn. to PC via USB 

            Serial bottomSerial(p13,p14);// tx, rx to top cont. via MAX3232 

             

            DigitalOut mbedLED1(LED1);   // onboard led's 

            DigitalOut mbedLED2(LED2); 

            DigitalOut mbedLED3(LED3); 

            DigitalOut mbedLED4(LED4); 

            DigitalOut lights(p12);      // external lights 

             

            SDFileSystem sd(p5, p6, p7, p8, "sd"); // data logging 

            LIS331 accel(p9, p10);       // I2C conn. to accelerometer 

 

            DigitalOut motorHFL(p27);    // front left horizontal thruster 

            DigitalOut motorHFR(p26);    // front right horizontal thruster 

            DigitalOut motorHRL(p25);    // rear left horizontal thruster 

            DigitalOut motorHRR(p24);    // rear right horizontal thruster   

            PwmOut motorVL(p23);         // left vertical thruster 

            DigitalOut motorVLdir(p20);  // 0 = down, 1 = up 

            PwmOut motorVR(p22);         // right vertical thruster 

            DigitalOut motorVRdir(p19);  // 0 = down, 1 = up 

            PwmOut motorVB(p21);         // back vertical thruster 

            DigitalOut motorVBdir(p18);  // 0 = down, 1 = up 

             

            InterruptIn thermalOverload(p17);   // thermal overload flag  

            InterruptIn leakDetector(p11);      // leak detectors 

            AnalogIn tempBottom(p15);           // temperature sensor 

                      

            PID pitchCon(1.0, 0.0, 0.0, 0.1);   // Kp, Ti, Td, interval 

            PID  rollCon(1.0, 0.0, 0.0, 0.1);   // Kp, Ti, Td, interval 

 

// TICKERS AND TIMERS 

            Ticker readSensors;                 // enable sensor timer 

            Ticker readTiltSensors;             // enable tilt sensor timer 

            Timer  loggingTimer;                // timer for data logging 

 

// VARIABLES AND CONSTANTS 

            char  controlData[3]      = {0,0,0};// control data rx from top 

            char  txData[5]           = {0,0,0,0}; // data tx to top 

            char  controlSystemOn     = 0; 

            char  thermalOverloadFlag = 0; 

            float bottomTemp          = 0; 

            float pitchTilt           = 0; 

            float rollTilt            = 0; 

            char  dataLoggingOn       = 0; 

            float kP                  = 1.0;            // PID "constants" 
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            uint8_t kP8[5]            = {0,0,0,0,0}; 

            float kI                  = 0.0; 

            uint8_t kI8[5]            = {0,0,0,0,0}; 

            float kD                  = 0.0; 

            uint8_t kD8[5]            = {0,0,0,0,0}; 

            float kPID                = 0;   // change in PID settings? 

 

      // level of VB thruster to control pitch, from PID controller 

            float pitchAdj            = 0;  

            // level of VL/R thrusters to control roll, from PID controller    

            float rollAdj             = 0;               

 

// FUNCTIONS 

 

// interrupt function for serial comms 

void sendAndReceiveData() { 

            mbedLED2 = !mbedLED2; 

            if(bottomSerial.readable()) { 

                controlData[0] = bottomSerial.getc(); 

                controlData[1] = bottomSerial.getc(); 

                 

                kP8[0] = bottomSerial.getc();   // PID constants (float) as   

                kP8[1] = bottomSerial.getc();   // 4 x 8 bit chars 

                kP8[2] = bottomSerial.getc(); 

                kP8[3] = bottomSerial.getc(); 

                 

                kI8[0] = bottomSerial.getc(); 

                kI8[1] = bottomSerial.getc(); 

                kI8[2] = bottomSerial.getc(); 

                kI8[3] = bottomSerial.getc(); 

                 

                kD8[0] = bottomSerial.getc(); 

                kD8[1] = bottomSerial.getc(); 

                kD8[2] = bottomSerial.getc(); 

                kD8[3] = bottomSerial.getc(); 

                 

                kP = *((float *)kP8);  // 4 x 8 chars back to single floats 

                kI = *((float *)kI8); 

                kD = *((float *)kD8); 

                 

                if ((kP + kD + kI) != kPID) {     // check for any changes 

                    pitchCon.setTunings(kP,kI,kD); 

                    rollCon.setTunings(kP,kI,kD); 

                    kPID = kP + kD + kI; 

                } 

            } 

             

            if(bottomSerial.writeable()) { 

                bottomSerial.putc(txData[0]); 

                bottomSerial.putc(txData[1]); 

                bottomSerial.putc(txData[2]); 

                bottomSerial.putc(txData[3]); 

            } 

            return; 

}  
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//  interrupt function to respond to leak detector 

void leakDetected() { 

            txData[0] = (txData[0] | 135);        // set bits 0-2, 7 

            return;             

}  

 

//  interrupt function to respond to thermal overload on h-bridges 

void thermalOverloaded() { 

            txData[0] = (txData[0] | 184);        // set bits 3-5, 7 

            thermalOverloadFlag = 1; 

            return;          

}  

 

// read temp & voltage sensors 

void read_sensors(){ 

            bottomTemp = ((tempBottom + tempBottom + tempBottom) * 110.0) - 

  273; // take average of 3 readings 

            txData[1] = ((char)bottomTemp) & 127;        

            return;           

} 

 

// read tilt sensors 

void read_tilt_sensors(){    

            pitchTilt = (accel.getAccelX() + accel.getAccelX() +   

  accel.getAccelX() + accel.getAccelX() + accel.getAccelX()) / 5;  

             

  rollTilt  = (accel.getAccelY() + accel.getAccelY() +   

  accel.getAccelY() + accel.getAccelY() + accel.getAccelY()) / 5;  

             

            if (controlSystemOn == 1) { 

 

  // send current pitch tilt to PID controller as current error 

                    pitchCon.setProcessValue(pitchTilt);      

  // let PID controller do its thing 

                    pitchAdj = pitchCon.compute(); 

            

            // send current roll tilt to PID controller as current error 

                    rollCon.setProcessValue(rollTilt); 

  // let PID controller do its thing       

                    rollAdj = rollCon.compute();            

            } 

             

            else { 

                    pitchAdj = 0; 

                    rollAdj  = 0; 

            } 

            // conv to degs, +90 to ensure +ve number to enable TX as char          

            txData[2] = (asin(pitchTilt) * 180 / PI) + 90;  

            txData[3] = (asin(rollTilt) * 180 / PI) + 90; 

            return; 

} 

 

 

 

 

 

 

 

 

 

 



74 
 

// log data 

void log_data(){ 

            FILE *fp = fopen("/sd/data.txt", "a"); 

            mbedLED3 = !mbedLED3; 

            fprintf(fp, "\n\r%f,%i,%f,%f,%f,%f,%f,%f,%f,%f,%i,%f,%i,%f,%i",  

  loggingTimer.read(), controlSystemOn, kP, kI, kD, pitchTilt, 

  pitchAdj, rollTilt, rollAdj, motorVL.read(), motorVLdir.read(), 

  motorVR.read(), motorVRdir.read(), motorVB.read(),   

  motorVBdir.read()); 

            fclose(fp); 

            return; 

} 

 

// MAIN 

int main() { 

           

        // initialise timer for data logging 

        loggingTimer.start();    

         

        // initialise all motors 

        motorHFL   = 0;              

        motorHFR   = 0; 

        motorHRL   = 0;              

        motorHRR   = 0; 

        motorVL    = 0.0; 

        motorVLdir = 0;         

        motorVR    = 0.0; 

        motorVRdir = 0; 

        motorVB    = 0.0; 

        motorVBdir = 0; 

 

        // init comms to top cont. to trigger by interrupt on data arrival 

        bottomSerial.baud(38400); 

        bottomSerial.attach(&sendAndReceiveData, Serial::RxIrq); 

         

        // init interrupt for leak detector & thermal overload on h-bridges 

   

  // attach address of the leakDetected function to the rising edge         

  leakDetector.rise(&leakDetected);            

   

  // attach address of thermalOverloaded function to the falling edge 

        thermalOverload.fall(&thermalOverloaded);    

         

        // set up ticker event for temp and voltage sensors 

        readSensors.attach(&read_sensors, 3.0);     // read every 3 seconds 

         

        // set up accelerometer 

        accel.setFullScaleRange2g();          // 2g range on accel 

        accel.setPowerMode(47);               // 100 Hz ODR 

        readTiltSensors.attach(&read_tilt_sensors, 0.250); // every 0.25s 

         

        // set up PWM for vertical thrusters     

        int pwmPeriod = 100;                  // 100 microseconds = 10 kHz 

        motorVL.period_us(pwmPeriod); 

        motorVR.period_us(pwmPeriod); 

        motorVB.period_us(pwmPeriod);   

         

        // set up PID controller for pitch 

        pitchCon.setInputLimits(-1.0, 1.0);   // Input from accelerometer 

        pitchCon.setOutputLimits(-1.0, 1.0);  // PWM output limits 

        pitchCon.setBias(0.0);         // Only if there needs to be a bias. 
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        pitchCon.setMode(AUTO_MODE); 

        pitchCon.setSetPoint(0.0);     // Target is to be zero degrees              

         

        // set up PID controller for roll 

        rollCon.setInputLimits(-1.0, 1.0);    // Input from accelerometer 

        rollCon.setOutputLimits(-0.5, 0.5);   // PWM output limits 

        rollCon.setBias(0.0);          // Only if there needs to be a bias. 

        rollCon.setMode(AUTO_MODE); 

        rollCon.setSetPoint(0.0);      // Target is to be zero degrees    

                

        while(1) { 

                 

                // rx data byte controlData[0] 

                // bit 0: front right thruster, on = 1 

                //     1: front left thruster, on = 1 

                //     2: rear right thruster, on = 1 

                //     3: rear left thruster, on = 1 

                //     4: lights, on = 1 

                //     5: control system, on = 1 

                //     6: data logging, on = 1 

                //     7: reserved, set to 1, signifies byte controlData[0] 

                 

                // rx data byte controlData[1] 

                // bit 0: go up = 1 

                //     1: go down = 1 

                //     2: unused, set to 0 

                //     3: unused, set to 0 

                //     4: unused, set to 0 

                //     5: unused, set to 0 

                //     6: unused, set to 0 

                //     7: reserved, set to 0, signifies byte controlData[1] 

                 

                if ((controlData[0] & 131) == 131) {         // go forward 

                    motorHFL = 1; motorHFR = 1; 

                    motorHRL = 0; motorHRR = 0; 

                } 

                 

                else if ((controlData[0] & 140) == 140) {   // go backwards 

                    motorHFL = 0; motorHFR = 0; 

                    motorHRL = 1; motorHRR = 1; 

                } 

                 

                else if ((controlData[0] & 134) == 134) {   // turn right 

                    motorHFL = 1; motorHFR = 0; 

                    motorHRL = 0; motorHRR = 1; 

                } 

                 

                else if ((controlData[0] & 137) == 137) {   // turn left 

                    motorHFL = 0; motorHFR = 1; 

                    motorHRL = 1; motorHRR = 0; 

                } 

                 

                else if ((controlData[0] & 138) == 138) {   // move right 

                    motorHFL = 1; motorHFR = 0; 

                    motorHRL = 1; motorHRR = 0; 

                } 

                 

                else if ((controlData[0] & 133) == 133) {   // move left 

                    motorHFL = 0; motorHFR = 1; 

                    motorHRL = 0; motorHRR = 1; 

                } 
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                else {                                // do nothing 

                    motorHFL = 0; motorHFR = 0; 

                    motorHRL = 0; motorHRR = 0; 

                } 

                 

                if ((controlData[0] & 144) == 144) {  // lights on 

                    lights = 1; 

                } 

                    else {                            // lights off 

                    lights = 0; 

                } 

 

                if ((controlData[0] & 160) == 160) {  // control system on 

                    controlSystemOn = 1; 

                }     

                else { 

                    controlSystemOn = 0;              // control system off 

                    pitchAdj = 0; 

                    rollAdj=0; 

                } 

                 

                if((controlData[0] & 64) == 64) {     // data logging on 

                    dataLoggingOn = 1; 

                    log_data(); 

                } 

                else { 

                    dataLoggingOn = 0;                // data logging off 

                } 

 

                if (((controlData[1] & 1) == 1) &&  

    (thermalOverloadFlag == 0)) {       // go up 

                      // turn on 50%, dir: 0 = down, 1 = up 

     motorVL = 0.5 + (rollAdj/2); motorVLdir = 1;  

     // turn on 50%, dir: 1 = down, 0 = up 

motorVR = 0.5 - (rollAdj/2); motorVRdir = 0;                      

      } 

                 

                else if (((controlData[1] & 2) == 2) &&    

    (thermalOverloadFlag == 0)) {  // go down 

                      // turn on 50%, dir: 0 = down, 1 = up  

     motorVL = 0.5 + (rollAdj/2); motorVLdir = 0;     

                      // turn on 50%, dir: 1 = down, 0 = up  

     motorVR = 0.5 - (rollAdj/2); motorVRdir = 1;     

                } 

                 

                else {  // don't drive up or down, turn off all vertical 

    // thrusters except for control system adjustments 

                    if (rollAdj < 0) {        

                        motorVL = abs(rollAdj)/2; motorVLdir = 0;                  

                        motorVR = abs(rollAdj)/2; motorVRdir = 0;    

                    } 

                    else { 

                        motorVL = rollAdj/2; motorVLdir = 1;                 

                        motorVR = rollAdj/2; motorVRdir = 1; 

                    } 

                     

                    motorVB = abs(pitchAdj);   // control system adjustment  

                    if (pitchAdj < 0) {        // determine rotation 

                        motorVBdir = 1; 

                    } 
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                    else { 

                        motorVBdir = 0; 

                    } 

                                         

                }   

                                     

        }// end of while 

} // end of main 
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Appendix F - Data Logging Code 

 

Bottom Pitch Data Logger 
 

// BOTTOM controller PITCH DATA LOGGER for ROV 

//  v0.30                  

//  18 April 2012 

//  by Scott O'Brien 

 

// LIBRARIES 

            #include "mbed.h" 

            #include "LIS331.h"         // accelerometer library 

            #include "SDFileSystem.h"   // SD card library for data logging 

             

// COMPILER DEFINITIONS             

            #define PI 3.14159265 

 

// PIN DEFINITIONS 

            DigitalOut mbedLED1(LED1);  // onboard led's 

            DigitalOut mbedLED2(LED2); 

            DigitalOut mbedLED3(LED3); 

            DigitalOut mbedLED4(LED4); 

             

            SDFileSystem sd(p5, p6, p7, p8, "sd"); // for data logging 

            LIS331 accel(p9, p10);      // I2C connection to accelerometer 

 

            DigitalOut motorHFL(p27);   // front left horizontal thruster 

            DigitalOut motorHFR(p26);   // front right horizontal thruster 

            DigitalOut motorHRL(p25);   // rear left horizontal thruster 

            DigitalOut motorHRR(p24);   // rear right horizontal thruster   

            PwmOut motorVL(p23);        // left vertical thruster 

            DigitalOut motorVLdir(p20); // 0 = down, 1 = up 

            PwmOut motorVR(p22);        // right vertical thruster 

            DigitalOut motorVRdir(p19); // 0 = down, 1 = up 

            PwmOut motorVB(p21);        // back vertical thruster 

            DigitalOut motorVBdir(p18); // 0 = down, 1 = up 

 

// TICKERS AND TIMERS 

            Timer  loggingTimer;        // timer for data logging 

            Ticker change_VB_PWM_ticker;// change PID settings every 15s 

 

// VARIABLES AND CONSTANTS 

            float pitchTilt           = 0; 

            float VBLevel             = 0;// amount to apply to VB thruster 

            char  VB_incrementer_dir  = 0;// increment (0) or decrement (1)  

            char  passes              = 0;// number of logging cycles 

            FILE  *fp = fopen("/sd/data.txt", "a"); 

            

// FUNCTIONS 

 

// read tilt sensors 

void read_tilt_sensors(){ 

            

            // get samples and take the MODE 

            int n = 7; 

            float sample[7] = {0,0,0,0,0,0,0}; 

            for (int i = 0 ; i < n ; i++) {         // get samples 

                    sample[i] = accel.getAccelX(); 

            } 
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            for(int i = 0 ; i < n; i++) {           // sort the samples 

                    for(int j = 0 ; j < n - 1 ; j++) { 

                            if(sample[j] > sample[j + 1]) { 

                                    float temp = sample[j + 1]; 

                                    sample[j + 1] = sample[j]; 

                                    sample[j] = temp; 

                            }         

                    } 

            } 

 

            pitchTilt = sample[3];// use value from the middle of the array 

            

            return; 

} 

 

// log data 

void log_data(){ 

             

            if (fp != NULL) { 

                FILE *fp = fopen("/sd/data.txt", "a"); 

            } 

            mbedLED3 = !mbedLED3; 

            fprintf(fp, "\n\r%f,%f,%f,%i",  loggingTimer.read(), pitchTilt, 

motorVB.read(), motorVBdir.read()); 

            fclose(fp); 

            return; 

             

} 

 

// change VB PWM levels every 5 seconds 

void change_VB_PWM(){ 

 

            if (VBLevel >= 1.0) {       // time to head down 

                VB_incrementer_dir = 1;  

            } 

             

            if (VBLevel <= -1.0) {       // time to head up 

                VB_incrementer_dir = 0; 

                passes = passes + 1;  

            } 

             

            if (VB_incrementer_dir == 0) { 

                VBLevel = VBLevel + 0.05; // increment PWM by 5% every step 

            } 

            else { 

                VBLevel = VBLevel - 0.05; // decrement PWM by 5% every step 

            } 

 

            mbedLED2 = !mbedLED2; 

            return; 

} 
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// MAIN 

int main() { 

 

            wait(30);  // time to get in the water 

           

            // initialise timer for data logging 

            loggingTimer.start();    

             

            // set up ticker event to change PWM settings every 5 seconds 

            change_VB_PWM_ticker.attach(&change_VB_PWM, 5.0);    

                     

            // initialise all motors 

            motorHFL   = 0;              

            motorHFR   = 0; 

            motorHRL   = 0;              

            motorHRR   = 0; 

            motorVL    = 0.0; 

            motorVLdir = 0;         

            motorVR    = 0.0; 

            motorVRdir = 0; 

            motorVB    = 0.0; 

            motorVBdir = 0; 

             

            // set up accelerometer 

            accel.setFullScaleRange2g();       // 2g range on accel 

            accel.setPowerMode(47);            // 100 Hz ODR : 0d47 = 0x2f 

             

            // set up PWM for vertical thrusters     

            int pwmPeriod = 100;               // 1 millisecond = 1000 Hz 

            motorVL.period_us(pwmPeriod);      // 1 microsecond = 1 MHz 

            motorVR.period_us(pwmPeriod);      // 100 microseconds = 10 kHz 

            motorVB.period_us(pwmPeriod);     

             

                         

            mbedLED4 = 0;     // LED4 turns on when finished data logging    

                           

            while(1) { 

                    read_tilt_sensors(); 

                     

                    if (passes == 5) {           // logged enough data yet? 

                        change_VB_PWM_ticker.detach();// disable PWM 

                        mbedLED4 = 1;            // turn on "Done” LED4 

                        VBLevel = 0;             // turn off VB thruster  

                    } 

                    else { 

                        log_data(); 

                    } 

                     

                    motorVB = abs(VBLevel);      // apply variable  

                    if (VBLevel < 0) {           // determine rotation 

                        motorVBdir = 1; 

                    } 

                    else { 

                        motorVBdir = 0; 

                    } 

                        

            }// end of while 

} // end of main 
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MATLAB 
 

%%  PWM pitch data analysis  
%    
%   By Scott O'Brien 
%   #12747212 
% 

  
%% Initialise 
clear all; close all; clc; 

  
%% Import data 
rawData = importdata('data_pwm_pitch_logger_pool_22_april.txt'); 

  
%% Prep data 
timeData         = rawData(:,1); 
pitchTiltData    = rawData(:,2); 
VBMotorLevelData = rawData(:,3); 
VBMotorDirData   = rawData(:,4); 

  
% convert accelerometer readings to degrees 
pitchTiltAngle   = (asin(pitchTiltData) * 180 / pi); 

  
% adjust for direction of rotation  
for n = 1:length(VBMotorLevelData); 
        if VBMotorDirData(n) == 0 
                VBMotorLevelData(n) = VBMotorLevelData(n) * -1; 
        end 
end 

  
%% Plot tilt and PWM level 
figure(1); 
hold on; 

  
subplot(2,1,1), plot(timeData,pitchTiltAngle,'r'); 
legend('angle (degrees)'); title('Pitch Tilt'); 
xlabel('Time (s)'); ylabel('Tilt (degrees)'); 
grid on; 

  
subplot(2,1,2),plot(timeData,VBMotorLevelData*100,'b'); 
legend('PWM (%)'); title('PWM Level'); 
xlabel('Time (s)'); ylabel('PWM (%)'); 
grid on; 

 

%%  PID pitch data analysis  
%    
%   By Scott O'Brien 
%   #12747212 
% 

  
%% Initialise 
clear all; close all; clc; 

  
%% Import data 
rawData = importdata('data_pid_pool_12_April_2012.txt'); 

 
%% Prep data 
timeData = rawData(:,1); 
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p_constant     = rawData(:,2); 
i_constant     = rawData(:,3); 
d_constant     = rawData(:,4); 
pitchTiltData  = rawData(:,5); 

 

% convert accelerometer readings to degrees 
pitchTiltAngle = (asin(pitchTiltData) * 180 / pi); 

   
%% Plot tilt and PID constants 
figure(1); 
hold on; 

 
subplot(2,1,1), plot(timeData,pitchTiltAngle,'r'); 
legend('angle (degrees)'); title('Pitch Tilt'); 
xlabel('Time (s)'); ylabel('Tilt (degrees)'); 
grid on; 

 
subplot(2,1,2),plot(timeData,p_constant,'b'); 
legend('P constant'); title('PID Level'); 
xlabel('Time (s)'); ylabel('P constant'); 
grid on; 
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Appendix G - IMU Schematic and PCB Design 
 

 

 

 
Figure G.1. Circuit schematic for Tim Marvin’s IMU board. 
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Figure G.2. PCB design for Tim Marvin’s IMU board. 
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Appendix H - Definitions of Motion 
 

There are six different motions a vessel in 

or on water can experience: 

 

 Yaw 

 Pitch 

 Roll 

 Sway 

 Surge 

 Heave 

 

These are shown in Figure H.1. Sway, 

surge and heave are positional movements 

along the three axes, whereas yaw, pitch and 

roll are rotational movements around those 

three axes. 

 

 

 

Side View
Surge

Front View

Heave

Top View

Sway

YawTop View

Sway

Yaw

 
 

Figure H.1. Water-based vehicular motions. 
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Appendix I - Accelerometer Noise 

Analysis 
 

During initial testing of the LIS331DLH 

accelerometer, some unexpected glitches were 

observed in the raw output data. 

 

15 seconds of data readings were logged 

whilst the accelerometer was sitting motionless 

on a relatively level table. As can be seen in 

Figure I.1, most of the time the reading is -

0.000061 which is near enough to level, but 

every now and then a value of -0.015747 

occurs. It was determined that it was not 

anything mechanical on or around the table 

causing this, as the number never varies from 

these two exact figures – external mechanical 

disturbances show up as varying values. 

 

 
 

Figure I.1. Logged data generated at an output data 

rate (ODR) of 1000 Hz. 

 

 

These glitches were some sort of noise, 

representing 0.9 degrees of tilt [22]: 

 

 

               
 

  
                                 

 
 

 

 
                    

 
  0.9  

Further investigation seemed warranted. The 

power supply and the USB communications 

were considered and eliminated as possible 

sources of this noise, and a low pass filter, 

using an averaging over 10 samples, was used 

to try to eliminate it, but this did not eliminate 

the problem. 

 

A frequency analysis of the data in Matlab 

was performed to look for clues (Figure I.2).  It 

was observed that the unwanted noise bears a 

strong visual resemblance to the MATLAB 

uniform noise function. Figure I.3 shows the 

plot of data generated by the rand() function 

and the similarity is obvious.  

 

 

 

 
Figure I.2. Signal and noise generated at an output 

data rate (ODR) of 1000 Hz. 

 

 

 
Figure I.3. Uniform noise generated by the rand() 

function. 
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After further research, it was found that 

noise is common and inherent in these forms of 

incredibly sensitive MEM’s based devices.  

The manufacturers recommended solution is to 

lower the default output data rate (ODR) from 

1000 Hz to 100 Hz. 

 

Further testing, including logging more data 

and performing frequency analyses shows that 

reducing the ODR does in fact lower the noise 

floor and reduces the number of spurious 

samples received. This is shown in Figures I.4 

and I.5. By comparing the vertical axes of 

Figures I.2 and I.5 it can be seen there is a 

reduction in the average noise levels from 

approximately 0.1 down to approximately 

0.03. 

 

Figure I.4. Logged data generated at an output data 

rate (ODR) of 100 Hz. 
 

 

 
 

Figure I.5. Signal and noise generated at an output 

data rate (ODR) of 100 Hz. 

 

As the spurious samples are now received 

very infrequently, simply using the mode of 5 

or 7 samples should be enough, in practice, to 

remove any problem they cause. 

 

The raw data, Excel and MATLAB files 

can be found on the accompanying CD. 
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Appendix J - Bill of Materials 
 
 

Bill of Materials: Top Controller All prices include VAT 

Item Quantity  Price each   Total  Supplier 

mbed 1  £        48.88   £        48.88  Donated by ARM 

joystick 2  £          2.45   £          4.90  Proto-Pic 

joystick breakout board 2  £          1.50   £          3.00  Proto-Pic 

LCD screen 1  £        15.60   £        15.60  Farnell 

large stand-offs 8  £          0.36   £          2.88  Proto-Pic 

small standoffs 8  £          0.15   £          1.20  Proto-Pic 

bolts 32  £          0.03   £          0.96  Proto-Pic 

washers 32  £          0.02   £          0.64  Proto-Pic 

3 junction screw terminal 2  £          0.25   £          0.50  Farnell 

MAX3232 IC 1  £          1.84   £          1.84  Donated by Exar 

2x5 way IDC plug 1  £          1.09   £          1.09  Maplin 

2x5 way IDC socket 1  £          1.14   £          1.14  Maplin 

2x8 way IDC plug 1  £          1.19   £          1.19  Maplin 

2x8 way IDC socket 1  £          1.29   £          1.29  Maplin 

20 pin header strip 2  £          0.59   £          1.18  Farnell 

16 pin DIL socket 1  £          0.15   £          0.15  Farnell 

switch 4  £          1.20   £          4.80  Farnell 

green LED 5  £          0.20   £          1.00  Farnell 

red LED 1  £          0.19   £          0.19  Farnell 

enclosure 1  £          3.79   £          3.79  Maplin 

DB9 female connector 1  £          1.49   £          1.49  Maplin 

piezo buzzer 1  £          0.95   £          0.95  Proto-Pic 

7805 voltage regulator 1  £          0.99   £          0.99  Maplin 

strip-board 1  £          3.40   £          3.40  Farnell 

9 V battery connector 1  £          1.09   £          1.09  Maplin 

9 V battery   1  £          3.00   £          3.00  Morrisons 

1N4001 diode 1  £          0.15   £          0.15  Proto-Pic 

100 F capacitor 1  £          0.24   £          0.24  Farnell 

10 F capacitor 1  £          0.20   £          0.20  Farnell 

0.1 F capacitor 5  £          0.15   £          0.75  Farnell 

150  resistor 7  £          0.10   £          0.70  Farnell 

27  resistor 1  £          0.10   £          0.10  Farnell 

6  resistor 1  £          0.10   £          0.10  Farnell 

LM335 temperature sensor 1  £          0.85   £          0.85  Farnell 

small heatsink 1  £          0.48   £          0.48  Farnell 

heatsink mounting kit 1  £          0.15   £          0.15  Farnell 

rca jack 1  £          0.59   £          0.59  Proto-Pic 

acrylic 1 piece  £               -     £               -    Donated by AbPlas 

wire various  £               -     £               -    Maplin 

ribbon cable 150 mm  £               -     £               -    Maplin 

  
 Total   £      111.45  
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Bill of Materials: Bottom Controller  All prices include VAT  

Item Quantity Price each  Total  Supplier 

mbed 1 £          48.88  £     48.88  Donated by ARM 

IMU board 1 £          90.00  £     90.00  Tim Marvin 

bolts 4 £            0.07  £        0.28  Proto-Pic 

nuts 12 £            0.03  £        0.36  Proto-Pic 

washers 4 £            0.02  £        0.08  Proto-Pic 

3 junction screw terminal 5 £            0.25  £        1.25  Farnell 

2 junction screw terminal 4 £            0.19  £        0.76  Farnell 

2.2 Ah Turnigy LIPO battery 1 £          10.00  £     10.00  HobbyKing 

MAX3232 IC 1 £            1.84  £        1.84  Donated by Exar 

20 pin header strip 4 £            0.59  £        2.36  Farnell 

7805 voltage regulator 1 £            0.99  £        0.99  Maplin 

strip-board 1 £            3.40  £        3.40  Farnell 

fuse 1 £            0.19  £        0.19  Farnell 

fuse holder 1 £            0.13  £        0.13  Farnell 

200 F capacitor 3 £            0.26  £        0.78  Farnell 

100 F capacitor 4 £            0.24  £        0.96  Farnell 

10 F capacitor 1 £            0.20  £        0.20  Farnell 

0.1 F capacitor 5 £            0.15  £        0.75  Farnell 

10 nF capacitor 1 £            0.09  £        0.09  Farnell 

10 K  resistor 8 £            0.10  £        0.80  Farnell 

680  resistor 1 £            0.10  £        0.10  Farnell 

150  resistor 1 £            0.10  £        0.10  Farnell 

LM335 temperature sensor 1 £            0.85  £        0.85  Farnell 

1N4001 diode 6 £            0.15  £        0.90  Proto-Pic 

RFP30N06LE MOSFET 5 £            1.12  £        5.60  Proto-Pic 

LMD18200 H-bridge IC 3 £          17.95  £     53.85  Farnell 

LMD18200 breakout board 3 £            1.20  £        3.60  Proto-Pic 

small heatsink 6 £            0.48  £        2.88  Farnell 

large heatsink 3 £            0.60  £        1.80  Farnell 

heatsink mounting kits 9 £            0.15  £        1.35  Farnell 

heatsink compound 1 £            3.69  £        3.69  Maplin 

switch 1 £            1.79  £        1.79  Maplin 

battery connector 1 £            0.40  £        0.40  HobbyKing 

terminal block 1 £            1.28  £        1.28  B & Q 

video camera 1 £          30.06  £     30.06  Proto-Pic 

microSD card 1 £          15.99  £     15.99  Amazon 

cable ties numerous £                 -  £            -    B & Q 

heatshrink various £                 -  £            -    Farnell 

wire various £                 -  £            -    Maplin 

  

Total  £   288.34  
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Bill of Materials: Hardware  All prices include VAT  

Item  Quantity   Price each   Total  Supplier 

piping 4  £            1.14   £        4.56  B & Q 

corner junction pipe 8  £            1.09   £        8.72  B & Q 

small T-junction pipe 6  £            1.30   £        7.80  B & Q 

small c-clamp 7  £            0.34   £        2.38  B & Q 

large c-clamp 2  £            0.51   £        1.02  B & Q 

large T-junction 1  £          12.00   £     12.00  B & Q 

screw end-cap 2  £            8.99   £     17.98  B & Q 

push-fit end-cap 1  £            3.99   £        3.99  B & Q 

junction box 1  £            4.56   £        4.56  B & Q 

screw terminal block 2  £            1.28   £        2.56  B & Q 

Rule 500 bilge pump 7  £          12.50   £     87.50  Borough Bridge Marina 

Graupner 5-blade propeller 7  £            4.77   £     33.39  gliders.uk.com 

screws 14  £            0.03   £        0.42  B & Q 

nuts 4  £            0.03   £        0.12  B & Q 

bolts 4  £            0.07   £        0.28  B & Q 

30 m Ethernet cable 1  £          10.68   £     10.68  scan.co.uk 

DB9 male connector 1  £            4.10   £        4.10  Maplin 

cable braid 2  £            1.91   £        3.82  Farnell 

18-core cable 0.5 m  £            1.62   £        1.62  Farnell 

18 conductor plug and socket 1  £          36.77   £     36.77  Northern Connectors 

cable grommet 1  £            3.49   £        3.49  Maplin 

cable holder 1  £            3.98   £        3.98  B & Q 

polyurethane resin 1  £            3.15   £        3.15  Farnell 

silicone grease 1  £            4.49   £        4.49  Maplin 

propeller shaft adapter 7  £                 -     £            -    Donated by U.o.W 

acrylic 1 piece  £                 -     £            -    Donated by AbPlas 

plastic coated wire mesh 400 mm x 300 mm  £                 -     £            -    Donated by   Jack Bowles 

wood-based flotation device various  £                 -     £            -    Donated by   Jack Bowles 

lead weights 4  £                 -     £            -    Donated by  Colin Pullen 

closed-cell foam various  £                 -     £            -    Donated by  Colin Pullen 

wire various  £                 -     £            -    Maplin 

electrical tape various  £                 -     £            -    B & Q 

cable ties numerous  £                 -     £            -    B & Q 

 
 

 Total   £   259.38  
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Appendix K - Permissions 
 

Images from Woods Hole Oceanographic Institution: 

Email received 9 February 2012: 

 

Hi Scott, 

 

Thank you for your email. You are welcome to use some images from our site in your project report. 

Please credit them to Woods Hole Oceanographic Institution. 

 

Best regards, 

Erin 

 

Media Relations Office 

93 Water Street, MS #16 

Woods Hole Oceanographic Institution 

 (508) 289-3340 

media@whoi.edu 

 

Images from VideoRay LLC: 

Email received 9 February 2012: 

 

Hi Scott, 

  

You may.  Please credit VideoRay LLC in any of the images you use. 

  

Regards, 

  

Brian Luzzi 

Marketing Manager 

VideoRay LLC 

  

(P) +1 610 458 3015 

(C) +1 610 937 6151 

(F) +1 610 458 3010 

VideoRay LLC 

580 Wall Street, Phoenixville, Pennsylvania 19460 

www.videoray.com 

 

Schematic and PCB layout from Tim Marvin: 

email received 10 April 2012 

 

Scott, 

 

Amazing work man! Of course you can use whatever you need in any way 

you need to. Attached are the original .sch and .brd files for Eagle. 

If you need PDFs they should be on my project page on the mbed site. 

If you need anything else just let me know. I'm happy to help in 

whatever way I can. Keep up for great work...I'm always interested in 

seeing how it's going. 

 

  

mailto:media@whoi.edu
tel:%2B1%20610%20458%203015
tel:%2B1%20610%20937%206151
tel:%2B1%20610%20458%203010
http://www.videoray.com/


92 
 

Images from Saab Seaeye: 

email received 20 February 2012 

 

Hi Scott, 

  

No problem at all.  Please go ahead and use the images. 

  

Best regards 

 

James Douglas 

Sales Manager 

 

Mob.Tl: +44 (0) 7766 207 384 

 

Saab Seaeye Ltd 

20 Brunel Way 

Segensworth East 

Fareham 

Hampshire 

PO15 5SD 

United Kingdom 

Tel: +44 (0) 1489 898 000 

Fax: +44(0) 1489 898 001 

Web: www.seaeye.com 

 

 

Images from SMD Ltd: 

email received 20 February 2012 

 

Scott 

Thank you for your request. 

 

Please feel free to use our images, however I would appreciate SMD being credited. 

 

Many thanks 

 

Graeme Walker  

Sales Manager Trenching & Special Projects  

 

SMD Ltd  

Mobile +44(0)7891 260324  

www.smd.co.uk  

  

tel:%2B44%20%280%29%207766%20207%20384
tel:%2B44%20%280%29%201489%20898%20000
tel:%2B44%280%29%201489%20898%20001
http://www.seaeye.com/
tel:%2B44%280%297891%20260324
http://www.smd.co.uk/
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Appendix L - Workplan 
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Appendix M - Disk Contents 
 

 

 

Report    - pdf format 

- docx format 

 

Code    - top controller 

- bottom controller 

- data logger code 

- MATLAB PID controllers plot file  

 

Pitch and Roll data logging - MATLAB plot files 

    - logged data files 

 

Schematics and diagrams - top controller schematic 

    - top controller strip-board 

    - bottom controller schematic 

    - bottom controller strip-board 

    - Tim Marvins IMU schematic 

    - Tim Marvins IMU PCB layout 

Photos 

 

Videos 

 

Noise Analysis   - raw data text files 

    - MATLAB analysis file 

    - Excel spreadsheets 

 

Bill of materials   - Excel spreadsheet 

 

Workplan   - Excel spreadsheet 

 

 

 

end of report 

 


