

Document Number: MCR20ASMACRM
Rev. 0

07/2015

MCR20A Simple Media Access
Controller (SMAC)

Reference Manual

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

Information in this document is provided solely to enable system and software implementers to use
Freescale Semiconductor products. There are no express or implied copyright licenses granted
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information
in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters
that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating parameters,
including “Typicals”, must be validated for each customer application by customer’s technical
experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights
of others. Freescale Semiconductor products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications intended to
support or sustain life, or for any other application in which the failure of the Freescale Semiconductor
product could create a situation where personal injury or death may occur. Should Buyer purchase
or use Freescale Semiconductor products for any such unintended or unauthorized application,
Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat.
& Tm. Off. ARM and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU
and/or elsewhere. All rights reserved. All other product or service names are the property of their
respective owners.

© Freescale Semiconductor, Inc. 2015. All rights reserved.

MCR20A Simple Media Access Controller (SMAC) Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor 1

Chapter 1.
MCR20A SMAC introduction

1.1. MCR20A SMAC-based Demonstration Applications ...7
1.2. Platform requirements ..7
1.3. MCU Resources used by SMAC ...7
1.4. SMAC Basic initialization ...7

Chapter 2.
Software architecture

2.1. Block diagram ..9
2.2. MCR20A SMAC Data Types and Structures ..10
2.2.1 Fundamental Data Types ... 10
2.2.2 rxPacket_t .. 10
2.2.3 smacHeader_t... 11
2.2.4 rxStatus_t ... 12
2.2.5 smacPdu_t .. 12
2.2.6 txPacket_t... 12
2.2.7 channels_t .. 13
2.2.8 smacErrors_t .. 14
2.2.9 txContextConfig_t ... 15
2.2.10 smacTestMode_t .. 15
2.2.11 smacEncryptionKeyIV_t ... 15
2.3. MCR20A SMAC to Application Messaging ...16

Chapter 3.
Primitives

3.1. MCPSDataRequest ..19
3.2. MLMETXDisableRequest ...20
3.3. MLMEConfigureTxContext ..21
3.4. MLMERXEnableRequest ..22
3.5. MLMERXDisableRequest ...23
3.6. MLMELinkQuality ..24
3.7. MLMESetChannelRequest ..24
3.8. MLMEGetChannelRequest ...25
3.9. MLMEPAOutputAdjust ...25
3.10. MLMEPhySoftReset ..26
3.11. MLMEScanRequest ...26
3.12. MLMECcaRequest ..27
3.13. SMACSetShortSrcAddress ..28
3.14. SMACSetPanID ...28

MCR20A Simple Media Access Controller (SMAC) Reference Manual, Rev. 0, 07/2015

2 Freescale Semiconductor

3.15. SMACFillHeader ...29
3.16. SMAC_SetIVKey ..30
3.17. Smac_RegisterSapHandlers ...30

MCR20A Simple Media Access Controller (SMAC) Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor 3

About This Book
This manual provides a detailed description of the Freescale MCR20A Simple Media Access Controller
(MCR20A SMAC). This software is designed for use specifically with the MCR20A platforms. The
MCR20AVHM transceiver is a low power, high-performance 2.4 GHz, IEEE 802.15.4-compliant
transceiver with connectivity to a broad range of microcontrollers, including the Kinetis family of
products. To support the MCR20A transceiver, Freescale provides a Freescale Freedom Development
platform (FRDM-CR20A).

The SMAC software provided for the MCR20A is developed using the FRDM-CR20A platform as a
shield, plugged into either the FRDM-K64F or FRDM-KL46Z Freescale Freedom Development
platforms.

Audience

This document is intended for application developers working on custom wireless applications that
employ the MCR20A. The latest version of the Freescale MCR20A SMAC is available on the Freescale
website.

Organization

This document is organized into three chapters.

Chapter 1 Chapter 1, “MCR20A SMAC introduction”— This chapter introduces MCR20A
SMAC features and functionality.

Chapter 2 Chapter 2, “Software architecture” — This chapter describes MCR20A SMAC
software architecture.

Chapter 3 Chapter 3, “Primitives” — This chapter provides a detailed description of
MCR20A SMAC primitives.

Revision history

The following table summarizes revisions to this document since the previous release.

Conventions

This document uses the following notational conventions:

• Courier monospaced type indicate commands, command parameters, code examples,
expressions, datatypes, and directives.

• Italic type indicates replaceable command parameters.

• All source code examples are in C.

Revision history

Rev. number Date Substantive changes

0 07/2015 Initial release

MCR20A Simple Media Access Controller (SMAC) Reference Manual, Rev. 0, 07/2015

4 Freescale Semiconductor

Definitions, Acronyms, and Abbreviations

The following list defines the acronyms and abbreviations used in this document.

GUI Graphical User Interface

MAC Medium Access Control

MCU MicroController Unit

NVM Non-Volatile Memory

PC Personal Computer

TERM Serial Port Terminal Application

XCVR Transceiver

PCB Printed Circuit Board

OTA Over-the-air

SAP Service Access Point

ACK Acknowledge

AA Automatic ACK

LBT Listen Before Talk

RX Receive(r)

TX Transmit(ter)

CCA Clear Channel Assessment

ED Energy Detect

RTOS Real Time Operating System

FRDM Freedom development platform

References

The following sources were referenced to produce this book:

1. Freescale MCR20A Reference Manual (document MCR20RM)

MCR20A Simple Media Access Controller (SMAC) Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor 1-5

Chapter 1
MCR20A SMAC introduction
The Freescale MCR20A Simple Media Access Controller (MCR20A SMAC) is a simple ANSI C based
codebase available as sample source code. The MCR20A SMAC is used for developing proprietary RF
transceiver applications using Freescale’s MCR20A 2.4 GHz transceiver with either a MK64F12 or
MKL46Z4 microcontroller. However, this does not mean that the MCR20A device is limited to these
microcontrollers. The MCR20A transceiver is a 2.4 GHz Industrial, Scientific, and Medical (ISM), and
Medical Body Area Network (MBAN) transceiver intended for the IEEE® 802.15.4 Standard. The
MCR20A device is a standalone transceiver that is normally combined with a software stack and a
Freescale Kinetis K series, M series, or other microcontroller (MCU) to implement an IEEE 802.15.4
Standard platform solution.

Features of the MCR20A include:

• Fully compliant IEEE 802.15.4 Standard 2006 transceiver supports 250 kbit/s OQPSK data in 5.0
MHz channels and full spread-spectrum encode and decode. Also extends radio operation to the
2.36 GHz to 2.40 GHz Medical Band (MBAN) frequencies with IEEE 802.15.4j channel, spacing,
and modulation requirements.

• 2.4 GHz frequency band of operation (ISM).

• 250 kbit/s data rate with O-QPSK modulation in 5.0 MHz channels with direct sequence spread
spectrum (DSSS) encode and decode.

• Operates on one of 16 selectable ISM channels per IEEE 802.15.4 specification.

• Programmable output power.

• Supports 2.36 GHz to 2.40 GHz Medical Band (MBAN) frequencies with IEEE 802.15.4j channel,
spacing, and modulation requirements.

• Hardware acceleration for IEEE® 802.15.4 Standard.

• Complete 802.15.4 onboard modem.

• IEEE 802.15.4 Standard 2006 packet processor/sequencer with receiver frame filtering.

• Random number generator.

• Support for dual PAN ID mode.

• Internal event timer block with four comparators to assist sequencer and provide timer capability.

• The MCR20A has external connections with the MCU:

— The transceiver communicates with a target MCU through SPI, eight (8) software
programmable GPIO pins, and an output interrupt pin.

MCR20A SMAC introduction

MCR20A Simple Media Access Controller (SMAC) Reference Manual, Rev. 0, 07/2015

1-6 Freescale Semiconductor

NOTE

It is highly recommended that the SMAC user be familiar with the
MCR20A device. Additional details can be found in the MCR20AVHM
Data Sheet (document MCR20AVHM) and the MCR20A 2.4 Low-Power
Transceiver Reference Manual (document MCR20RM).

The MCR20A SMAC is a small codebase that provides simple communication and test applications based
on drivers, (802.15.4 compliant) PHY, and framework utilities available as source code. This environment
is useful for hardware and RF debug, hardware standards certification, and developing proprietary
applications. The MCR20A SMAC is provided as part of the Example Application Demos available for
MCR20A and also as a standalone set of files.

To use any of the existing applications available in MCR20A SMAC, download and open the available
Application Demos in the corresponding development environment (IDE).

SMAC features include:

• Compact footprint:

— Between 2 KB to 3 KB of flash required, depending on configuration used.

— Less than 500 bytes RAM, depending on configuration used.

• Very low power, proprietary, bidirectional RF communication link.

• The MCR20A radio allows packet filtering by hardware by checking the preamble and the
synchronization word, which reduces software overhead and memory footprint.

• Broadcast communication.

• Unicast communication — MCR20A SMAC includes a Node Address 16-bit field. This allows
SMAC to perform unicast transmissions. To change the address of a node, modify this constant:
gNodeAddress_c inside the SMAC_Config.h file, or call SMACSetShortSrcAddress(uint16_t
nwShortAddress). The address is set to 0xBEAD by default. Some of the Demo Applications
allow the user to change this address at runtime.

• Change of current PAN. The SMAC packet uses a short 802.15.4 compliant header with a
hard-coded configuration for frame control which allows the user to switch between PANs. The
PAN address has also 16 bits (gDefaultPanID_c). This address can be modified by changing the
default value from SMAC_Config.h file or by calling SMACSetPanID(uint16_t
nwShortPanID.

• There are no blocking functions within the MCR20A SMAC.

• Easy-to-use sample applications included.

• Light-weight, custom LBT algorithm.

• Light-weight, custom, AA mechanism which is transparent to the user after enabling the feature.

• Encryption using Advanced Encryption Standard in Cipher Block Chaining mode with
configurable initial vector and key.

• Configurable number of retries and backoff interval.

• Inter-layer communication using SAPs.

• The MCR20A SMAC also filters packets that have correct addressing information (pass address
filtering) but are not in the expected format (short addressing, no security, data frame).

MCR20A SMAC introduction

MCR20A Simple Media Access Controller (SMAC) Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor 1-7

1.1 MCR20A SMAC-based Demonstration Applications

The following is a list of MCR20A SMAC-based demonstration applications:

• PC-based Connectivity Test Application which requires a TERM. This application allows the user
to perform basic communication tests and several advanced XCVR tests.

• PC-based Wireless Messenger Application which requires a TERM and is presented in the form of
a messenger-like application. This demo application highlights the “Listen Before Talk” and
“Automatic ACK” mechanisms, allowing the user to enable, disable, and configure them at
runtime.

• PC-based Wireless UART Application which requires either a TERM or an application capable of
reading/writing from/to a serial port. This application is used as a wireless UART bridge between
two or more (one to many) MCR20A platforms. It can be configured to use the previously
mentioned mechanisms, but the configuration must be done at compile time.

• PC-based Low Power Demo Application which requires a TERM. This application helps the user
to learn how to enable low power modes on the MCR20A (plus MK64F12 / MKL46Z4) platforms.
It also contains a scenario based on the Very Low Power Stop (VPLS) mode and SMAC to
demonstrate how a low power mode can be used in a connectivity stack.

1.2 Platform requirements

The MCR20A SMAC can be used with any customer target application or board. However, Freescale
provides several solutions like FRDM-CR20A connected to the FRDM-KL46Z or FRDM-K64F Freescale
Freedom Development platforms.

1.3 MCU Resources used by SMAC

As stated, the MCR20A is a transceiver capable of connecting to a large variety of MCU’s. The SMAC
does not use neither MCU nor transceiver resources directly. All accesses to resources are performed using
the framework, drivers, and PHY.

1.4 SMAC Basic initialization

Before transmitting, receiving, or performing any other SMAC operation described in this manual, the
system protocol must be initialized to configure the transceiver with correct functional settings and to set
SMAC's state machine to known states. To initialize the SMAC, perform the following tasks in order:

1. Initialize MCU interrupts and peripherals. This initialization is included in every demo in the
hardware_init(void) function, available as source code.

— Initialize LED, Keyboard, Serial Manager, Timers Manager, Memory Manager, and drivers
depending on application needs.
MEM_Init();
TMR_Init();
LED_Init();
SerialManager_Init();

MCR20A SMAC introduction

MCR20A Simple Media Access Controller (SMAC) Reference Manual, Rev. 0, 07/2015

1-8 Freescale Semiconductor

— Initalize PHY layer.
Phy_Init();

2. Initialize SMAC. This sets the SMAC state machine to default, configures addressing with default
values, and initializes the RNG used for the first sequence number value and the random backoff.

InitSmac();

3. Set the SAP handlers so that SMAC can notify the application on asynchronous events on both data
and management layers.

void Smac_RegisterSapHandlers(
 SMAC_APP_MCPS_SapHandler_t pSMAC_APP_MCPS_SapHandler,
 SMAC_APP_MLME_SapHandler_t pSMAC_APP_MLME_SapHandler,
 instanceId_t smacInstanceId
)

4. Reserve the RAM memory space needed by SMAC to allocate the received and transmitted OTA
messages by declaring the buffers that must be of the size maximum payload (SDU) added to the
size of the structure holding the packet:

uint8_t RxDataBuffer[gMaxSmacSDULength_c + sizeof(rxPacket_t)];
rxPacket_t *RxPacket;

uint8_t TxDataBuffer[gMaxSmacSDULength_c + sizeof(txPacket_t)];
txPacket_t *TxPacket;

RxPacket = (rxPacket_t*)RxDataBuffer;
TxPacket = (txPacket_t*)TxDataBuffer;

MCR20A Simple Media Access Controller (SMAC) Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor 2-9

Chapter 2
Software architecture
This chapter describes the MCR20A SMAC software architecture. All of the SMAC source code is always
included in the application. SMAC is primarily a set of utility functions or building blocks that users can
use to build simple communication applications.

2.1 Block diagram

Figure 2-1 shows a simplified MCR20A SMAC based stack block diagram.

Figure 2-1. SMAC System decomposition

An application programming interface (API) is implemented in the MCR20A SMAC as a C header file
(.h) that allows access to the code. The code includes the API to specific functions. Thus, the application
interface with the SMAC is accomplished by including the SMAC_Interface.h file, which makes reference
to the required functions within the SMAC and provides the application with desired functionality.

Software architecture

MCR20A Simple Media Access Controller (SMAC) Reference Manual, Rev. 0, 07/2015

2-10 Freescale Semiconductor

NOTE

MCR20A SMAC projects support only the MCR20A-based transceiver and
the associated Kinetis devices designated in the project files.

2.2 MCR20A SMAC Data Types and Structures

The MCR20A SMAC fundamental data types and defined structures are discussed in the following
sections.

2.2.1 Fundamental Data Types

The following list shows the fundamental data types and the naming convention used in the MCR20A
SMAC:

uint8_t Unsigned 8-bit definition

uint16_t Unsigned 16-bit definition

uint32_t Unsigned 32-bit definition

int8_t Signed 8-bit definition

int16_t Signed 16-bit definition

int32_t Signed 32-bit definition

These data types are used in the MCR20A SMAC project as well as in the applications projects. They are
defined in the EmbeddedTypes.h file.

2.2.2 rxPacket_t

This structure defines the variable used for MCR20A SMAC received data buffer:
typedef struct rxPacket_tag{
 uint8_t u8MaxDataLength;
 rxStatus_t rxStatus;
 uint8_t u8DataLength;
 smacHeader_t smacHeader;
 smacPdu_t smacPdu;
}rxPacket_t;

Members

u8MaxDataLength Max number of bytes to be received.

rxStatus Indicates the reception state. See rxStatus_t data type for more detail.

u8DataLength Number of received bytes.

smacPdu The MCR20A SMAC protocol data unit.

smacHeader SMAC structure that defines the header used. Freescale recommends that the user
does not modify this structure directly, but through the associated functions.

Software architecture

MCR20A Simple Media Access Controller (SMAC) Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor 2-11

Usage

This data type is used by an application in the following manner:

1. Declare a buffer to store a packet to be received OTA. Freescale recommends the size of this buffer
to be at least as long as the biggest packet to be received by the application.

2. Declare a pointer of the type rxPacket_t.

3. Initialize the pointer to point to the buffer declared at the first step.

4. Initialize the u8MaxDataLength member of the packet structure. The SMAC will filter all the
received packets having a payload size bigger than u8MaxDataLength.

5. Use the pointer as the argument when calling MLMERXEnableRequest:

uint8_t RxDataBuffer[gMaxSmacSDULength_c + sizeof(rxPacket_t)];
rxPacket_t *RxPacket;
RxPacket = (rxPacket_t*)RxDataBuffer;
RxPacket->u8MaxDataLength = gMaxSmacSDULength_c;
RxEnableResult = MLMERXEnableRequest(RxPacket, 0);

The user can define a variable of the type smacErrors_t to store the result of executing
MLMERXEnableRequest function.

2.2.3 smacHeader_t

This structure defines the variable used for MCR20A SMAC header:
typedef PACKED_STRUCT smacHeader_tag{
 uint16_t frameControl;
 uint8_t seqNo;
 uint16_t panId;
 uint16_t destAddr;
 uint16_t srcAddr;
}smacHeader_t;

Members

frameControl Frame control configuration. The value is set each time SMACFillHeader is called
and should not be changed.

seqNo The Sequence number is updated each time a data request is performed.

panId The value of the source and destination PAN address. It is recommended to be
changed through the associated function.

destAddr The short destination address.

srcAddr The short source address.

Usage

Freescale recommends that the user does not access this structure directly but through the associated

functions.

Software architecture

MCR20A Simple Media Access Controller (SMAC) Reference Manual, Rev. 0, 07/2015

2-12 Freescale Semiconductor

2.2.4 rxStatus_t

This enumeration lists all the possible reception states:
typedef enum rxStatus_tag
{
 rxInitStatus,
 rxProcessingReceptionStatus_c,
 rxSuccessStatus_c,
 rxTimeOutStatus_c,
 rxAbortedStatus_c,
 rxMaxStatus_c
} rxStatus_t;

Members

rxInitStatus The RTOS based MCR20A SMAC does not use this.

rxProcessingReceptionStatus_c This state is set when the MCR20A SMAC is in the middle of receiving
a packet.

rxSuccessStatus_c This is one of the possible finish conditions for a received packet that
was successfully received and could be checked by the indication
functions.

rxTimeOutStatus_c This is another of the possible finish conditions for a timeout condition
and could be checked by the indication functions.

rxAbortedStatus_c This status is set when SMAC drops a packet (on SMAC specific
criteria) validated by PHY and the enter reception request was
performed with a non-zero timeout.

rxMaxStatus_c This element indicates the total number of possible reception states.

2.2.5 smacPdu_t

This type defines the SMAC’s basic protocol data unit:
typedef struct smacPdu_tag{

uint8_t smacPdu[1];
}smacPdu_t;

Members

smacPdu[1]. Starting position of the buffer where TX or RX data is stored.

2.2.6 txPacket_t

This structure defines the type of variable to be transmitted by the MCR20A SMAC. It is located in the
SMAC_Interface.h file and is defined as follows:

typedef struct txPacket_tag
{
 uint8_t u8DataLength;
 smacHeader_t smacHeader;
 smacPdu_t smacPdu;

Software architecture

MCR20A Simple Media Access Controller (SMAC) Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor 2-13

}txPacket_t;

Members

u8DataLength The number of bytes to transmit.

smacHeader SMAC structure that defines the header used. Freescale recommends that the user
does not modify this structure directly, but through the associated functions.

smacPdu The MCR20A SMAC protocol data unit.

Usage

This data type is used by an application in the following manner:

1. Declare a buffer to store the packet to be transmitted OTA. Freescale recommends the size of this
buffer is at least as long as the biggest packet to be transmitted by the application.

2. Declare a pointer of the type txPacket_t.

3. Initialize the pointer to point to the buffer declared at the first step.

4. Copy the desired data into the payload.

5. Set u8DataLength to the size (in bytes) of the payload.

6. Use the pointer as the argument when calling MCPSDataRequest.
uint8_t TxDataBuffer[gMaxSmacSDULength_c + sizeof(txPacket_t)];
txPacket_t *TxPacket;
...
TxPacket = (txPacket_t*)TxDataBuffer;
FLib_MemCpy(TxPacket->smacPdu.smacPdu, dataToBeSentBuffer, payloadSizeBytes);
TxPacket->u8DataLength = payloadSizeBytes;
DataRequestResult = MCPSDataRequest(TxPacket);

You can use a variable of the type smacErrors_t to store the result of executing MCPSDataRequest
function.

2.2.7 channels_t

Definition for RF channels. The number of channel varies in each defined operating band for sub-1 GHz
stacks, but it is fixed for the 2.4 GHz. First logical channel in all bands is 0 for sub-1GHz and 11 for 2.4
GHz. It is defined as follows:
typedef enum channels_tag
{
#include "SMAC_Channels.h"
} channels_t;

Each application derives the minimum and maximum channel values from the enumeration above. SMAC
only keeps an enumeration of all the possible channel numbers.

Members

None.

Software architecture

MCR20A Simple Media Access Controller (SMAC) Reference Manual, Rev. 0, 07/2015

2-14 Freescale Semiconductor

2.2.8 smacErrors_t

This enumeration is used as the set of possible return values on most of the MCR20A SMAC API functions
and is located in the SMAC_Interface.h. Some of the messages sent by SMAC to the application use this
enumeration as a status.

typedef enum smacErrors_tag{
 gErrorNoError_c = 0,
 gErrorBusy_c,
 gErrorChannelBusy_c,
 gErrorNoAck_c,
 gErrorOutOfRange_c,
 gErrorNoResourcesAvailable_c,
 gErrorNoValidCondition_c,
 gErrorCorrupted_c,
 gErrorMaxError_c
} smacErrors_t;

Members

gErrorNoError_c The MCR20A SMAC accepts the request and processes it. This return
value does not necessarily mean that the action requested was
successfully executed. It only means that it was accepted for processing
by the MCR20A SMAC. This value is also used as a return status in the
SMAC to application SAPs. For example, if a packet has been
succesfully sent, the message has a data confirm field with this status.
This value is returned in the CCA confirm message if the scanned
channel is found idle.

gErrorBusy_c This constant is returned when the MCR20A SMAC layer is not in an
idle state, and it cannot perform the requested action.

gErrorChannelBusy_c The custom “Listen Before Talk” algorithm detected a busy channel
 more times than the configured number of retries. A CCA confirm
 message can have this value if the channel is found busy.

gErrorNoAck_c The custom “Automatic Ack” mechanism detected that no
acknowledgement packet has been received more times than the
configured number of retries.

gErrorOutOfRange_c A certain parameter configured by the application is not in the valid
range.

gErrorNoValidCondition_c Returned when requesting an action on an invalid environment.
Requesting MCR20A SMAC operations when MCR20A SMAC has
not been initialized or requesting to disable RX when SMAC was not in
a receiving or idle state, or setting a number of retries without enabling
the “LBT and AA” features.

gErrorCorrupted_c Not implemented in the RTOS-based SMAC.

gErrorMaxError_c This constant indicates the total number of returned constants.

Software architecture

MCR20A Simple Media Access Controller (SMAC) Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor 2-15

2.2.9 txContextConfig_t
typedef struct txContextConfig_tag
{
 bool_t ccaBeforeTx;
 bool_t autoAck;
 uint8_t retryCountCCAFail;
 uint8_t retryCountAckFail;
}txContextConfig_t;

Members

ccaBeforeTx bool_t value to enable/disable the “LBT” mechanism.

autoAck bool_t value to enable/disable the “AA” mechanism.

retryCountCCAFail This value specifies the number of times the MCR20A SMAC attempts to
retransmit a packet if “LBT” is enabled and the channel is found busy.

retryCountAckFail This value specifies the number of times the MCR20A SMAC
 attempts to retransmit a packet if “AA” is enabled and no
 acknowledgement message is received in the expected time frame.

2.2.10 smacTestMode_t
typedef enum smacTestMode_tag
{
 gTestModeForceIdle_c = 0,
 gTestModeContinuousTxModulated_c,
 gTestModeContinuousTxUnmodulated_c,
 gTestModePRBS9_c,
 gTestModeContinuousRxBER_c,
 gMaxTestMode_c
} smacTestMode_t;

This enumeration is used only in the Connectivity Test Application to select the type of test to be
performed. Keep in mind that all the decisions are taken at application level and this enumeration is used
only as a reference for designing the test modes.

2.2.11 smacEncryptionKeyIV_t
typedef struct smacEncryptionKeyIV_tag
{
 uint8_t IV[16];
 uint8_t KEY[16];
}smacEncryptionKeyIV_t;

Members

IV The initial vector used by the CBC mode of AES.

KEY The encryption / decryption key used by the CBC mode of AES.

Software architecture

MCR20A Simple Media Access Controller (SMAC) Reference Manual, Rev. 0, 07/2015

2-16 Freescale Semiconductor

Usage

This data type is used internally by SMAC. Call SMAC_SetIVKey with two 16 byte buffer pointers as
parameters to change the SMAC initial vector and encryption key settings.

2.3 MCR20A SMAC to Application Messaging

The RTOS based SMAC communicates with the application layer in two ways: directly, through the return
value of the functions if the request is synchronous (change channel, output power, etc), and indirectly,
through SAPs for asynchronous events (data confirm, ED/CCA confirm, data indication, timeout
indication). Both SAPs (data and management) pass information to the application using a messaging
system. The data structures used by this system are described below.

typedef enum smacMessageDefs_tag
{
 gMcpsDataCnf_c,
 gMcpsDataInd_c,

 gMlmeCcaCnf_c,

 gMlmeEdCnf_c,

 gMlmeTimeoutInd_c,

 gMlme_UnexpectedRadioResetInd_c,
}smacMessageDefs_t;

The above enumeration summarizes the types of messages passed through SAPs. As mentioned earlier,
there are data confirm, data indication (data layer), CCA confirm, ED confirm, timeout indication, and
unexpected radio reset indication (management layer) messages. Each message type is accompanied by
corresponding message data. The main structures that build the message data are described below.

Table 2-1. Message types and associated data structures

Index Message type
Associated data

structures
Description

1 gMcpsDataCnf_c smacDataCnf_t Contains a smacErrors_t element. See
Section 2.2.8, “smacErrors_t”.

2 gMcpsDataInd_c smacDataInd_t u8LastRxRssi
value indicating the average RSSI
obtained during the reception
pRxPacket
pointer to the packet passed as
parameter to MLMERXEnableRequest.

3 gMlmeCcaCnf_c smacCcaCnf_t Contains a smacErrors_t element. See
Section 2.2.8, “smacErrors_t”.

Software architecture

MCR20A Simple Media Access Controller (SMAC) Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor 2-17

All taken into consideration, the two types of messages used by the SMAC to application SAPs have the
following form:

typedef struct smacToAppMlmeMessage_tag
{
 smacMessageDefs_t msgType;
 uint8_t appInstanceId;
 union
 {
 smacCcaCnf_t ccaCnf;
 smacEdCnf_t edCnf;
 }msgData;
} smacToAppMlmeMessage_t;

typedef struct smacToAppDataMessage_tag
{
 smacMessageDefs_t msgType;
 uint8_t appInstanceId;
 union
 {
 smacDataCnf_t dataCnf;
 smacDataInd_t dataInd;
 }msgData;
} smacToAppDataMessage_t;

The SMAC-to-application SAP handlers are function pointers of a special type. When application
specifies the functions to handle asynchronous responses, the SAP handlers aquire the value of those
functions. Below are the definitions of the handlers.
typedef smacErrors_t (* SMAC_APP_MCPS_SapHandler_t)(smacToAppDataMessage_t * pMsg,
instanceId_t instanceId);

4 gMlmeEdCnf_c smacEdCnf_t status
This is a smacErrors_t element. If PHY
succesfully performs the ED it’s value will
be gErrorsNoError_c
energyLevel
The value of the energy level register.
energyLeveldB
The value of the energy level converted to
dBm.
scannedChannel
The channel number of the scanned
channel.

5 gMlmeTimeoutIn
d_c

none -

6 gMlme_Unexpect
edRadioResetIn

d_c

none -

Table 2-1. Message types and associated data structures

Index Message type
Associated data

structures
Description

Software architecture

MCR20A Simple Media Access Controller (SMAC) Reference Manual, Rev. 0, 07/2015

2-18 Freescale Semiconductor

typedef smacErrors_t (* SMAC_APP_MLME_SapHandler_t)(smacToAppMlmeMessage_t * pMsg,
instanceId_t instanceId);

MCR20A Simple Media Access Controller (SMAC) Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor 3-19

Chapter 3
Primitives
The following sections provide a detailed description of MCR20A SMAC primitives associated with the
MCR20A SMAC application API.

3.1 MCPSDataRequest

This data primitive is used to send an over-the-air (OTA) packet. This is an asynchronous function, which
means it asks the MCR20A SMAC to transmit an OTA packet, but transmission could continue after the
function returns.

Prototype

smacErrors_t MCPSDataRequest(txPacket_t *psTxPacket);

Arguments

txPacket_t *psTxPacket Pointer to the packet to be transmitted.

Returns

gErrorNoError_c Everything is ok, and the transmission performs.

gErrorOutOfRange_c One of the members in the pTxMessage structure is out of range
(invalid buffer size or data buffer pointer is NULL).

gErrorBusy_c The radio is performing another action and could not attend this
request.

gErrorNoValidCondition_c The MCR20A SMAC has not been initialized.

gErrorNoResourcesAvailable_c The PHY cannot process an MCR20A SMAC request, so MCR20A
SMAC cannot process it, or the memory manager is unable to
allocate another buffer.

Usage

• SMAC must be initialized before calling this function.

• Declare a variable of the type smacErrors_t to save the result of the function execution.

• Prepare the txPacket_t parameter as explained in Section 2.2.6, “txPacket_t” declaration and
usage.

• Call the MCPSDataRequest function.

Primitives

MCR20A Simple Media Access Controller (SMAC) Reference Manual, Rev. 0, 07/2015

3-20 Freescale Semiconductor

• If the function call result is different than gErrorNoError_c, the application should handle the error
returned. For instance, if the result is gErrorBusy_c, the application should wait for the radio to
finish a previous operation.

uint8_t TxDataBuffer[gMaxSmacSDULength_c + sizeof(txPacket_t)];
txPacket_t *TxPacket;
smacErrors_t smacError;
...
TxPacket = (txPacket_t*)TxDataBuffer;
TxPacket->u8DataLength = payloadLength;
//Copy the data to send into the smacPdu of the packet
FLib_MemCpy(TxPacket->smacPdu.smacPdu, bufferToSend, payloadLength);
smacError = MCPSDataRequest(TxPacket);
...

Implementation

This MCPSDataRequest primitive creates a message for the PHY task and fills it in respect to the user
configurations prior to this call and to the information contained in the packet.

3.2 MLMETXDisableRequest

This function places the radio into stand-by and the PHY and SMAC state machines into idle, if current
operation is TX. It does not explicitly check if SMAC is in a transmitting state, but it clears the SMAC
buffer containing the packet to be sent, which makes it ideal for using when application wants to switch
from TX to idle.

Prototype

void MLMETXDisableRequest(void);

Arguments

None.

Returns

None: The function forcibly sets the transceiver to standby, and the PHY and SMAC state machines to idle,
so no return value is needed.

Usage

Call MLMETXDisableRequest().

Implementation

This primitive creates a message for PHY, sets message type as a set transceiver state request with the value
of force transceiver off. After passing the message to PHY, SMAC checks if a TX is in progress and clears
the buffer containing the packet.

Primitives

MCR20A Simple Media Access Controller (SMAC) Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor 3-21

3.3 MLMEConfigureTxContext

This function aids the user in enabling/disabling the “LBT” and “AA” mechanisms, and also configures
the number of retries in case the channel is found busy or no acknowledgement message is received.

Prototype

smacErrors_t MLMEConfigureTxContext(txContextConfig_t* pTxConfig);

Arguments

txContextConfig_t* pTxConfig Pointer to a configuration structure containing the information described
above.

Returns

gErrorNoError_c The desired configuration is applied succesfully.

gErrorNoValidCondition_c The number of retries is set but the corresponding mechanism boolean is
set to FALSE.

gErrorOutOfRange_c The number of retries exceeds gMaxRetriesAllowed_c.

Usage

• Declares a structure of txContextConfig_t type.

• Sets the desired values to the members.

• Calls MLMEConfigureTxContext with the address of the declared structure as parameter.

• Captures the return value in a smacErrors_t variable and handle the result.

txContextConfig_t txConfigContext;
txConfigContext.autoAck = TRUE; //”AA” is enabled
txConfigContext.ccaBeforeTx = FALSE; //”LBT” is disabled
txConfigContext.retryCountAckFail = 0;// no retries in case no ACK is received
txConfigContext.retryCountCCAFail = 0;// no retries in case of channel busy

smacErrors_t err = MLMEConfigureTxContext(&txConfigContext);

...

Implementation

This primitive configures the way SMAC handles data requests and responses from PHY according to the
parameters described by the txContextConfig_t structure. Requests forwarded by SMAC to PHY depend
on addressing and txContextConfig_t information.

Primitives

MCR20A Simple Media Access Controller (SMAC) Reference Manual, Rev. 0, 07/2015

3-22 Freescale Semiconductor

3.4 MLMERXEnableRequest

Places the radio into receive mode on the channel pre-selected by MLMESetChannelRequest ().

Prototype

smacErrors_t MLMERXEnableRequest(rxPacket_t *gsRxPacket, uint32_t u32Timeout);

Arguments

rxPacket_t *gsRxPacket: Pointer to the structure where the reception results are stored.

uint32_t u32Timeout: 32-bit timeout value in symbol duration. One symbol duration is equivalent to a 16
us duration.

Returns
gErrorNoError_c Everything is ok, and the reception performs.

gErrorOutOfRange_c One of the members in the rxPacket_t structure is out of range (not
 valid buffer size or data buffer pointer is NULL).

gErrorBusy_c The radio is performing another action and could not attend this
 request.

gErrorNoValidCondition_c The MCR20A SMAC has not been initialized.

gErrorNoResourcesAvailable_c The PHY cannot process a MCR20A SMAC request, so the
 MCR20A SMAC cannot process it.

Usage

• SMAC must be initialized before calling this function.

• Declare a variable of the type smacErrors_t to save the result of the function execution.

• Prepare the rxPacket_t parameter as explained in Section 2.2.2, “rxPacket_t” declaration and
usage.

• Call MLMERXEnableRequest function.

• If the result of the call of the function is different to gErrorNoError_c, the application may handle
the error returned. For instance, if the result is gErrorBusy_c the application should wait for the
radio to finish a previous operation.

uint8_t RxDataBuffer[gMaxSmacSDULength_c + sizeof(rxPacket_t)];
rxPacket_t *RxPacket;
smacErrors_t smacError;

RxPacket = (rxPacket_t*)RxDataBuffer;
RxPacket->u8MaxDataLength = gMaxSmacSDULength_c;
smacError = MLMERXEnableRequest(RxPacket, 0);

...

NOTE

• The return of anything different than gErrorNoError_c implies that the
receiver did not go into receive mode.

Primitives

MCR20A Simple Media Access Controller (SMAC) Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor 3-23

• 32-bit timeout value of zero causes the receiver to never timeout and
stay in receive mode until a valid data packet is received or the
MLMERXDisableRequest function is called.

• To turn off the receiver before a valid packet is received, the
MLMERXDisableRequest call can be used.

• If timeout is not zero and a valid packet with length greater than
u8MaxDataLength is received, SMAC will send a data indication
message and will set rxAbortedStatus_c in the rxStatus_t field of the
rxPacket_t variable.

• When using security, although the maximum allowed payload for
transmission is gMaxSmacSDULength_c, for reception, the user should
configure the u8MaxDataLength field to gMaxSmacSDULength_c + 16
(maximum number of padding bytes for the encryption algorithm) so
that SMAC will not filter out received packets with
gMaxSmacSDULength_c size.

Implementation

This primitive creates a message for PHY, completes the message with the appropriate values, and fills the
timeout field with the value passed through the timeout parameter. If this value is 0, SMAC creates a set
PIB request, asking PHY to enable the gPhyPibRxOnWhenIdle attribute.

3.5 MLMERXDisableRequest

Returns the radio to idle mode from receive mode.

Prototype

smacErrors_t MLMERXDisableRequest(void);

Arguments

None.

Returns

gErrorNoError_c The request was processed and the transceiver is in idle.

gErrorNoValidCondition_c The radio is not in RX state, or SMAC is not initialized.

gErrorBusy_c The radio is performing another action and could not attend this request.

Usage

Call MLMERXDisableRequest ()

NOTE

This function can be used to turn off the receiver before a timeout occurs or
when the receiver is in the always-on mode.

Primitives

MCR20A Simple Media Access Controller (SMAC) Reference Manual, Rev. 0, 07/2015

3-24 Freescale Semiconductor

Implementation

This function creates a message for PHY and if the timeout value from MLMERXEnableRequest was 0,
the message is filled as a set PIB request, requiring the gPhyPibRxOnWhenIdle to be set to 0. If the timeout
value is greater than 0, the message is filled as a set transceiver state request, disabling the receiver.

It aborts the current requested action, puts the PHY in the idle state, and sets the transceiver in standby
mode. It also disables any previous timeout programmed.

3.6 MLMELinkQuality

This function returns an integer value that is link quality value from the last received packet, offering
information on how good is the “link” between the transmitter and the receiver. The LQI value is between
0 and 255, where 0 means bad “link” and 255 is the exact opposite.

Prototype

uint8_t MLMELinkQuality(void);

Arguments

None.

Returns

uint8_t 8-bit value representing the link quality value. Returns the result in
smacLastDataRxParams.linkQuality.

Zero The MCR20A SMAC has not been initialized.

Usage

Call the MLMELinkQuality()

Implementation

This function reads the stored value in smacLastDataRxParams.linkQuality. This element contains the LQI
value calculated by the transceiver and interpreted by the PHY layer during the last reception.

3.7 MLMESetChannelRequest

This sets the frequency on which the radio transmits or receives.

Prototype

smacErrors_t MLMESetChannelRequest(channels_t newChannel);

Arguments

channels_t newChannel An 8-bit value that represents the requested channel.

Primitives

MCR20A Simple Media Access Controller (SMAC) Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor 3-25

Returns

gErrorNoError_c The channel set has been performed.

gErrorBusy_c The MCR20A SMAC is busy in other radio activity like
 transmitting/receiving data or performing a channel scan.

gErrorOutOfRange_c The requested channel is not valid.

gErrorNoValidCondition_c The MCR20A SMAC is not initialized.

Usage

Call the function MLMESetChannelRequest(newChannel);

NOTE

 Be sure to enter a valid channel between 11 and 26.

3.8 MLMEGetChannelRequest

This function returns the current channel.

Prototype

channels_t MLMEGetChannelRequest(void);

Arguments

None.

Returns

channels_t (uint8_t) The current RF channel.

Usage

Call MLMEGetChannelRequest();

3.9 MLMEPAOutputAdjust

This function adjusts the output power of the transmitter.

Prototype

smacErrors_t MLMEPAOutputAdjust(uint8_t u8PaValue);

Arguments

uint8_t u8PaValue 8-bit value for the output power desired. Values 3 – 31 are required.

Primitives

MCR20A Simple Media Access Controller (SMAC) Reference Manual, Rev. 0, 07/2015

3-26 Freescale Semiconductor

Returns

gErrorOutOfRange_c u8Power exceeds the maximum power value gMaxOutputPower_c
 (0x1F).

gErrorBusy_c The MCR20A SMAC is busy or PHY is busy.

gErrorNoError_c The action is performed.

gErrorNoValidCondition_c The MCR20A SMAC is not initialized.

Usage

Call MLMEPAOutputAdjust(u8PaValue);

NOTE

 Be sure to enter a valid value for the PA output adjust.

3.10 MLMEPhySoftReset

The MLMEPhySoftReset function is called to perform a software reset to the PHY and MCR20A SMAC
state machines.

Prototype

smacErrors_t MLMEPHYSoftReset(void);

Arguments

None

Returns

gErrorNoError_c If the action is performed.

gErrorNoValidCondition_c If the MCR20A SMAC is not initialized.

Usage

Call MLMEPHYSoftReset();

Implementation

This function creates a set transceiver state request message with force transceiver off field set and sends
it to PHY.

3.11 MLMEScanRequest

This function creates an ED request message to the PHY. If the channel passed as parameter is different
from the current channel, this function changes the channel before requesting the ED.

Prototype

smacErrors_t MLMEScanRequest(channels_t u8ChannelToScan);

Primitives

MCR20A Simple Media Access Controller (SMAC) Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor 3-27

Arguments

channels_t u8ChannelToScan Channel to be scanned.

Returns

gErrorNoError_c Everything is normal and the scan performs.

gErrorBusy_c The radio is performing another action.

gErrorNoValidCondition_c The MCR20A SMAC has not been initialized.

Usage

Call the function with the selected channel to be scanned.
MLMEScanRequest(u8ChannelToScan);

NOTE

Be sure to enter a valid channel (between 11 and 26). Be sure to switch back
to the previous channel after receiving the result.

3.12 MLMECcaRequest

This function creates a CCA request message and sends it to the PHY. CCA is performed on the active
channel (set with MLMESetChannelRequest). The result is received in a message passed through the
SMAC to application management SAP.

Arguments

None.

Returns

gErrorNoValidCondition_c The MCR20A SMAC has not been initialized.

gErrorBusy_c Either SMAC or PHY is busy and can not process the request.

gErrorNoError_c Everything is normal and the request was processed.

Usage

Call the function. The application can store the return value in a smacErrors_t variable and handle the error
in case it occurs. For example, if the return value is gErrorBusy_c, the application can wait on this value
until SMAC becomes idle.

smacErrors_t ReturnValue;
ReturnValue = MLMECcaRequest();
//Handle return value
...

Primitives

MCR20A Simple Media Access Controller (SMAC) Reference Manual, Rev. 0, 07/2015

3-28 Freescale Semiconductor

Implementation

This function creates a message for PHY requesting a CCA on the currently selected channel. After
passing the message through the SAP, SMAC changes it’s state to mSmacStatePerformingCca_c.

3.13 SMACSetShortSrcAddress

This function creates a message of set PIB request type, requesting PHY to change the short source address
of the node. If the message is passed succesfully to PHY, SMAC sets it’s own source address variable to
the new value so that when SMACFillHeader is called, the updated data is filled into the header.

Arguments

uint16_t nwShortAddress The new value of the 16 bit node address.

Returns

gErrorNoResourcesAvailable_c The PHY layer can not handle this request.

gErrorBusy_c PHY is busy and can not process the request.

gErrorNoError_c Everything is normal and the request was processed.

Usage

Call the function with the desired address. The application can store the return value in a smacErrors_t
variable and handle the error in case it occurs. For example, if the return value is gErrorBusy_c, the
application can wait on this value until PHY becomes idle.

smacErrors_t ReturnValue;
ReturnValue = MLMESetShortSrcAddress(0x1234);
//Handle return value
...

Implementation

This function creates a message for PHY requesting to set the source address PIB to the value passed as
parameter. If the request is processed, the value is also stored in the SMAC layer for fast processing in case
a call to SMACFillHeader is performed.

3.14 SMACSetPanID

This function creates a message of set PIB request type, requesting PHY to change the short PAN address
of the node. If the message is passed succesfully to PHY, SMAC sets it’s own PAN address variable to the
new value so that when SMACFillHeader is called, the updated data is filled into the header.

Primitives

MCR20A Simple Media Access Controller (SMAC) Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor 3-29

Arguments

uint16_t nwShortPanID: The new value of the 16 bit PAN address.

Returns

gErrorNoResourcesAvailable_c The PHY layer can not handle this request.

gErrorBusy_c PHY is busy and can not process the request.

gErrorNoError_c Everything is normal and the request was processed.

Usage

Call the function with the desired address. The application can store the return value in a smacErrors_t
variable and handle the error in case it occurs. For example, if the return value is gErrorBusy_c, the
application can wait on this value until PHY becomes idle.

smacErrors_t ReturnValue;
ReturnValue = MLMESetShortPanID(0x0001);
//Handle return value
...

Implementation

This function creates a message for PHY requesting to set the PAN address PIB to the value passed as
parameter. If the request is processed, the value is also stored in the SMAC layer for fast processing in case
a call to SMACFillHeader is performed.

3.15 SMACFillHeader

This function has no interaction with the PHY layer. It’s purpose is to aid the application in configuring
the addressing for a packet to be sent. The function fills the packet header with the updated addressing and
hard-coded configuration values and adds the destination address passed as parameter.

Arguments

smacHeader_t* pSmacHeader Pointer to the SMAC header that needs to be filled with addressing and
 configuration information.

uint16_t destAddr The 16 bit destination address.

Returns

None.

Primitives

MCR20A Simple Media Access Controller (SMAC) Reference Manual, Rev. 0, 07/2015

3-30 Freescale Semiconductor

Usage

Call the function if it is the first time the application uses the txPacket_t variable, or if the destination
address must be changed.

uint8_t TxDataBuffer[gMaxSmacSDULength_c + sizeof(txPacket_t)];
txPacket_t *TxPacket;
smacErrors_t smacError;
...
TxPacket = (txPacket_t*)TxDataBuffer;
SMACFillHeader(&(TxPacket->smacHeader), gBroadcastAddress_c);
TxPacket->u8DataLength = payloadLength;
//Copy the data to send into the smacPdu of the packet
FLib_MemCpy(TxPacket->smacPdu.smacPdu, bufferToSend, payloadLength);
smacError = MCPSDataRequest(TxPacket);
...

Implementation

This function fills the smacHeader with default, hard-coded frame control and sequence number values. It
adds the addressing information (configured by calling MLMESetShortSrcAddress and MLMESetPanID)
and the destination address passed as parameter.

3.16 SMAC_SetIVKey

This function sets the initial vector and encryption key for the encryption process if gSmacUseSecurity_c
is defined.

Arguments

uint8_t* KEY Pointer to a 16 byte buffer containing the key.

uint8_t* IV Pointer to a 16 byte buffer containing the initial vector.

Returns

None.

Usage

Declare two buffers each with 16 byte size. Fill one of them with key information and the other with initial
vector information. Call this function with pointers to the buffers as parameters.

3.17 Smac_RegisterSapHandlers

This function has no interaction with the PHY layer. It’s purpose is to create a communication bridge
between SMAC and application, so that SMAC can respond to asynchronous requests.

Primitives

MCR20A Simple Media Access Controller (SMAC) Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor 3-31

Arguments

SMAC_APP_MCPS_SapHandler_t pSMAC_APP_MCPS_SapHandle: Pointer to the function handler
for data layer response to asynchronous requests.

SMAC_APP_MLME_SapHandler_t pSMAC_APP_MLME_SapHandler Pointer to the function handler
for management layer response to asynchronous requests (ED/CCA requests).

instanceId_t smacInstanceId: The instance of SMAC for which the SAPs are registered. Always use 0 as
value for this parameter since this version of SMAC does not support multiple instances.

Returns

None.

Usage

Implement two functions that meet the constraints of the function pointers. Then, call
Smac_RegisterSapHandlers with the names of the functions.

smacErrors_t smacToAppMlmeSap(smacToAppMlmeMessage_t* pMsg, instanceId_t instance)
{
 switch(pMsg->msgType)
 {
 case gMlmeEdCnf_c:
 ...
 break;
 case gMlmeCcaCnf_c:
 ...
 break;
 case gMlmeTimeoutInd_c:
 ...
 break;
 default:
 break;
 }
 MEM_BufferFree(pMsg);
 return gErrorNoError_c;
}
smacErrors_t smacToAppMcpsSap(smacToAppDataMessage_t* pMsg, instanceId_t instance)
{
 switch(pMsg->msgType)
 {
 case gMcpsDataInd_c:
 ...
 break;
 case gMcpsDataCnf_c:
 ...
 break;
 default:
 break;
 }

 MEM_BufferFree(pMsg);

Primitives

MCR20A Simple Media Access Controller (SMAC) Reference Manual, Rev. 0, 07/2015

3-32 Freescale Semiconductor

 return gErrorNoError_c;
}

void InitApp
{

...
Smac_RegisterSapHandlers(

 (SMAC_APP_MCPS_SapHandler_t)smacToAppMcpsSap,
 (SMAC_APP_MLME_SapHandler_t)smacToAppMlmeSap,
 0)

...
}

Implementation

This function associates the SMAC internal function handlers with the ones registered by the application.
Whenever an asynchronous response needs to be passed from SMAC to application, the internal handlers
are called, which in turn call the ones defined by the application.

	MCR20A Simple Media Access Controller (SMAC)
	Table of Contents
	About This Book
	Audience
	Organization
	Revision history
	Conventions
	Definitions, Acronyms, and Abbreviations
	References
	Chapter 1 MCR20A SMAC introduction
	1.1 MCR20A SMAC-based Demonstration Applications
	1.2 Platform requirements
	1.3 MCU Resources used by SMAC
	1.4 SMAC Basic initialization

	Chapter 2 Software architecture
	2.1 Block diagram
	2.2 MCR20A SMAC Data Types and Structures
	2.2.1 Fundamental Data Types
	2.2.2 rxPacket_t
	2.2.3 smacHeader_t
	2.2.4 rxStatus_t
	2.2.5 smacPdu_t
	2.2.6 txPacket_t
	2.2.7 channels_t
	2.2.8 smacErrors_t
	2.2.9 txContextConfig_t
	2.2.10 smacTestMode_t
	2.2.11 smacEncryptionKeyIV_t

	2.3 MCR20A SMAC to Application Messaging

	Chapter 3 Primitives
	3.1 MCPSDataRequest
	3.2 MLMETXDisableRequest
	3.3 MLMEConfigureTxContext
	3.4 MLMERXEnableRequest
	3.5 MLMERXDisableRequest
	3.6 MLMELinkQuality
	3.7 MLMESetChannelRequest
	3.8 MLMEGetChannelRequest
	3.9 MLMEPAOutputAdjust
	3.10 MLMEPhySoftReset
	3.11 MLMEScanRequest
	3.12 MLMECcaRequest
	3.13 SMACSetShortSrcAddress
	3.14 SMACSetPanID
	3.15 SMACFillHeader
	3.16 SMAC_SetIVKey
	3.17 Smac_RegisterSapHandlers

