
Pulse width
modulation

1

DRAFT VERSION - This is part of a course slide set,
currently under development at:
http://mbed.org/cookbook/Course-Notes

We welcome your feedback in the comments section of the course notes
cookbook page. Tell us if these slides are useful, if you would use them to

help run lessons, workshops or training, and how you’d improve them.

Written by R. Toulson (Anglia Ruskin University) and
T. Wilmshurst (University of Derby), (c) ARM 2011

An accompanying textbook is also being considered if there is interest

http://mbed.org/cookbook/Course-Notes
http://mbed.org/cookbook/Course-Notes
http://mbed.org/cookbook/Course-Notes

Pulse width modulation

2

• The concept of pulse width modulation (PWM)

• Applications using pulse width modulation

• Evaluating pulse width modulation on the mbed

• Controlling LED brightness with PWM

• Controlling servo position with PWM

• Outputting to a piezo buzzer

Introducing pulse width modulation
(PWM)

What is Pulse Width Modulation?

• Pulse width modulation (PWM) is a simple method
of using a rectangular digital waveform to control an
analog variable

• PWM control is used in a variety of applications,
ranging from communications to automatic control

3

Introducing pulse width modulation
(PWM)

• The period is normally kept constant, and the pulse width, or “on”
time is varied

• The duty cycle is the proportion of time that the pulse is ‘on’ or
‘high’, and is expressed as a percentage:

duty cycle = 100% * (pulse on time) / (pulse period)

4

Period, T

“on” time, ton

Average

value

Introducing pulse width modulation
(PWM)

• Whatever duty cycle a PWM stream has, there is an average
value, as indicated by the dotted line

• If the on time is small, the average value is low; if the on time
is large, the average value is high

• By controlling the duty cycle, we control this average value

5

Period, T

“on” time, ton

Average

value

Introducing pulse width modulation
(PWM)

• The average value can be extracted from the PWM stream
with a low-pass filter

• In this case, and as long as PWM frequency and values of R
and C are appropriately chosen, Vout becomes an analog
output

6

R

C

Vin Vout
R

C

Vin Vout

• In practice, this sort of filtering is
not always required; many
physical systems have response
characteristics which, in reality,
act like low pass filters

Applications using pulse width
modulation

• Devices used in robotics
– DC motors

– Servos

– Solenoids

– Closed loop control systems

– Communications and pulse code modulation

• Benefits include
– Microprocessor control

– Efficient use of power

– Tolerance to analog noise

– Not susceptible to component drift

7

Pulse width modulation on the mbed

8

• The PwmOut interface is used
to control the frequency and
mark-space ratio of a digital
pulse train

• The mbed has up to six PWM
outputs, on pins 21 to 26,
although these PwmOuts all
share the same period timer

Pulse width modulation on the mbed

9

The library functions are shown in the table below

PwmOut A pulse-width modulation digital output

Functions Usage

PwmOut Create a PwmOut connected to the specified pin

write Set the output duty-cycle, specified as a normalised float (0.0 – 1.0)

read
Return the current output duty-cycle setting, measured as a
normalised float (0.0 – 1.0)

period
period_ms
period_us

Set the PWM period, specified in seconds (float), milli-seconds (int)
or micro-seconds (int), keeping the duty cycle the same.

pulsewidth
pulsewidth_ms
pulsewidth_us

Set the PWM pulsewidth, specified in seconds (float), milli-seconds
(int) or micro-seconds (int), keeping the period the same.

operator= A operator shorthand for write()

operator float() An operator shorthand for read()

Evaluating pulse width modulation on
the mbed

• Exercise 1: Create a PWM signal which we can see on an
oscilloscope. The following code will generate a 100 Hz
pulse with 50% duty cycle

10

#include "mbed.h"

PwmOut PWM1(p21);

int main() {

PWM1.period(0.010); // set PWM period to 10 ms

PWM1=0.5; // set duty cycle to 50%

}

Evaluating pulse width modulation on
the mbed

• Exercise 2: Change the duty cycle to some different
values, say 0.2 (20%) and 0.8 (80%) and check the correct
display is seen on the ‘scope, as shown below

11

Controlling LED brightness with PWM

Exercise 3: This example
code uses a pulse width
modulation signal to
increase and decrease
the brightness of the
onboard LED

The program requires the
use of a host terminal
application to
communicate the
brightness value to the
mbed, in this example by
using the ‘u’ and ‘d’ keys

12

// host terminal LED dimmer control

#include "mbed.h"

Serial pc(USBTX, USBRX); // tx, rx

PwmOut led(LED1);

float brightness=0.0;

int main() {

pc.printf(“Control of LED dimmer by host terminal\n\r");

pc.printf("Press 'u‘ = brighter, 'd‘ = dimmer\n\r");

while(1) {

char c = pc.getc();

wait(0.001);

if((c == 'u') && (brightness < 0.1)) {

brightness += 0.001;

led = brightness;

}

if((c == 'd') && (brightness > 0.0)) {

brightness -= 0.001;

led = brightness;

}

pc.printf("%c %1.3f \n \r",c,brightness);

}

}

Controlling servo motor position with
PWM

• A servo is a small rotary position control device, used for
example in radio-controlled cars and aeroplanes to position
controllers such as steering, elevators and rudders

• The servo shaft can be positioned to specific angular positions
by sending the servo a PWM signal

• As long as the modulated signal exists on the input line, the
servo will maintain the angular position of the shaft

• As the modulated signal changes, the angular position of the
shaft changes

13

Controlling servo position with PWM

14

This diagram shows the PWM timing requirements to control the servo
between 0 and 180 degrees

Controlling servo position with PWM

The servo requires a higher
current than the USB standard
can provide, and so it is essential
that you power the servo using
an external power supply

A 4xAA (6V) battery pack meets
the supply requirement of the
servo

15

Controlling servo position with PWM

16

• Exercise 4: Connect the
servo to the mbed as
indicated. Set the PWM
period to 20 ms

• Try a number of
different duty periods
and observe the servo’s
motion

Open loop control of a servo motor

• Exercise 5: Controlling servo position with the potentiometer

17

– Connect a servo to the mbed with a
potentiometer connected to pin 20

– Write a program which allows the
potentiometer to control servo
position

– Scale input values so that the full
range of potentiometer adjustment
leads to the full range of servo
position change

Outputting to a piezo buzzer

• We can connect the PWM output to a piezo buzzer to make
sound

• If the duty cycle is set to 50% the PWM frequency will define
the pitch of the sound heard

• Exercise 6: Connect a piezo buzzer one of the PWM outputs.
Set duty cycle to 50% and frequency to 500 Hz. Ensure that
you can create sound with the PWM. Change the frequency of
the PWM output and notice the difference in sound with
changes in frequency.

18

Outputting to a piezo buzzer

• Exercise 7: We are going to use the PWM to play the start of an
old English folk tune ‘Oranges and Lemons’. If you’re a reader of
music you will recognise this in the Figure below

• You just need to know that any note which is a minim lasts twice
as long as a crotchet, which in turn lasts twice as long as a quaver

19

crotchet quaver minim

Outputting to a piezo buzzer

The following table converts the musical piece into frequencies
and beat lengths

20

Outputting to a piezo buzzer

The following program implements the ‘Oranges and Lemons‘ musical
output

21

// Oranges and Lemons program

#include "mbed.h"

PwmOut buzzer(p21);

float frequency[]={659,554,659,554,550,494,554,587,494,659,554,440};

//frequency array

float beat[]={1,1,1,1,1,0.5,0.5,1,1,1,1,2};

//beat array

int main() {

while (1) {

for (int i=0; i<=11; i++) {

buzzer.period(1/(frequency[i])); // set PWM period

buzzer=0.5; // set duty cycle

wait(0.5*beat[i]); // hold for beat period

}

}

}

Experiment with adding multipliers to the frequency and beat values
to change the speed and pitch of the piece.

Summary

• The concept of pulse width modulation (PWM)

• Applications using pulse width modulation

• Evaluating pulse width modulation on the mbed

• Controlling LED brightness with PWM

• Controlling servo position with PWM

• Outputting to a piezo buzzer

22

