mbed library sources

Dependents:   Encrypted my_mbed lklk CyaSSL_DTLS_Cellular ... more

Superseded

This library was superseded by mbed-dev - https://os.mbed.com/users/mbed_official/code/mbed-dev/.

Development branch of the mbed library sources. This library is kept in synch with the latest changes from the mbed SDK and it is not guaranteed to work.

If you are looking for a stable and tested release, please import one of the official mbed library releases:

Import librarymbed

The official Mbed 2 C/C++ SDK provides the software platform and libraries to build your applications.

targets/hal/TARGET_Freescale/TARGET_KPSDK_MCUS/i2c_api.c

Committer:
mbed_official
Date:
2014-10-17
Revision:
357:d73ca02bc818
Parent:
324:406fd2029f23
Child:
397:e6a80499f8a6

File content as of revision 357:d73ca02bc818:

/* mbed Microcontroller Library
 * Copyright (c) 2006-2013 ARM Limited
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#include "mbed_assert.h"
#include "i2c_api.h"

#if DEVICE_I2C

#include "cmsis.h"
#include "pinmap.h"
#include "fsl_clock_manager.h"
#include "fsl_i2c_hal.h"
#include "fsl_port_hal.h"
#include "fsl_sim_hal.h"
#include "PeripheralPins.h"

void i2c_init(i2c_t *obj, PinName sda, PinName scl) {
    uint32_t i2c_sda = pinmap_peripheral(sda, PinMap_I2C_SDA);
    uint32_t i2c_scl = pinmap_peripheral(scl, PinMap_I2C_SCL);
    obj->instance = pinmap_merge(i2c_sda, i2c_scl);
    MBED_ASSERT((int)obj->instance != NC);

    CLOCK_SYS_EnableI2cClock(obj->instance);
    uint32_t i2c_addrs[] = I2C_BASE_ADDRS;
    I2C_HAL_Init(i2c_addrs[obj->instance]);
    I2C_HAL_Enable(i2c_addrs[obj->instance]);
    I2C_HAL_SetIntCmd(i2c_addrs[obj->instance], true);
    i2c_frequency(obj, 100000);

    pinmap_pinout(sda, PinMap_I2C_SDA);
    pinmap_pinout(scl, PinMap_I2C_SCL);

    uint32_t port_addrs[] = PORT_BASE_ADDRS;
    PORT_HAL_SetOpenDrainCmd(port_addrs[sda >> GPIO_PORT_SHIFT], sda & 0xFF, true);
    PORT_HAL_SetOpenDrainCmd(port_addrs[scl >> GPIO_PORT_SHIFT], scl & 0xFF, true);
}

int i2c_start(i2c_t *obj) {
    uint32_t i2c_addrs[] = I2C_BASE_ADDRS;
    I2C_HAL_SendStart(i2c_addrs[obj->instance]);
    return 0;
}

int i2c_stop(i2c_t *obj) {
    volatile uint32_t n = 0;
    uint32_t i2c_addrs[] = I2C_BASE_ADDRS;
    if (I2C_HAL_IsMaster(i2c_addrs[obj->instance]))
        I2C_HAL_SendStop(i2c_addrs[obj->instance]);
    
    // It seems that there are timing problems
    // when there is no waiting time after a STOP.
    // This wait is also included on the samples
    // code provided with the freedom board
    for (n = 0; n < 200; n++) __NOP();
    return 0;
}

static int timeout_status_poll(i2c_t *obj, i2c_status_flag_t flag) {
    uint32_t i, timeout = 100000;
    uint32_t i2c_addrs[] = I2C_BASE_ADDRS;

    for (i = 0; i < timeout; i++) {
        if (I2C_HAL_GetStatusFlag(i2c_addrs[obj->instance], flag))
            return 0;
    }
    return 1;
}

// this function waits the end of a tx transfer and return the status of the transaction:
//    0: OK ack received
//    1: OK ack not received
//    2: failure
static int i2c_wait_end_tx_transfer(i2c_t *obj) {
    // wait for the interrupt flag
    uint32_t i2c_addrs[] = I2C_BASE_ADDRS;

    if (timeout_status_poll(obj, kI2CInterruptPending)) {
        return 2;
    }
    I2C_HAL_ClearInt(i2c_addrs[obj->instance]);

    // wait transfer complete
    if (timeout_status_poll(obj, kI2CTransferComplete)) {
        return 2;
    }

    // check if we received the ACK or not
    return I2C_HAL_GetStatusFlag(i2c_addrs[obj->instance], kI2CReceivedNak) ? 0 : 1;
}

// this function waits the end of a rx transfer and return the status of the transaction:
//    0: OK
//    1: failure
static int i2c_wait_end_rx_transfer(i2c_t *obj) {
    // wait for the end of the rx transfer
    if (timeout_status_poll(obj, kI2CInterruptPending)) {
        return 1;
    }
    uint32_t i2c_addrs[] = I2C_BASE_ADDRS;
    I2C_HAL_ClearInt(i2c_addrs[obj->instance]);

    return 0;
}

static int i2c_do_write(i2c_t *obj, int value) {
    uint32_t i2c_addrs[] = I2C_BASE_ADDRS;
    I2C_HAL_WriteByte(i2c_addrs[obj->instance], value);

    // init and wait the end of the transfer
    return i2c_wait_end_tx_transfer(obj);
}

static int i2c_do_read(i2c_t *obj, char * data, int last) {
    uint32_t i2c_addrs[] = I2C_BASE_ADDRS;
    if (last) {
        I2C_HAL_SendNak(i2c_addrs[obj->instance]);
    } else {
        I2C_HAL_SendAck(i2c_addrs[obj->instance]);
    }

    *data = (I2C_HAL_ReadByte(i2c_addrs[obj->instance]) & 0xFF);

    // start rx transfer and wait the end of the transfer
    return i2c_wait_end_rx_transfer(obj);
}

void i2c_frequency(i2c_t *obj, int hz) {
    uint32_t busClock;
    uint32_t i2c_addrs[] = I2C_BASE_ADDRS;
    clock_manager_error_code_t error = CLOCK_SYS_GetFreq(kBusClock, &busClock);
    if (error == kClockManagerSuccess) {
        I2C_HAL_SetBaudRate(i2c_addrs[obj->instance], busClock, hz / 1000, NULL);
    }
}

int i2c_read(i2c_t *obj, int address, char *data, int length, int stop) {
    int count;
    char dummy_read, *ptr;

    if (i2c_start(obj)) {
        i2c_stop(obj);
        return I2C_ERROR_BUS_BUSY;
    }

    if (i2c_do_write(obj, (address | 0x01))) {
        i2c_stop(obj);
        return I2C_ERROR_NO_SLAVE;
    }

    // set rx mode
    uint32_t i2c_addrs[] = I2C_BASE_ADDRS;
    I2C_HAL_SetDirMode(i2c_addrs[obj->instance], kI2CReceive);

    // Read in bytes
    for (count = 0; count < (length); count++) {
        ptr = (count == 0) ? &dummy_read : &data[count - 1];
        uint8_t stop_ = (count == (length - 1)) ? 1 : 0;
        if (i2c_do_read(obj, ptr, stop_)) {
            i2c_stop(obj);
            return count;
        }
    }

    // If not repeated start, send stop.
    if (stop)
        i2c_stop(obj);

    // last read
    data[count-1] = I2C_HAL_ReadByte(i2c_addrs[obj->instance]);

    return length;
}

int i2c_write(i2c_t *obj, int address, const char *data, int length, int stop) {
    int i;

    if (i2c_start(obj)) {
        i2c_stop(obj);
        return I2C_ERROR_BUS_BUSY;
    }

    if (i2c_do_write(obj, (address & 0xFE))) {
        i2c_stop(obj);
        return I2C_ERROR_NO_SLAVE;
    }

    for (i = 0; i < length; i++) {
        if(i2c_do_write(obj, data[i])) {
            i2c_stop(obj);
            return i;
        }
    }

    if (stop)
        i2c_stop(obj);

    return length;
}

void i2c_reset(i2c_t *obj) {
    i2c_stop(obj);
}

int i2c_byte_read(i2c_t *obj, int last) {
    char data;
    uint32_t i2c_addrs[] = I2C_BASE_ADDRS;
    // set rx mode
    I2C_HAL_SetDirMode(i2c_addrs[obj->instance], kI2CReceive);

    // Setup read
    i2c_do_read(obj, &data, last);

    // set tx mode
    I2C_HAL_SetDirMode(i2c_addrs[obj->instance], kI2CSend);
    return I2C_HAL_ReadByte(i2c_addrs[obj->instance]);
}

int i2c_byte_write(i2c_t *obj, int data) {
    uint32_t i2c_addrs[] = I2C_BASE_ADDRS;
    // set tx mode
    I2C_HAL_SetDirMode(i2c_addrs[obj->instance], kI2CSend);

    return !i2c_do_write(obj, (data & 0xFF));
}


#if DEVICE_I2CSLAVE
void i2c_slave_mode(i2c_t *obj, int enable_slave) {
    uint32_t i2c_addrs[] = I2C_BASE_ADDRS;
    if (enable_slave) {
        // set slave mode
        BW_I2C_C1_MST(i2c_addrs[obj->instance], 0);
        I2C_HAL_SetIntCmd(i2c_addrs[obj->instance], true);
    } else {
        // set master mode
        BW_I2C_C1_MST(i2c_addrs[obj->instance], 1);
    }
}

int i2c_slave_receive(i2c_t *obj) {
    uint32_t i2c_addrs[] = I2C_BASE_ADDRS;
    switch(HW_I2C_S_RD(i2c_addrs[obj->instance])) {
        // read addressed
        case 0xE6:
            return 1;
        // write addressed
        case 0xE2:
            return 3;
        default:
            return 0;
    }
}

int i2c_slave_read(i2c_t *obj, char *data, int length) {
    uint8_t dummy_read;
    uint8_t *ptr;
    int count;
    uint32_t i2c_addrs[] = I2C_BASE_ADDRS;
    // set rx mode
    I2C_HAL_SetDirMode(i2c_addrs[obj->instance], kI2CSend);

    // first dummy read
    dummy_read = I2C_HAL_ReadByte(i2c_addrs[obj->instance]);
    if (i2c_wait_end_rx_transfer(obj))
        return 0;

    // read address
    dummy_read = I2C_HAL_ReadByte(i2c_addrs[obj->instance]);
    if (i2c_wait_end_rx_transfer(obj))
        return 0;

    // read (length - 1) bytes
    for (count = 0; count < (length - 1); count++) {
        data[count] = I2C_HAL_ReadByte(i2c_addrs[obj->instance]);
        if (i2c_wait_end_rx_transfer(obj))
            return count;
    }

    // read last byte
    ptr = (length == 0) ? &dummy_read : (uint8_t *)&data[count];
    *ptr = I2C_HAL_ReadByte(i2c_addrs[obj->instance]);

    return (length) ? (count + 1) : 0;
}

int i2c_slave_write(i2c_t *obj, const char *data, int length) {
    int i, count = 0;
    uint32_t i2c_addrs[] = I2C_BASE_ADDRS;

    // set tx mode
    I2C_HAL_SetDirMode(i2c_addrs[obj->instance], kI2CSend);

    for (i = 0; i < length; i++) {
        if (i2c_do_write(obj, data[count++]) == 2)
            return i;
    }

    // set rx mode
    I2C_HAL_SetDirMode(i2c_addrs[obj->instance], kI2CReceive);

    // dummy rx transfer needed
    // otherwise the master cannot generate a stop bit
    I2C_HAL_ReadByte(i2c_addrs[obj->instance]);
    if (i2c_wait_end_rx_transfer(obj) == 2)
        return count;

    return count;
}

void i2c_slave_address(i2c_t *obj, int idx, uint32_t address, uint32_t mask) {
    uint32_t i2c_addrs[] = I2C_BASE_ADDRS;
    I2C_HAL_SetUpperAddress7bit(i2c_addrs[obj->instance], address & 0xfe);
}
#endif

#endif