
IEEE 802.15.4 PHY Interface

Kinetis IEEE 802.15.4 MACPHY Software API, Rev. 1.1, 03/2015

Freescale Semiconductor, Inc. 66

4 IEEE 802.15.4 PHY Interface

The Freescale PHY Layer deals with the physical burst which is to be sent and/or received. It

performs modulation and demodulation, transmitter and receiver switching, fragmentation,

scrambling, interleaving, and error correction coding. The communication to the upper protocol

layers is carried out through the Layer 1 Interface. The PHY Layer is capable of executing the

following sequences:

· I (Idle)

· R (Receive Sequence conditionally followed by a TxAck)

· T (Transmit Sequence)

· C (Standalone CCA)

· CCCA (Continuous CCA) TR (Transmit/Receive Sequence - transmit unconditionally

followed by either an R or RxAck)

NOTE

For Sub-1GHz PHY the CCA and TR states are not available. Receive

Sequence conditionally followed by a TxAck or Transmit Sequence

conditionally followed by RxAck are software managed.

In addition to these sequences the PHY Layer also integrates a packet processor which determines

whether the packet is MAC-compliant, and if it is, whether it is addressed to the end device. Another

feature of the packet processor is Source Address Matching which can be viewed as an extension of

packet filtering; however its function is very specific to its intended application (data-polling and

indirect queue management by a PAN Coordinator).

4.1 PHY Features

PHY features like I, R, T, C, CCCA and TR sequences, packet processor filtering and source address

filtering can be implemented in hardware or emulated in software depending on the transceiver used.

4.1.1 Sequence Manager

The sequence manager is a state machine that controls the timing of all transmit, receive and CCA

operations. Sequences can be initiated directly by the MAC Layer or automatically at the expiration

of a timer.

4.1.1.1 Idle Sequence

When a request to enter the idle sequence is received from the MAC Layer, if not already in this

state, the PHY executes an orderly warm-down of the transceiver and sends it in the idle state. After

this operation is completed, a confirm primitive is sent to the MAC Layer. Requesting to enter the

idle sequence is the proper way to abort any other sequence.

4.1.1.2 Receive Sequence

The receive sequence is used to put the transceiver in the Rx state for the reception of an incoming

data transmission. Although reception of ACK frames is possible using the R sequence, the

recommended way is to use TR sequences. This is because reception of an ACK frame follows the

transmission of a MAC data or command frame with a designated Sequence Number which must

IEEE 802.15.4 PHY Interface

Kinetis IEEE 802.15.4 MACPHY Software API, Rev. 1.1, 03/2015

67 Freescale Semiconductor, Inc.

match the ACK frame Sequence Number. If an R sequence is used instead, there is no Sequence

Number to match against, and the ACK frame is passed to the MAC Layer using the PD-

DATA.indication primitive.

The R sequence must be used to receive all IEEE 802.15.4 PHY and MAC compliant frames,

including reserved frame types. The PHY Layer must execute the R sequence as follows:

1. Sets a timer to trigger the start of sequence (optional)

2. Waits for timer trigger

3. Sets a timer to timeout the sequence execution (optional)1

4. Execute Rx warm-up of the transceiver

5. Waits for transceiver notification of a received packet

6. Transfers payload into internal buffer2

7. If CRC passes and in non-promiscuous mode filter rules checking passes3

- Executes Rx warm-down of the transceiver

- If automatic Ack is enabled and non-promiscuous or active promiscuous mode is enabled

conditioned by the packet being addressed to the device, the PHY Layer checks Ack

Request bit in Frame Control field

§ If the frame type is Data Request check Source Address Matching

If a match is detected assert the Frame Pending bit in the Frame

Control field of the Ack frame

§ Frame version is copied from the received frame to the Ack frame

§ Sets a timer that triggers at 192us after receiving the packet (IEEE 802.15.4

RX-to-TX turnaround time)4 minus the Tx warm-up period

§ Executes Tx warm-up of the transceiver

§ Initiates transmission

§ Waits for transceiver notification of completed transmission

§ Performs Tx warm-down

8. Marks PHY as being idle

9. Notifies MAC Layer of the received packet (using PD-DATA.indication primitive)

4.1.1.3 Transmit Sequence

The transmit sequence is used to put the transceiver in the Tx state for transmission of an outgoing

MAC data or command frame. Although transmission of ACK frames is possible using the T

sequence, the recommended way is to use R sequences with auto ACK enabled. This is because

transmission of an ACK frame follows the reception of a MAC data or command frame with a

designated Sequence Number which must be copied to the ACK frame Sequence Number field. If a

T sequence is used instead there is no Sequence Number to copy and the ACK frame must be created

by the MAC Layer.

1 if a timeout occurs at any point during the rest of the process, the sequence must be cancelled and a plmeTimeoutInd

primitive must be issued.
2 for SubGHz Phy the transceiver sends notification for SFD received. Each byte of the payload is transferred into the

buffer and filters are applied.
3 if either CRC or filter rules checking fails the payload must be discarded and the PHY must continue waiting for a

transceiver notification of a received packet.
4 for SubGHz Phy a 1000us period is set (IEEE 802.15.4g Rx-to-Tx turnaround time)

Warning ! In order to maintain the Turnaround time of 1000us, no interrupts should last longer than 50us. if a

sequence with turnaround time is ongoing.

IEEE 802.15.4 PHY Interface

Kinetis IEEE 802.15.4 MACPHY Software API, Rev. 1.1, 03/2015

Freescale Semiconductor, Inc. 68

Sequence T allows for the insertion of 1 or 2 CCA measurements prior to transmission to ensure that

the channel is idle. All CCA measurements must indicate an idle channel in order to proceed with the

transmission. If the channel is determined to be busy the sequence must be terminated and a PD-

DATA.confirm primitive with a status of CHANNEL_BUSY must be issued.

The T sequence must be used to transmit all IEEE 802.15.4 PHY and MAC compliant frames

including reserved frame types. The PHY Layer must execute the T sequence as follows:

1. Sets a timer to trigger the start of transmission (optional)

2. Waits for timer trigger

3. Sets a timer to timeout the sequence execution (optional)5

4. If CCA before Tx is required

· Executes Rx warm-up of the transceiver

· Initiates CCA measurement6

 If CCA indicates a busy channel

· Terminates sequence and issues a PD-DATA.confirm primitive with a

status of CHANNEL_BUSY

 Else if CCA indicates channel idle

· If slotted mode is not used, proceed to Rx warm-down

· Else if slotted mode is used7, initiate a second CCA, 320us after

initiating first CCA

o If CCA indicates a busy channel, terminate sequence and issues

a PD-DATA.confirm primitive with a status of

CHANNEL_BUSY

o Else if CCA indicates channel idle

5. Executes Rx warmdownIf slotted mode is used, waits 320us after second CCA

6. Executes Tx warm-up and passes data to the transceiver

7. Waits for transceiver notification of completed transmission

8. Performs Tx warm-down

9. Marks PHY as being idle

10. Issues a PD-DATA.confirm primitive with a status of SUCCESS

At any time before executing Tx warm-up an passing data to the transceiver, the PHY Layer must

calculate the CRC of the frame and populate the FCS field.

4.1.1.4 Standalone CCA Sequence

During the standalone CCA sequence the PHY Layer executes a single CCA measurement and

reports the result to the MAC Layer.

The execution of a C sequence is as follows:

5 if a timeout occurs at any point during the rest of the process, the sequence must be cancelled and a plmeTimeoutInd

primitive must be issued.
6 for SubGHz Phy a timer is set for the CCA duration period to sample RSSI level for the CCA.
7 for SubGHz Phy slotted mode is not available.

IEEE 802.15.4 PHY Interface

Kinetis IEEE 802.15.4 MACPHY Software API, Rev. 1.1, 03/2015

69 Freescale Semiconductor, Inc.

· Sets a timer to trigger the start of sequence (optional)

· Waits for timer trigger

· Sets a timer to timeout the sequence execution (optional)8

· Executes Rx warmup of the transceiver

· Initiates CCA measurement in the transceiver

· Waits for transceiver notification of completed measurement

· Performs Rx warmdown

· Marks PHY as being idle

· Issues a PLME-CCA.confirm primitive

4.1.1.5 Continuous CCA Sequence9

This sequence is designed to accommodate situations where channel availability may be infrequent.

During CCCA sequence the PHY repeats the standalone CCA measurement until an idle channel

condition is found. This sequence is used as part of T or TR sequence instead of the normal CCA

sequence.

The execution of the CCCA sequence is as follows:

· Sets a timer to trigger the start of the sequence (optional)

· Waits for timer trigger

· Executes Rx warmup of the transceiver

· While previous CCA measurement indicates channel busy

· Initiates CCA measurement in the transceiver

· Waits for transceiver notification of completed measurement

· Performs Rx warmdown

· Marks PHY as being idle

· Issues a PLME-CCA.confirm primitive Transmit/Receive Sequence10

Sequence TR is a combination of transmit/receive sequence. The sequence is executed as a

concatenation of one transmit operation followed by one receive operation.

There are two types of TR sequences depending on auto ACK being enabled and the ACK request

bit in the frame control field of the transmitted frame being asserted. In this case the R part of the

sequence becomes receive ACK only.

For both cases, the sequence T that constitutes the first half of the operation is identical to the

standalone T sequence. If either auto ACK is disabled or the transmitted frame does not request

ACK, then sequence TR is executed as a T sequence followed by an R sequence.

The R sequence that constitutes the second half of the operation, and is identical to the standalone

version, can be followed by an additional automatically transmitted ACK frame if auto ACK is

enabled and the incoming frame requires an acknowledgement.

8 if a timeout occurs at any point during the rest of the process, the sequence must be cancelled and a plmeTimeoutInd

primitive must be issued.
9 for SubGHz Phy Continuous CCA Sequence is not available.
10 for SubGHz Phy Transmit/Receive Sequence is not available.

IEEE 802.15.4 PHY Interface

Kinetis IEEE 802.15.4 MACPHY Software API, Rev. 1.1, 03/2015

Freescale Semiconductor, Inc. 70

However, if the second half R sequence is a receive ACK only operation, the PHY Layer must filter

all incoming packets, looking only for an acknowledge frame whose sequence number matches the

sequence number of the frame transmitted in the T sequence portion. All non-matching frames are

discarded, and, after each frame discarded, the sequence manager will continue the R sequence. The

only exception is in active promiscuous mode when a non-matching received frame is not discarded

but instead is passed through to the MAC Layer.

4.1.2 Packet Processor Filtering

The packet processor parses packets to verify compliance with the 802.15.4 MAC frame format. The

Frame Control Field, two octets in length, contains subfields which encode “instructions” on how to

parse the remainder of the MHR (MAC Header). The structure of the Frame Control Field is shown

in the table below.

Table 3 Frame Control Field structure

Bits: 0-2 3 4 5 6 7-9 10-11 12-13 14-15

Frame

Type

Security

Enabled

Frame

Pending

Ack.

Request

PAN ID

Compression
Reserved

Dest.

Addressing

Mode

Frame

Version

Source

Addressing

Mode

The packet processor utilizes the Frame Control Fields subfields in the following manner:

Table 4 Usage of the Frame Control Fields by the Packet Processor

FCF Subfield Utilization by Packet Processor

Frame Type
11

 Interprets the remaining MHR as specific to Beacon, Ack, Data, Command, or Reserved

frame types.

Each frame type has a unique MHR structure, and so different parsing rules apply.

Security

Enabled

If Security Enabled=1 and Frame Version>0 (frame versions 2006 and later), an Auxiliary

Security Header field will be present in the MHR and will need to be further parsed by the

packet processor if this is a MAC Command frame (see 4.1.3 Source Address Matching

section below). There is no other use of Security Enabled by the packet processor.

Frame

Pending

Ignored by packet processor.

Ack. Request Will be stored internally by the sequence manager. An auto-TxAck frame will follow the

incoming receive frame if necessary conditions are met.

PAN ID

Compression

Used for addressing mode rules-checking and addressing field parsing.

Reserved Ignored by packet processor.

Destination

Addressing

Mode

Used for addressing mode rules-checking and addressing field parsing.

11 for SubGHz Phy Multipurpose Frame Type (Low Energy Wake-Up Frame) is also allowed. [IEEE 802.15.4g]

IEEE 802.15.4 PHY Interface

Kinetis IEEE 802.15.4 MACPHY Software API, Rev. 1.1, 03/2015

71 Freescale Semiconductor, Inc.

Table 4 Usage of the Frame Control Fields by the Packet Processor

FCF Subfield Utilization by Packet Processor

Frame

Version

Frame Version is checked against the allowed frame versions. Frame Version is captured by

the sequence manager. If an auto-TxAck frame follows the incoming receive frame, the

captured Frame Version will be copied into the Frame Control Field of the transmitted frame.

If Security Enabled=1 and Frame Version>0 (frame versions 2006 and later), an Auxiliary

Security Header field will be present in the MHR and the MHR will need to be further parsed

by the packet processor if this is a MAC Command frame (see 4.1.3 Source Address

Matching section).

Source

Addressing

Mode

Used for addressing mode rules-checking and addressing field parsing.

Directly following the Frame Control Field is the Sequence Number field. The Sequence Number

field of the MHR is captured by the packet processor. If an auto-TxAck frame follows the incoming

receive frame, the captured Sequence Number will be copied to the transmitted Acknowledge packet,

and the captured Frame Version will be inserted into the Frame Control Field of the transmitted

packet.

The Addressing Fields follow the Sequence Number. The format of the Addressing Fields depends

upon the Source and Destination Addressing Mode subfields of the Frame Control Field. The

Addressing Modes are defined in the table below:

Addressing mode value Description

0x00 PAN identifier and address fields are not present.

0x01 Reserved.

0x02 Address field contains a 16-bit short address.

0x03 Address field contains a 64-bit extended address.

The packet processor uses these Source and Destination Address Modes shown above, to extract the

Source PAN ID and Address (if present), and the Destination PAN ID and Address (if present), from

the MHR, according to the table below:

Frame Type

Destination

Addressing

Mode

Source

Addressing

Mode

PAN ID

Compression
Addressing Fields

Acknowledge only (reject all

other frame types)
0x00 0x00 0x00

None

Data or Command (reject ACK

and Beacon frames)
0x02 or 0x03 0x00 0x00

Dest. PAN ID + Dest.

Addr.

Beacon (all devices), or, Data

or Command (PAN

Coordinator only) (reject ACK

frames)

0x00 0x02 or 0x03 0x00

Src. PAN ID + Src. Addr.

Data or Command (reject ACK

and Beacon) 0x02 or 0x03 0x02 or 0x03 0x00

Dest. PAN ID + Dest.

Addr. + Src. PAN ID + Src.

Addr.

Reject all frames 0x00 0x00 0x01 -

IEEE 802.15.4 PHY Interface

Kinetis IEEE 802.15.4 MACPHY Software API, Rev. 1.1, 03/2015

Freescale Semiconductor, Inc. 72

Reject all frames 0x02 or 0x03 0x00 0x01 -

Reject all frames 0x00 0x02 or 0x03 0x01 -

Data or Command (reject ACK

and Beacon frames)
0x02 or 0x03 0x02 or 0x03 0x01

Dest. PAN ID + Dest.

Addr. + Src. PAN ID

Reject all frames 0x01 - - -

Reject all frames - 0x01 - -

The Source PAN ID and Address, and Destination PAN ID and Address, extracted by the packet

processor, are then checked against the gPhyPibPanId_c, gPhyPibShortAddress_c, and

gPhyPibLongAddress_c PHY PIBs, depending on the Frame Type of the incoming packet, to

determine:

· Is the addressing mode combination valid for this frame type?

· Do the address fields indicate that the packet is indeed addressed to the end device?

4.1.3 Source Address Matching

The 802.15.4 wireless MAC standard envisions a scenario whereby an end device may interrogate a

coordinator as to whether the coordinator is storing data (i.e., a pending message) for the end device.

The situation arises in a beacon-enabled network, when a coordinator includes in its transmitted

beacon frame the MAC address (long or short) of the end device in its “Pending Address Fields”.

The “Pending Address Fields” are part of the required MAC payload of the beacon frame. The

“Pending Address Fields” contain a list of end device addresses for which messages are pending. In

this scenario, an end device which finds its address included in the “Pending Address Fields” of the

received beacon frame, must respond to the beacon (coordinator) with a MAC Command of type

“data request”. Alternatively, in non-beacon-enabled networks, an end device may periodically wake

up and “poll” a coordinator, to determine if a message is pending for the end device. In either case,

the coordinator stores messages for its end devices in its “indirect queue”. The coordinator must

respond to an incoming MAC Command data request (which must have Ack Request=1 in its Frame

Control Field), with an Acknowledge frame containing a Frame Pending subfield indicating the

presence (or absence) of a message for the requesting end device, in the coordinator’s indirect queue.

The PHY Layer must implement a 12 entry checksum buffer each being 16 bits long. The checksum

is calculated in the following manner:

Destination Addressing Mode 2

(short address)
Checksum = (Destination PAN ID + DstAddr[15:0]) % 65536

Destination Addressing Mode 3

(long address)

Checksum = (Destination PAN ID + DstAddr[15:0]) % 65536

Checksum = (Checksum + DstAddr[31:15]) % 65536

Checksum = (Checksum + DstAddr[47:32]) % 65536

Checksum = (Checksum + DstAddr[63:48]) % 65536

The implementation must permit the MAC layer to write and erase entries from this buffer. If an

attempt is made to write to a location which is not empty the request must be denied. The MAC

Layer is responsible for calculating the checksum for insertion requests. Checksums stored in the

buffer do not have to be contiguous. The PHY Layer must mark unpopulated or erased indexes as

unused.

IEEE 802.15.4 PHY Interface

Kinetis IEEE 802.15.4 MACPHY Software API, Rev. 1.1, 03/2015

73 Freescale Semiconductor, Inc.

Upon reception of a Data Request frame, the PHY Layer must calculate the checksum for the

incoming frame and perform a search operation through the used locations in the buffer. If a

matching sequence is found, an ACK frame with the Frame Pending bit set must be issued, together

with a PD-DATA.indication containing the Data Request frame sent to the upper layer and

otherwise, an ACK frame with the Frame Pending bit set to zero must be issued without any further

communication with the MAC Layer. The PHY Layer must not remove any entry from the buffer

unless requested by the upper layer. The request to remove an unpopulated index is always

successful.

4.2 Inter Layer Communication

The PHY sublayer provides two services: the PHY data service and the PHY management service

interfacing to the PHY sublayer management entity (PLME) service access point (SAP) (known as

PLME-SAP). The PHY data service enables the transmission and reception of PHY protocol data

units (PSDUs) over the media (radio).

The PHY Layer interfaces to the MAC Layer through function calls and function callbacks.

If the interface primitives are implemented as function calls, the MAC Layer calls the exposed

functions (provided by the PHY Layer) in order to issue commands/requests.

If the interface primitives are implemented as function callbacks, these are implemented by the MAC

Layer and registered its callbacks by sending their pointers to the PHY Layer through a dedicated

function.

4.2.1 Constant Macro Definitions for 2.4GHz Phy

The following defines refer to entities used in the 2.4GHz PHY API elements.

4.2.1.1 gMinPHYPacketSize_c

This define is used to limit the mnimum number of octets for a packet to be considered valid.

Synopsis:

#define gMinPHYPacketSize_c 5

4.2.1.2 gMaxPHYPacketSize_c

This define is used to limit the maximum number of octets that the PHY can transmit or receive.

Synopsis:

#define gMaxPHYPacketSize_c 127

4.2.1.3 gCCATime_c

This define is used to set the CCA duration in symbols.

Synopsis:

#define gPhyCCATime_c 8

IEEE 802.15.4 PHY Interface

Kinetis IEEE 802.15.4 MACPHY Software API, Rev. 1.1, 03/2015

Freescale Semiconductor, Inc. 74

4.2.1.4 gPhyTurnaroundTime_c

This define is used to set the Rx-to-Tx or Tx-to-Rx maximum turnaround time in symbols.

Synopsis:

#define gPhyTurnaroundTime_c 12

4.2.1.5 gPhySHRDuration_c

This define is used to set the duration of the synchronization header in symbols.

Synopsis:

#define gPhySHRDuration_c 10

4.2.1.6 gPhySymbolsPerOctet_c

This define is used to set the number of symbols per octet for the current Phy.

Synopsis:

#define gPhySymbolsPerOctet_c 2

4.2.1.7 gPhyFCSSize_c

This define is used to set the length of the FCS field in bytes.

Synopsis:

#define gPhyFCSSize_c 2

4.2.1.8 gPhyMaxFrameDuration_c

This define is used to set the maximum number of symbols in a frame.

Synopsis:

#define gPhySymbolsPerOctet_c (gPhySHRDuration_c + (gMaxPHYPacketSize_c + 1) *

gPhySymbolsPerOctet_c)

4.2.2 Constant Macro Definitions for Sub-1GHz Phy

The following defines refer to entities used in the Sub-1GHz PHY API elements.

4.2.2.1 gPhyTaskStackSize_c

This define is used to set Stack size in octets for one Phy Task.

IEEE 802.15.4 PHY Interface

Kinetis IEEE 802.15.4 MACPHY Software API, Rev. 1.1, 03/2015

75 Freescale Semiconductor, Inc.

NOTE

This parameter must not be changed!

Synopsis:

#define gPhyTaskStackSize_c 500

4.2.2.2 gPhyTaskPriority_c

This define is used to set Phy Task priority level in the operating system.

NOTE

Phy Task must have the highest priority! This parameter must not be

changed!

Synopsis:

#define gPhyTaskPriority_c osPriorityRealtime

4.2.2.3 gPhySymbolsPerOctet_c

This define is used to set the number of symbols per octet for the current Phy.

Synopsis:

#define gPhySymbolsPerOctet_c 8

4.2.2.4 gPhyMRFSKPHRLength_c

This define is used to set the length of the PHR in octets for the MRFSK Phy.

Synopsis:

#define gPhyMRFSKPHRLength_c 2

4.2.2.5 gPhyFSKPreambleLength_c

This define is used to set the length of the Preamble in octets for the MRFSK Phy.

Synopsis:

#define gPhyFSKPreambleLength_c 16

4.2.2.6 gPhyMRFSKSFDLength_c

This define is used to set the length of the SFD in octets for the MRFSK Phy.

Synopsis:

#define gPhyMRFSKSFDLength_c 2

IEEE 802.15.4 PHY Interface

Kinetis IEEE 802.15.4 MACPHY Software API, Rev. 1.1, 03/2015

Freescale Semiconductor, Inc. 76

4.2.2.7 gMinPHYPacketSize_c

This define is used to limit the mnimum number of octets for a packet to be considered valid.

Synopsis:

#define gMinPHYPacketSize_c 5

4.2.2.8 gMaxPHYPacketSize_c

This define is used to limit the maximum number of octets that the PHY can transmit or receive.

Synopsis:

#define gMaxPHYPacketSize_c 254

4.2.2.9 gCCADurationDefault_c

This define is used to set the default CCA duration in symbols used for initialization sequence.

Synopsis:

#define gPhyCCADuration_c 13

4.2.2.10 gPhySHRDuration_c

This define is used to set the duration of the synchronization header (SHR) in symbols for the current

PHY.

Synopsis:

#define gPhySHRDuration_c (gPhySymbolsPerOctet_c * (gPhyFSKPreambleLength_c +

gPhyMRFSKSFDLength_c))

4.2.2.11 gPhyMaxFrameDuration_c

This define is used to set the maximum number of symbols in a frame.

Synopsis:

#define gPhyMaxFrameDuration_c (gPhySHRDuration_c + (gPhyMRFSKPHRLength_c +

gMaxPHYPacketSize_c) * gPhySymbolsPerOctet_c)

4.2.2.12 Frequency band selection

The following defines are used to set the specific frequency band.

Synopsis:

#define gFreqBand_470__510MHz_d 0

#define gFreqBand_779__787MHz_d 0

#define gFreqBand_863__870MHz_d 0

#define gFreqBand_902__928MHz_d 0

#define gFreqBand_920__928MHz_d 1

IEEE 802.15.4 PHY Interface

Kinetis IEEE 802.15.4 MACPHY Software API, Rev. 1.1, 03/2015

77 Freescale Semiconductor, Inc.

NOTE

Select only ONE frequency band at a time!

4.2.2.13 Frequency band ID

The following defines are used to set the specific frequency band ID for the selected frequency band.

Synopsis:

#define gFreqBandId_d

4.2.2.14 Phy Mode Default

The following define is used to configure the default PHY mode.

Synopsis:

#define gPhyModeDefault_d gPhyMode1_c

4.2.3 Common Constant Macro Definitions

4.2.3.1 gPhyInstancesCnt_c

This define is used to set the number of supported Phy instances. Currently only one Phy instance is

supported.

Synopsis:

#define gPhyInstancesCnt_c 1

4.2.3.2 gMaxPhyTimers_c

This define is used to set the maximum number of simultaneous events that can be schedule in PHY.

Synopsis:

#define gMaxPhyTimers_c 5

4.2.3.3 gPhyIndirectQueueSize_c

This define is used to set the maximum number of indirect queue entries.

Synopsis:

#define gPhyIndirectQueueSize_c 12

4.2.3.4 gPhySeqStartAsap_c

· This define is used as a start time to signal that a current sequence should be handled as

soon as possible by the PHY layer.

Synopsis:

#define gPhySeqStartAsap_c 0xFFFFFFFF

IEEE 802.15.4 PHY Interface

Kinetis IEEE 802.15.4 MACPHY Software API, Rev. 1.1, 03/2015

Freescale Semiconductor, Inc. 78

4.3 Data Type Definition/SAP Type Definitions

The PHY provides two services, accessed through two SAPs: the PHY data service, accessed

through the PHY data SAP (PD-SAP), and the PHY management service, accessed through the

PLME-SAP.

4.3.1 Common Data Types Definitions

The following data types are used in the MAC-PHY interface. Members of the structures that define

the payload of the service and callback functions, described later in detail, use these data types.

4.3.1.1 phyStatus_t

This type enumerates all the possible statuses of primitives that require passing a status to the MAC

Layer.

Synopsis:

typedef enum

{

gPhyChannelBusy_c = 0x00,

gPhyBusyRx_c = 0x01,

gPhyBusyTx_c = 0x02,

gPhyChannelIdle_c = 0x04,

gPhyInvalidParameter_c = 0x05,

 gPhyRxOn_c = 0x06,

gPhySuccess_c = 0x07,

gPhyTRxOff_c = 0x08,

gPhyTxOn_c = 0x09

gPhyUnsupportedAttribute_c = 0x0A,

gPhyReadOnly_c = 0x0B,

gPhyIndexUsed_c = 0x11,

gPhyNoAck_c = 0x14,

gPhyFramePending_c = 0x15,

gPhyBusy_c = 0xF1,

gPhyInvalidPrimitive_c = 0xF2

}phyStatus_t;

Member Value Description

gPhyChannelBusy_c 0x00 The CCA attempt has detected a busy channel.

gPhyBusyRx_c 0x01 The transceiver is asked to change its state while receiving.

gPhyBusyTx_c 0x02
The transceiver is asked to change its state while

transmitting.

gPhyChannelIdle_c 0x04 The CCA attempt has detected an idle channel.

gPhyInvalidParameter_c 0x05
A SET request was issued with a parameter in the primitive

that is out of the valid range.

gPhyRxOn_c 0x06 The transceiver is in the receiver enabled state.

gPhySuccess_c 0x07
A SET/GET, an ED operation, a data request, an indirect

queue insert, or a transceiver state change was successful.

gPhyTRxOff_c 0x08 The transceiver is in the transceiver disabled state.

gPhyTxOn_c 0x09 The transceiver is in the transmitter enabled state.

gPhyUnsupportedAttribute_c 0x0A
A SET/GET request was issued with the identifier of an

attribute that is not supported.

gPhyReadOnly_c 0x0B A SET request was issued with the identifier of an attribute

IEEE 802.15.4 PHY Interface

Kinetis IEEE 802.15.4 MACPHY Software API, Rev. 1.1, 03/2015

79 Freescale Semiconductor, Inc.

that is read-only.

gPhyIndexUsed_c 0x11
The indirect queue insert operation has detected an used

index.

gPhyNoAck_c 0x14 No ACK was received for the last transmission.

gPhyFramePending_c 0x15
The ACK of a Data Request frame indicates a pending

frame in the coordinator’s indirect TX queue.

gPhyBusy_c 0xF1
The current request can not be handled because the Phy is

busy.

gPhyInvalidPrimitive_c 0xF2
The set was not completed because the primitive is not in

the valid range.

4.3.1.2 phySlottedTx_t12

This type enumerates possible transmission modes in respect to slotted mode or unslotted mode.

Used by:

PdDataReq()

PlmeSetTRxStateReq()

Synopsis:

typedef enum

{

gPhySlottedTx_c = 0x0c,

gPhyUnslottedTx_c = 0x0d

}phySlottedTx_t;

Member Value Description

gPhySlottedTx _c 0x0c The TX operation must be performed in slotted mode.

gPhyUnslottedTx_c 0x0d The TX operation must be performed in unslotted mode.

4.3.1.3 phyCCAType_t

This type is used to indicate if CCA operations are required before transmissions and together with

phySlottedTx_t determine if there are more than one needed.

Used by:

PhyPdDataRequest()

PhyPlmeCcaEdRequest()

Synopsis:

typedef enum

{

gPhyEnergyDetectMode_c = 0x00,

gPhyCCAMode1_c = 0x01,

gPhyCCAMode2_c = 0x02,

gPhyCCAMode3_c = 0x03,

gPhyNoCCABeforeTx_c = 0x04

}phyCCAType_t;

12 not supported by SubGHz Phy.

IEEE 802.15.4 PHY Interface

Kinetis IEEE 802.15.4 MACPHY Software API, Rev. 1.1, 03/2015

Freescale Semiconductor, Inc. 80

Member Value Description

gPhyEnergyDetectMode_c 0x00 Energy Detect must be performed.

gPhyCCAMode1_c 0x01 CCA Mode 1must be performed before the TX operation.

gPhyCCAMode2_c 0x02 CCA Mode 2 must be performed before the TX operation.

gPhyCCAMode3_c 0x03 CCA Mode 3 must be performed before the TX operation.

gPhyNoCCABeforeTx_c 0x04 No CCA must be performed before the TX operation.

4.3.1.4 phyContCCAMode_t13

This type is used to indicate if a Continuous CCA operation is required.

Used by:

PhyPlmeCcaEdRequest()

Synopsis:

typedef enum

{

gPhyEnergyDetectMode_c = 0x00,

gPhyCCAMode1_c = 0x01,

gPhyCCAMode2_c = 0x02,

gPhyCCAMode3_c = 0x03,

gPhyNoCCABeforeTx_c = 0x04

}phyCCAType_t;

Member Value Description

gPhyEnergyDetectMode_c 0x00 Energy Detect must be performed.

gPhyCCAMode1_c 0x01 CCA Mode 1must be performed before the TX operation.

gPhyCCAMode2_c 0x02 CCA Mode 2 must be performed before the TX operation.

gPhyCCAMode3_c 0x03 CCA Mode 3 must be performed before the TX operation.

gPhyNoCCABeforeTx_c 0x04 No CCA must be performed before the TX operation.

4.3.1.5 phyState_t

This type is used to enumerate possible states to set the transceiver to. Setting the transceiver to any

Tx state is done by issuing a pdDataReq_t that does not use this type for any member.

Used by:

PlmeSetTRxStateReq()

Synopsis:

typedef enum

{

gPhyForceTRxOff_c = 0x03,

gPhySetRxOn_c = 0x12,

gPhySetTRxOff_c = 0x13,

}phyState_t;

13 not supported by SubGHz Phy

IEEE 802.15.4 PHY Interface

Kinetis IEEE 802.15.4 MACPHY Software API, Rev. 1.1, 03/2015

81 Freescale Semiconductor, Inc.

IEEE 802.15.4 PHY Interface

Kinetis IEEE 802.15.4 MACPHY Software API, Rev. 1.1, 03/2015

Freescale Semiconductor, Inc. 82

Member Value Description

gPhyForceTRxOff_c 0x03 The transceiver is to be switched off immediately.

gPhySetRxOn_c 0x12
The transceiver is to be configured into the receiver enabled

state.

gPhySetTRxOff_c 0x13
The transceiver is to be configured into the transceiver

disabled state.

4.3.1.6 phyAckRequired_t

This type is used to filter the next received frames and accept only Ack frames.

Used by:

PhyPdDataRequest()

Synopsis:

typedef enum

{

gPhyRxAckRqd_c = 0x00,

gPhyNoAckRqd_c = 0x01,

gPhyEnhancedAckReq_c = 0x02

}phyTimeStatus_t;

Member Value Description

gPhyRxAckRqd_c 0x00
A receive Ack frame is expected to follow the transmit

frame.

gPhyNoAckRqd_c 0x01 An ordinary receive frame follows the transmit frame.

gPhyEnhancedAckReq_c
14

 0x02
A receive Enhanced Ack frame is expected to follow the

transmit frame.

4.3.1.7 phyPibId_t

This type enumerates all PHY PIB IDs. PIBs can be read and written by the upper layer and are used

to configure certain parameters and modes of operation for the PHY Layer. PIBs that refer to

physical parameters like carrier frequency or transmission power are usually mirrored in hardware,

but in case IEEE 802.15.4 hardware acceleration is used, there are protocol oriented PIBs also stored

in hardware like addresses, PAN ID, promiscuous mode setting etc.

Used by:

· PlmeSetPIBRequest()

· PlmeGetPIBRequest()

Synopsis:

typedef enum

{

gPhyPibCurrentChannel_c = 0x00,

gPhyPibCurrentPage_c = 0x01,

gPhyPibTransmitPower_c = 0x02,

gPhyPibLongAddress_c = 0x03,

14 only for SubGHz Phy.

IEEE 802.15.4 PHY Interface

Kinetis IEEE 802.15.4 MACPHY Software API, Rev. 1.1, 03/2015

83 Freescale Semiconductor, Inc.

gPhyPibShortAddress_c = 0x04,

gPhyPibPanId_c = 0x05,

gPhyPibPanCoordinator_c = 0x06,

gPhyPibSrcAddrEnable_c = 0x07,

gPhyPibPromiscuousMode_c = 0x08,

gPhyPibAutoAckEnable_c = 0x09,

gPhyPibFrameVersion_c = 0x0A,

gPhyPibFrameEnable_c = 0x0B,

gPhyPibAckFramePending_c = 0x0C,

gPhyPibRxOnWhenIdle = 0x0D,

gPhyPibFrameWaitTime = 0x0E,

gPhyPibPhyModeSupported_c = 0x10,

gPhyPibCurrentMode_c = 0x11,

gPhyPibFSKPreambleRepetitions_c = 0x12,

gPhyPibFSKScramblePSDU_c = 0x13,

gPhyPibCCADuration_c = 0x14,

gPhyPibCSLRxEnabled_c = 0x15,

gPhyPibCSLTxEnabled_c = 0x16

}phyPibId_t;

Member Value Description

gPhyPibCurrentChannel_c 0x00 The channel currently used.

gPhyPibCurrentPage_c 0x01 The channel page currently used.

gPhyPibTransmitPower_c 0x02 The power used for TX operations.

gPhyPibLongAddress_c 0x03
The MAC long address to be used by the PHY’s source

address matching feature.

gPhyPibShortAddress_c 0x04
The MAC short address to be used by the PHY’s source

address matching feature.

gPhyPibPanId_c 0x05
The MAC PAN ID to be used by the PHY’s source address

matching feature.

gPhyPibPanCoordinator_c 0x06 Indicates if the device is a PAN coordinator or not.

gPhyPibSrcAddrEnable_c 0x07
Enables or disables the PHY’s source address matching

feature.

gPhyPibPromiscuousMode_c 0x08
Selects between normal, promiscuous and active

promiscuous mode.

gPhyPibAutoAckEnable_c 0x09 Enables or disables automatic transmission of ACK frames.

gPhyPibFrameVersion_c 0x0A

Used in checking for allowed frame versions (0x00 – any

version accepted, 0x01 – accept Frame Version 0 packets,

0x02 – accept Frame Version 1 packets, 0x03 – accept

Frame Version 0 and 1 packets.

gPhyPibFrameEnable_c 0x0B Used for enabling or disabling reception of MAC frames.

gPhyPicAckFramePending_c 0x0C

Used to copy it’s contents to the outgoing ACK frame’s

Frame Pending field as a response to a received Data

Request frame with Source Address Mathing disabled.

gPhyPibRxOnWhenIdle_c 0x0D Enable RX when the radio is IDLE.

gPhyPibFrameWaitTime_c 0x0E
The number of symbols the Rx should be on after receiving

an ACK with FP=1.

gPhyPibPhyModeSupported_c 0x10
Returns the currently supported Phy modes. Only for Sub-

1GHz Phy.

gPhyPibCurrentMode_c 0x11
Used to set or get the current operating Phy mode. Only for

Sub-1GHz Phy.

gPhyPibFSKPreambleRepetitions

_c
0x12

Used to set or get the number of 1 octet patterns in the

preamble. Only for Sub-1GHz Phy.

gPhyPibFSKScramblePSDU_c 0x13
Enables or disables the data whitening feature. Only for

Sub-1GHz Phy.

gPhyPibCCADuration_c 0x14
Set or get the CCA duration specified in symbols. Valid

range 8 – 1000. Only for Sub-1GHz Phy.

gPhyCSLRxEnabled_c 0x15 Enables or disables the CSL mode for Rx sequences.

IEEE 802.15.4 PHY Interface

Kinetis IEEE 802.15.4 MACPHY Software API, Rev. 1.1, 03/2015

Freescale Semiconductor, Inc. 84

Member Value Description

gPhyCSLTxEnabled_c 0x16 Enables or disables the CSL mode for Tx sequences.

4.3.2 Sub-1GHz Specific Enumerations Definition

The following enumerations define data types used in the MAC-PHY interface. Members of the

structures that define the payload of the service and callback functions, described later in detail, use

these data types.

4.3.2.1 phyMode_t

This type is used to enumerate all the Phy modes available. Available Phy modes depend on the

selected Frequency Band (See 0 - IEEE Standard for Local and metropolitan area networks).

Used by:

PhyPib_SetCurrentPhyMode()

Synopsis:

typedef enum

{

gPhyMode1_c = 0x00,

gPhyMode2_c = 0x01,

gPhyMode3_c = 0x02,

gPhyMode4_c = 0x03,

gPhyMode1ARIB_c = 0x04,

gPhyMode2ARIB_c = 0x05,

gPhyMode3ARIB_c = 0x06

}phyMode_t;

Member Value Description

gPhyMode1_c 0x00 Set Phy Mode 1.

gPhyMode2_c 0x01 Set Phy Mode 2.

gPhyMode3_c 0x02 Set Phy Mode 3.

gPhyMode4_c 0x03 Set Phy Mode 4.

gPhyMode1ARIB_c 0x04 Set Phy Mode 1 for ARIB standard. 920-928MHz only.

gPhyMode2ARIB_c 0x05 Set Phy Mode 2 for ARIB standard. 920-928MHz only.

gPhyMode3ARIB_c 0x06 Set Phy Mode 3 for ARIB standard. 920-928MHz only.

4.3.2.2 phyFreqBand_t

This type is used to enumerate all the Frequency Band Ids available.

Synopsis:

typedef enum

{

gFreq470__510MHz_c = 0x02, // 470-510 (China)

gFreq779__787MHz_c = 0x03, // 779-787 (China)

gFreq863__870MHz_c = 0x04, // 863-870 (Europe)

gFreq902__928MHz_c = 0x07, // 902-928 (U.S.)

gFreq920__928MHz_c = 0x09, // 920-928 (Japan) - Includes ARIB modes

}phyFreqBand_t;

IEEE 802.15.4 PHY Interface

Kinetis IEEE 802.15.4 MACPHY Software API, Rev. 1.1, 03/2015

85 Freescale Semiconductor, Inc.

Member Value Description

gFreq470__510MHz_c 0x02 China Frequency Band Id

gFreq779__787MHz_c 0x03 China Frequency Band Id

gFreq863__870MHz_c 0x04 Europe Frequency Band Id

gFreq902__928MHz_c 0x07 US Frequency Band Id

gFreq920__928MHz_c 0x09 Japan Frequency Band Id

4.3.3 PD SAP Type Definitions

The PHY data service is accessed through the PHY data SAP (PD-SAP). The PD-SAP supports the

transport of MAC Protocol Data Units (MPDUs) between peer MAC sublayer entities.

These PD-SAP primitives are listed below.

4.3.3.1 macToPdDatamessage_t

This is a message sent by the MAC layer containing the data request for the PHY layer.

Synopsis:

typedef struct macToPdDataMessage_tag

{

phyMessageId_t msgType;

uint8_t macInstance;

union

{

 pdDataReq_t dataReq;

pdIndQueueInsertReq_t indQueueInsertReq;

pdIndQueueRemoveReq_t indQueueRemoveReq;

} msgData;

} macToPdDataMessage_t;

Direction: MAC à PHY

Member Description Value

msgType The requested operation sent by the MAC layer. phyMessageId_t

gPdIndQueueInsertReq_c

gPdIndQueueRemove_c

gPdDataReq_c

macInstance Id of the MAC instance to be serviced. uint8_t

dataReq Descriptor of the PD-DATA.Request primitive. pdDataReq_t

indQueueInsertReq Descriptor of the PD-INDQUEUE INSERT.Request

primitive.

pdIndQueueInsert_t

indQueueRemoveReq Descriptor of the PD-INDQUEUE

REMOVE.Request primitive.

pdIndQueueRemove_t

4.3.3.2 pdDataReq_t

The PD-DATA.request primitive is generated by the MAC Layer when a MAC data frame (MPDU)

is ready to be transferred to the PHY Layer becoming payload for the PHY frame (PSDU). Upon the

reception of this primitive the PHY Layer will arm either a T or TRxAck sequence depending on the

Acknowledgment Request subfield bit included in the Frame Control field which is part of the MHR.

The MAC Layer must also provide information about performing CCA operations before

transmission:

IEEE 802.15.4 PHY Interface

Kinetis IEEE 802.15.4 MACPHY Software API, Rev. 1.1, 03/2015

Freescale Semiconductor, Inc. 86

Table 5 CCA operations before transmission

CCABeforeTx slottedTx
Number of CCA measurements

performed by PHY

0 X 0

1 0 1

1 1 2

2 0 Continuous CCA

2 1 reserved

For continuous CCA the PHY Layer must first arm a CCCA sequence and after it completes must

arm a T sequence without any further CCA operations.

The psduLength parameter represents the number of octets contained in the PSDU to be transmitted

by the PHY Layer without the last 2 octets containing the FCS field. The PHY Layer calculates the

CRC of the MAC frame and then populates the FCS field.

Synopsis:

typedef struct pdDataReq_tag

{

uint32_t startTime;

uint32_t txDuration;

phySlottedMode_t slottedTx;

phyCCAType_t CCABeforeTx;

phyAckRequired_t ackRequired;

uint8_t psduLength;

phyPHR_t phyHeader; /* SubGhz Phy only */

uint8_t macDataIndex; /* SubGHz Phy only */

uint8_t fillFifoBlockLength; /* SubGHz Phy only */

uint8_t* pPsdu;

} pdDataReq_t;

Direction: MAC à PHY

Member Description Value

startTime The start time of the Data Request sequence. A value of

gPhySeqStartAsap_c to start immediately.

uint32_t

txDuration The computed duration for the Data Request frame. uint32_t

slottedTx Indicates whether or not slotted mode is used for this

transmission.

phySlottedTx_t

gPhySlottedTx _c 0x0c

gPhyUnslottedTx_c 0x0d

CCABeforeTx Indicates whether or not CCA is used before this

transmission.

phyCCAType_t

gPhyCCAMode1_c 0x01

gPhyCCAMode2_c 0x02

gPhyNoCCABeforeTx_c 0x03

ackRequired Indicates whether or not a Ack is required for this

transmission.

phyAckRequired_t

gPhyRxAckRqd_c 0x01

gPhyNoAckRqd_c 0x02

gPhyEnahncedAckReq_c – Sub-1GHz Phy only 0x03

psduLength The number of octets contained in the PSDU to be

transmitted by the PHY Layer without the last 2 octets

containing the FCS field.

uint8_t

IEEE 802.15.4 PHY Interface

Kinetis IEEE 802.15.4 MACPHY Software API, Rev. 1.1, 03/2015

87 Freescale Semiconductor, Inc.

phyHeader Sub-1GHz Phy only. Used to form the Phy header before

sending.

phyPHR_t

macDataIndex Sub-1GHz Phy only. Used to store the index of the

currently sent byte.

uint8_t

fillFifoBlockLength Sub-1GHz Phy only. The block length to be prefilled in

transceiver’s fifo.

uint8_t

pPsdu A pointer to the set of octets forming the PSDU to be

transmitted by the PHY Layer.

uint8_t*

4.3.3.3 pdIndQueueInsertReq_t

The PD-INDQUEUEINSERT.Request primitive is generated by the MAC Layer when a packet is

inserted in the MAC indirect queue. A 16-bit checksum derived from Destination Address and

Destination PAN ID is passed to the PHY Layer. The PHY Layer, both in hardware implementations

or emulated in software, must keep a 12 entry database of checksums and facilitate writing into it

through the use of this primitive.

Synopsis:

typedef struct pdIndQueueInsertReq_tag

{

uint8_t index;

uint16_t checksum;

} pdIndQueueInsert_t;

Direction: MAC à PHY

Member Description Value

index The index where the checksum is to be inserted.

Accepted values are 0x00 - 0x0b.

uint8_t

checksum The calculated checksum used for indirect

transmissions.

uint16_t

4.3.3.4 pdIndQueueRemoveReq_t

The PD-INDQUEUEREMOVE.Request primitive is generated by the MAC Layer when a packet is

removed from the MAC indirect queue and the index at which the packet’s checksum is stored gets

passed on to the PHY Layer.The PHY Layer, both in hardware implementations or emulated in

software, must facilitate erasing entries from its database of checksums through the use of this

primitive.

Synopsis:

typedef struct pdIndQueueRemoveReq_tag

{

uint8_t index;

} pdIndQueueRemove_t;

Direction: MAC à PHY

Member Description Value

index The index where the checksum is to be inserted.

Accepted values are 0x00 - 0x0b.

uint8_t

4.3.3.5 phyPHR_t

Used internally by the Sub-1GHz Phy to store the Phy Header before sending it to the transceiver.

IEEE 802.15.4 PHY Interface

Kinetis IEEE 802.15.4 MACPHY Software API, Rev. 1.1, 03/2015

Freescale Semiconductor, Inc. 88

Synopsis:

typedef struct phyPHR_tag15

{

union{

uint16_t mask;

uint8_t byteAccess[2];

struct{

uint16_t modeSwitch :1;

uint16_t reserved :2;

uint16_t fcsType :1;

uint16_t dataWhitening :1;

uint16_t frameLength :11;

};

};

} phyPHR_t;

Direction: Sub-1GHz Phy Internal

Member Description Value

modeSwitch Set one to indicate that a mode switch shall occur. 1 bit

reserved Set to zero. 2 bits

fcsType Set to zero correspong to a 4-octet FCS. 1 bit

dataWhitening Set to one when data whitening is used. 1 bit

frameLength PSDU length of the packet. 11 bits

4.3.3.6 phyTxParams_t

Passed by MAC layer in order to specify is a stand alone CCA should be used, or fi ACK is required

for the sequence.

Synopsis:

typedef struct phyTxParams_tag

{

bool_t useStandaloneCcaBeforeTx;

uint8_t numOfCca;

phyAckRequired_t ackRequired;

} phyTxParams_t;

Direction: MAC à PHY

Member Description Value

useStandaloneCcaBeforeTx Set one to send a CCA or ED request before the

Tx sequence.

bool_t

numOfCca The number of CCA samples to be taken. uint8_t

ackRequired Indicates whether or not a Ack is required for this

transmission.

phyAckRequired_t

4.3.3.7 pdDataToMacMessage_t

Used by the Phy State Machine to send the PD-DATA.indication and PD-DATA.confirm messages

to the MAC Layer.

Synopsis:

typedef struct pdDataToMacMessage_tag

{

15 only for SubGHz Phy.

IEEE 802.15.4 PHY Interface

Kinetis IEEE 802.15.4 MACPHY Software API, Rev. 1.1, 03/2015

89 Freescale Semiconductor, Inc.

phyMessageId_t msgType;

uint8_t macInstance;

union

{

pdDataCnf_t dataCnf;

 pdDataInd_t dataInd;

pdIndQueueInsertCnf_t indQueueInsertCnf;

}msgData;

} pdDataToMacMessage_t;

Direction: PHY à MAC

Member Description Value

msgType The requested operation sent by the MAC layer. phyMessageId_t

gPdDataInd_c

gPdDataCnf_c

macInstance Id of the MAC instance to be serviced. uint8_t

dataCnf Descriptor of the PD-DATA.Confirm primitive. pdDataCnf_t

dataInd Descriptor of the PD-DATA.Indication primitive. pdDataInd_t

indQueueInsertCnf Descriptor of the PD-INDQUEUE INSERT.Confirm

primitive.

pdIndQueueInsertCnf_t

4.3.3.8 pdDataCnf_t

The PD-DATA.confirm primitive reports the result of a request to transfer a data MAC frame

(MPDU). The status returned by PD-DATA.confirm can be SUCCESS, indicating that the request to

transmit was successful, an error code of BUSY if the PHY Layer was not in the idle state (I

sequence) when the PD-DATA.request was issued, or an error code of CHANNEL_BUSY if all

CCA sequences indicated the channel was busy. If the transmission occurred successfully but no

valid ACK frame was received, assuming that it was requested, then an error code of NO_ACK must

be used.

Synopsis:

typedef struct pdDataCnf_tag

{

phyStatus_t status;

} pdDataCnf_t;

Direction: PHY à MAC

Member Description Value

status The result of the request to transmit a packet. phyStatus_t

gPhySuccess_c

gPhyBusy_c

gPhyChannelBusy_c

gPhyNoAck_c

4.3.3.9 pdDataInd_t

The PD-DATA.indication primitive is generated by the PHY Layer when an MPDU is ready to be

transferred to the MAC Layer. Besides the PSDU itself the primitive also returns the LQI value

measured during reception.

Synopsis:

typedef struct pdDataInd_tag

{

uint32_t timeStamp;

uint8_t ppduLinkQuality;

IEEE 802.15.4 PHY Interface

Kinetis IEEE 802.15.4 MACPHY Software API, Rev. 1.1, 03/2015

Freescale Semiconductor, Inc. 90

uint8_t psduLength;

uint8_t * pPsdu;

} pdDataInd_t;

Direction: PHY à MAC

Member Description Value

timeStamp The timestamp when the reception started. uint32_t

ppduLinkQuality Link quality (LQI) value measured during reception of the PPDU. uint8_t

psduLength The number of octets contained in the PSDU received by the PHY

Layer.

uint8_t

pPsdu The pointer to the set of octets forming the PSDU received by the PHY

Layer.

uint8_t*

4.3.3.10 pdQueueInsertCnf_t

The PD-INDQUEUEINSERT.confirm primitive reports the result of PD-INDQUEUEINSERT

request which can be SUCCESS for a successful request or an error code of INDEX_USED if the

index at which the request was made is not free.

Synopsis:

typedef struct pdIndQueueInsertCnf_tag

{

phyStatus_t status;

} pdIndQueueInsertCnf _t;

Direction: PHY à MAC

Member Description Value

status The result of the request to insert a checksum in the source address

matching vector.

phyStatus_t

gPhySuccess_c 0x07

gPhyIndexUsed_c 0x10

4.3.4 PLME SAP Type Definitions

The PHY management service is accessed through the PHY Layer Management Entity SAP (PLME-

SAP). The PLME-SAP allows the transport of management commands between the MLME and the

PLME.

These PLME-SAP primitives are listed below.

4.3.4.1 macToPlmeMessage_t

Used by the MAC layer to send commands to the Phy layer.

Synopsis:

typedef struct macToPlmeMessage_tag

{

phyMessageId_t msgType;

uint8_t macInstance;

union

{

plmeEdReq_t edReq;

plmeCcaReq_t ccaReq;

plmeSetTRxStateReq_t setTRxStateReq;

plmeSetReq_t setReq;

IEEE 802.15.4 PHY Interface

Kinetis IEEE 802.15.4 MACPHY Software API, Rev. 1.1, 03/2015

91 Freescale Semiconductor, Inc.

plmeGetReq_t getReq;

}msgData;

} macToPlmeMessage_t;

Direction: MAC à PHY

Member Description Value

msgType The command sent by the MAC layer. phyMessageId_t

gPlmeEdReq_c

gPlmeCcaReq_c

gPlmeSetReq_c

gPlmeGetReq_c

gPlmeSetTRxStateReq_c

macInstance Id of the MAC instance to be serviced. uint8_t

edReq Descriptor of the PLME-ED.Request primitive. plmeEdReq_t

ccaReq Descriptor of the PLME-CCA.Request primitive. plmeCcaReq_t

setTRxStateReq Descriptor of the PLME-SET-TRX-STATE.Request

primitive.

plmeSetTRxStateReq_t

setReq Descriptor of the PLME-SET.Request primitive. plmeSetReq_t

getReq Descriptor of the PLME-Get.Request primitive. plmeGetReq_t

4.3.4.2 plmeEdReq_t

The PLME-ED.request primitive is generated by the MAC Layer when an ED measurement needs to

be performed by the PHY Layer which then arms a C sequence. The ED request primitive has no

parameters.

In this case the MQX message payload is NULL.

Synopsis:

typedef struct plmeEdReq_tag

{

uint32_t startTime;

} plmeEdReq_t;

Direction: MAC à PHY

Member Description Value

startTime Start time for the ED request. uint32_t

4.3.4.3 plmeCCAReq_t

The PLME-CCA.request primitive is generated by the MAC Layer when a CCA operation needs to

be performed and is passed to the PHY Layer which then arms a C sequence. The CCA request

primitive has no parameters.

In this case the MQX message payload is NULL.

Synopsis:

typedef struct plmeCcaReq_tag

{

phyCCAType_t ccaType;

phyContCCAMode_t contCcaMode;

} plmeCcaReq_t;

Direction: MAC à PHY

Member Description Value

IEEE 802.15.4 PHY Interface

Kinetis IEEE 802.15.4 MACPHY Software API, Rev. 1.1, 03/2015

Freescale Semiconductor, Inc. 92

ccaType The type of the CCA requested by MAC. phyCCAType_t

contCcaMode The requested mode for the Continuous CCA Scan. phyContCCAMode_t

4.3.4.4 plmeSetTRxStateReq_t

The PLME-SET-TRX-STATE.request primitive is generated by the MAC Layer when the

transceiver state needs to be changed by the PHY Layer which then arms either an I or R sequence.

This primitive is also used to cancel any ongoing sequence by setting the state to

FORCE_TRX_OFF. If this primitive is issued with an RX_ON or TRX_OFF argument and the PHY

is busy transmitting a PPDU, at the end of transmission the state change will occur. If this primitive

is issued with TRX_OFF and the PHY is in RX_ON state and has already received a valid SFD, at

the end of reception of the PPDU the state change will occur.

The slottedTx parameter is used by the PHY Layer during R sequence to determine whether the

ensuing transmit acknowledge frame (if any) needs to be synchronized to a backoff slot boundary.

Arming the T or TR sequence is done exclusively by using the pdDataReq_t primitive.

Synopsis:

typedef struct plmeSetTRxStateReq_tag

{

phyState_t state;

phySlottedMode_t slottedMode;

uint32_t startTime;

uint32_t rxDuration;

} plmeSetTRxStateReq_t;

Direction: MAC à PHY

Member Description Value

state The new state in which to configure the transceiver. phyState_t

phySlottedMode_t Indicates whether or not slotted mode is used for this transmission. phySlottedMode_t

startTime The start time when the state change should occure. uint32_t

rxDuration If requested state is Rx, then Rx will be enabled for rxDuration

symbols.

uint32_t

4.3.4.5 plmeSetReq_t

The PLME-SET.request primitive is generated by the MAC Layer to modify a PIB attribute in the

PHY Layer. This primitive requires the identifier of the PIB attribute to set and its value.

Synopsis:

typedef struct plmeSetReq_tag

{

phyPibId_t PibAttribute;

uint64_t PibAttributeValue;

} plmeSetReq_t;

Direction: MAC à PHY

Member Description Value

PibAttribute The identifier of the PIB attribute to set. phyPibId_t

PibAttributeValue The value of the indicated PIB attribute to set. uint64_t

IEEE 802.15.4 PHY Interface

Kinetis IEEE 802.15.4 MACPHY Software API, Rev. 1.1, 03/2015

93 Freescale Semiconductor, Inc.

4.3.4.6 plmeGetReq_t

The PLME-GET.request primitive is generated by the MAC Layer to request information about a

PIB attribute in the PHY Layer. This primitive requires the identifier of the PIB attribute to read.

Synopsis:

typedef struct plmeGetReq_tag

{

phyPibId_t PibAttribute;

uint64_t * pPibAttributeValue;

} plmeGetReq_t;

Direction: MAC à PHY

Member Description Value

PibAttribute The identifier of the PIB attribute to get. phyPibId_t

PibAttributeValue The value of the indicated PIB attribute to get. uint64_t*

4.3.4.7 plmeEdCnf_t

The PLME-ED.confirm primitive is generated by the PHY Layer after the C sequence completes and

returns the response of a previous PLME-ED.request to the MAC Layer. The status returned can be

SUCCESS if the measurement was successful or an error code of TX_ON if there is an ongoing T

sequence or RX_ON if the transceiver is receiving. Also the PLME-ED.confirm primitive returns the

value of the ED measurement.

Synopsis:

typedef struct plmeEdCnf_tag

{

phyStatus_t status;

uint8_t energyLevel;

uint8_t energyLeveldB;

} plmeEdCnf_t;

Direction: PHY à MAC

Member Description Value

status The result of the request to perform an ED measurement. phyStatus_t

gPhySuccess_c 0x07

gPhyTxOn_c 0x09

gPhyRxOn_c 0x08

energyLevel ED level for current channel. If status is not SUCCESS the value of this

parameter will be ignored.

uint8_t

energyLeveldB ED level for current channel in dBm value uint8_t

4.3.4.8 plmeCcaCnf_t

The PLME-CCA.confirm primitive is generated by the PHY Layer after the C sequence completes

and returns the response of a previous PLME-CCA.request to the MAC Layer. The status returned

can be IDLE if the channel is idle, RX_ON if the transceiver is receiving or BUSY if there is an

ongoing T sequence or the channel assessment process determined that the channel is busy.

Synopsis:

typedef struct plmeCcaCnf_tag

{

phyStatus_t status;

IEEE 802.15.4 PHY Interface

Kinetis IEEE 802.15.4 MACPHY Software API, Rev. 1.1, 03/2015

Freescale Semiconductor, Inc. 94

} plmeCcaCnf_t;

Direction: PHY à MAC

Member Description Value

status The result of the request to perform a CCA. phyStatus_t

gPhyChannelIdle_c 0x04

gPhyChannelBusy_c 0x00

4.3.4.9 plmeSetTRxStateCnf_t

The PLME-SET-TRX-STATE.confirm primitive is generated by the PHY Layer and issued to the

MAC Layer after attempting to change the operating state of the transceiver. After the request, if a

state change occurs, a status of gPhySuccess_c is returned; otherwise a status describing the current

state is issued (TRX_OFF or RX_ON).

Synopsis:

typedef struct plmeSetTRxStateCnf_tag

{

phyStatus_t status;

} plmeSetTRxStateCnf_t;

Direction: PHY à MAC

Member Description Value

status The result of a request to change the state of the transceiver. phyStatus_t

gPhySuccess_c 0x07

gPhyRxOn_c 0x06

gPhyTRxOff_c 0x08

4.3.4.10 plmeSetCnf_t

The PLME-SET.confirm primitive is generated by the PHY Layer to report an attempt modify a

PHY PIB attribute to the MAC Layer. The primitive returns the PIB attribute identifier and the status

which can be UNSUPPORTED_ATTRIBUTE if the attribute is not supported, READ_ONLY if the

attribute is not writable, INVALID_PARAMETER if the value is out of range for this specific

attribute or SUCCESS if the attribute was successfully written.

Synopsis:

typedef struct plmeSetCnf_tag

{

phyStatus_t status;

phyPibId_t PibAttribute;

} plmeSetCnf_t;

Direction: PHY à MAC

Member Description Value

status The status of the attempt to set the requested PIB attribute. phyStatus_t

gPhySuccess_c 0x07

gPhyUnsupportedAttribute_c 0x0a

gPhyReadOnly_c 0x0b

gPhyInvalidParameter_c 0x05

PIBAttribute The identifier of the PIB attribute being confirmed. phyPibId_t

IEEE 802.15.4 PHY Interface

Kinetis IEEE 802.15.4 MACPHY Software API, Rev. 1.1, 03/2015

95 Freescale Semiconductor, Inc.

4.3.4.11 plmeGetCnf_t

The PLME-GET.confirm primitive is generated by the PHY Layer to report the results of an

information request from the PHY PIB to the MAC Layer. The primitive returns the PIB attribute

identifier, its value and the status which can be UNSUPPORTED_ATTRIBUTE if the attribute is not

supported or SUCCESS if the attribute was successfully retrieved.

Synopsis:

typedef struct plmeSetCnf_tag

{

phyStatus_t status;

phyPibId_t PibAttribute;

uint64_t PibAttributeValue;

} plmeSetCnf_t;

Direction: PHY à MAC

Member Description Value

status The result of the attempt to get the requested PIB attribute

information.

phyStatus_t

gPhySuccess_c 0x07

gPhyUnsupportedAttribute_c 0x0a

PIBAttribute The identifier of the PIB attribute that was requested. phyPibId_t

PIBAttributeValue The value of the indicated PHY PIB attribute that was requested.

This parameter has zero length when the

status parameter is set to UNSUPPORTED_ATTRIBUTE.

uint64_t

4.3.4.12 plmeToMacMessage_t

Used by the Phy State Machine to send the PLME.confirm messages to the MAC Layer.

Synopsis:

typedef struct plmeToMacMessage_tag

{

phyMessageId_t msgType;

uint8_t macInstance;

union

{

plmeCcaCnf_t ccaCnf;

plmeEdCnf_t edCnf;

plmeSetTRxStateCnf_t setTRxStateCnf;

plmeSetCnf_t setCnf;

plmeGetCnf_t getCnf;

}msgData;

} plmeToMacMessage_t;

Direction: MAC à PHY

Member Description Value

msgType The command sent by the MAC layer. phyMessageId_t

gPlmeEdReq_c

gPlmeCcaReq_c

gPlmeSetReq_c

gPlmeGetReq_c

gPlmeSetTRxStateReq_c

macInstance Id of the MAC instance to be serviced. uint8_t

ccaCnf Descriptor of the PLME-CCA.Confirm primitive. plmeCcaCnf_t

edCnf Descriptor of the PLME-Ed.Confirmt primitive. plmeEdCnf_t

IEEE 802.15.4 PHY Interface

Kinetis IEEE 802.15.4 MACPHY Software API, Rev. 1.1, 03/2015

Freescale Semiconductor, Inc. 96

Member Description Value

setTRxStateCnf Descriptor of the PLME-SET-TRX-STATE.Confirm

primitive.

plmeSetTRxStateCnf_t

setCnf Descriptor of the PLME-SET.Confirm primitive. plmeSetCnf_t

getCnf Descriptor of the PLME-GET.Confirm primitive. plmeGetcnf_t

4.3.5 Generic Interface

4.3.5.1 Phy_Init

This function creates and initializes all of the Phy instances that the system has beed designed with.

Synopsis:

void Phy_Init(void);

Direction: APP à PHY

4.3.5.2 BindToPHY

This function creates a logical binding with the next available (un-binded) PHY instance.

Synopsis:

instanceId_t BindToPhy(instanceId_t macInstance);

Direction: MAC à PHY

Argument Description Type

macInstance Instance with which the caller layer will create the logical binding. instanceId_t

4.3.5.3 PhyPpGetState

This function checks the states of all the instances of the Phy.

Synopsis:

uint8_t PhyPpGetState(void);

Direction: MAC à PHY

4.3.5.4 Phy_RegisterSapHandlers

This function registers the PD and PLME SAPs, offering support for the PD and PLME to MAC

message interactions.

Synopsis:

void Phy_RegisterSapHandlers(PD_MAC_SapHandler_t pPD_MAC_SapHandler,

PLME_MAC_SapHandler_t pPLME_MAC_SapHandler,

 instanceId_t instanceId);

Direction: NWK à MAC

IEEE 802.15.4 PHY Interface

Kinetis IEEE 802.15.4 MACPHY Software API, Rev. 1.1, 03/2015

97 Freescale Semiconductor, Inc.

Argument Description Type

pPD_MAC_SapHandler Pointer to the PD to MAC SAP Handler. PD_MAC_SapHandler_t

pPLME_MAC_SapHandler Pointer to the PLME to MAC SAP

Handler function callback.

PLME_MAC_SapHandler_t

instanceId PHY instance for which the SAP

registration is performed.

instanceId_t

4.3.6 MAC to PHY SAP

The following functions are exposed towards the MAC layer, offering the upwards interface of the

communication stack from MAC to PHY.

4.3.6.1 MAC_PD_SapHandler

This function is part of the MAC data service, offering support for the PD-SAP to PHY interactions.

Synopsis:

phyStatus_t MAC_PD_SapHandler(macToPdDataMessage_t * pMsg, instanceId_t phyInstance);

Direction: PHY à MAC

Argument Description Type

pMsg Pointer to a structure containing the message information – the

primitive identifier and primitive parameters.

macToPdDataMessage_t

*

phyInstance Identifier of the PHY instance for which the primitive is called instanceId_t

4.3.6.2 MAC_PLME_SapHandler

This function is part of the MAC management service, offering support for the PLME-SAP to PHY

interactions.

Synopsis:

phyStatus_t MAC_PLME_SapHandler(macToPlmeMessage_t* pMsg, instanceId_t phyInstance);

Direction: PHY à MAC

Argument Description Type

pMsg Pointer to a structure containing the message information – the

primitive identifier and primitive parameters.

macToPlmeMessage_t

*

phyInstance Identifier of the PHY instance for which the primitive is called instanceId_t

4.4 PHY Time Services

The interface described herein is a dedicated API for services offered by a generic hardware timer

with high resolution and with availability when the system enters in a Low Power operation mode.

4.5 Constant Macro Definitions

4.5.1 gInvalidTimerId_c

This constant defines the identification value of an invalid timer.

IEEE 802.15.4 PHY Interface

Kinetis IEEE 802.15.4 MACPHY Software API, Rev. 1.1, 03/2015

Freescale Semiconductor, Inc. 98

Used by:

PhyTime_ScheduleEvent

Synopsis:

#define gInvalidTimerId_c (0xFF)

4.6 Data Type Definition

The following declaration of data types are needed for the implementation of the services exposed by

the PHY Timer Module API.

4.6.1 phyTimeTimestamp_t

Synopsis:

typedef uint32_t phyTimeTimestamp_t;

Synonym Description Base Type

phyTimeTimestamp_t Timestamp value reported by the hardware timer module. uint32_t

4.6.2 phyTimeTimerId_t

Synopsis:

typedef uint8_t phyTimeTimerId_t;

Synonym Description Base Type

phyTimeTimerId_t The ID of an instantiated timer uint8_t

4.6.3 phyTimeCallback_t

Used by:

SAPs

Synopsis:

typedef void (*phyTimeCallback_t)(uint32_t parameter);

Argument Description Type

parameter Parameter passed to the callback function uint32_t

4.6.4 phyTimeStatus_t

PHY Timer Module result status.

Used by:

SAPs

Synopsis:

typedef enum

{

IEEE 802.15.4 PHY Interface

Kinetis IEEE 802.15.4 MACPHY Software API, Rev. 1.1, 03/2015

99 Freescale Semiconductor, Inc.

gPhyTimeOk_c = 0x00,

gPhyTimeAlreadyPassed_c = 0x01,

gPhyTimeTooClose_c = 0x02,

gPhyTimeTooMany_c = 0x03,

gPhyTimeInvalidParameter_c = 0x04,

gPhyTimeNotFound_c = 0x05,

gPhyTimeError_c = 0x06

}phyTimeStatus_t;

Constant Description Value

gPhyTimeOk_c The request was performed successfully. 0x00

gPhyTimeAlreadyPassed_c Requested time for event trigger has already passed. 0x01

gPhyTimeTooClose_c Requested time for event trigger is to close to the

current time to be processed.

0x02

gPhyTimeTooMany_c Too many requests have been addressed. 0x03

gPhyTimeInvalidParameter_c The request was performed with an invalid parameter. 0x04

gPhyTimeNotFound_c The requested timer was not found. 0x05

gPhyTimeError_c The request encoundered a hardware error. 0x06

4.6.5 phyTimeEvent_t

Used by:

SAPs

Synopsis:

typedef struct phyTimeEvent_tag

{

phyTimeTimestamp_t timestamp;

phyTimeCallback_t callback;

 uint32_t parameter;

}phyTimeEvent_t;

Member Description Value

timestamp Timestamp at which the hardware timer

module will trigger the event.

phyTimeTimestamp_t

callback Pointer to the callback function designated for

the specific event.

phyTimeCallback_t

parameter Parameter passed to the callback function uint32_t

4.7 Functions

Declaration of the interface functions exposed by the PHY Timer Module.

4.7.1 PhyTime_TimerInit()

This function performs the initialization of the PHY Timer Module.

Synopsis:

phyTimeStatus_t PhyTime_TimerInit(void);

Parameters: N/A

IEEE 802.15.4 PHY Interface

Kinetis IEEE 802.15.4 MACPHY Software API, Rev. 1.1, 03/2015

Freescale Semiconductor, Inc. 100

Return: Status of the request.

4.7.2 PhyTime_GetTimestamp()

This function returns the current timestamp, reported by the PHY Timer Module.

Synopsis:

phyTimeTimestamp_t PhyTime_GetTimestamp(void);

Parameters: N/A

Return: current timestamp.

4.7.3 PhyTime_ScheduleEvent()

This function schedules a timed event. The event context is given by the configuration structure.

Synopsis:

phyTimeTimerId_t PhyTime_ScheduleEvent(phyTimeEvent_t *pEvent);

Parameters:

Argument Description Type

pEvent Pointer to the structure with the event configuration that needs to be

scheduled.

phyTimeEvent_t

Return: The ID of the scheduled timer, or gInvalidTimerId_c, if scheduling fails.

4.7.4 PhyTime_CancelEvent()

This function cancels an event that has already been scheduled.

Synopsis:

phyTimeStatus_t PhyTime_CancelEvent(phyTimeTimerId_t timerId);

Parameters:

Argument Description Type

timerId The ID of the timer that needs to be cancelled. phyTimeTimerId_t

Return: Status of the request.

IEEE 802.15.4 PHY Interface

Kinetis IEEE 802.15.4 MACPHY Software API, Rev. 1.1, 03/2015

1 Freescale Semiconductor, Inc.

4.7.5 PhyTime_CancelEventsWithParam ()

This function cancels all events registered with the specified parameter.

Synopsis:

phyTimeStatus_t PhyTime_CancelEventsWithParam(uint32_t param);

Parameters:

Argument Description Type

param The parameter of the event(s) to be canceled. uint32_t

Return: Status of the request.

How to Reach Us:

Home Page:

freescale.com

Web Support:

freescale.com/support4

Information in this document is provided solely to enable system and
software implementers to use Freescale products. There are no
express or implied copyright licenses granted hereunder to design or
fabricate any integrated circuits based on the information in this
document.

Freescale reserves the right to make changes without further notice
to any products herein. Freescale makes no warranty, representation,
or guarantee regarding the suitability of its products for any particular
purpose, nor does Freescale assume any liability arising out of the
application or use of any product or circuit, and specifically disclaims
any and all liability, including without limitation consequential or
incidental damages. “Typical” parameters that may be provided in
Freescale data sheets and/or specifications can and do vary in
different applications, and actual performance may vary over time. All
operating parameters, including “typicals,” must be validated for each
customer application by customer’s technical experts. Freescale does
not convey any license under its patent rights nor the rights of others.
Freescale sells products pursuant to standard terms and conditions of
sale, which can be found at the following address:
freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, AltiVec, C-5, CodeTest, CodeWarrior,

ColdFire, C-Ware, Energy Efficient Solutions logo, Kinetis, mobileGT,
PowerQUICC, Processor Expert, QorIQ, Qorivva, StarCore,
Symphony, and VortiQa are trademarks of Freescale Semiconductor,
Inc., Reg. U.S. Pat. & Tm. Off. Airfast, BeeKit, BeeStack, ColdFire+,
CoreNet, Flexis, MagniV, MXC, Platform in a Package, QorIQ
Qonverge, QUICC Engine, Ready Play, SafeAssure, SMARTMOS,
TurboLink, Vybrid, and Xtrinsic are trademarks of Freescale
Semiconductor, Inc. All other product or service names are the
property of their respective owners. The Power Architecture and
Power.org word marks and the Power and Power.org logos and
related marks are trademarks and service marks licensed by
Power.org. The ARM Powered Logo is a trademark of ARM Limited.

© 2015 Freescale Semiconductor, Inc.

Document number: 802154MPAPIRM
Rev. 1.1

Error! Use the Home tab to apply Doc_Rev_Date to the text that you want to
appear here.

