mbed library sources

Dependents:   Encrypted my_mbed lklk CyaSSL_DTLS_Cellular ... more

Superseded

This library was superseded by mbed-dev - https://os.mbed.com/users/mbed_official/code/mbed-dev/.

Development branch of the mbed library sources. This library is kept in synch with the latest changes from the mbed SDK and it is not guaranteed to work.

If you are looking for a stable and tested release, please import one of the official mbed library releases:

Import librarymbed

The official Mbed 2 C/C++ SDK provides the software platform and libraries to build your applications.

targets/hal/TARGET_NORDIC/TARGET_MCU_NRF51822/pwmout_api.c

Committer:
mbed_official
Date:
2015-02-16
Revision:
477:5831be29b0ad
Parent:
340:28d1f895c6fe

File content as of revision 477:5831be29b0ad:

/* mbed Microcontroller Library
 * Copyright (c) 2013 Nordic Semiconductor
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#include "mbed_assert.h"
#include "pwmout_api.h"
#include "cmsis.h"
#include "pinmap.h"
#include "mbed_error.h"

#define NO_PWMS         3
#define TIMER_PRECISION 4 //4us ticks
#define TIMER_PRESCALER 6 //4us ticks  =   16Mhz/(2**6)
static const PinMap PinMap_PWM[] = {
    {p0,  PWM_1, 1},
    {p1,  PWM_1, 1},
    {p2,  PWM_1, 1},
    {p3,  PWM_1, 1},
    {p4,  PWM_1, 1},
    {p5,  PWM_1, 1},
    {p6,  PWM_1, 1},
    {p7,  PWM_1, 1},
    {p8,  PWM_1, 1},
    {p9,  PWM_1, 1},
    {p10,  PWM_1, 1},
    {p11,  PWM_1, 1},
    {p12,  PWM_1, 1},
    {p13,  PWM_1, 1},
    {p14,  PWM_1, 1},
    {p15,  PWM_1, 1},
    {p16,  PWM_1, 1},
    {p17,  PWM_1, 1},
    {p18,  PWM_1, 1},
    {p19,  PWM_1, 1},
    {p20,  PWM_1, 1},
    {p21,  PWM_1, 1},
    {p22,  PWM_1, 1},
    {p23,  PWM_1, 1},
    {p24,  PWM_1, 1},
    {p25,  PWM_1, 1},
    {p28,  PWM_1, 1},
    {p29,  PWM_1, 1},
    {p30,  PWM_1, 1},
    {NC, NC, 0}
};

static NRF_TIMER_Type *Timers[1] = {
    NRF_TIMER2
};

uint16_t PERIOD            = 20000 / TIMER_PRECISION;  //20ms
uint8_t PWM_taken[NO_PWMS] = {0, 0, 0};
uint16_t PULSE_WIDTH[NO_PWMS] = {1, 1, 1}; //set to 1 instead of 0
uint16_t ACTUAL_PULSE[NO_PWMS] = {0, 0, 0};


/** @brief Function for handling timer 2 peripheral interrupts.
 */
#ifdef __cplusplus
extern "C" {
#endif
void TIMER2_IRQHandler(void)
{
    NRF_TIMER2->EVENTS_COMPARE[3] = 0;
    NRF_TIMER2->CC[3]             =  PERIOD;

    if (PWM_taken[0]) {
        NRF_TIMER2->CC[0] = PULSE_WIDTH[0];
    }
    if (PWM_taken[1]) {
        NRF_TIMER2->CC[1] = PULSE_WIDTH[1];
    }
    if (PWM_taken[2]) {
        NRF_TIMER2->CC[2] = PULSE_WIDTH[2];
    }

    NRF_TIMER2->TASKS_START = 1;
}

#ifdef __cplusplus
}
#endif
/** @brief Function for initializing the Timer peripherals.
 */
void timer_init(uint8_t pwmChoice)
{
    NRF_TIMER_Type *timer = Timers[0];
    timer->TASKS_STOP = 0;

    if (pwmChoice == 0) {
        timer->POWER     = 0;
        timer->POWER     = 1;
        timer->MODE      = TIMER_MODE_MODE_Timer;
        timer->BITMODE   = TIMER_BITMODE_BITMODE_16Bit << TIMER_BITMODE_BITMODE_Pos;
        timer->PRESCALER = TIMER_PRESCALER;
        timer->CC[3]     = PERIOD;
    }

    timer->CC[pwmChoice] = PULSE_WIDTH[pwmChoice];

    //high priority application interrupt
    NVIC_SetPriority(TIMER2_IRQn, 1);
    NVIC_EnableIRQ(TIMER2_IRQn);

    timer->TASKS_START = 0x01;
}

/** @brief Function for initializing the GPIO Tasks/Events peripheral.
 */
void gpiote_init(PinName pin, uint8_t channel_number)
{
    // Connect GPIO input buffers and configure PWM_OUTPUT_PIN_NUMBER as an output.
    NRF_GPIO->PIN_CNF[pin] = (GPIO_PIN_CNF_SENSE_Disabled << GPIO_PIN_CNF_SENSE_Pos)
                            | (GPIO_PIN_CNF_DRIVE_S0S1 << GPIO_PIN_CNF_DRIVE_Pos)
                            | (GPIO_PIN_CNF_PULL_Disabled << GPIO_PIN_CNF_PULL_Pos)
                            | (GPIO_PIN_CNF_INPUT_Connect << GPIO_PIN_CNF_INPUT_Pos)
                            | (GPIO_PIN_CNF_DIR_Output << GPIO_PIN_CNF_DIR_Pos);
    NRF_GPIO->OUTCLR = (1UL << pin);
    // Configure GPIOTE channel 0 to toggle the PWM pin state
    // @note Only one GPIOTE task can be connected to an output pin.
    /* Configure channel to Pin31, not connected to the pin, and configure as a tasks that will set it to proper level */
    NRF_GPIOTE->CONFIG[channel_number] = (GPIOTE_CONFIG_MODE_Task << GPIOTE_CONFIG_MODE_Pos) |
                                         (31UL << GPIOTE_CONFIG_PSEL_Pos) |
                                         (GPIOTE_CONFIG_POLARITY_HiToLo << GPIOTE_CONFIG_POLARITY_Pos);
    /* Three NOPs are required to make sure configuration is written before setting tasks or getting events */
    __NOP();
    __NOP();
    __NOP();
    /* Launch the task to take the GPIOTE channel output to the desired level */
    NRF_GPIOTE->TASKS_OUT[channel_number] = 1;

    /* Finally configure the channel as the caller expects. If OUTINIT works, the channel is configured properly.
       If it does not, the channel output inheritance sets the proper level. */
    NRF_GPIOTE->CONFIG[channel_number] = (GPIOTE_CONFIG_MODE_Task << GPIOTE_CONFIG_MODE_Pos) |
                                         ((uint32_t)pin << GPIOTE_CONFIG_PSEL_Pos) |
                                         ((uint32_t)GPIOTE_CONFIG_POLARITY_Toggle << GPIOTE_CONFIG_POLARITY_Pos) |
                                         ((uint32_t)GPIOTE_CONFIG_OUTINIT_Low << GPIOTE_CONFIG_OUTINIT_Pos); // ((uint32_t)GPIOTE_CONFIG_OUTINIT_High <<
                                                                                                             // GPIOTE_CONFIG_OUTINIT_Pos);//

    /* Three NOPs are required to make sure configuration is written before setting tasks or getting events */
    __NOP();
    __NOP();
    __NOP();
}

/** @brief Function for initializing the Programmable Peripheral Interconnect peripheral.
 */
static void ppi_init(uint8_t pwm)
{
    //using ppi channels 0-7 (only 0-7 are available)
    uint8_t channel_number = 2 * pwm;
    NRF_TIMER_Type *timer  = Timers[0];

    // Configure PPI channel 0 to toggle ADVERTISING_LED_PIN_NO on every TIMER1 COMPARE[0] match
    NRF_PPI->CH[channel_number].TEP     = (uint32_t)&NRF_GPIOTE->TASKS_OUT[pwm];
    NRF_PPI->CH[channel_number + 1].TEP = (uint32_t)&NRF_GPIOTE->TASKS_OUT[pwm];
    NRF_PPI->CH[channel_number].EEP     = (uint32_t)&timer->EVENTS_COMPARE[pwm];
    NRF_PPI->CH[channel_number + 1].EEP = (uint32_t)&timer->EVENTS_COMPARE[3];

    // Enable PPI channels.
    NRF_PPI->CHEN |= (1 << channel_number) |
                     (1 << (channel_number + 1));
}

void setModulation(pwmout_t *obj, uint8_t toggle, uint8_t high)
{
    if (high) {
        NRF_GPIOTE->CONFIG[obj->pwm] |= ((uint32_t)GPIOTE_CONFIG_OUTINIT_High << GPIOTE_CONFIG_OUTINIT_Pos);
        if (toggle) {
            NRF_GPIOTE->CONFIG[obj->pwm] |= (GPIOTE_CONFIG_MODE_Task << GPIOTE_CONFIG_MODE_Pos) |
                                            ((uint32_t)GPIOTE_CONFIG_POLARITY_Toggle << GPIOTE_CONFIG_POLARITY_Pos);
        } else {
            NRF_GPIOTE->CONFIG[obj->pwm] &= ~((uint32_t)GPIOTE_CONFIG_POLARITY_Toggle << GPIOTE_CONFIG_POLARITY_Pos);
            NRF_GPIOTE->CONFIG[obj->pwm] |= ((uint32_t)GPIOTE_CONFIG_POLARITY_LoToHi << GPIOTE_CONFIG_POLARITY_Pos);
        }
    } else {
        NRF_GPIOTE->CONFIG[obj->pwm] &= ~((uint32_t)GPIOTE_CONFIG_OUTINIT_High << GPIOTE_CONFIG_OUTINIT_Pos);

        if (toggle) {
            NRF_GPIOTE->CONFIG[obj->pwm] |= (GPIOTE_CONFIG_MODE_Task << GPIOTE_CONFIG_MODE_Pos) |
                                            ((uint32_t)GPIOTE_CONFIG_POLARITY_Toggle << GPIOTE_CONFIG_POLARITY_Pos);
        } else {
            NRF_GPIOTE->CONFIG[obj->pwm] &= ~((uint32_t)GPIOTE_CONFIG_POLARITY_Toggle << GPIOTE_CONFIG_POLARITY_Pos);
            NRF_GPIOTE->CONFIG[obj->pwm] |= ((uint32_t)GPIOTE_CONFIG_POLARITY_HiToLo << GPIOTE_CONFIG_POLARITY_Pos);
        }
    }
}

void pwmout_init(pwmout_t *obj, PinName pin)
{
    // determine the channel
    uint8_t pwmOutSuccess = 0;
    PWMName pwm           = (PWMName)pinmap_peripheral(pin, PinMap_PWM);

    MBED_ASSERT(pwm != (PWMName)NC);

    if (PWM_taken[(uint8_t)pwm]) {
        for (uint8_t i = 1; !pwmOutSuccess && (i<NO_PWMS); i++) {
            if (!PWM_taken[i]) {
                pwm           = (PWMName)i;
                PWM_taken[i]  = 1;
                pwmOutSuccess = 1;
            }
        }
    } else {
        pwmOutSuccess           = 1;
        PWM_taken[(uint8_t)pwm] = 1;
    }

    if (!pwmOutSuccess) {
        error("PwmOut pin mapping failed. All available PWM channels are in use.");
    }

    obj->pwm = pwm;
    obj->pin = pin;

    gpiote_init(pin, (uint8_t)pwm);
    ppi_init((uint8_t)pwm);

    if (pwm == 0) {
        NRF_POWER->TASKS_CONSTLAT = 1;
    }

    timer_init((uint8_t)pwm);

    //default to 20ms: standard for servos, and fine for e.g. brightness control
    pwmout_period_ms(obj, 20);
    pwmout_write    (obj, 0);
}

void pwmout_free(pwmout_t *obj)
{
    MBED_ASSERT(obj->pwm != (PWMName)NC);
    PWM_taken[obj->pwm] = 0;
    pwmout_write(obj, 0);
}

void pwmout_write(pwmout_t *obj, float value)
{
    uint16_t oldPulseWidth;

    NRF_TIMER2->EVENTS_COMPARE[3] = 0;
    NRF_TIMER2->TASKS_STOP        = 1;

    if (value < 0.0f) {
        value = 0.0;
    } else if (value > 1.0f) {
        value = 1.0;
    }

    oldPulseWidth          = ACTUAL_PULSE[obj->pwm];
    ACTUAL_PULSE[obj->pwm] = PULSE_WIDTH[obj->pwm]  = value * PERIOD;

    if (PULSE_WIDTH[obj->pwm] == 0) {
        PULSE_WIDTH[obj->pwm] = 1;
        setModulation(obj, 0, 0);
    } else if (PULSE_WIDTH[obj->pwm] == PERIOD) {
        PULSE_WIDTH[obj->pwm] = PERIOD - 1;
        setModulation(obj, 0, 1);
    } else if ((oldPulseWidth == 0) || (oldPulseWidth == PERIOD)) {
        setModulation(obj, 1, oldPulseWidth == PERIOD);
    }

    NRF_TIMER2->INTENSET    = TIMER_INTENSET_COMPARE3_Msk;
    NRF_TIMER2->SHORTS      = TIMER_SHORTS_COMPARE3_CLEAR_Msk | TIMER_SHORTS_COMPARE3_STOP_Msk;
    NRF_TIMER2->TASKS_START = 1;
}

float pwmout_read(pwmout_t *obj)
{
    return ((float)PULSE_WIDTH[obj->pwm] / (float)PERIOD);
}

void pwmout_period(pwmout_t *obj, float seconds)
{
    pwmout_period_us(obj, seconds * 1000000.0f);
}

void pwmout_period_ms(pwmout_t *obj, int ms)
{
    pwmout_period_us(obj, ms * 1000);
}

// Set the PWM period, keeping the duty cycle the same.
void pwmout_period_us(pwmout_t *obj, int us)
{
    uint32_t periodInTicks = us / TIMER_PRECISION;

    NRF_TIMER2->EVENTS_COMPARE[3] = 0;
    NRF_TIMER2->TASKS_STOP        = 1;

    if (periodInTicks>((1 << 16) - 1)) {
        PERIOD = (1 << 16) - 1; //131ms
    } else if (periodInTicks<5) {
        PERIOD = 5;
    } else {
        PERIOD = periodInTicks;
    }
    NRF_TIMER2->INTENSET    = TIMER_INTENSET_COMPARE3_Msk;
    NRF_TIMER2->SHORTS      = TIMER_SHORTS_COMPARE3_CLEAR_Msk | TIMER_SHORTS_COMPARE3_STOP_Msk;
    NRF_TIMER2->TASKS_START = 1;
}

void pwmout_pulsewidth(pwmout_t *obj, float seconds)
{
    pwmout_pulsewidth_us(obj, seconds * 1000000.0f);
}

void pwmout_pulsewidth_ms(pwmout_t *obj, int ms)
{
    pwmout_pulsewidth_us(obj, ms * 1000);
}

void pwmout_pulsewidth_us(pwmout_t *obj, int us)
{
    uint32_t pulseInTicks  = us / TIMER_PRECISION;
    uint16_t oldPulseWidth = ACTUAL_PULSE[obj->pwm];

    NRF_TIMER2->EVENTS_COMPARE[3] = 0;
    NRF_TIMER2->TASKS_STOP        = 1;

    ACTUAL_PULSE[obj->pwm] = PULSE_WIDTH[obj->pwm]  = pulseInTicks;

    if (PULSE_WIDTH[obj->pwm] == 0) {
        PULSE_WIDTH[obj->pwm] = 1;
        setModulation(obj, 0, 0);
    } else if (PULSE_WIDTH[obj->pwm] == PERIOD) {
        PULSE_WIDTH[obj->pwm] = PERIOD - 1;
        setModulation(obj, 0, 1);
    } else if ((oldPulseWidth == 0) || (oldPulseWidth == PERIOD)) {
        setModulation(obj, 1, oldPulseWidth == PERIOD);
    }
    NRF_TIMER2->INTENSET    = TIMER_INTENSET_COMPARE3_Msk;
    NRF_TIMER2->SHORTS      = TIMER_SHORTS_COMPARE3_CLEAR_Msk | TIMER_SHORTS_COMPARE3_STOP_Msk;
    NRF_TIMER2->TASKS_START = 1;
}