Project 3

Luft Maestro

Indiana University – Purdue University Indianapolis
ECE 595 -- Design with Embedded Systems

Team Black

Matthew Vanderpohl
Siddhesh Nadkarni
Shruti Rawool

April 20, 2016

Introduction
This project is named Luft Maestro. Luft means Air in Deutsch and Maestro means master. In other words, the user will be the master of air while using this system. This project enables the user to produce musical notes by extending his/her fingers. Depending on the number of fingers extended, different tones will be played.
Idea
The inspiration for this project is derived from the musical instrument called theremin. Theremin was invented by a young Russian physicist named Lev Sergeyevich Termen (known in the West as Léon Theremin) in October 1920. It is an electronic musical instrument that is controlled without any physical contact by the thereminist (performer). The instrument's controlling section usually consists of two metal antennae that sense the relative position of the user’s hands. They also control oscillators used to vary frequency with one hand and amplitude (volume) with the other hand. These electric signals are then amplified and sent to a loudspeaker.
We attempted to replicate this instrument using a Leap Motion sensor for detecting the hand movements and a microcontroller accompanied with an amplifier circuit to produce the tones.
Features
· Play notes by extending fingers over the Leap Motion sensor
· Record and store notes on SD card
· Playback the recorded notes
· Listen to pre-recorded songs Ode to Joy by Beethoven and Jingle Bells
· Real-time octave control
· Pre-loaded sheet music allowing the user to play songs
Hardware Flow Diagram
[image:]
Software Flow Diagram

[image:]

Circuit diagram:
[image:]
The additional circuitry required is fairly straightforward. It uses a S8050 transistor to amplify the incoming PWM signal. Three additional switches act as input to the K64 for supporting the features. One output pin from the K64 is used for blinking the recording LED. The forward voltage for this LED is 1.9V - 2.0V so a 220 Ω resistor was used. Pull up and pulldown resistors are also included. A potentiometer is added for volume control.

Steps for using our project with the mbed Online Compiler:
1. First visit https://developer.mbed.org/platforms/FRDM-K64F/ and click on the Open mbed Compiler button (after registering on the website).

[image:]

2. The compiler will create a new project for you automatically. Rename the project to your choice.
[image:]

3. Once the code is inserted, click on the Compile button and a .bin file will be generated.
[image:]

Mbed code explained in detail:
[image:]
The program starts by declaring the peripherals to be used on the K64F board and importing the SD card library. PWM is generated from PTC2. Serial port is used for debugging purposes only. The pins for communication with SD card are specified. Since there are just two on-board switches, three additional switches are attached to the GPIO pins for features such as recording and playing stored songs. The on-board LED toggles depending on the mode in which the board is working. Another LED is connected to the GPIO to indicate that the board is recording. Pin PTC2 defined as “tone” generates the PWM.

[image:]
The two boolean variables enable the program to know which song is currently being played to be used in conjunction with the octave control that can change, even during playback. Each entry in the 2D array is the frequency corresponding to that musical note e.g, 988Hz corresponds to Note B in the fifth octave.
[image:]
These are the two arrays which contain the two pre-loaded songs, “Ode to Joy” by Beethoven and “Jingle bells.” Each entry is the note in the song. The first parameter of the note is “tonelevel” which decides the octave. Since the octave can be changed in real-time, it is a variable. The default value is four, i.e. octave four. The next two arrays indicate the notes from the octave to be picked for these songs. Depending on the octave, appropriate frequency of that note is selected.
[image:]
The tempo arrays determine the delay between two consecutive tones. All the delays are in milliseconds. Tempo2 provides delays for tones in “Ode to Joy” and tempo 3 provides delays for delays in “Jingle Bells”.
It is followed by the prototype for the ISR associated with the changeOctave switch.
[image:]
These are the function prototypes for reading from, writing and deleting from SD Card . They return “false” if they fail due to any error else they return “true”.
[image:]
[image:]
The volume at default is set to zero by setting the duty cycle on the “tone” pin. Playback mode is the default mode. In this mode, the user can play manual notes or the pre-recorded songs. If there is no song stored in the recorded array “record”(initialized to 100 notes), no song will be played when the playback switch (SW2) is pressed. Integer “recordLength” is set to zero and LEDs are turned off at initialization. Serial communication is set to use 9600 baud rate. Interrupt is set to be detected at rising edge.
[image:]
The while loop begins. If SW4 on the breadboard is pressed, Ode to Joy is selected and the song is played. Before the song is played the volume is set to maximum by setting the duty cycle of “tone” pin to 0.5. Once the song is done playing the flags are reset and volume is set back to zero.
[image:]
Similar to the previous section, if SW6 on the breadboard is pressed, Jingle Bells is played. The same procedure for Ode to Joy is followed for volume and flags.
[image:]
…..
[image:]
While in the manual mode the serial port is continuously checking for input from the Leap Motion sensor. If it receives any valid input, the controller sets the volume to max and plays the corresponding tone. Once the tone is played, it resets the volume to zero.
[image:]
If SW5 on the breadboard is pressed, the mode changes to 1 and now the controller is in the recording mode. It also deletes any file that was previously recorded on the SD card. The LED toggles to indicate change of mode.
[image:]
[image:]
…………..
[image:]
[image:]
Once the controller enters the recording mode, it sounds an alarm to indicate the start of recording. The LED on the breadboard also starts blinking to indicate that the controller is recording. The controller grabs each input from the sensor and stores it into the record array. The recording ends in one of the following two cases:
1. The user hits the record switch again to manually stop the recording.
2. The record array exhausts the limit of 100 tones.

If there is no note being played when the recording starts, a blank note is recorded. In either case, whenever the recording ends, the alarm sounds to indicate the end of recording. The LED on the breadboard also stops blinking. Before exiting mode 1 the controller writes the data saved in the record array to the SD card. The controller enters the default mode zero at the end of mode one.

[image:]
[image:]
If there is anything recorded and stored on the SD card and SW2 is pressed, the controller will play the recorded song. Nothing is played when a blank note is encountered in the record array. The delay between each note is set to 450 ms. The while loop ends after this block of code.
[image:]
This is the ISR for the real time octave change. Whenever the SW3 is pressed, an interrupt is generated. In the ISR the tonelevel variable is incremented by one and if any pre-recorded is being played when the interrupt occurred, the octave of the song shifts by one. The program avoids using octave level one and seven due to the limited range of the speaker. Therefore, when the value of tone level exceeds six it loops back to the value two.
[image:]
[image:]
This is the function that writes to the SD card. It opens or creates a file in the SD card for writing. It throws an error if there was a problem and returns “false.” It then records the length to be stored and stores each note from the record array to the SD card. Each piece of data written to the file is delimited by a space for reading purposes later. Before finishing, it closes the file. If there was no error during the transfer, the function returns “true”.
[image:]
[image:]
This is the function that reads the stored notes from the SD card. It opens the file for reading and throws an error if the opening fails and returns “false.” It first reads the size of the array to be retrieved. It then stores the notes back into an array in the microcontroller. The microcontroller then plays from this array whenever SW2 is pressed. If there was no error while transferring the notes from the SD card to the microcontroller, the function returns “true”.
[image:]
This function deletes the file from the SD Card. For simplicity the system records only 1 song at a time. To avoid overwrites, this function deletes any previous copy of the tune. This ensures that the Sd card will only have the melody played after the record switch is pressed.

Steps for setting up the Leap Motion API in Visual Studios:
Full guide can be found here when starting a new Visual Studio project
https://developer.leapmotion.com/documentation/csharp/devguide/Leap_Guides.html
Using our already compiled program, these steps are the only ones necessary to port the system to a Windows PC.
1. Download the Leap Motion SDK -- https://developer.leapmotion.com/
[image:]
2. Make sure the drivers install and then connect the Leap Motion Controller
3. The device should connect automatically and should show up where flash drives are typically found.
4. Connect the K64F board and install the corresponding drivers.
5. Go to device manager and under “Ports” find the COM port assigned to the chip.
6. Make sure the COM port is COM14 otherwise manually change it to that port by right clicking and navigating to Properties-->Port settings-->Advanced-->COM Port Number. Select COM14 as the port.
[image:]
7. Download the zip file containing our code -- LeapMotionSpeakerController.zip
8. Navigate to the executable file -- *\LeapMotionSpeakerController\LeapMotionSpeakerController\LeapMotionSpeakerController\bin\Debug\LeapMotionSpeakerController.exe
[image:]
9. Run the .exe file and a console will appear with the program’s main menu.
10. If the COM port is not configured properly an exception will be thrown and you will want to review the steps above.

Leap Motion code explained in detail:
Visual Studio was used to write the program responsible for reading inputs from the Leap Motion controller, sending those inputs over a serial connection, and providing a simple menu for the user.

To extract the information from the Leap Motion device, the Leap Motion API was used by including the namespace “Leap,” referencing the LeapCSharp.NET4.0 framework, and adding .dll files to the same directory as the executable. This allowed us to create an instance of the controller class which is the first step in using the Leap Motion API. After that an instance of the frame class also created. The purpose of the controller is to access methods associated with reading different types of data from the sensor and the purpose of the frame is to hold current and previous data read from the sensor. These two classes can be seen below:
[image:]
We also had to create an instance of the serial port class using the default serial communication settings and assigning it to COM14. This was achieved by using the “System.IO.Ports” namespace.
[image:]
Once all of the initial variables are created the program’s constructor is called from within main and the program starts running by first displaying the main menu to the user.
[image:]
The user has three options:
1. Going to another submenu that displays preloaded song notes
2. Going to manual mode allowing the user to play anything they want
3. Exiting the application
The submenu consists of two preloaded songs that can be extended at a later time. For now they have only two choices.
[image:]
If a song is chosen the number of fingers corresponding to the song notes is displayed at the top of the screen along with the stand manual mode messages.
[image:]
The portion of the code responsible for reading in the number of fingers the user has extended over the sensor essentially comes from one line of code. The getLeapMotion() method gets the most recent frame and computes the number of fingers extended. It then sends this data to serialSender that is responsible for sending the data to the K64F.
[image:]
[image:]

The rest of the code just deals with opening the COM port or printing the menu to the console.
[image:]
[image:]
[image:]

Software used:
· Visual Studio IDE (2015 edition): IDE used for coding LeapMotion part
· Leap Motion SDK: Used to extract data from the LeapMotion
· ARM Mbed Online Compiler: Used to program K64F

Challenges overcome:
One of the major challenges faced was at the start of the project. The challenge was to understand the musical notes and their frequencies. It was crucial to understand terms like octaves and tempo in music. We also managed to gain a little understanding of reading sheet music for different songs. This information helped us generate accurate tones of different frequencies.

Results
Once the mbed code is uploaded on the board and the Visual Studio script is executed, the user can use the system to listen, play, or record melodies.

[image:]
[bookmark: h.jdojaqcaskok]
[bookmark: h.sm0mmo7ixy]
[bookmark: h.85ptmk97b5ft]
[bookmark: h.n8cqu9asyz3c]
[bookmark: h.gjdgxs]Datasheets
FRDM K64:
Overview
The Flagship FRDM-K64F has been designed by NXP Semiconductors in collaboration with mbed for prototyping all sorts of devices, especially those requiring the size and price point offered by Cortex-M4®. It is packaged as a development board with connectors to break out to strip board and breadboard, and includes a built-in USB FLASH programmer.
[image: Arduino Headers]
Figure 1-- K64F Chip Diagram
It's based on the NXP Semiconductors K64F, with a 32-bit ARM Cortex-M4F core running at 120MHz. It includes 1MB FLASH, 256KB RAM and lots of interfaces including Ethernet, SPI, I2C, ADC, DAC, PWM, UART and other I/O interfaces.
Optimized for cost-sensitive applications requiring processing efficiency and low-power, the new Kinetis K64 MCU family supports crystal-less USB design for reduced system cost and board space. The Kinetis K64 MCU family expands the Kinetis K series with eight low-power ARM® Cortex®-M4 based MCUs while keeping full software, hardware and development tool compatibility.
[image: Additional Peripherals]
Figure 2-- K64F Additional Peripherals
The FRDM-K64F is fully supported in the mbed platform, so it gets access to the free tools and SDK that provides experienced embedded developers with powerful and productive tools for building proof-of-concepts. The pinout above shows the commonly used interfaces and their locations. Note that all the numbered pins (PT_XX) can also be used as DigitalIn and DigitalOut interfaces.
Pin names
· http://mbed.org/teams/Freescale/wiki/frdm-k64f-pinnames
Features
· NXP Semiconductors K64F Kinetis K64 MCU (MK64FN1M0VLL12)
· High performance ARM® Cortex™-M4 Core with Floating point unit and DSP
· 120MHz, 256KB RAM, 1MB FLASH
· SPI (3)
· I2C (3)
· I2S
· UART (5)
· USB OTG / Host / Device
· USB regulator
· PWM
· ADC (2x 16bit with mux)
· DAC (12bit)
· GPIO
· Comparator
· CAN
· FRDM-K64F Onboard Additions
· FXOS8700CQ - 3-axis accelerometer and magnetometer
· Ethernet
· 2 push buttons
· RGB LED
· Bluetooth expansion pins
· RF24L01+ expansion pins
· Evaluation Form factor
· 81mm x 53mm
· 5V USB or 4.5-9V supply
· Built-in USB drag 'n' drop FLASH programmer
· mbed HDK & SDK enabled
· Drag-n-drop programming
· USB Serial Port
· CMSIS-DAP
· Online development tools
· Easy to use C/C++ SDK
· Lots of published libraries and projects

Leap motion controller
[image:]
The Leap Motion Controller tracks your hands at up to 200 frames per second using infrared cameras – giving you a 150° field of view with roughly 8 cubic feet of interactive 3D space. The heart of the device consists of two cameras and three infrared LEDs. These track infrared light with a wavelength of 850 nanometers, which is outside the visible light spectrum.
The device has a large interaction space of eight cubic feet, which takes the shape of an inverted pyramid – the intersection of the binocular cameras’ fields of view. Previously, the Leap Motion Controller’s viewing range was limited to roughly 2 feet (60 cm) above the device. With the Orion beta software, this has been expanded to 2.6 feet (80 cm). This range is limited by LED light propagation through space, since it becomes much harder to infer your hand’s position in 3D beyond a certain distance. LED light intensity is ultimately limited by the maximum current that can be drawn over the USB connection.
At this point, the device’s USB controller reads the sensor data into its own local memory and performs any necessary resolution adjustments. This data is then streamed via USB to the Leap Motion tracking software.
Specifications
• Minimum System Requirements
• Windows 7 or 8 or Mac OS X 10.7
• AMD PhenomTM II or Intel® CoreTM i3 / i5 / i7 Processor
• 2 GB RAM
• USB 2.0 port
• Internet connection
• Size: 0.5'' (H) x 1.2'' (W) x 3'' (D)
• Weight: 0.1 pounds

S8050:
[image:]
[image:]
[image:]

image35.png

image62.png

image19.png

image36.png

image16.png

image04.png

image32.png

image50.png

image12.png

image17.png

image91.png

image65.png

image23.png

image96.png

image15.png

image64.png

image63.png

image94.png

image89.png

image11.png

image18.png

image49.png

image44.png

image39.png

image81.png

image90.png

image38.png

image80.png

image47.png

image88.png

image52.png

image93.png

image82.png

image43.png

image33.png

image10.png

image61.png

image34.png

image99.png

image92.png

image87.jpg

image14.jpg

image60.png

image21.png

image95.png

image84.png

image98.png

image83.png

image97.png

image31.png

